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Ecological Active Vision: Four Bioinspired Principles
to Integrate Bottom–Up and Adaptive Top–Down
Attention Tested With a Simple Camera-Arm Robot

Dimitri Ognibene and Gianluca Baldassare

Abstract—Vision gives primates a wealth of information useful
to manipulate the environment, but at the same time it can easily
overwhelm their computational resources. Active vision is a key
solution found by nature to solve this problem: a limited fovea ac-
tively displaced in space to collect only relevant information. Here
we highlight that in ecological conditions this solution encounters
four problems: 1) the agent needs to learn where to look based
on its goals; 2) manipulation causes learning feedback in areas of
space possibly outside the attention focus; 3) good visual actions are
needed to guide manipulation actions, but only these can generate
learning feedback; and 4) a limited fovea causes aliasing prob-
lems. We then propose a computational architecture (“BITPIC”)
to overcome the four problems, integrating four bioinspired key
ingredients: 1) reinforcement-learning fovea-based top–down at-
tention; 2) a strong vision-manipulation coupling; 3) bottom–up
periphery-based attention; and 4) a novel action-orientedmemory.
The system is tested with a simple simulated camera-arm robot
solving a class of search-and-reach tasks involving color-blob “ob-
jects.” The results show that the architecture solves the problems,
and hence the tasks, very efficiently, and highlight how the archi-
tecture principles can contribute to a full exploitation of the advan-
tages of active vision in ecological conditions.
Index Terms—Bottom-up top–down overt attention,

camera-arm robot, ecological active vision, eye-hand coupling,
inhibition of return, memory, partial observability, reinforcement
learning.

I. INTRODUCTION

I N PRIMATES, vision is the richest source of sensory
information, engaging a large part of the cortical brain

machinery [48]. Visual information is perfectly suited to guide
actions directed to accomplish goals, in particular to support
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manipulation behaviors directed to change the environment.
Vision can give information on the nature of resources in the
environment, in particular about their utility for the animal’s
needs. Moreover, it can furnish a wealth of information on the
size, orientation, location, and other features of such resources,
and the spatial relations between them, needed to support the
online control of action. In this respect, after the processing
stages extracting basic visual information, the visual brain
machinery splits in two major neural information pathways
[42], [71]: (a) the ventral neural pathway, informing the animal
on the nature of resources in the environment and hence sup-
porting the trial-and-error acquisition of the capacity to select
suitable actions; (b) the dorsal neural pathway, guiding the
online control of action execution, e.g., to reach an object in a
specific location.
Visual information richness, however, is double faced as the

continuous visual flow can easily overwhelm the computational
resources of the agent. This has been clearly shown by the dif-
ficulties encountered by classical approaches to vision that, fol-
lowing the initial Marr’s proposal [67], attempt to use the whole
available visual information to form a complete task-indepen-
dent internal representation of the outer world [23].
Vision thus poses a difficult problem that we contribute to

face in this paper from a perspective relevant for primates and
humanoid robots: how can an embodied agent exploit the over-
whelmingly rich visual information from the environment to ac-
complish useful manipulations within it? The approaches of in-
teractive/active vision, inspired to what happens in primates,
offer a general solution to this problem [3], [5], [12], [13], [23],
[38]: use a small fovea with a high resolution, and move it on
relevant points in space to gather only the information needed
to accomplish the task at hand. Here we work on this solution
from an “ecological perspective,” hence we talk of ecological
active vision. With this expression we mean that we develop the
active vision solution following this strategy. First, we try to
identify the specific problems encountered by the active vision
solution when it is employed within “complete” embodied sys-
tems that do not use vision and attention only to collect informa-
tion on the environment, but also to best guide their pragmatic
interactions with it in order to change it and obtain useful re-
sources, similarly to what primates do when acting in a “natural-
istic” (versus abstract/engineered) conditions. Second, we seek
solutions to those problems by looking at the solutions found
by nature, both in terms of behavior and, when possible, brain
anatomy and physiology (our solutions are thus “bioinspired,”
see below).
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This paper starts to face the visual-richness problem illus-
trated above from the fact that fovea-based active vision can
indeed solve the problem but in ecological conditions it also
opens up four critical new problems:
1) Since the information relevant for the system depends on

the pursued goal/faced task [90], [115], the system has to
learn where to look on the basis of it. In particular, as in
ecological conditions the environment is always changing,
the system has to capture the structure of the class of con-
ditions where it pursues the goal and generalize over their
variable features [103]. How can this learning process be
implemented and guided?

2) Detailed information is available at the location explored
with the fovea, while the feedback (e.g., rewards) sup-
porting eye-movement learning is accomplished by manip-
ulation actions possibly performed in a different location:
how can the system solve this spatial indirectness problem
[95]?

3) The system has to learn where to look to support manipu-
lation actions while only these actions can change the en-
vironment and generate learning feedback for learning to
look. How can visual learning take off and solve this chal-
lenging circular-dependency learning problem?

4) The fovea, working together with a low-sensitivity pe-
riphery, gates away a large part of visual information and
thus causes a difficult aliasing problem [113] for which dif-
ferent objects/conditions in the scene can perceptually ap-
pear the same: how can this problem be solved?

The literature has faced these problem largely in isolation
from each other (see Section IV for a review). Instead, this paper
proposes a system that faces them in an integrated fashion. The
rationale for doing so is that facing these problems together
leads to building a system that solves them in novel, more ef-
fective ways.
The system we propose is based on four general bioinspired

ingredients. By “bioinspired’” and “general” we mean here
that: (a) the ingredients are “bioinspired,” rather than “bio-con-
strained,” in the sense that they do not aim to capture detailed
mechanisms of brain, or processes of behavior, as measured
in specific empirical experiments: indeed, the ingredients were
isolated by looking at how primates solve the four problems by
abstracting, with a computational perspective, the knowledge
from several specific papers on these issues (the contributions
of some of these papers are specified in the following sections);
(b) the ingredients aim to capture some “general” principles in-
forming the organization of the attentional systems of primates:
they should so be useful for different specific accounts of such
systems. Based on these features, the principles are expected
to facilitate a more detailed understanding of primate cognitive
architectures and also to support the design of effective con-
trollers for autonomous humanoid robots. The ingredients are
as follows:
1) A top–down adaptive attention component capable of
learning by trial-and-error where to look [10], depending
on the already foveated objects, on the basis of the success
of the system in accomplishing its goals [115], [90]. In au-
tonomous agents, these goals are often not merely “visual
goals,” directed to gather information on the environment
(e.g., to form representations or models of the world, cf.

[14]), but rather goals directed to manipulate and phys-
ically change the environment for own benefit. Here we
focus on this latter class of goals, often overlooked by the
literature on attention but very important for organisms as
highlighted by the “attention for action” views [1], [10].

2) A strong coupling between attention and manipulation ac-
tions. The coupling manifests in relation to two key as-
pects of manipulation actions, namely their selection and
their execution. In particular, in the system: (a) vision sup-
ports the selection of manipulation actions: these are trig-
gered when a location is looked for long, similarly to what
happens consistently in human babies [29]; (b) the gaze
direction furnishes some parameters to manipulation ac-
tions [2], [10], in particular on their critical “where” as-
pect [109]. The importance of the attention-manipulation
coupling is also stressed and studied in another model de-
veloped with an approach that shares several features with
ours [49].

3) A bottom–up attention component guiding attention on the
basis of task-unrelated, but readily available, bottom–up
information [54], [85]. This supports initial exploration
when the system has not yet acquired top–down attention
skills, and hence facilitate their learning. Moreover, after
learning bottom–up attention furnishes the system relevant
information on the specific variable aspects of the environ-
ment that cannot be captured by top–down attention.

4) A novel memory system storing information on potentially
useful visual actions rather than on percepts [31], [50],
[63].Memory is amajor means to face the aliasing problem
(e.g., [87]): the action-based nature of the memory system
used here produces additional advantages for performing
visual actions and also for learning them. The component
is based on a neural map and hence is called Potential Ac-
tion Map (PAM).

Due to these components, the system is called “Bottom-up
attention, Top-down attention (BITPIC), PAM, Coupling
system,” where the Is in the acronym recall the importance of
the Integration of the Ingredients.
BITPIC is here tested within a simulated robotic setup. The

setup is based on very simple visual stimuli, basically color
blobs, and a simple motor plant avoiding motor redundancy
problems. These choices were motivated by the need to keep the
components of the system as simple as possible so as to simplify
their analysis and keep the focus of the research on the overall
interplay between the system components and the principles on
which they are based. Although simple, the chosen setup is suf-
ficient to support the main claims of the paper. The principles
incorporated in the system are expected to scale up to more com-
plex setups as they work at a higher level with respect to the
specific implementations of the sensory and motor elements of
the system components (Section V indicates specific ways to do
this).
Previous works from the authors presented initial analyses of

the four ingredients of BITPIC but did not offer the broad inte-
grated view presented here. Thus, the work presented in [80] in-
vestigated the role of a bottom–up attention component for the
adaptation of a top–down component (see also [68]), the one
of [77] focused on the advantages of the action-based memory
component for visual search, the one of [81] investigated how
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an active-vision system can readapt to changing tasks, and the
one of [78] focussed on the effects of usingmanipulation actions
to gather information from the world (i.e., as epistemic actions
[56]). The novelty of this paper with respect to these works is
as follows: (a) the clear identification of the four problems il-
lustrated above, stemming from the active vision solution, and
their systematic use to analyze the system behavior and learning
processes; (b) the clear identification of the four architectural
principles and the systematic study of how they contribute to
solve the four problems; (c) a deeper understanding, supported
by new data analyses, of how the interplay of the four princi-
ples leads to solve the four problems and also generates some
interesting emergent properties of the system (for example, the
developmental history of the system).
The main results of the paper can be outlined as follows.

First, they show that the main tenet of active vision, namely
that a small and actively controlled fovea improves learning
and performance, holds for the type of system and setup used
here. The result on the improvement of learning processes is
novel as active vision has been shown to enhance performance
by reducing the needed computations, but its importance to en-
hance learning, in our case of visual action selection, has not
been studied with experiments but only highlighted theoreti-
cally [4], [22], [75]. Then the results show in detail how the
integrated interplay of the four ingredients of the architecture
can indeed solve or ameliorate the four active-vision problems
and allow a full exploitation of active vision advantages for
learning and performance. In particular the results show: 1) The
trial-and-error learning process of the top–down attention com-
ponent lead to solve the task with an unexpected high learning
speed. This thanks to the development of strongly embodied
representations [27], [70], [73] that are: (a) action dependent,
in particular incorporating the effect of the sensorimotor loops
engaged with the environment; (b) task dependent; (c) parsi-
monious, capturing only information relevant to guide visual
and manipulation actions to solve the task. 2) The coupling be-
tween visual and manipulation actions solves the indirectness
problem very effectively as learning feedback (reward) can be
associated with percepts and actions related to a small portion of
space. 3) During the initial phases of learning, goal-independent
bottom–up attention can support visual exploration in impor-
tant ways. In this respect, one of the most interesting results of
the research shows how the system undergoes a developmental
trajectory in which the visual routines learned by the top–down
visual adaptive control progressively and gracefully incorpo-
rate, or override, the bottom–up attentional biases when, respec-
tively, useful or detrimental for the pursued goal (by “visual rou-
tines” we mean sequences of visual actions whose component
actions are strongly related with the invariances of the environ-
ment, the task, and between them, see [108]; by “incorporate”
we mean that the learned visual routines rely upon bottom–up
biases). Bottom-up attention is also useful after learning to ex-
ploit information changing from trial to trial. 4) The novel ac-
tion-based memory system substantially limits the negative ef-
fects of the aliasing problems, caused by the reduced scope of
the fovea, based on (a) an emergent inhibition of return [57]
and (b) a continuously updated map of the promising regions
of space where to look. The PAM also contrasts the effects of

Fig. 1. (a-d) Examples of environments used in the experiment. Reprinted with
permission from [80], Copyright IEEE (2010).

aliasing on learning, in particular by transferring visual action
knowledge from object to object.
The rest of the paper is organized as follows. Section II illus-

trates the type of tasks and robotic setup used to test BITPIC,
and gives the details on the system architecture and functioning
sufficient to understand the results (the computational details
for the reproduction of the architecture are presented in Ap-
pendix). Section III illustrates the results of the tests of BITPIC.
Section IV discusses the results with respect to the problems il-
lustrated above and the current literature. Section V draws the
conclusions and illustrates possible future enhancements of the
model.

II. THE TASK, ROBOTIC SETUP, AND ARCHITECTURE

A. The Simulated Robotic Setup
The setup used to test BITPIC is based on a kinematic sim-

ulation of the robotic setup illustrated in Fig. 2(a). This setup
was first used in [76]. The setup is formed by a 4 degrees of
freedom arm, acting on a 2D working plane formed by a com-
puter screen, and a fixed camera looking down on the screen.
The image acquired by the camera, overlapping with the com-
puter screen working area, is used to form a larger image with a
black background. A moving image centred on the system gaze
is extracted from this larger image to simulate the moving-eye
image which forms the input of the system. In this paper we used
the simulated version of the system so as to run several experi-
ments and for the theoretical scope of the paper, but the results
are transferable to the real version of the setup, as shown in [76].
Indeed, the system is rather robust to different noise sources in-
volved by the use of real robots and cameras as further explained
in Section V (see also [75]).

B. The Task
The task used to test BITPIC is divided in trials each one

ending when a reaching action is executed. In each trial the
system “interacts” with a different “environment” randomly
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drawn from class of possible environments, i.e. the images
generated by the computer screen forming the arm working
plane (Fig. 1). The variability of the images at each trial is
important to test the system capacity to capture the structure
of the class of environments, in particular the invariances of
the spatial relations between objects. The images projected by
the screen are built on the basis of a (invisible) grid with
“objects” (colored squares) located on some of its vertexes.
The number and location of objects varies at each trial during
which these objects are shown: 2 to 5 green cues having 100%
luminosity and forming a randomly placed vertical line; 1 red
target having 80% luminosity and placed at the left of the
cue line; 2 to 5 blue distractors having 80% luminosity and
randomly placed in the remaining grid vertexes; the distractors
are not spatially related to the target. This structure of the task
captures the need to visually explore the environment in search
of resources (target) with which to interact with the arm, the
possibility to exploit the eventual spatial relations existing
between objects in the environment to guide visual exploration
(cues), and the presence of non relevant objects (distractors).
At the start of each trial the system’s gaze is randomly posi-

tioned in the working space. The goal of the system is to “touch”
(i.e., be over) the red target with the tip of the arm (“hand”) on
the basis of the visual exploration of the environment. When the
system performs a reaching action, the trial ends and the system
receives a reward of 1 if it touches the target, and a cost of -0.1
if it reaches any point different from the target (another object
or the empty space). A small reward of -0.005 is also given for
each saccade at each simulation cycle. This structure of the re-
ward captures conditions where the positive feedback from the
environment follows only manipulation actions that change the
world (e.g., procure food), while saccades are instrumental for
them. In this way, eye movements receive positive feedback
only indirectly on the basis of how they provide the arm with
information relevant for solving the task at hand.

C. Overview of the System Architecture and Functioning

The architecture of BITPIC, shown in Fig. 2(b), integrates
two neural controllers, one controlling the moving camera (sim-
ulated “eye”), and one controlling the arm.
The camera image is used to generate a high-resolution RGB

small-sized fovea image and a low-resolution black-and-white
large-sized periphery image. All components of the moving
camera controller use a relative reference frame centred on the
gaze direction, whereas the arm controller uses body-centred
reference frames. The attention controller selects the next
point to foveate by integrating information produced by three
components. A first bottom–up attention component forms a
hard-wired bottom–up saliency map [54], [92] resembling the
function implemented by early stages of visual processing [85],
[89]. This component receives as input the peripheral image
and returns as output task-independent interesting locations
where to look on the basis of their local information (here for
simplicity we consider only luminance, but bottom–up saliency
might also capture contrasts, movement, etc., [85]).
A second adaptive top–down attention component is based on

an actor-critic reinforcement learning architecture [99] reminis-
cent of real brain basal ganglia [47] (trial-and-error processes

implemented by basal ganglia play a critical role in the acqui-
sition of voluntary eye movements, [46]). This component re-
ceives as input the fovea image, which informs the system on
the foveated object, and returns as output multiple interesting
locations where to look on the basis of a 2D “vote map’. Criti-
cally, this component learns to “vote” where to look on the basis
of the task rewards caused by the arm actions, and so might for
example learn to move away from distractors, exploit cues to
find the target, keep fixating the target, etc. (note that, although
the reward is sparse in time, learning takes place after each sac-
cade/cycle).
The third component is a novel Potential Action Memory

(PAM) based on a dynamic neural field. This component in-
tegrates in time the information (“votes”) received from the
top–down vote map and on this basis forms a map of loca-
tions in space where possibly look to solve the task. This func-
tion is reminescent of the working memory processes involving
the frontal eye fields (an area of prefrontal cortex) underlying
the voluntary selection of saccade targets [31]. When the eye
moves, the PAM content is shifted in the opposite direction
to preserve its coherence with the new incoming votes, analo-
gously to what happens in frontal eye fields [72]. Notice how the
system does not need to memorize the bottom–up information
as it is always readily available through the peripheral vision,
nor to shift it as this is always anchored to the environment.
The output of the bottom–up component and the PAM com-

ponent are integrated (they are summed up) in an final overall
saliency map. The activation of this map is reminescent of the
activation of area LIP in parietal cortex where stimuli get only
weakly activated (possibly on the basis of their bottom–up
saliency) unless they are behaviorally salient for the task [43].
Based on this activation, at each step of the simulation the
overall saliency map is first added some exploratory noise and
then is used to select the next location where to foveate based on
a neural competition (or, as here, a simplified winner-takes-all
competition). This might result in a gaze shift or a fixation
(reminiscent of microsaccades) [39], [61].
At the beginning of learning, the top–down component

has very low votes and so saccades are mainly guided by the
bottom–up component. However, with learning the votes of
the top–down component can increase and overwhelm the acti-
vation of the bottom–up component. In this respect, if needed
the top–down component outputs votes, which can also be
negative, that can inhibit the effects of the bottom–up saliency
of particular objects if these are not relevant for the task. The
PAM allows to integrate (with a fading memory) top–down
votes in time and so to integrate information on where to look
on the basis of objects foveated at different times. For example,
if a first object is foveated and suggests to look to a certain
location L1 but the system looks at L2, the object foveated at
L2 might strengthen the tendency to look at L1 and so this
location might be eventually selected for the next saccade.
The arm controller was not themain focus of this research and

so was trained before the main experiment. The arm controller
selects the target for the reaching action through a neural com-
petition. The reaching target is then fed to the position-control
servos of the robot arm to produce the torques that lead the arm
to reach the desired posture. This is similar to the muscles that
drive limbs to reach desired equilibrium points [37]. The neural
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Fig. 2. (a) The robotic setup reproduced by the simulator and used to test BITPIC. The robotic setup is formed by an RGB web camera looking down on the
working plane, formed by a CRT (Cathode Ray Tube) monitor which displays the stimuli of the tests, and a robotic arm formed by 3 segments and having 4
degrees of freedom. (b) The architecture of the system: the components on the left form the attention controller whereas the three components on the right (above
the picture of the arm) form the arm controller. Adapted with permission from [76], Copyright by Springer (2008).

TABLE I
GROUPS OF SIMULATION TESTS OF THE MODEL, WITH INDICATION OF THE PROBLEM FACED, THE MAIN TESTED MODEL COMPONENT, THE MAIN RESULTS, THE

DIFFERENT PARAMETERS USED (COMMON PARAMETERS ARE REPORTED IN TABLE III), AND THE TYPE OF MEMORY OF THE SYSTEM

map implementing the arm action competition is fed by the cur-
rently foveated location and thus the reaching movement to that
location is triggered if the activation of a reaching target it en-
codes reaches a certain threshold, similarly to what happens in
motor regions of brain during selection of reaching movements
[26]. Note that in these conditions the eye-arm coupling is quite
strong: reaching can be triggered only by a prolonged fixation
and towards the fixated location. This was done to study the ef-
fects of the coupling without confounds, but in the future other
sources of information might be introduced to activate the arm
action competition map and trigger reaching to locations where
the eye is not looking.
The eye-arm coupling of the model has two important

features. First, it creates a strong link between the gaze and
the reaching target as the arm can reach only targets that are
foveated [1]. Second, it implies that the reaching movement is

triggered only if a particular object is foveated for a minimum
period of time dependent of the threshold (e.g., 3-4 steps in a
row in the current system), similarly to what happens in babies
learning to reach [29], [30].
The arm controller also performs the visuo-motor transfor-

mations (inverse kinematic) needed to map the gazed location
to the posture (angles) of the arm that causes the “hand” to be
on the foveated location, similar to the sensorimotor transforma-
tion performed by the brain dorsal visual pathway at the level
of the parietal cortex [21], [42].
Overall, during the task solution the whole system tends to

exhibit the following behavior. At the beginning of a task, the
bottom–up attention component leads the system to visually ex-
plore the various objects based on their visual objective saliency,
for example to foveate the highly salient green objects. Once in
a while the system fixates an object for long enough to trigger a
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reaching movement to it and this produces a reward if the target
is touched, or a small cost if it is not touched. The rewards and
punishments collected by the system drive the reinforcement
learning processes of the top–down attention component so that
it learns to search useful information in the scene, for example
to foveate the target for multiple steps so that a reaching move-
ment is triggered towards it, or to exploit the sight of cues to
move the eye to the target. These behaviors are described in de-
tail in the sections below by analysing the results of the tests of
the system.
The arm and eye controllers are based on bioinspired com-

putational building blocks: (a) population codes, here imple-
mented on the basis of 2D neural maps, used to represent sen-
sory or motor information [86]; (b) dynamic neural-field net-
works, again implemented with 2D neural maps, used to inte-
grate information in time and to perform winner-take-all neural
competitions [36] (similarly to what happens in real brain cortex
[25]); (c) bioinspired trial-and-error learning mechanisms based
on the rare feedback from the environment (actor-critic rein-
forcement learning architecture, [99]).

III. RESULTS

This section presents the results of the tests of the model.
The tests and results are organized in five groups summarized
in Table I and described in the following five subsections.

A. The Role of the Fovea Size in Adaptive Active-Vision
Systems

A first test was directed to investigate the effects on learning
of different fovea sizes. A small fovea increases perceptual
aliasing as the system looses the overall view of the whole
scene. On the other side, it reduces the computational resources
needed to process the image and drastically simplifies the input
patterns to which the system has to learn to associate saccadic
actions. What is the final balance of these contrasting costs and
benefits for a system based on the four ingredients considered
here? The relevance of this experiment resides in the fact that,
as mentioned in Section I, the advantages of a small fovea size
for learning have not been studied in depth in the literature.
To answer this question, the system was tested with different

sizes of the fovea side: 2, 4, 8, 16, 32, 48, 64, 80, and 96 pixels.
To have an idea on the actual scope of these sizes, consider
that with a pixel fovea the system can perceive at the
same time objects located in contiguous vertexes of the
environment grid. For each fovea size, we ran five repetitions of
the simulation. Each simulation lasted until the system learned
a stable and effective visual strategy, corresponding to less or
equal 7 saccades to finish the trial in 10 consecutive trials on
average (the reason of the number 7 is that an optimal strategy
requires on average about 3 saccades to find the target and 2-4
fixed saccades to trigger a reaching action). After this, we tested
the performance of the system with learning disabled for 100
trials.
Fig. 3 shows the performance of the system with different

fovea sizes after it has solved the task. The figure shows that:
(a) the average reward that the system obtains in 100 trials after
learning is high (up to 0.89) for small fovea sizes, and low for
large fovea sizes; (b) the total number of trials needed to learn

Fig. 3. Effects of different fovea sizes on the learning speed and performance
of the system. The x axis reports the size of the fovea in pixels (2, 4, 8, 16, 32,
48, 64, 80, 96). The y axis reports three measures of performance and learning,
normalized to 1, of the system having different fovea sizes. “Average reward”:
average reward over 50 trials. “Saccades before steady performance”: number
of saccades the learning process takes to find an efficient visual strategy (i.e.,

saccades on average in the last 10 trials); “Reaching before steady perfor-
mance”: the total number of reaching actions necessary to acquire an efficient
visual strategy. The three measures were normalized to 1 with their maximum
levels being, respectively: 0.89 units of reward (obtained with a 4 pixel fovea
size); 350 trials (obtained with a 96 pixel fovea size); 4010 saccades (obtained
with a 96 pixel fovea size). Data refer to an average of 5 simulation runs per-
formed for each different fovea size.

the task increases with the fovea size (up to 350); (c) simi-
larly, the total number of saccades necessary to learn the task
increases with the fovea size (up to 4010).
The key explanation of the efficient learning of the system

with a small fovea size is that a small fovea avoids the need
to learn to associate visual actions to images involving a large
number of different possible combinations of objects and spa-
tial locations. The result (a) implies that, even after learning to
visually find the target, the system with large fovea sizes still
triggers some reaching actions that miss the target. Direct obser-
vation of the system behavior shows the reason of this. Due to
the residual partial observability of the scene and the high com-
plexity of the image, the system with large fovea sizes some-
times falls in local minima that lead it to fixate nontarget objects
and still trigger reaching. A possible improvement of this could
probably be obtained with a higher exploration noise, but this
might also have negative effects on the learning process and the
steady performance.
1) Interim Discussion: The results on the effect of different

fovea sizes are discussed here as they do not relate to the main
issue of the paper, namely the four active vision problems and
their solution, discussed in Section IV.
When the fovea size increases, the possible number of im-

ages increases exponentially with the number of pixels. How-
ever, Fig. 3 indicates that the performance of the system does
indeed decrease with a larger fovea size, but much less than ex-
ponentially. What are the reasons of this? Aside the trivial ex-
planation for which information of pixels is highly redundant
and so increases less fast than the number of possible images,
another explanation is that the advantages of a smaller fovea
size are compensated by two factors. The first factor is visual
aliasing: this requires the system to learn a whole range of pos-
sible saccade targets rather than one single possible target, as
it would happen with an image covering the whole scene and
without aliasing. A second factor, associated with the first, is
that a smaller fovea requires solutions based on sequences of
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Fig. 4. (a) Evolution of average reward per training trial during the simulation.
Note that if the system follows a random visual exploration, not guided by the
bottom–up and top–down components, it gets a very low, negative reward due
to the cost of saccades and as the chance to trigger a reaching to the target is
very low (see next point “b”); the reward is instead about +0.34 if one assumes
that the system immediately obtains the target reward as soon as it foveates
the target, i.e. without the need to trigger the reaching action. (b) Evolution of
average saccade number per trial. Note that with a random behavior the system
takes about 108 saccades on average to foveate the target the first time (hence

to saccades to foveate the target 4 times in a row and trigger the arm
reaching); with the bottom–up component it takes about 12 saccades to foveate
the target the first time. For each marked number of trials, data in both “a” and
“b” were collected by running the system for 1000 trials (during which learning
was stopped) and then by averaging the resulting reward/number of saccades per
trial. Such high number of trials was needed as the environment was different
at each trial. Reprinted with permission from [80], Copyright IEEE (2010).

Fig. 5. Ten most frequent sequences of objects foveated during each trial.
The green, red, and blue rectangles of each of the 10 columns indicate the
objects (cue, target, and distractor, respectively) foveated during the trials.
The sequences start form the bottom rectangle of each column and terminate
with the top one (a target). On the right of each sequence-column, a grey bar
indicates the frequency of the sequence (as percentage of all trials indicated
by the y axis). The data refer to 1000 trials produced with a system previously
trained for 100 trials and with blocked learning. If the initial eye position of
a sequence was on the background, it is not reported in the sequences of the
graph.

saccades. Both aspects are further analyzed and discussed in
the sections below.

Fig. 6. Evolution during learning of the critic’s estimated expected value for
the target, cues, and distractors.

Fig. 7. Evolution during learning of the conditional probability of foveating a
certain object after foveating another given object in the previous step. Symbols:
= target, = cue, = distractor, = time index, = probability of o. As

an example, is the probability of observing at
time given the observation of at time .

The small fovea leading to the best performance (2, 4 pixels)
is rather small, about 0.001% of whole RGB input image. The
larger human fovea (about 0.5-1% of the retina) is a compromise
between the advantages granted by a small fovea, highlighted by
the results reported above, and the need to have a larger fovea
to recognize objects, as suggested by the fact that about half of
visual cortex is dedicated to processing fovea information [116].
In the setup used here, objects can be unequivocally recognized
on the basis of their color, so the object recognition problem can
be solved with a small fovea. As in this condition a larger fovea
does not bring any advantage, the advantages of its reduced size
allows the system with a minimal one to outperform all others.
The results above suggest the possibility that the “fovea

size” could change dynamically. Technically, this could be
done through a component that gets the whole detailed input
image as input and sends as output to the actor-critic a small
“fovea image” having a variable size. Computationally, this
would allow to tradeoff different advantages depending on the
conditions faced, e.g., to exploit the advantages of a small fovea
size for learning and the advantage of a large size for object
recognition. Biologically, this would capture the adjustable size
of the internal attention spotlight [35]. How the system could
autonomously regulate, or learn to regulate, the fovea size is
however an open issue.
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These results, further corroborated by the analyses of the be-
havior and functioning of the system presented in the following
sections, clearly show how a smaller fovea size can substan-
tially enhance learning: to our knowledge, this is a novel result
in the literature on active vision. Note that based on these re-
sults the fovea size was set to pixels in all tests illustrated
below.

B. Learning is Very Efficient and Acquired Visual Routines
Capture the Structure of Object Spatial Relations

As illustrated in Section I, a first problem raised by the use of
a small fovea is that it requires the capacity to learn to move the
eye. In particular, this learning process should lead the system to
acquire the structure of the invariant spatial relations between
objects which are relevant to solve the task at hand. The test we
now illustrate shows how the top–down learning component,
integrated with the other ingredients, has indeed the capacity to
acquire the needed visual routines to do that.
To this purpose, we trained the system for 100 trials. To mon-

itor the system performance, every 5 trials of learning we got
the system connection weights, froze the learning process, and
measured the system performance for 1000 trials each involving
a different scene. The data that we now illustrate are from the
execution of only one run but the behavior of the agent was qual-
itatively similar in different runs.
Fig. 4(a) shows the average reward per reaching action re-

ceived by the system during the 100 learning trials. Remark-
ably, after only 20 trials the performance reaches 0.5, and at
about 60 trials it reaches the steady state (reward starts from a
negative value as the system is punished when reaching fails to
touch the target object). Fig. 4(b) shows how the evolution of
the number of saccades per reaching action (trial). Initially the
system takes about 16 saccades to accomplish the task. After 15
trials, the number rises to a maximum of 26 in correspondence
to the maximum learning progress in reaching (Section III-E ex-
plains why). Then it progressively decreases to seven saccades
per trial (the steady state). These results indicate that the devel-
opment of the frequency of saccades and of the reaching actions
is decoupled during learning even if the visual and reaching sys-
tems are closely coupled. In particular, the system exploits the
cheap visual exploration to gain experience of the environment
capitalizing on few expensive reaching actions.
Considering that, as shown below, the system takes three/four

time steps (saccades) to trigger a reaching action, the results also
indicate that after learning the system finds the target in about
three saccades (seven in total) to manually reach the target.
This high performance is accomplished by acquiring and using
knowledge on the task-relevant spatial relations between objects
and by exploiting the tight coupling between the eye and the
hand. This is now explained more in detail.
Fig. 5 shows how, after learning, the system fovea manages

to successfully explore the environment, and to support manip-
ulation actions, on the basis of the object spatial relations and
notwithstanding the environment variability at each trial. In par-
ticular, the figure shows themost frequent sequences of foveated
objects exhibited in 1000 trials by a system previously trained
for 100 trials. These sequences can be described and interpreted
as follows:

Sequence 5. If the system is lucky and foveates a target, it
immediately recognizes it and so fixates it until a reaching
action is triggered to it.
Sequences 1-3 and 6-7. If the system first foveates a cue
(this happens often due to its high luminosity), it then
foveates an objects at the left of the cue and often this
is the target: this behavior exploits the knowledge on the
spatial relations existing between the cue and the target,
acquired with learning by the top–down component, in-
tegrated with the hard-wired objective information of the
bottom–up component on the location of (indistinct) ob-
jects along the left side of the cue line.
Sequence 4. If the system first foveates a distractor, it then
quickly finds the cue by exploiting its visual salience and
from there exploits the spatial relation of the cue with the
target: note how in this case the high saliency of the cue is
incorporated and exploited in the developed visual routine.
Sequences 8-10. After foveating the cue, the system might
foveate a distractor rather than the target. Indeed, both
might be at the correct position at the left of the cue, the
fovea cannot see them, and the peripheral vision can only
see the presence of objects but cannot discriminate their
identity. If however the system does the error of foveating
the distractor it does not go back to the cue but directly
foveates another object at the left of the cue line and this
is usually the target. This behavior is made possible by the
memory of the PAM on the potential locations of the target
stored when looking the cue. This shows the utility of the
PAM component, in particular of its capacity to integrate
information in time that allows the system to build up a
map of potentially relevant locations so ameliorating the
aliasing problem (this feature of the system is further con-
sidered in the following subsection).

These interpretations of the behavior of the system, in
particular the fact that it relies on the knowledge on the in-
variant structure of the object spatial relations that the system
acquired during learning, are corroborated by the analysis of
Section III-D on the internal representations developed by the
top–down component and their synergy with the bottom–up
biases.

C. The Eye-Hand Coupling Solves the Indirectness Problem

In Section I we have discussed a second problem, the indirect-
ness problem, consisting in the fact that in ecological conditions
the fovea might not foveate the specific location where the arm
causes the learning feedback. In this section we show that the
coupling between the arm and the eye of the system solves this
problem and plays a key role in the following development of
the system.
Fig. 6 shows the evolution of the values assigned by the

reinforcement learning process, namely by the critic of the
top–down component, to the target, cue, and distractor. The
figure shows how during learning the coupling between the
arm target and the current gaze direction soon allows a direct
transfer of the value of the reward obtained by the manipulation
actions to the last foveated object before the reward, i.e., the
target. This pivotal value transfer can then guide the whole
remaining reinforcement learning process via the standard
backward transfer of value from the target to other objects
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in the environment seen before it, here the cues and even the
distractors (for reasons explained below).
Fig. 7 furnishes further evidence on the importance of the

eye-arm coupling to guide the whole developmental process
and allow the system to learn the key spatial relations between
the objects. In particular, the figure shows the evolution during
learning of the conditional probabilities of foveating a certain
type of object given a certain type of previously foveated ob-
ject, for example, the probability that the system observes a
target after observing a cue, , or a
target after observing a distractor, .
The figure focusses on the first critical 100 trials during which
the behavior of the system rapidly improves (Fig. 4). The anal-
ysis of the figure indicates that:
• Trial 1–15: decreases. Ini-
tially the system develops the skill of avoiding to stay
on cues based on the negative rewards received when
foveating them and attempting to reach them with the arm.

• Trial 5–20: abruptly in-
creases. The system quickly develops the skill of fixating
the target: this is the critical phase in which the eye-arm
coupling allows the system to rapidly transfer value from
the manipulation realm to the visual target.

• Trial 20–60: substantially in-
creases. The system acquires the skill of moving from the
cues to the target.

• Trial 60–100: takes off. The
system progressively learns to move from the distractors
to the target (for the reasons explained below).

These results show that the eye-arm coupling allows the
system to rapidly and reliably transfer value from the realm of
the manipulation actions, where feedback derives in ecological
conditions (imagine the reward is given by a food obtained
with the arm) to the pivotal object of the visual domain, here
the target foveal image. This step is the keystone of the re-
inforcement learning process giving rise to all the following
developmental processes.

D. The Bottom-Up and Top-Down Attention Components are
Highly Synergistic and Generate an Interesting Developmental
Trajectory
Section I illustrated a third problem, a “circular-dependency

learning problem”, encountered by the active vision approach
when used in ecological conditions: the system has to learn vi-
sual routines to support manipulation actions but only this ac-
tions can produce the feedback needed to guide the learning
process of looking. This subsection illustrates how this problem
is solved by a synergistic interplay between the bottom–up and
top–down attention components, also supported by the coupling
and the PAM memory. Consider that the problem of initially
learning to look is hard as the possible inputs the system per-
ceives are several, being them a combination of all possible
locations in space and the possible objects. As we shall see,
the bottom–up attention helps the bootstrapping of the learning
process as it creates a strong initial focus on few locations and
hence regularizes the initial experience.
The interaction of the bottom–up and top–down components

solves the problem by generating an interesting developmental
trajectory: exploration is initially guided by the “default”

bottom–up attention control, substituting the initial lack of
top–down control, but then top–down control progressively
shapes visual exploration to make it fully task dependent.
After this process takes place, the visual routines exhibited by
the system are organized on these principles: (a) the internal
representations developed by the top–down control capture
the structure of the spatial relations between objects by gener-
alising over different environmental conditions: in detail, the
top–down representations tend to drive saccades to whole zones
of space where relevant objects might be; (b) the bottom–up
biases allow the system to decide the actual locations where
to look within such zones (thus, visual routines “incorporate”
bottom–up biases that are useful to accomplish the task);
(c) additionally, the nonuseful bottom–up biases are overridden
by the top–down control with the aid of the PAM.
To show this in detail, we refer to a system that learns for

1000 trials in the same conditions illustrated in the previous sub-
sections. Fig. 8 shows the activation of the vote map in critical
phases of the learning process when the system foveates a cue,
the target, or a distractor. The analysis of the graphs shows that
the system generates the following developmental trajectory:
1) Trial 0: Initial bottom–up exploration. Initially the

top–down component is “empty” and completely inca-
pable of guiding visual exploration. In this critical phases,
the bottom–up, task-independent component plays the
function of guiding visual exploration to areas of the scene
with a high visual salience, for example in areas of the
space occupied by objects rather than by the homogeneous
background.

2) Trial 15: Inhibition of return of salient objects. Under the
guidance of the bottom–up saliency, the system explores
with both the eye and the hand the objects with high visual
salience, here the cues. The cost related to failed manual
exploration generates a first interesting phenomenon: an
emergent inhibition of return [57] that leads the eye away
from cues when these are foveated (Fig. 8(a)). This process
leads the top–down component to override nonuseful
bottom–up biases, in particular: (a) to level the general
attractiveness of the different objects in the environment
independently of their bottom–up visual salience; (b) to
progressively loose interest for objects that the system
manipulates but that do not produce any relevant positive
outcome for the task; this transition also strongly depends
on the eye-arm coupling.

3) Trial 20: Stay on target.When visual exploration starts to
involve the less salient objects, the system can visually and
manually explore the target objects. In this case, the arm
action produces a reward and so the system rapidly learns
to fixate them when they are encountered (Fig. 8(e), (h);
see Fig. 8(n) for a wholly formed map).

4) Trial 40: Inhibition of return on less salient irrelevant ob-
jects. With a more uniform exploration, the system also
encounters less salient objects, such as the distractors, in-
teracts with them, and eventually discovers their neutral
nature. The system thus starts to develop an inhibition of
return also for them [Fig. 8(i); see Fig. 8(o) for the wholly
formed map].

5) Trial 60: Learning of strong spatial relations between cues
and target.After enough trials, the system starts to discover
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the spatial relations between the cues and the target, i.e.,
that the target is situated in a region at the left of the cue
[Fig. 8(j); see Fig. 8(m) for the wholly formedmap]. Notice
how with learning the representation of the zone where the
target might be located progressively enlarges, so allowing
the system to generalize over different possible conditions.
In each specific trial, the bottom–up component will then
specify where to look within such zone (see below).

6) Trial 1000: Learning of weak spatial relations between dis-
tractors and target. After a prolonged learning, the system
develops the tendency to look in two zones above or below
the distractor when foveating it (Fig. 8(o); again, in each
trial the bottom–up bias will specify where look within the
two zones). The utility of doing this depends on the strong
tendency of the system to look in the zone at the close left
of the cue line, when foveating a cue, in search of the target
(Fig. 8(j); see also Fig. 5): if while doing this the system
foveates a distractor rather than the target, the tendency to
look above or below the distractor will lead it to find the
target with a high chance. This is an interesting case where
the representation related to the distractor captures a spa-
tial relation generated by the particular exploration strategy
developed by the system, hence it is strongly action-depen-
dent (see below for a further analysis).

We now show more in detail how the top–down component,
aided by the PAM, has incorporated some bottom–up biases into
the visual routines when they are useful for the task, or has over-
ridden them when they are not useful. Fig. 9 shows the activa-
tion of the PAM during a typical sequence of three saccades
targeting the cue, the distractor, and the target within the scene
shown in Fig. 1(a). The figure shows that:
• When on cue [see Fig. 9(a)], the systems has acquired a
strong tendency to go in a region at the left of the cue but
the precise point within such region can be disambiguated
only by the bottom–up component informing the system
on the specific location of objects in such region: in so
doing, the bottom–up component plays an important role
to capture some features of the specific scene of the trial.

• When on distractor [see Fig. 9(b)], the systems has ac-
quired a strong tendency to go up or down with respect to
the distractor; notice how the PAM also sums up the ten-
dency to go to the target from the previously foveated cue.
Again this tendency covers two regions above and below
the distractor, so the bottom–up component can disam-
biguate where to precisely look within them. At the same
time, the strong bias of the bottom–up component to move
to the highly salient cues at the right of the distractor is
overridden by the PAM that encodes in memory the inhi-
bition of return formed by looking the cue at the previous
step [see Fig. 8(m)].

• When on target [see Fig. 9(c)], the system has acquired a
strong tendency to remain on the target. At the same time,
highly salient cues continue to be overridden by the PAM
still storing in memory the inhibition of return for the cues.

E. The Potential Action Memory Contributes to Face the
Aliasing Problems and to Support Learning
We have seen in Section I that a fourth problem introduced

by the active vision approach is that the fovea gates away a lot

of information and so creates a strong aliasing problem which
might impair both the learning and functioning of the system.
The aim of this section is to show how the PAM can give an im-
portant contribution to ameliorate this problem. To this purpose,
we tested and compared three versions of the system:
1) BASE system. A system having all components of the

system seen so far with the exception of the PAM. In this
system the overall saliency map directly integrates the
information from the actor vote map with the bottom–up
information. The BASE system was not able to learn the
task with a noise of 0.1 of the saliency map used in all
experiments, so such noise was set to 0.5 (see Appendix
for the details on the saliency map noise).

2) NEGPAM system. A system in which only the negative
votes of the vote map are passed to the PAM (i.e., the
PAM forgets the activation of positive units which are set
to zero). This implies that the system can learn to avoid to
foveate the same objects multiple times (inhibition of re-
turn, [57]) but it cannot accumulate positive activations in
memory encoding the possible interesting regions of space
to visit on the basis of the spatial relations between objects.
The NEGPAM system was tested only with the original
noise of 0.1.

3) PAM system. The complete BITPIC architecture used in the
previous experiments, based on a fully functioning PAM
component. The PAM system was tested with both 0.1 and
0.5 noise.

The environment used to test the three systems was the same
as in the preceding sections. Two runs of 500 trials were per-
formed for every condition. We now present the results in detail.
1) Analysis of Performance: Fig. 10 shows the success rate,

measured as the proportion of trials ended with a successful
reach to the target, of the three system versions during learning.
Table II summarizes the performance and number of saccades
of the three system versions after learning. After learning the
three systems achieve a very similar performance: the propor-
tion of trials ending with a successful reach over trials 450–500
is 0.96 for the BASE system, 0.97 for the NEGPAM system, and
0.98 for the PAM system. Similarly, the average number of sac-
cades per trial over trials 450–500 is 6.63 for BASE system, 6.42
for the NEGPAM system, 6.44/6.77 for the PAM system. How-
ever, the three versions of the system exhibit a quite different
learning dynamics. In particular, the number of trials taken to
reach a steady performance (7 saccades to reach the target) and
the average number of saccades in trials 1–250 are, respectively,
315 and 30 for the BASE system, 88 and 17 for the NEGPAM
system, and 31/34 and 8/10 for the PAM system.
Why such a different learning speed? Let us first compare

the BASE and NEGPAM systems. Initially, all systems are at-
tracted and remain on the highly salient cues. This generates an
activation of the vote map related to the cues that is (Fig. 11):
(a) negative at its centre, because occasional arm reaches di-
rected to the cue are penalized by the small cost; (b) positive in
regions around the centre, as each time the systemmoves from a
negatively charged cue to other (discounted) negatively charged
cue it receives a positive “TD-error” (see Appendix). Such map
configuration causes repeated cycles of fixations between cues,
on one side, and distractors and target, on the other. However,
the NEGPAM system can accumulate in the PAM the inhibition
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collected by visiting more cues in sequence and so it can more
easily overcome the attraction of their bottom–up saliency so
as to visually and manually explore the targets and distractors.
Instead, as soon as the BASE system moves from a cue to a
noncue object it tends to go back to a cue as it does not store the
inhibition of return related to the cues. Incidentally, note that
these processes are the reason of the increase of the number of
saccades per trial in the initial phase of learning of each system
[see Fig. 4(b) for the PAM system]. A larger fovea could avoid
this problem but would also substantially increase the number
of input configurations to consider.
Comparing the learning speed of the NEGPAM and PAM sys-

tems, Table II shows that the maximum number of saccades
performed in one trial by the three systems is rather different
[this peak of saccades is achieved in the first phase of learning,
Fig. 4(b)]. This number is 153 for the BASE system, 263 for
the NEGPAM system, and 130/75 for the PAM system. This
is due to the fact that the PAM system can more readily learn
to fixate objects and so trigger reaching actions towards them,
in particular to targets, while the NEGPAM system cannot. The
reason can be seen by considering Fig. 12 showing the activation
of the PAM and NEGPAM systems when they foveate a target
in the initial phases of learning. Notice how the PAM system,
differently from the NEGPAM system, has an activation of the
PAM which is positive at the centre, so the system will tend to
continue to foveate the target at the next time step. Where does
this “positivity” come from? We have seen above that both the
NEGPAM and PAM develop a map for highly salient objects
that is negative at the centre and positive in the periphery, so
promoting the exploration of novel objects with respect to the
foveated, highly salient objects. The point is that such positive
bias is remembered by the PAM of the PAM system once the
system foveates other objects, and so it creates the central posi-
tive activation shown in Fig. 12(a). This allows the PAM system
to keep foveating the target until the first reaching action on it is
triggered. Instead, once the NEGPAM system foveates the new
object it forgets the positive activation related to it and so jumps
to other non-inhibited objects.
2) The PAM Generates an Effective Exploration of Ob-

jects: There is another way through which the PAM facilitates
learning: by biasing exploration in such a way that the acqui-
sition of the spatial relations between some objects facilitate
the learning of spatial relations involving other objects. An
example of this is related to the fact that, through the PAM, the
acquisition of the spatial relation between the cue and the target
can facilitate the learning of the spatial relation between the
distractor (at the left of the cues) and the target. In this respect,
Fig. 13 shows the vote map activation of the three systems
when they foveate a distractor after learning. The figure shows
that the PAM system has learned the spatial relation between
the distractor and the target (namely to search up or down it,
see Section III-D), while the other two systems have done so
only partially. The acquisition by the PAM system of the dis-
tractor-target subtle spatial relation is largely due to a biasing
exploration process that we now illustrate. Once the PAM
system has started to acquire the information on the spatial
relation between the cue and the target [see Fig. 13(e)], when
it foveates the cue it has a strong bias to look in the area at the
left of the cue line. If it foveates a distractor, the PAM will still

have in memory the bias to explore the locations within the area
at the left of the cue line. If this bias, aided by the bottom–up
information (see Section III-D), leads the system to foveate
the target, then the spatial relation between the just-seen dis-
tractor and the target is crystallized in the connection weights
related to the distractor votes [ see Fig. 13(f)]. In this way, the
cue-target spatial relation can greatly facilitate the acquisition
of the distractor-target spatial relation. A second example of
this transfer involves the cues: for similar reasons, learning to
foveate in a certain region at the left of a foveated cue facilitates
learning to foveate other regions at the left of a cue if a second
cue is foveated by mistake as the PAM could drive the system
to find the target with a third saccade.
The learning process of the NEGPAM system is instead less

efficient. When it fixates the distractor, it does not have the PAM
storing past positive biases towards the target zones based on the
seen cue, and thus has a similar chance of moving to the target
or to other distractors. For this reason it fails to fully learn the
distractor-target spatial relation [see Fig. 13(d)].
The BASE system, without memory, looks at the cues, then

possibly moves to the distractor, and once there it does not re-
member the inhibition of return with respect to the cues, so tends
to look back to them (this also explains why the BASE system
tends to learn a very strong inhibition of return for cues, see
Fig. 11). As a consequence, it will completely fail to learn the
distractor-target spatial relation [see Fig. 13(b)].

IV. DISCUSSION

In this section we discuss the key results illustrated in the pre-
vious sections and relate them to the relevant literature and ex-
isting systems. For the sake clarity, we consider the results in
relation to the four key ingredients of BITPIC, but at the same
time we highlight how such results strongly rely on their inte-
gration.

A. The Top-Down Attention Component

A first result of this work is that the reinforcement learning
process of the top–down attention component, integrated with
the other ingredients, allows the acquisition of the visual rou-
tines needed to accomplish the task at hand with an unexpected
speed. A first reason of the efficiency of the learning process
relies on the formation of strongly “embodied” representations
[27], [70], [73] developed by the top–down component, namely
the “votes” of its actor when BITPIC foveates the different ob-
jects. We now see this more in detail (below we consider the
second reason, i.e. the initial role of the bottom–up component).
First, the representations developed by BITPIC are strongly

action dependent and deictic. In particular, they incorporate the
sensorimotor interactions the system engages with the environ-
ment. One interesting example of this is the representation of
the votes associated to the perception of the distractor, which
in the last learning phase becomes a predictor of the target po-
sition. This representation is strongly dependent on the bias of
the system, acquired at the beginning of learning, to look at the
left of the cues and so possibly incur in a distractor. This agrees
with other works showing that autonomously learned internal
representations and information processing are strongly action
dependent [64], [66], [70], [73]. The representations formed by
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the system are also “deictic” [12], [13], in particular they cap-
ture the spatial relations between objects with reference to the
currently foveated point, i.e. to the condition of the agent (see
also [66]). In its simplicity, BITPIC is hence a paradigmatic ex-
ample of how behavior, via the environment, can have strong
effects on the representation of objects [110].
The sensorimotor solutions found by BITPIC strongly rely on

the bottom–up and top–down biases, and the memory of them
stored in the PAM. This allows the system to generate visual
action sequences strongly coupled with the environment (“vi-
sual routines”, [108]) that can ameliorate the non-Markovian/
aliasing problems generated by the setup. In this respect, evolu-
tionary robotics [74], using genetic algorithms that searchwhole
behavioral sensorimotor solutions, has shown the power of sen-
sorimotor behaviors to solve aliasing problems. Evolutionary
techniques [32], [33], [73], [113] are generally more robust to
perceptual aliasing problem than reinforcement learning (RL)
algorithms (but see [16]) and have also been used to learn to
solve very complex attention task (e.g., driving a robot along a
path with landmarks [100] or a car in a simulator [34]). The re-
sults presented here show that a RL attention system may nicely
solve some aliasing problems if integrated with bottom–up at-
tention and a memory device (below we further discuss the con-
tribution of the PAM to this).
Second, the representations acquired by the top–down com-

ponent are strongly task dependent. In particular, they are
fully directed to support visual exploration and manipulations
directed to solve the tasks generated by the system ecology.
For example, the representation related to the target guides the
system to fixate and trigger a reaching action to it, while the
cue and the distractor representations support the search of
the target. As discussed below, also the development of these
representations during learning initially involves objects more
closely related to positive reward and then objects less related
to it (i.e.: from the target to the cues and distractors). These
results agree with the insight, supported by various authors
(e.g., [102]) since [115], for which task-based top–down control
is pivotal for attention in naturalistic contexts. Based on this
idea, trial-and-error learning has been recognized to be critical
for attention guidance [44] and thus has been modelled with
a reinforcement learning system as here [10], [11], [102]. Our
study contributes to this research with novel insights on the
effects on learning of the bottom–up and top–down attention
interplay (see below).
Third and last, the representations developed by the

top–down component are strongly parsimonious. In particular,
although they mainly capture the spatial relations between
objects, they are sufficient to successfully solve the task. The
small fovea support generalization, in particular in relation to
cues located at different absolute positions or with respect to
the relative spatial relations of objects. The reason is that a
small fovea abstracts information by gating away aspects not
related to the foveated object, thus favoring generalization.
These three features of representations constitute an impor-

tant departure from the view for which perception should aim
to build a complete representation of the world [67]. In this re-
spect, and consistently with other active vision views [13], [34],
the results reported here indicate that, at least in some common
conditions, simple representations as those discussed here can

suffice to support adaptive behavior if aided by the other mech-
anisms as those incorporated by BITPIC.

B. The Attention-Action Coupling
In Section I we have seen that autonomous agents control-

ling vision and manipulation have to face the “indirectness
problem”. The problem is generated by the fact that in eco-
logical conditions relevant positive reward feedback is usually
produced by modifications of the environment caused with
manipulation, not just by looking around (an important excep-
tion to this are social contexts, not considered here). Thus, the
reward accomplished by manipulation actions might happen
to be associated with the currently perceived objects although
these might be unrelated to the manipulation targets. The results
illustrated here show that imposing a strong coupling between
the focus of attention and the target of manipulation actions
represents a very effective solution to this problem. Indeed, this
coupling allows BITPIC to immediately and rapidly carve the
keystone of its learning process, namely to identify the object
to target with manipulation, and to attribute to it a high value.
This step allows a fast and neat transfer of value information
from the manipulation realm to the visual realm so that the
standard back propagation of value from the target to previ-
ously-explored objects and actions, typical of trial-and-error
learning, can take place.
Related to this, it is interesting that the literature is collecting

important empirical evidence on the existence of strong cou-
pling between eye fixations and reaching targets in infant early
reaching [29], [30]. In particular, these studies show that infants'
reaching actions are directed to locations that are attended for at
least one second of accumulated “looking time.” Such percep-
tual-motor coupling is more likely to occur in 9 months old in-
fants and is not present from the onset of reaching but forms
rapidly over a six week period following it. The results pre-
sented here contribute to explain the computational importance
of such coupling for learning. Another developmental robotic
model, presented in [49], assumes a close attention-manipula-
tion coupling and shows its importance to support the develop-
ment of fundamental associative knowledge supporting eye-arm
coordination.
The coupling used here is also an instance of the important

principle of “attention for action” [1], [2], [10], for which a main
function of attention is the guidance of pragmatic actions (e.g.,
manipulation actions). In particular, the focus of attention not
only aids the triggering of reaching actions when specific spots
are attended for long (see above), but it also furnishes critical
parameters to the performed action, in particular the location
in space of the target for reaching [109]. This agrees with evi-
dence on the performance of complex behavioral sequences of
actions in adult natural behavior, showing that eye fixations con-
sistently precede and guide the sequences of manipulation ac-
tions directed to different objects [44].
The capacity of autonomously identifying target objects

based on the feedback from manipulation effects is a relevant
feature of BITPIC, and very important for autonomous systems
operating in ecological conditions. This differs from other
models of attention often assuming that the target is known
by the system (e.g., [27]) or that a relevant positive reward is
given for simply looking at the target (e.g., [69]).
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C. The Bottom-Up Component

We have seen in Section I that an autonomous system has
to face the “circular-dependency learning problem,” which is
common in ecological conditions, of learning to look to suit-
ably guide manipulation actions and, at the same time, guiding
learning to look with the feedback caused by the manipula-
tion actions. The results presented here indicate that a close in-
teraction between the bottom–up attention component and the
top–down adaptive component can solve this problem very ef-
fectively. In particular, during the initial phases of learning of
a task, when the top–down component does not know what to
do and visual exploration would be random, the task-indepen-
dent bottom–up attention component can guide visual explo-
ration on salient regions of space. This “default” guidance can
greatly favor the acquisition of task-dependent top–down biases
through a number of effects that we now discuss in detail.
First, the bottom–up component leads BITPIC to foveate

high-contrast locations. In the setup used here, this leads the
system to explore objects rather than the dull background. In
general, bottom–up saliency favors the focussing on regions of
space where relevant objects are located since “objects” usually
create visual discontinuities with the background [53], [18].
Bottom-up attention captures this regularity common to most
tasks independently of the specific goals they involve.
Second, the bottom–up attention, being based on the intrinsic

saliency of objects, creates a structured exploration of them, es-
pecially when it gets progressively coupled with top–down in-
hibition of return (see below). As observed by other authors in
relation to similar setups, the coupling of system with the en-
vironment allows “the structuring of input, and produces sta-
tistical regularities” that the system can exploit [64]. In this re-
spect, the structured visual exploration initially caused by the
bottom–up component supports learning much better than the
random exploration that the top–down reinforcement learning
system might produce. The reason of this is that it tends to cause
regular visual exploration sequences on the basis of the salience
of the image elements. These visual exploration sequences can
then be evaluated by the reinforcement learning top–down com-
ponent, and hence discarded or incorporated into the task-ori-
ented visual routines depending on their utility (see below).
Overall, this greatly facilitates the learning process, and is in
stark contrast with the slow speed of learning based on random
exploration typical of reinforcement learning systems. In this re-
spect, in another work [68] we showed how a different system,
again endowed with bottom–up and top–down attention com-
ponents, can learn very fast (in 1-3 trials) to solve a different
looking task as the bottom–up component kind of “supervises”
the top–down learning process. In so doing, the model repro-
duces the surprising learning speed observed in babies engaged
in the same task [112].
Third, when the bias given by bottom–up attention is useful

for the task, such bias is readily incorporated in the visual rou-
tines. This process is similar to the processes involving innate
reflexes studied in developmental models, where the reflexes
play a key role in the initial learning phases and are later incor-
porated or overwhelmed by more sophisticated control [17]. An
example of this is the tendency of BITPIC to foveate objects,
which favors the focus on the target object (as soon as the focus

of the highly salient cues is overcome by the top–down inhi-
bition of return). In this respect, the results show that a small
change in the votes to stay on the target object can lead to an
abrupt improvement of learning as it can succeed to keep the
eye fixed on it by summing up with the bottom–up bias (see
[75] for some experiments showing the robustness of the model
to a wider span of possible saliency values of objects). Another
critical example is the fact that, to be able to generalize over
different conditions, the top–down biases cover whole zones
where relevant objects might be (e.g.: “at the left of the cue
line,” “above and below the distractor”). We have seen how in
this cases the bottom–up biases play a key role to specify the
location where to look within those zones.
On the other side, and this represents a fourth relevant point,

when a bottom–up bias is not useful or even detrimental to solve
the task at hand, the top–down control can overcome it, for ex-
ample giving rise to an emergent top–down inhibition of return
[57]. In this respect, we have see that an important phase of
BITPIC development is the acquisition of the capacity to move
away from highly salient objects, here the cues.
We think these effects of the bottom–up biases on the learning

process of the top–down component, robustly observed in very
different setups, are some of the most important results of this
and previous works.
Overall, these results give also a relevant contribution, from

the particular perspective of learning, to the debate on the im-
portance of bottom–up and top–down processes in attention (but
see also the information maximization approach that negates
this dichotomy, [19]). On one side, this debate involves posi-
tions that, also based on psychological evidence (e.g., in relation
to pop-out effects, [107]), propose models that assign a promi-
nent role to bottom–up features guiding visual exploration on
the basis of stimulus-based saliency maps [53], [58], [88]. On
the other side, the debate sees positions stressing the pivotal role
of top–down task-dependent processes to explain human visual
attention [41], [65], [79], [90], [96], [102]. In line with empir-
ical research that shows that bottom–up and top down processes
are both important and give independent contributions to visual
exploration [60], this work contributes to the debate by high-
lighting the importance of their interplay for learning by pin-
pointing some specific aspects of such interplay.
One of the most interesting results of the research shows how

the aforementioned processes give rise to a developmental tra-
jectory characterized by the presence of several phases. Thus,
during learning BITPIC initially focuses on stimuli with high
visual salience (“cues”) and then develops inhibition for them;
then learns to focus on the target of manipulation actions; this
opens up the possibility of learning the regularities related to
stimuli having strong spatial relations with the target (“cues”);
finally, the emerged structured coupling of behavior with the en-
vironment allows the system to capture more subtle regularities
in the environment (e.g., here in relation to distractors).
The staged development exhibited by BITPIC depends on the

particular visual feature of stimuli, the regularities of the envi-
ronment, and the architecture of the system. The development
of the system is so caused by the interactions of multiple sub-
systems rather than by a single cause and manifests as a soft
assembly of several changes enabling better adaptiveness. In
this respect, the developmental trajectory followed by BITPIC



16 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 7, NO. 1, MARCH 2015

Fig. 8. Development of the vote map during 1000 training trials. The trial number reported on the left marks the critical developmental phases of the system
indicated under the graphs (IR: inhibition of return). The three columns of graphs refer to the vote map activation when the system foveates a cue, the target, or a
distractor. Within each graph, black and white dots indicate map units activated, respectively, below and above 0.5 (these values become negative/positive when
sent to the PAM), while their size is proportional to the activation of the units. Graphs of cue and distractor: reprinted with permission from [80], Copyright IEEE
(2010).

agrees with the Dynamic System Theory of Development for
which it is not necessary nor useful that the phases of learning
are strongly coded in the system as they naturally emerge from
the interaction of the learning capacities of the system with the
body and environment features [104], [105]. Notwithstanding
the possible variability of child development, however, we think
that some features of the developmental trajectory exhibited by
BITPIC capture general processes that we expect to observe also
in children. These features, which represent predictions of the
model, are summarized in Section V.

D. The Potential Action Map Component

We have seen in Section I that the restricted scope of the
fovea, although very beneficial to decrease the needed com-
putations, gates away a lot of information and so augments
the aliasing problem [113] affecting autonomous agents. The
PAM allows BITPIC to face the aliasing problem on the basis
of memory. An important feature of this memory, that distin-
guishes it from other memory-based solutions (e.g., [113]),
is that it stores information on past potential actions rather
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TABLE II
BASE, NEGPAM, AND PAM (WITH 0.1 AND 05 NOISE) SYSTEMS: FINAL
PERFORMANCE, AVERAGE NUMBER OF SACCADES ON TRIALS 450–500,
NUMBER OF TRIALS TO ACHIEVE A STEADY PERFORMANCE (I.E., THE

REACHING OF TARGET IN 7 SACCADES), AVERAGE NUMBER OF SACCADES ON
TRIALS 1–250, AND MAXIMUM NUMBER OF SACCADES PER TRIAL

Fig. 9. Activation of the PAM in a sequence of three saccades targeting (a) a
cue, (b) a distractor, and (c) the target, in the scene of Fig. 1(a). Black and white
dots indicate units with a negative and positive activation, respectively, while
their size is proportional to the absolute activation of the units.

than on past percepts. In particular, for each foveated item the
vote map estimates the best location in space to find relevant
items, and this information is stored in the PAM and used for
the current and future saccades. An action-based memory has
several advantages based on the fact that saccade actions have a
very low dimensionality (pan and tilt) that allow the system to
conflate the information collected up to a certain moment into
a 2D map. This also allows the PAM to be unaffected by the
curse of dimensionality problem, contrary to perception-based
memories that need to store different possible sequences of
objects.
The PAM component ameliorates the aliasing problem under

several aspects. First, it generates an inhibition of return by gen-
erating a repulsion to look again at specific objects. The reasons

is that staying with the eye on a particular object incurs in a small
cost and is also not advantageous with respect to looking to tar-
gets or other relevant cues, so it gets penalized with learning
(see also [76]). The resulting repulsion developed by the vote
map is stored in the PAM and thus is available to the system
in the following saccades even when it is looking at other ob-
jects. This prevents the system from moving back to previously
foveated objects if this is not useful. Importantly, and differently
from other system (e.g., [51] and [76]), this inhibition of return
is emergent, i.e., learned, rather than hardwired. This allows the
system to tune at best the repulsion (i.e., the negativity of the
vote map) given the variable bottom–up component drive and
the specific task needs.
The PAM also generates positive biases to look with higher

chances to promising regions of space so overcoming various
impairing aspects of perceptual aliasing. First, the PAM en-
hances exploration by allowing to explore several potential tar-
gets indicated by a cue without the need to look back to the
latter, as a system without memory would do. Second, the PAM
allows BITPIC to accumulate the bias to look at certain regions
by looking at informative objects in sequence, so overcoming
the impossibility of the fovea to integrate their biases by looking
at them at the same time. Last, and most novel, we have shown
that the PAM speeds up learning as it allows the transfer of the
information on the spatial relations between relevant objects to
other objects.

V. CONCLUSION AND FUTURE WORK

A key tenet of active vision is that the use of a movable
fovea with a small size can drastically reduce the computa-
tional burden involved by visual sensors. However, this study
highlighted that such solution generates four critical problems
when applied to embodied and situated agents that interact with
the environment in ecological conditions. We proposed a new
system, called BITPIC, that integrates four bioinspired prin-
ciples to solve the four problems: the autonomous acquisition
of task-dependent visual skills with trial-and-error processes,
a close coupling between attention and manipulation actions,
a close interaction between top–down and bottom–up attention
mechanisms, and finally an action-oriented memory. Based on
this, we have also investigated the novel issue of how active vi-
sion can enhance learning.
The integration of the system principles has led to the emer-

gence of notable properties of the system manifested within an
interesting developmental trajectory. These properties represent
predictions of the model that might be verified/falsified in future
empirical experiments.We summarize themain ones as follows:
• The adaptive processes of top–down attention, integrated
with the other ingredients of the system, lead to the emer-
gence of task-dependent, action-related, parsimonious vi-
sual routineswhich support a very efficient visual learning.

• The attention-manipulation coupling is essential for atten-
tion control learning as it can support the key transfer of
value from the realm of manipulation to task-relevant ob-
jects in the visual domain.

• Bottom-up saliency greatly facilitates top–down attention
learning by producing a structured visual exploration of
the environment (versus a random exploration typical of
standard trial-and-error learning processes).
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Fig. 10. Evolution of the success rate (proportion of trials ended with a successful reaching to the target, computed over a moving window of 20 trials) of the
BASE, NEGPAM, and PAM systems during learning. The graph reports two replications of the simulation for each condition.

Fig. 11. Activation of the vote map of the BASE, PAM, and NEGPAM systems
in the initial phases of learning, when they foveate the cue. Data plotted as in
Fig. 8 (a) BASE (b) PAM (c) NEGPAM.

• The memory of potentially useful saccades ameliorates
the aliasing problem and, together with attention learning,
leads to the emergence of a top–down flexible inhibition of

Fig. 12. Activation of the potential action memory map of the PAM and
NEGPAM systems in the initial phases of learning when they foveate the target.
Data plotted as in Fig. 9 (a) PAM. (b) NEGPAM.

Fig. 13. Vote map of the BASE (a,b), NEGPAM (c,d), and PAM (e,f) systems
after learning, when they foveate a cue (a,c,e) or a distractor (b,d,f). Data plotted
as in Fig. 8.

return; moreover, it improves learning by transferring spa-
tial relation knowledge from object to object.
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Although BITPIC was intendedly tested in a simple scenario
to obtain a clear interpretation of the results, we expect that the
main principles it is founded on are general and would extend to
more complex scenarios although this would require strength-
ening low-level aspects of its components. We thus close the
paper illustrating the possible challenges that we expect to en-
counter in scaling up the system to more realistic scenarios in-
volving more complex objects, visual images, and noise, and we
discuss possible actions to strengthen the model components to
overcome such challenges.

a) Bottom-Up Attention Component–Possible Enhance-
ments: Our experiences with both simulated and real cameras,
with simple or realistic images, indicate that the bottom–up
components based on filters as those proposed in [51], [52] are
very robust to scene complexity and noise and allow systems to
capture different saliency aspects of the scene elements without
major difficulties. Some of these bottom–up filters can hence be
added to the system as needed, e.g., to capture borders, corners,
luminance intensity, or movement.

b) Top-Down Attention Component–Object Recognition:
Objects need to be recognized in order to learn their spatial
relations. Here we solved this problem by using color blobs,
but object segmentation and recognition would be an impor-
tant challenge using more complex objects. In this condition,
a fovea larger than the one used here would be needed to sup-
port effective object recognition processes, e.g., based on SIFTs
[62], sparse coding [83], or independent component analysis
[18], [97]. Although current object recognition systems are still
limited, they would nevertheless allow the system to achieve a
satisfying level of performance with relatively complex scenes
containing few objects.

c) Top-Down Attention Component–Relative/Absolute
Reference Frames: The current top–down learning compo-
nent uses a relative reference frame centred on the currently
foveated object to decide potential saccade targets. This allows
the system to capture relative spatial relations between objects
but not absolute ones (e.g.: “whenever and wherever you see
a toy, look at the face of your mother set at your right”) [106].
Extensions of the model under test indicate that it is easy to
use this alternative reference frame, e.g., by adding a second
actor alongside the relative-reference actor used here, but how
to best integrate the output of the two is an open issue.

d) Potential Action Map–a Robust Component: Experi-
ments showed that the potential action map component is quite
robust as it encodes information in a 2D space (the pan-tilt
space) that does not depend on the complexity of the processed
images [76]. Thus, the PAM could get input on where to look
from relative and/or absolute top–down components, and from
a bottom–up component, and encode information readily us-
able to control saccades in the “absolute” reference frame of the
visuo-motor system, without being affected by the complexity
of the input images.

e) Integration of Bottom-Up and Top-Down Attention In-
formation–Superior Colliculus Functionalities and Brain Con-
straints: In the current system bottom–up and top–down infor-
mation is integrated on the basis of a simple summation and the
decision where to look is based on a winner-take-all process or
a simple neural dynamic competition. In the brain, such inte-
gration and decision rely heavily on an important component

of the oculomotor control system, the superior colliculus. Fu-
ture work will aim to implement more realistic versions of the
superior colliculus functionalities and its interplay with basal
ganglia and cortex, in particular the sophisticated architecture
with which this system integrates different sources of informa-
tion and the dynamic competition it employs to decide where
to look [46], [98]. This would give enhanced properties to the
current system, for example a staged and tunable integration of
different information sources (here rigid). Moreover, it would
allow a higher robustness to real-image noise as decisions would
be taken by integrating information in time on the basis of a dy-
namic competition with parameters tunable on the fly as it hap-
pens in basal ganglia, rather than fixed as here [40]. In this re-
spect, the amount of competition between competing bottom–up
information sources, possibly based on parietal cortex (which
represents an important source of input to superior colliculus
and the basal ganglia areas controlling eye movements, [46])
has been suggested to play an important role in the develop-
ment of attention [92]. In this respect, additional efforts will be
spent to constrain the model architecture and functioning with
general neuroscietific knowledge [28], [94] and neuroscientific
knowledge related to development [55].

f) Motor System–Future Developments and New Chal-
lenges for Attention: The possibilities of enhancing the motor
components of the system are several as motor control involves
a whole set of challenges on its own, for example to imple-
ment reaching, grasping, obstacle avoidance, sophisticated
movement trajectories, cyclic movements, multiple movements
to solve different tasks [8]. We might for example expand
the system manipulation capabilities on the basis of other
models that we proposed within a developmental framework
to capture learning of discrete or rhythmic movements [20],
[24], [45], [82]. Note that a limitation of the current model
is that the simplicity of manipulation behavior, consisting in
simple reaching actions, reduces the relevance of the motor
system which is simply triggered when the attention system
fixates a point for few cycles. Notwithstanding this limitation,
the presence of the motor system is important for a number of
reasons. First, it supports the “attention for action” perspective
in concrete modelling terms rather than in an abstract way.
Second, the presence of the arm poses interesting challenges
for the attentional system when the model is tested with the real
robot as the arm becomes part of the visual image [76]. Last,
more sophisticated manipulation actions as those mentioned
above will open up a number of interesting new challenges for
attention control as this would be called to guide manipulation
in more sophisticated ways. For example, experiments show
how while reaching a target by moving the hand around an
obstacle human participants consistently foveate the obstacle
before the target [44] so that the eye can inform the hand on the
position of the obstacle to avoid.

g) Attention-Manipulation Coupling–Emergent Rather
than Hardwired: A limitation of the current system involves
the attention-manipulation coupling. Here we showed that,
when present, this coupling has important effects on the system
learning and behavior. However, the system does not show
the origin of such coupling as this was hardwired. The in-
teresting developmental problem of the coupling formation
could be studied by having a manipulation system that learns
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TABLE III
PARAMETER VALUES OF THE MODEL, WITH THE INDICATION OF THE FORMULA WHERE THEY ARE EMPLOYED AND THEIR FUNCTION

concurrently with the attention system, rather than before it as
done here. This modification might lead to the emergence of
very interesting developmental trajectories given the reciprocal
dependency of the visual and manipulation components, with
the former furnishing information to the latter, and the latter
procuring the learning feedback for the former.

h) Reward Learning Signals–Extrinsic and Intrinsic Mo-
tivations: A last aspect of the model that might be enhanced
involves the generation of the positive reward signals, here de-
livered after a successful touch of a target object. Motivations
are paramount for development [111]. In particular, motivations
play a key role in guiding trial-and-error learning on the basis of
the generation of extrinsic rewards, supporting the accomplish-
ment of biologically relevant resources and a successful home-
ostatic regulations, and intrinsic rewards, related to the acquisi-
tion of new knowledge and skills [6]. The enhancement of the
system with reward generators based on intrinsic motivations
would be important to support a truly autonomous open-ended
development of the system [9], [14], [15], [84]: this might lead
to discover further general principles of the development of
the visual system [91] and the coupled attentional-manipulation
system [7], [101].

i) Validation of the Model Against Behavioral Data: Once
the model has been enhanced in some of these ways, it should
also be tested against specific behavioral data, for example to
verify the type of predictions illustrated at the beginning of this
section. As an example, consider [68] where a simplified version
of BITPIC was successfully used to reproduce and explain the
anticipatory looking behavior of infants engaged in exploring
a computer image that could change depending on where the
infants looked.
Overall, these considerations suggest that the architectural

and functioning principles of BITPIC are very flexible and can
be extended in multiple ways to address multiple interesting em-
pirical and theoretical issues.

APPENDIX
COMPUTATIONAL DETAILS ON THE SYSTEM

A. Attention Control Components
In the following, bold symbols represent column vectors,

while bold capital letters represent matrices. The parameters of
the model are summarized in Table III (see also Table I).
Input Images: The input images contain colored rectangles

(red, green, or blue) in a black background. The images appear
in a CRT (Cathode Ray Tube) monitor whose display is used

as the working plane of the arm (Fig. 2(a)). The camera of the
system looks down to the working plane and the image it cap-
tures overlaps with the monitor image. The pixel
RGB image captured by the camera is overlapped onto a black
background to obtain a larger “scene-image” explored by the
“virtual” moving camera of the system. The image of the vir-
tual camera is obtained by cutting a image from the
scene-image and is used as input sent to the attention controller
(Fig. 2(b)). In this way, all objects in the whole monitor image
are always seen by the system, but their position within the input
image depends on the system gaze direction. This gaze direction
can fall in any point of the monitor image (and never outside it),
so the system can foveate any object in the monitor. In the sim-
ulated tests presented here the image sent to the monitor in the
real setup is directly used to form the scene-image.
Periphery Map (Bottom-Up Saliency Map): This component

forms a very simple bottom–up saliency map based on the pres-
ence of any type of color blob in the black background of the
image. The component is formed by a map of units,
encoded in the vector , activated on the basis of
blocks of pixels each: each unit is activated by averaging
the RGB color values of the pixels forming the corresponding
block to obtain one “grey value.”
Actor-Critic Component (Top-Down Attention): The basic

system has a very simple fovea formed by 12 units, encoded
in the vector , activated on the basis of RGB pixels taken
from the foveated point of the input image. The fovea image
is fed into two feedforward neural networks forming a rein-
forcement-learning actor-critic architecture [99]. The actor is
a neural network whose output layer is formed by a vote map of

sigmoid neurons encoded in the 4800-element vector
. The weights of the actor form a matrix, encoded with ,

having elements. The fovea, , activates the vote map,
, as follows:

(1)

where is a Sigmoid function.
The critic is a neural network with connection weights en-

coded in the 12-element vector and a linear output unit
that activates as follows on the basis of the current fovea image:

(2)

where is the transpose operator.
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The critic learns to evaluate the current fovea image on the
basis of the expected future discounted rewards. The system gets
a reward after the execution of a successful reaching ac-
tion that touches the red target object with the “hand” (i.e., the
arm tip gets on it), and a reward if it fails (repre-
senting an energy cost): these rewards are received only when
the system accomplishes a reaching action. An additional re-
ward of is delivered at each step (representing the
energy cost of the saccade). The reward, together with , is used
to compute the TD-error at time [99]

(3)

where ( ) is a discount factor decreasing the impor-
tance of rewards far in the future.
The TD-error is used to update the connection weights of the

critic [99]

(4)

were is a learning rate ( ). This learning rule is ap-
plied after each saccade at each cycle of the simulation.
The actor weights are trained on the basis of a Hebbian

learning rule involving the weights linking the units of the vote
map ( ) corresponding to the active units of the saliency
map (encoding the last saccade location, see below), and
the active units of the last fovea image , modulated by the
TD-error [76]

(5)

where is the elementwise product operator,
is the derivative of the Sigmoid

function, and is a learning rate ( ). The learning
rule is applied after each saccade at each cycle of the
simulation. This formula implies that the connection weights
between the active units of the fovea ( ) and the units of the
vote map ( ) corresponding to the active units of the
saliency map ( , encoding the performed saccade) are
increased if and decreased if . The rule allows
the system to learn the spatial relations between objects, for
example to look at the left of a cue if there it can obtain a
positive (e.g., because it finds the rewarding target).
Potential Action Map (Top-Down Attention Memory): The

PAM, encoded in the 4800-element vector , is a neural
map formed by leaky neurons that accumulate the in-
formation received from the vote map via one-to-one con-
nections. Importantly, the signals sent by the vote map to the
PAM, having initial values of 0.5 and ranging in [0, 1] due to
the Sigmoid transfer function of the actor units, are scaled to
[-0.5, +0.5] so that they can either activate or inhibit the PAM
units. This allows the PAM to have negative activations and so,
when necessary, to inhibit useless tendencies to look at highly
salient objects signalled by the bottom–up saliency map to the
overall saliency map selecting the saccade targets. Similarly im-
portant, during each saccade the PAM activation is shifted in the
direction opposite to the eye motion so as to maintain coherent

eye-centred representations and to allow its content to be suit-
ably integrated with the next activation of the vote map. For-
mally, the PAM is activated as follows:

(6)

where ( ) is a decay factor,
is a function returning the

activity of the PAM shifted on the basis of the current
and past eye postures, respectively, and (see
below), and is a Sigmoid function ranging in [-1, +1].
The PAM is reset at the beginning of each trial when the scene
changes.
Saliency Map: This component, not to be confounded with

the bottom–up saliency map, is formed by units
encoded in the 4800-element vector . The map integrates
the bottom–up information received via one-to-one connec-
tions from and the top–down information received via
one-to-one connections from to select the next saccade
target. Each unit of the map has a preferred saccade target
established by overlapping the whole map with the 2D space
formed by the possible gaze targets (recall that this space
corresponds to the monitor working space). The map integrates
information and selects a saccade target through a dynamic
neural-field competition

(7)

where ( ) is a decay factor, is a
matrix encoding prewired lateral connection weights (these are
close-excitatory and far-inhibitory connections depending on
the distance between neurons as in dynamic field networks,
[36]), is a noise added to the map ( elements are ran-
domly drawn from and have a different value
for each unit at each time step), and is a function
returning the largest value of its two arguments. The saccade
is executed when a unit activation achieves a given threshold

( ). When this happens, the eye pan-tilt dis-
placement is computed on the basis of the desired
saccade position determined by the weighted average of the
preferred position of the units of , with weights equal to
their activation, and of the current eye posture stored in the eye
posture map (see below).
In the experiments reported in this work, the dynamic

neural competition was actually approximated by selecting the
unit with the maximum activation within the map (“winning
unit”; to this purpose, the units of the map were activated on the
basis of Formula 7 by setting to zero and to a matrix
of zeros). After the winning unit was selected, the units of the
map were activated on the basis of a Gaussian function centred
on it to mimic the activation of the map at the end of the dynamic
competition (the activation of the map was also used to train
the actor as illustrated above). This approximation did not cause
relevant behavioral differences with respect to actual dynamic
competition and at the same time substantially accelerated the
simulations.
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B. Arm Control Components

The arm controller decides when to trigger a reaching action
and executes it by moving the arm “hand” to the current gaze
fixation point on the working plane. To this purpose, the con-
troller performs an inverse kinematic mapping from the current
eye posture (gaze fixation point) to the corresponding arm an-
gles that allow the arm hand to be on the target, and then sends
this desired posture to the servos of the robot. The functioning
of the arm controller components and then their training are now
explained more in detail.
Eye Posture Map: This component is a neural map

encoded in the 1200-element vector . The map encodes
the current eye posture, i.e., the current pan and tilt angles of
the moving camera, with a Gaussian population code centred
on the posture.
Arm Posture Map: This map, denoted with the vector

, is the output layer of a neural network pretrained with a
Kohonen algorithm during a phase of “motor babbling” illus-
trated below. During this training the map learns to encode in
2D the arm postures corresponding to the four angles of the arm
joints (see below and [82]). During functioning, the map imple-
ments a neural competition to select a desired arm posture for
the reaching action

(8)

where ( ) is a decay factor, is a
matrix encoding the weights of lateral close-excitatory far-

inhibitory connections (similarly to ), and is a
matrix encoding the weights of the connections

received from the eye posture map. The competition terminates
and the action is executed when any unit of the map reaches a
given threshold ( ). The reading out of the map,
encoding the selected desired hand position, is performed by
weight-averaging the preferred hand positions of the map units
with weights corresponding to their activation. The arm posture
map is reset at the beginning of each trial as the scene changes.
Arm Posture Readout Layer: This is a vector, denoted with
, of four sigmoid units encoding the desired arm joint

angles corresponding to the desired hand position selected by
. The layer is activated by the arm posture map through

connections whose weights are encoded in a matrix
. The desired arm joint angles are sent to the four

simulated servos of the arm and these drive the arm to the
desired angles on the basis of Proportional Derivative (PD)
controllers [93].
Training: The weights and are

trained on the basis of a motor babbling process [20] during
which the arm performs random movements while the eye
gaze direction is kept on the arm “hand.” The random arm
movements are performed so that the last of the three arm
segments is kept parallel to the working plane and at a fixed
distance from it (see Fig. 2(a)). This avoids problems related
to redundant degrees of freedom (see [45] for a version of
the motor component addressing redundancy issues). Training
is composed of three learning phases executed in sequence
(see [82] for further details): (a) the arm posture map ( )
learns to encode in 2D the arm postures (four angles) using a

Kohonen algorithm [59]: this process leads the map to extract
the two main components of the posture; (b) the system learns
the inverse kinematic mapping ( ) associating the
eye gaze directions corresponding to the hand, encoded in the
eye posture map ( ), with the corresponding arm postures,
encoded in the arm posture map ( ), using a supervised
learning algorithm (delta rule; [114]); (c) the system learns the
mapping ( ) from the hand position, encoded in the
arm posture map ( ), to the desired arm angles, encoded
in the arm posture readout layer ( ), again on the basis of a
supervised learning algorithm (delta rule).
After the three training phases have been accomplished, each

gaze position fuels the accumulation of activation within the
arm posture map. If the system foveates the same position for
a long time, the arm posture map accumulates an activity that
overcomes the threshold, so triggering the reaching action and
at the same time defining its target. This leads the arm posture
readout layer to issue desired arm angles to the arm servos that
implement the actual movement.
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