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High-Quality Multispectral Image Reconstruction for
the Spectral Camera Based on Ghost Imaging via

Sparsity Constraints Using CoT-Unet
Tao Hu , Jianxia Chen , Shu Wang, Jianrong Wu , Ziyan Chen , Zhifu Tian, Ruipeng Ma, and Di Wu

Abstract—To solve the problem of poor quality in ghost imaging
via sparsity constraints (GISC) multispectral image reconstruction
with correlation operations and compressed sensing algorithms
under low sampling rate detection conditions, we propose an end-
to-end deep-learning-based method. Based on the U-Net, Res2Net-
SE-Conv is employed instead of convolutional blocks to extract local
and global image features at a more fine-grained level while adap-
tively adjusting the channel feature response. The two-dimensional
contextual transformer is constructed to fully use contextual cor-
relation information to enhance the effectiveness of feature repre-
sentations. We employ the two-dimensional contextual transformer
in the decoder part, dubbed CoT-Unet, to reconstruct the desired
3D cube. The results show that compared with U-Net, TSA-Net
based on spatial-spectral self-attention, the PSNR of reconstructed
images by the CoT-Unet is improved by 5 dB and 3 dB, respectively,
SSIM is improved by 0.23 and 0.07, and SAM is decreased by 0.06
and 0.58. Compared with conventional algorithms such as DGI and
CS, our method significantly improves the quality of reconstructed
images. Furthermore, the comparison results at 10%, 20%, and
30% sampling rates show that our approach has the best quality in
reconstructing GISC multispectral images at low sampling rates.

Index Terms—Multispectral image reconstruction, convo-
lutional neural network, transformer, self-attention mechanism,
ghost imaging.

I. INTRODUCTION

GHOST imaging via sparsity constraints (GISC) spec-
tral camera [1] is a new imaging system different from

conventional spectral imaging, which has the advantages of
transmissible media imaging, computational imaging, etc. The
underlying principle is to use a spatial phase modulator [2]
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to modulate the image by phase throughout the spectral band,
capturing a three-dimensional (3D) spectral data cube through
a single two-dimensional(2D) measurement. At the same time,
the system incorporates compressive sensing (CS) [3] to perform
signal acquisition at frequencies lower than the Nyquist, thus
improving the efficiency of optical channel capacity utilization
and achieving information compression during the imaging ac-
quisition process. Although the research on the principle and
system of GISC spectral imaging has been more mature in
recent years [4], the imaging quality of the system still needs
to be improved at low sampling rates. For single-photon array
detection, red outside array detection, and other small-scale sur-
face array detectors, studying image reconstruction algorithms at
low sampling rates provides technical support for their practical
application.

Image reconstruction is an essential technical aspect of an
imaging system, and the performance of the reconstruction
algorithm directly affects the final imaging quality. With the
development of deep learning (DL) in image processing, con-
volutional neural network (CNN) can use models with solid
learning ability to establish end-to-end mapping functions from
2D measurements to 3D multispectral image data cubes. At
present, many CNN-based reconstruction algorithms have been
developed. Among them, image reconstruction algorithms based
on U-Net [5] have achieved better results. λ−Net [6] adopts
shallow U-Net to restore the spatial image details in the spectral
channel. TSA-Net [7] embeds spatial and spectral self-attention
models into the encoder-decoder structure to achieve recon-
struction using spatial and spectral correlations of multispectral
images. However, the limited convolutional field in CNN has
some limitations [8], which cannot fully obtain the practical
global information of the picture. Recently, the natural language
processing (NLP) field has witnessed the rise of transformer with
self-attention in robust language modeling architectures [9], [10]
that triggers long-range interaction in a scalable manner. Inspired
by this, there has been a steady momentum of breakthroughs [11]
that push the limits of image reconstruction tasks by integrating
CNN architecture with transformer modules. Nevertheless, these
existing deep learning algorithms are not directly oriented to
image reconstruction algorithms for GISC spectral cameras.

In GISC multispectral image reconstruction, correlation
operations and compressed sensing algorithms are usually
used. Among them, correlation algorithms such as differential
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Fig. 1. Schematic of GISC spectral camera1: (Ⅰ) the object, (Ⅱ) the conventional imaging system, (Ⅲ) the first image plane, (Ⅳ) the spatial phase modulator,
(Ⅴ) the speckles plane, (a) the front imaging module, (b) the modulation detection module, (c) the demodulation reconstruction module. N1: the height, N2: the
width, N3: the spectral bands.

ghost imaging (DGI) [12] compute imaging by second-order
correlation function, which has a simple computational process.
Still, the quality of the reconstructed image is not high at low
sampling rates. CS algorithms use the prior characteristics of
multispectral images, such as low-rank and sparse modeling,
to reconstruct images by solving underdetermined equations,
improving image quality at low sampling rates. Still, its iterative
operations increase computational complexity. Meanwhile, the
lower the system’s sampling rate, the more complex reconstruct-
ing a clear target image is. SSTU-Net3+ [13] obtained relatively
good reconstruction results, but no further discussion was made
on the sampling rate. Although existing deep learning methods
have accepted good results in multispectral image reconstruction
tasks, there are still the following problems in introducing them
to GISC spectral imaging:

1) In GISC spectral imaging, the system measurement matrix
size is enormous from reference [14], and the existing
multispectral image reconstruction algorithms cannot be
directly applied to GISC image reconstruction.

2) For the limited convolutional field in a standard convolu-
tional kernel [8], extracting multispectral image features
through a standard convolutional stacking network will
lead to insufficient image feature extraction.

3) Difficult reconstruction of image detail information.
In multispectral image reconstruction, the self-attention
mechanism in the existing transformer relies on isolated
key-value pairs during the computation and loses the
correlation information between adjacent keys [15].

4) Insufficient discussion on the quality of reconstructed
images under low sampling rate detection conditions.

To solve the above problems, we propose an effective end-
to-end DL-based multispectral image reconstruction algorithm
in this article. The main contributions of this article include the
following four points:
� Adopting the correlation calculation results of DGI as the

input of the CoT-Unet to avoid the measurement matrix
increasing the complexity of network training.

� Based on the U-Net framework, we employ the Res2Net-
SE-Conv module to replace convolution blocks to extract
image features, which entirely use multispectral images’
spatial and spectral correlation.

� Based on different spatial orientations, a two-dimensional
contextual transformer module is constructed and embed-
ded into the U-Net decoder side to represent multispectral
images’ spatial detail features better.

� The effectiveness of our algorithm in the GISC multispec-
tral image reconstruction task at low sampling rates is
verified by conducting comparison experiments at different
sampling rates.

II. RELATED WORKS

A. Image Reconstruction for GISC Spectral Camera

The GISC spectral camera [1] contains three modules: (a)
front imaging, (b) modulation detection, and (c) demodulation
reconstruction. As shown in Fig. 1. First, the object x is projected
onto the first image plane through the conventional imaging
system. Then, the spatial random phase modulator acts as a
random grating to disperse and modulate the image according
to different wavelengths, generating a speckle pattern on the
speckles plane. Next, the charge-coupled device (CCD) detector
records the speckles by performing the speckle field data. Fi-
nally, the computer reconstructs the target image corresponding
to the modulated band by the optimization algorithm.

For the GISC spectral camera, based on ghost imaging and
combined with CS, the whole imaging process can be repre-
sented in the form of a matrix. Letx = [x1, . . . ,xi, . . . ,xN3

] ∈
RN1N2×N3 denote the object, where each column xi is the
vector form of the image of the i-th spectral band. To achieve
a single detection of all spectral bands, each spectral image
corresponds to a different measurement matrixAi ∈ RM×N1N2 ,
the total measurement matrix A = (A1, . . . ,Ai, . . . ,AN3) ∈
RM×N , N = N1 ×N2 ×N3. The whole detection process can
be expressed as (1) shown at the bottom of next page: where
y ∈ RM×1 is the measurements vector, x ∈ RN×1 is the vector
form of the target multispectral image. M denotes the number
of measurements, and N represents the total number of pixels of
the multispectral image. The sampling rate (SR) can be defined
as the ratio of the number of measurements to the total pixels
of the multispectral image, i.e., SR = M/N . Reconstructing
the 3D multispectral data cube of the target object from the
2D measurements is the process of solving x according to the
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measurements and the pre-designed calibration measurement
matrix.

B. CNN for Multispectral Image Reconstruction

CNN can well extract local features of images by stacking
convolutional blocks. However, the regional connectivity of con-
volutional networks makes them lack the global receptive field.
To improve the receptive field of convolutional networks, deeper
network architectures are often used. DenseNet [16] enhances
the efficiency of multi-scale feature representations by using
convolutional layers with shortcut connections. Res2Net [17]
represents multi-scale features at a granular level and increases
the receptive fields for each layer by constructing hierarchical
residual connections within one single residual block. SE-Net
[18] uses the channel attention mechanism to aggregate global
information and reallocate weights to each channel. However,
these methods are all proposed for image segmentation and
target detection tasks, where the network models are large and
unfriendly to multispectral image reconstruction.

As a classic structure of CNN, U-Net is first proposed for
medical image segmentation. Its variants [19], [20], [21] have
verified the effectiveness of encoder-decoder architecture with
skip-connection in image reconstruction tasks. U-Net mainly
relies on convolution and pooling operations to extract image
features. Due to a convolutional network’s inherent receptive
field defect, it is not sufficient to extract image details. Still,
the encoder-decoder structure and skip connection can well fuse
multi-scale features of images.

Bearing the above concerns and considering the model size,
we do not use a very deep network for multispectral image
reconstruction. Instead, based on U-Net, we use the Res2Net
module embedded with a SE block to replace the traditional
convolution operation of the U-Net, aiming to capture the local
details of the desired spatial-spectral data cube.

C. Vision Transformer

At present, in computer vision tasks, such as image classifica-
tion and object detection [22], [23], [24], the transformer used re-
lies on the self-attention mechanism to achieve long-distance in-
teraction between different elements in the sequence, which can
capture long-distance correlation and non-local self-similarity
of image information, becoming a current research hotspot.
However, the key-value pair information in the conventional
self-attention is computed in isolation. As a result, the correla-
tion information between adjacent keys is lost in image feature
learning, which is not conducive to low-level image tasks such as
image reconstruction. CoT [15] further exploits the contextual
information among input keys to facilitate self-attention learn-
ing, improving network representation properties. Sequentially,

CoT is introduced to multispectral image reconstruction, and
CCoT [11] combines convolution and the contextual transformer
to extract more effective spectral features.

Inspired by CoT, in this article, considering the ability of the
transformer to model long-distance information and combining
the priori characteristics of multispectral images, we propose a
contextual transformer module based on different spatial orien-
tations to enhance the representation of spatial detail features
of images. Embedding it into the U-Net decoder part, it can
take full advantage of convolution and transformer to extract
more effective spatial and spectral image features and better
reconstruct the detailed information of multispectral images.

III. THE PROPOSED NETWORK

In this section, we introduce the proposed DL-based multi-
spectral image reconstruction algorithm framework, CoT-Unet,
which combines the advantages of convolution and transformer
to reconstruct high-quality multispectral images with enjoyable
model sizes. And in this part, we describe in detail the ingredients
of Res2Net-SE-Conv and the two-dimensional CoT modules.

A. Overall Architecture

Inspired by the U-Net, CoT, Res2Net, and SE-Net, we propose
a framework of CoT-Unet, as illustrated in Fig. 2. Firstly, we
take the measurements recorded by CCD and the measurement
matrix as the inputs, and then through DGI, which directly avoids
the impact of the large-scale measurement matrix on the network
training process. Then, the DGI results are used to train the
network and further optimized to obtain the multispectral image.

To trade off the network size and reconstruction performance,
CoT-Unet uses a five-layer U-Net encoder-decoder structure
with the input channels of each layer C32, C64, C128, C256, and
C512 (C32–C512 are half of the channels in Vanilla U-Net) to
reduce the overall network parameters. We replace convolutional
blocks in the first three layers of the shallow encoder-decoder
network with the Res2Net-SE-Conv module (framed by the
red dashed line in Fig. 2) to enhance the multi-scale feature
representation of images from local and global, spatial, and
spectral perspectives, respectively. Double-Conv extracts local
features of the picture. Pooling and DeConv operations are used
to compress and reduce feature maps. The two-dimensional CoT
module (framed by the red dashed line in Fig. 2) is inserted at the
end of the three decoder blocks to model the contextual infor-
mation correlations of multispectral images in different spatial
directions to enhance the network’s contextual feature represen-
tation of the images. The model achieves the skip connection
between two blocks through the internal connection between
two sub-layers, which avoids the gradient disappearance during
the network training.
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Fig. 2. CoT-Unet architecture. Each convolution layer adopts an 3× 3 operator with stride one and outputs a C-channel cube. The size of pooling and upsampling
is P and U. y represents the measurement with the size of m× n, A means the measurement matrix with the size of M ×N , and M = m× n.

Fig. 3. (a) Res2net-SE-Conv block, (b) Res2net-SE block, (c) SE block.

Lastly, we define the loss function of the proposed model as
follows:

LossMSE =
1

N3

N3∑
i=1

‖x∗
i − xi‖2, (2)

where LossMSE represents the Mean Square Error (MSE) loss,
x∗
i denotes the reconstructed multispectral image at the i-th

spectral channel, xi is the ground truth, and N3 is the number
of spectral bands of the multispectral image.

B. Res2Net-SE-Conv

Res2Net-SE-Conv contains two convolution blocks and a
Res2Net-SE module, which first goes through two 3× 3 convo-
lutions to initially capture the shallow features of the input. Then,
the Res2Net-SE module further captures the detailed character-
istics of the image. As shown in Fig. 3, non-specifically labeled,
all convolutional layers in the network use a convolutional kernel
size of 3× 3.

In the Res2Net module, after the input through 1× 1 convo-
lution, the input feature maps are divided into uniform subsets

by channel. Compared with the input, each feature subset has
the same space size, but the number of channels is 1/s. Each
feature subset is subject to 3× 3 convolution processing except
for the first feature subset. Each 3× 3 convolution layer receives
the information of all the previous feature map subsets due to
the concatenation operation between subsets so that a larger
receptive field can be obtained. The Res2Net module enables the
network to represent multi-scale features at a finer granularity
level through input feature splitting, multi-scale convolution,
feature fusion, and other operations. As a result, it can more
effectively process the features.

Res2Net modeling focuses on spatial image information and
does not effectively use the image’s channel features. However,
exploiting the inter-spectral correlations of multispectral images
facilitates enhancing the network’s sensitivity to captured fea-
tures. Since the squeeze and excitation (SE) module in SE-Net
can adaptively recalibrate the feature response in the channel
direction by explicitly modeling the interdependencies between
channels. Therefore, the proposed network uses the Res2Net-SE
module for feature mapping. The structure of the Res2Net-SE
module is shown in Fig. 3(b), which adds the SE module to the
Res2Net module.

The SE module first uses the global average pooling to squeeze
global spatial information into a channel descriptor to achieve
the aggregation of spatial information:

z(c) =
1

h× w

h∑
k=1

w∑
j=1

u(c, k, j), (3)

where z(c) is the global average pooling result of channel c,
u(c, k, j) is the value of the feature map of channel c at space
(k, j), and C is the spatial dimension of the feature map. h× w
is the spatial size of the feature map, then we use ReLU and
Sigmoid to capture channel-wise dependencies fully, that is:

s = σ(W 2δ(W 1z)), (4)

where δ is the ReLU function, σ is the Sigmoid activation func-
tion, W 1 ∈ Rc/r×c and W 2 ∈ Rc×c/r are the linear mapping
function, and r is the compression ratio.
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Fig. 4. (a) The detailed structures of the two-dimensional contextual transformer block, which involves the modeling for x-dimensional and y-dimensional
separately and aggregation in an order-independent manner: the input is mapped to Q and K for each dimension: the size of the kernel is consistent, (b) the
architecture of the CoT block [15].

Therefore, the Res2Net-SE-Conv module can capture local
and global features at a more fine-grained level. The resid-
ual connectivity helps enhance contextual information and has
multi-channel adaptive adjustment capability. In multispectral
image reconstruction, different regions of each spectral image
of the object and between each spectral segment are highly
correlated. Embedding the Res2Net-SE-Conv module in the
U-Net can effectively represent the multi-scale features of mul-
tispectral images and further improve the spatial resolution of
the reconstructed images under the low sampling rate detection
conditions.

C. Two-Dimensional CoT

CoT goes beyond the conventional self-attention mechanism
by exploiting the contextual information among input keys to
facilitate self-attention learning and strengthening the represen-
tative capacity of the output aggregated feature map. However,
a single spectral image has two spatial dimensions, x and y, and
the input keys of CoT vary with the different spatial-dimensional
image features. Thus, we construct the two-dimensional CoT to
fully utilize the image information with a negligible increase in
model complexity.

The structure of the two-dimensional CoT is shown in
Fig. 4(a). Suppose we have the input X ∈ Rh×w×c. K = X ,
Q = X , and V = XWv denote the keys, queries, and values,

respectively. The module first contextualizes each key represen-
tation by employing k × k group convolution over all neigh-
boring keys within the k × k grid spatially to obtain the static
context representationK1 ∈ h× w × c of the inputX . Next, we
concatenate the contextual information K1 and queries Q and
then pass two successive 1× 1 convolutions to get the attention
matrix A ∈ Rh×w×k×k×ch :

A =
[
K1, Q

]
WpWq, (5)

where ch is the head number. In each head of the multi-
head attention, each feature A(i) at the i-th spatial location
of A is a k × k × ch-dimensional vector comprising ch local
query-contextualized key relation maps (size: 3× 3) for all
heads. Thus, the connection among various parts is strengthened
through the guidance of context modeling, and the ability of
self-attention learning is enhanced. Subsequently, the dynamic
context K2 ∈ h× w × c is calculated by aggregating the atten-
tion matrix A with all the values V:

K2 = V ⊗A. (6)

Then, the static and dynamic contexts are fused through the
attention mechanism [24] as the output of the contextual trans-
former. Fig. 4(b) shows the contextual transformer module’s
architecture.
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Finally, we calculate the values of y-dimensional image fea-
tures according to the x-dimensional contextual features Ox to
realize feature reuse. The output of the two-dimensional CoT is
obtained:

Ooutput = Vy ⊗Ay ⊕K1
y . (7)

In summary, based on learning contextual features in spatial
x-dimensional, repeatedly mining contextual image informa-
tion in y-dimensional and fusing it with x-dimensional image
features can enhance the representation of detailed features
of multispectral images. The two-dimensional CoT perceives
long-distance information simultaneously, using the contextual
information between neighboring keys in different spatial direc-
tions to enhance self-attention learning, which helps to obtain
multi-dimensional information of multispectral images and im-
prove the effectiveness of network training.

IV. EXPERIMENTS AND ANALYSIS

In this section, under the same experimental configurations,
we compare the performance of the proposed CoT-Unet with
the traditional methods like DGI and CS and the DL-based
methods like TSA-Net based on spatial-spectral self-attention
and U-Net on the same datasets. The image reconstruction
quality of CoT-Unet with the competitive methods is compared
when SRs are 10%, 20%, and 30%. To quantitatively evaluate the
algorithm’s effectiveness in GISC spectral image reconstruction,
the experiments and data models are based on GISC spectral
camera [1].

A. Datasets

The experiments were conducted on the ICVL hyperspectral
image datasets [25], including 201 natural scene images of
1390×1300×31. The spectral bands of the ICVL datasets are
ranged from 400 nm to 700 nm with 10 nm intervals. First,
according to the imaging system, we chose ten channels with a
spectral range from 610 nm to 700 nm in those datasets; then, the
image data were extracted to obtain 201 copies of 10 spectral
channels. To ensure the validity of the experimental data, we
randomly select 199 scenes for training, one scene for validation,
and one scene for testing. By enhancing the data for each scene,
we obtained 5000 copies of image data of size 145×145×10 as
the ground truth.

B. Implementation Details and Comparison Metrics

First, according to the GISC spectral camera, the image
with the size of 145×145×10 is measured. We set the SRs
as 10%, 20%, and 30%, respectively, and the corresponding
2D measurements are obtained according to these different
SRs. Then, the 2D measurements and the system calibration
measurement matrix are used as the input of the proposed model,
the DGI result (145×145×10) is used as the training data, and
the corresponding original image is used as the label to train the
CoT-Unet model. The hyperparameters in the training process
were consistent. The learning rate is 0.0004, the batch size is
10, and the network is trained for 200 epochs. The hardware

device used for model training and experiments is NVIDIA
Quadro RTX 6000 GPU with 24 GB video memory. In the
training software environment, the Python version is 3.8.0, and
the Pytorch version is 1.11.0.

The peak signal-to-noise ratio (PSNR), structured similarity
index metrics (SSIM) [26], and spectral angle mapping (SAM)
[27] were used to evaluate the image reconstruction effect.
Among them, PSNR and SSIM are commonly used metrics to
assess the image quality, and the higher the value, the better the
quality. SAM measures the spectral similarity by considering the
spectrum of each image element as a high-dimensional vector
and calculates the angle between the reconstructed image and
the high-dimensional vector formed by the image element at
the corresponding position of the target image. The smaller the
angle, the more similar the two spectra are, i.e., the closer the
reconstructed image is to the target image.

C. Comparison Experiments

When SR = 20%, we compared our method with several
competitive methods (DGI, CS, U-Net, and TSA-Net) on the
same testing dataset. Table I shows the average PSNR, SSIM,
and SAM of the reconstructed images of the seven representative
test scenes in the test dataset by different algorithms. The bolded
part is the optimal result in the comparison algorithm. We
can see that the average PSNR of the reconstructed image by
CoT-Unet is improved by 5 dB (22%), SSIM is improved by
0.232 (34%), and SAM is decreased by 0.066 (1%) compared
with TSA-Net. Compared with U-Net, the average PSNR is
improved by 3 dB (13%), SSIM is improved by 0.075 (8%), and
SAM is decreased by 0.589 (11%). In addition, compared with
the conventional algorithms DGI and CS, the average PSNR of
the reconstructed images by the CoT-Unet is improved by more
than 9 dB (40%), SSIM is enhanced by more than 0.3 (38%), and
SAM has a significant decrease, indicating that the CoT-Unet has
powerful feature representation capability in GISC multispec-
tral image reconstruction. The standard deviation shows that
due to different scenes, there are differences between various
reconstructed image indicators, but overall, the reconstructed
image quality of our method is the best among the comparison
algorithms.

Meanwhile, we compare the parameters and FLOPs of the
DL-based models in the compared algorithms, as shown in
Table II, where the FLOPs are calculated with a uniform input
(with the size of 145×145×10, batch size = 1). We can see that
the parameters in the CoT-Unet are reduced by 74% and 81%
compared to U-Net and TSA-Net, respectively, and the FLOPs
are reduced by 70% and 84%, respectively, which indicates that
our CoT-Unet has lower model complexity while ensuring the
optimal quality of the reconstructed images.

Fig. 5 shows part of the visualization results of Scene 1
using several multispectral image reconstruction algorithms and
displays the zoom-in patches of the selected small white boxes
in the subfigure. Enlarging the local area, we can see that our
CoT-Unet can recover more edge details than other algorithms.
Fig. 6 shows spectral density distribution curves at specified
fields and the spectral correlation values between the ground
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TABLE I
SR = 20%, THE PSNR/DB, SSIM, AND SAM/° BY DIFFERENT ALGORITHMS ON SEVEN SCENES

TABLE II
THE PARAMETERS AND FLOPS OF THE MODULE IN ALGORITHMS BASED ON DEEP LEARNING

Fig. 5. The reconstructed images by five algorithms for scene 1. 5 (610, 630, 650, 670, and 690 nm) out of 10 spectral channels are shown to be compared with
the ground truth.
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Fig. 6. The spectral curves and correlation values of Scene 1 are at the bottom of Fig. 6. Pictures P1 and P2 show the spectral curves, that is, the average density
of the area plotted in scene 1 at different wavelengths. The small white boxes P1 and P2 of scene 1 are shown at the top of Fig. 6, from left to right, the visualized
images corresponding to 5 (610, 630, 650, 670, and 690 nm) out of 10 spectral channels. The spectral correlation values (corr) in the symbol box calculate the
spectral correlation between the ground truth and the reconstructed images.

truth and the reconstructed images calculated by the Pearson
Correlation Coefficient.

As shown in Fig. 5, the images reconstructed by the traditional
DGI and CS algorithms have much noise and blurred image
contours. The spatial resolution of the reconstructed images by
the deep neural network is higher than that of the traditional
algorithm, which produces spatial blur due to the extensive
offset range between each scattered spot. In contrast, CoT-Unet
can effectively remove some of the noise and image artifacts,
and the basic contours of the image are prominent. In addition,
from the spectral curves at selected regions P1 and P2 and the
spectral correlation values between the reconstructed image and
the reference image shown in Fig. 6, it can be seen that the
spatial fidelity and spectral recovery of the reconstructed images
by the conventional algorithms such as DGI and CS are much
less than those by CoT-Unet, compared with the reconstructed
images by the TSA-Net and U-Net algorithms, the reconstructed
images by CoT-Unet have much more transparent and more
complete spatial details. The results further indicate that hier-
archical residual convolution, channel feature aggregation, and
contextual correlation modeling have significant advantages in
multispectral image feature extraction and representation.

In summary, in GISC multispectral image reconstruction, both
the visualization of the reconstructed images and the comparison
of the reconstructed spectral curves at typical locations show the
advantages of CoT-Unet.

In addition, to verify the performance of CoT-Unet at low
sampling rates, we compared the results of the competitive
algorithms for GISC multispectral image reconstruction at dif-
ferent sampling rates of 10% and 30%, respectively. The average
PSNR, SSIM, and SAM of the reconstructed images by each
algorithm are shown in Table III, respectively, where the black
bolded parts are the optimal results.

From the results in Table III, we can see that at a sampling rate
of 30%, the average PSNR of the reconstruction image by CoT-
Unet is improved by 9% and 6%, SSIM is enhanced by 33% and
2%, and SAM is reduced by 11% and 4% compared with TSA-
Net and U-Net, at a sampling rate of 10%, the average PSNR of
the reconstruction image by CoT-Unet is improved by 2.2% and
2.7%, SSIM is enhanced by 28% and 5%, and SAM is reduced
by 21% and 8% compared with TSA-Net and U-Net. Compared
with the reconstruction results of traditional algorithms CS and
DGI. Our CoT-Unet has good reconstruction performance at a
low sampling rate compared with the comparison algorithms.

The visualization comparison results of the reconstructed
images of scene 5 by each algorithm at different SRs are shown
in Fig. 7. Fig. 7 shows that the visualization results of the
reconstructed images are consistent with the conclusions of the
data obtained from Table III. CoT-Unet can see the general
outline of the image details in its reconstructed images despite
the sampling rate of 10%, and the image reconstruction quality
is still the best among the compared algorithms.
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TABLE III
THE AVERAGE PSNR/DB, SSIM, AND SAM/° OF THE RECONSTRUCTED IMAGES FOR THE SEVEN TEST SCENES, WHEN SR = 10% AND 30%, RESPECTIVELY

Fig. 7. Comparison results of reconstructed images of scene 5 by each algorithm under different SRs. The corresponding spectral bands are 610, 660, and 700 nm
from left to right in the three columns for each sampling rate: (a) the reconstruction results at the sampling rate of 10%, (b) the reconstruction results at the sampling
rate of 20%, (c) the reconstruction results at the sampling rate of 30%. Please zoom in for a better view.

D. Ablation Study

Ablation experiments are performed on the proposed network.
First, the two-dimensional CoT is removed on top of the CoT-
Unet to examine the effect of contextual self-attention modeling
on performance. Second, The Res2Net-SE-Conv is released on
top of the CoT-Unet to explore the effect of multi-scale residual
convolution on performance. Third, to investigate the impact
of the combined effects of the Res2Net-SE-Conv and the two-
dimensional CoT on network performance, we only conducted
experiments based on Baseline, the model of CoT-Unet after
removing the above two modules simultaneously. The results
are shown in Table IV.

From the reconstruction results in Table IV, we can see that the
PSNR and SSIM of the reconstructed image decrease by 3.72 dB
(15%) and 0.022 (3%), respectively, when the two-dimensional
CoT module is removed from CoT-Unet, which indicates
that contextual self-attention can reconstruct the image well
by modeling the image information correlation in the image
reconstruction process. The PSNR of the reconstructed image
decreases by 3.24 dB (13%), and the SSIM decreases by 0.032

TABLE IV
THE AVERAGE PSNR/DB, SSIM, AND SAM/° BY DIFFERENT MODELS ON THE

SAME SEVEN SCENES

(4%) when the Res2Net-SE-Conv module is removed from CoT-
Unet, which indicates that the multi-scale residual convolution
and SE module can reconstruct the image well by combining the
prior properties of multispectral images. The PSNR decreases by
3.58 dB (15%), the SSIM is reduced by 0.06(8%), and the SAM
is increased by 0.394(8%) when both the Res2Net-SE-Conv
and the two-dimensional CoT module are removed from
CoT-Unet, indicating that the two modules we proposed have
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significant advantages for improving the quality of reconstructed
images.

Regarding the issue of an increase in PSNR after removing
the Res2Net-SE-Conv module from the network model based
on Res2Net-SE-Conv and Baseline, on the one hand, due to
the differences in scenes, the algorithm has differences in the
reconstruction results of the target scene, and the PSNR here
is the average value of the peak signal-to-noise ratio of the
reconstructed scene images tested; on the other hand, 20.08
decreases by 0.69% compared to 20.22, while SSIM increases by
6.1% and SAM decreases by 8.3%, indicating that the Res2Net-
SE-Conv module has significantly improved the overall effect
of reconstructed images.

V. CONCLUSION

This article aims to propose an effective end-to-end model,
called CoT-Unet, for the high-quality reconstruction of GISC
multispectral images. In the network, the Res2Net-SE-Conv
module is constructed to improve the model’s ability to represent
image features by learning and fusing the multi-scale elements of
images through hierarchical residual connectivity and channel
attention. The two-dimensional CoT module is constructed to
enable the network to better understand image detail features and
improve overall performance by modeling the image contextual
information correlation. Experimental results show the network
can reconstruct high-quality images even under low sampling
rate conditions. Our end-to-end solution for GISC spectral im-
age reconstruction may provide a reference and support for
practical applications of ghost imaging. Meanwhile, due to the
end-to-end nature of the network, its generalization performance
is limited. The next step in the research is to improve the
generalization performance of the network while maintaining
low network parameters and reconstructing high-quality im-
ages under a low sampling rate to adapt to different target
scenarios and enhance the practical application ability of the
algorithm.
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