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Redundant Neural Vision Systems—Competing for
Collision Recognition Roles
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Abstract—Ability to detect collisions is vital for future robots
that interact with humans in complex visual environments. Lobula
giant movement detectors (LGMD) and directional selective neu-
rons (DSNs) are two types of identified neurons found in the vi-
sual pathways of insects such as locusts. Recent modeling studies
showed that the LGMD or grouped DSNs could each be tuned for
collision recognition. In both biological and artificial vision sys-
tems, however, which one should play the collision recognition role
and the way the two types of specialized visual neurons could be
functioning together are not clear. In this modeling study, we com-
pared the competence of the LGMD and the DSNs, and also in-
vestigate the cooperation of the two neural vision systems for col-
lision recognition via artificial evolution. We implemented three
types of collision recognition neural subsystems—the LGMD, the
DSNs and a hybrid system which combines the LGMD and the
DSNs subsystems together, in each individual agent. A switch gene
determines which of the three redundant neural subsystems plays
the collision recognition role. We found that, in both robotics and
driving environments, the LGMD was able to build up its ability
for collision recognition quickly and robustly therefore reducing
the chance of other types of neural networks to play the same role.
The results suggest that the LGMD neural network could be the
ideal model to be realized in hardware for collision recognition.

Index Terms—Collision recognition, competition, directional se-
lective neuron, lobula giant movement detectors (LGMD), locust,
redundant function, visual motion.

I. INTRODUCTION

I N ORDER for agents to initiate proper behaviors in dy-
namic environments, a practical vision system should be

able to process images and extract useful cues in real-time.
This ability is critical for both animals and autonomous robots,
especially for future robots, which may play a role in our
daily life. The basic skills, such as collision avoidance, are
vital for their success in interacting with their human hosts.
However, previous segmentation and registration based robotic
vision techniques have not been able to reliably and cheaply
recognize collision in real-time in dynamic environments [9],
[29]. Even with several kinds of sensors, such as visual, ultra-
sound, infrared, laser, and mini-radar, for object recognition
(for example, [1], [10], [32], and [57]), it is still very difficult
for a robot to run autonomously without collision in complex
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dynamic environments without human intervention. In another
application field, to reduce or alleviate the impact of road
collisions and the number of casualties in driving scenarios,
a reliable technique for visual based collision recognition is
badly needed [54], [62].
On the other hand, nature has provided a rich source of inspi-

ration for artificial visual systems.Many animals use their visual
systems to successfully avoid collision in the real world. Insects
in particular, with their rapid reactions to dynamic scenes use
only a small amount of neural hardware and are very attractive
as sources of inspiration (for example, [18], [25], [26], Web and
Reeve 2003, [13], reviewed by [23]; [24], [28], [33], [60], and
[69]). In insects’ visual pathways, identified specialized neu-
rons have been known for several decades (for example, [35],
[38], and [39]). The properties revealed can be used to produce
unique computing efficient models for visual sensors for colli-
sion recognition.
Recently, specialized neurons found in animals have been

used as themodel in producing artificial vision systems for colli-
sion recognition. For example, an identified neuron in the locust,
the lobula giant movement detector (LGMD) (for example, [35],
[41], [42], and [49]) has been used as the basis for an artificial
visual system for collision avoidance in robots [6], [40], [43],
[44], [46], [60], [65], [67] and [61], [66], and more recently in
cars [51], [61], and embedded in hardware [34].
Several feature selectiveneuronsmayalsobecombined topro-

vide a robust collision detecting visual system. Direction selec-
tive neurons (DSNs) have been found in animals for decades, for
example, in insects such as the locust [38], [39], beetle andfly [7],
[19],also invertebratessuchas therabbit [2], [3], [52]asreviewed
by [55] and the cat (for example, [31] and [37]). SuchDSNscould
be used to signal looming (for example, [22]; Harrison, 2006).
Whenorganised inanasymmetrical layerednetwork, theseDSNs
can produce a neural network specialized for collision recogni-
tion [64]. By training and then testing in either a driving situation
or in a robotic laboratory, the combined DSNs were shown to re-
liably detect collisions in dynamic scenes [64], [68].
In animals, it is believed that many different specialized vi-

sual neurons act together to extract and fuse different visual cues
from dynamics scenes. However, when the LGMD and DSNs
coexist in a natural or an artificial visual neural system, can
they serve the collision recognition role together or does only
one type of neuron contribute? This question needs to be ad-
dressed. An investigation into the robustness of the LGMD and
the DSNs, comparing their competence for collision recognition
can also provide useful information for the design of artificial
vision systems for robots or cars. In insects, little is known as to
how the LGMD and DSNs interact with each other. However,
it is possible to investigate interactions by allowing currently
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available computation models of the LGMD and the DSNs [6],
[40], [46], [60]–[64], [67], [68], to either operate alone or in co-
operation on the same platform or agent. An agent here refers to
an entity or a complex neural system that consists of several dif-
ferent types of neural subsystems and is capable of responding
to input visual images. The LGMD andDSNs can be such neural
subsystems that form an agent. The agent is then exposed to a
specific collision recognition task during a period of continuous
development.
Evolutionary computation, especially genetic algorithms

(i.e., [17], [20], and a recent example, [12]), has provided
useful tools to investigate the competence and possible coop-
eration between similar visual neural subsystems in specific
environments. In this paper, we used a genetic algorithm to
investigate the competence and possible cooperation of the
LGMD and the DSNs in specific environments. There were
three different types of collision recognition agents, each with
a different type of neural subsystem functioning for collision
recognition, i.e., an LGMD agent using the LGMD neural
subsystem, a DSNs agent using the DSNs neural subsystem
and a hybrid agent with the Hybrid neural subsystem. These
LGMD, DSNs and Hybrid neural subsystems all exist in each
agent’s visual system and evolve simultaneously in a robotic
environment.
Since all the three neural subsystems coexist in each agent’s

visual system in an evolution process, coevolution (for example,
[36]) has been considered as an option. In biology, coevolu-
tion is about the change of a biological object that is triggered
by the change of a related object [59]. Each party in a coevo-
lutionary relationship exerts selective pressures on the other,
thereby affecting each others’ evolution (for example, [58]). In
evolutionary computation, coevolution can be competitive co-
evolution [21] or cooperative coevolution [36]. Both of them
are aiming to produce better searching results. In this study, our
focus is on the competence of the LGMD, DSNs and their coop-
erative neural networks. As the LGMD and DSNs are both spe-
cialized for one visual task—collision recognition, competitive
coevolution seems to be the right choice; Hybrid neural subsys-
tems need the cooperation of both LGMD and DSNs, coopera-
tive coevolution seems to be a good choice in this case. How-
ever, it would be a complex task to use the above coevolution
computation strategies, i.e. competitive and cooperative coevo-
lution, to investigate the competence of the three neural subsys-
tems simultaneously in an evolution process. Fortunately, there
is a simple way to accommodate and compare different types of
subsystems in an evolution process—to set specific gene(s) to
determine which candidate subsystem plays the role. We intro-
duced a switch gene for accommodating these coexisting neural
subsystems while providing opportunities for each subsystem to
compete for the collision recognition role during an evolution.
Within the whole visual neural system of an agent, the

switch gene determines which neural subsystem plays the
collision recognition role. During an evolution, each type of
agent is evaluated according to their performances on collision
recognition tasks. The most important indicators of success are
the number of each type of agent in the whole population and
their performance over successive generations. Over succes-
sive generations agents that perform well have more chances

to affect the newly produced switch genes. This means that
the competence of that type of agent can be reflected in the
increasing number of its kin agents (with similar switch genes)
in the whole population.
Via these evolutionary computations, we want to knowwhich

type of agent is able to adapt to the environment quickly and ro-
bustly, that is to say, which one is more likely to develop the
collision recognition ability and prevent others from doing the
same task. Secondly, wewant to know if there is a need for coop-
eration between the LGMD and the DSNs for a collision recog-
nition task; this may be the case if the hybrid agent can easily
dominate the whole population. We hope the experiments will
provide useful conclusions or suggestions for designing artifi-
cial vision systems for mobile robots and cars.

II. METHODS AND FORMULATIONS

In this section, the visual neural subsystems, including the
LGMD, DSNs, and especially their adaptable parts, are illus-
trated. The switch gene, parameters of the visual neural sub-
systems, evolving environment and experiments setup are also
described in this section.

A. LGMD Neural Subsystem

The LGMD [see Fig. 1(a)] used in this study is based on the
previous model described in [6], [40], [46], and [60] with minor
changes.
The LGMDmodel is composed of four groups of cells—pho-

toreceptor P, excitatory E, inhibitory I and summing S, and two
single cells—feed-forward inhibition (FFI) and LGMD.
1) P Layer: The first layer of the neural network are the

photoreceptor cells which are arranged in matrix form; the
luminance of each pixel in the input image at frame is
captured by each photoreceptor cell, the change of luminance
between frames of the image sequence is then calculated and

forms the output of this layer. The output of a cell in this layer
is defined by equation

(1)

where is the change of luminance corresponds pixel
at frame , , and are the pixel coordinates, and
are the luminance, subscript denotes the current frame

and denotes the previous frame, the persistence coefficient
is defined by and .
2) I E Layer: The output of the cells forms the inputs to

two separate cell types in the next layer. One type is called the
excitatory cells, through which excitation is passed directly to
the retinotopical counterpart of the cell in the third layer, the
layer. The second cell types are lateral inhibition cells, which
pass inhibition, after 1 image frame delay, to their retinotopical
counterpart’s neighboring cells in the layer. The strength of
inhibition spread to a cell in this layer is given by

(2)
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Fig. 1. Schematic illustration of the LGMD (a), the DSNs (b) and the hybrid
neural subsystems (c). Note that the LGMD has symmetrical lateral inhibition
but the direction selective neuron, L for example, has leftward lateral inhibition.
In the neural vision system, the P, E and I layers are shared by the LGMD and
the DSNs. The scales of the P, E, I, and S layer are the same- 100 pixels by
80 pixels arranged in a matrix. The hybrid neural subsystem combines together
the excitation of the LGMD, the excitation and the intermediate output of the
DSNs. The outputs of the hybrid neural system are also spikes.

where is the inhibition in pixel at current frame
; are the local inhibition weights; defines the size of
the inhibited area.
3) S Layer: The excitatory flow from the cells and inhi-

bition from the cells is summed by the S cells using the fol-
lowing equation:

(3)

where is the global inhibition weight. Excitations that ex-
ceed a threshold value are able to reach the summation cell
LGMD

(4)

where is the threshold.

4) LGMD Cell: The membrane potential of the LGMD cell
, is the summation of all the excitations in S cells as described

by the following equation

(5)

The membrane potential is then transformed to a spiking
output using a sigmoid transformation

(6)

where is the total number of the cells in S layer. Since (5)
is a sum of absolute value and is greater than or equal to
zero, the sigmoid membrane potential varies from 0.5 to 1.
The collision alarm is decided by the spiking of cell LGMD. If
the membrane potential exceeds the threshold , a spike is
produced. A certain number of successive spikes, which is de-
noted by , will trigger the collision alarm in the LGMD
cell. However, spikes may be suppressed by the FFI cell when
whole field movement occurs [46].
5) FFI Cell: In the absence of feed forward inhibition (FFI),

the LGMD network may produce spikes and a false collision
signal when challenged by a sudden change of visual scene, for
example during a rapid turn. The feed forward inhibition cell
works to cope with such whole field movement when a large
number of P cells are activated [40], [46]. The FFI at a given
frame is taken from the summed output of the photoreceptor
cells with one frame delay

(7)

Once exceeds its threshold , spikes in the LGMD are
inhibited immediately.
The early visual processing layers such as P, I, and E are

treated as developed layers and the adaptable variable between
I to S layer is the inhibition weight . The FFI threshold
and the LGMD cell’s threshold are also adaptable during
evolution. Other parameters are all treated as developed (and
are given in later sections) and fixed without change during the
evolution.

B. The DSNs Neural Subsystem

The DSNs [see Fig. 1(b)] fuse the visual motion cues ex-
tracted by the several direction selective neurons. These neu-
rons share the same photoreceptor cells with the LGMD net-
work; and have their own excitatory cells and inhibitory
cells which are similar to those in the LGMD network; they have
several groups of summing cells- , , , and cells
etc., direction selective cells— , , , and etc., several in-
termediate cells, and a spiking cell [64]. We will take the left
inhibitory summing cells and left inhibitory cell as exam-
ples to illustrate the neural system.
1) SL Layer: The inhibition from an cell is passed on to

its retinotopic counterpart’s neighboring cells in the next layer.
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The inhibition is passed, with one image frame delay, asym-
metrically from between one to eight cells away. The summed
strength of inhibition to a cell in this layer is

(8)
where is the summed inhibition to the cell and

are the local inhibition weights. In the above equation,
inhibition can spread in four directions: up, down, left, and right,
though in an asymmetrical way. The spread to the left is stronger
than that to the right since is greater than . At this stage we
found that it was not necessary to use all three inhibition direc-
tions because the outputs of several direction selective neurons
are combined at the next level to extract and then fuse the visual
motion cues. To save computing time, we set to 0 (and to
8), so that inhibition has a maximum spread of eight pixels to the
left resulting in directional selectivity with a single nonpreferred
direction (leftward in this instance) [63]. With a strong inhibi-
tion from the right side, the excitation caused by left translating
movements will be reduced or even cancelled [63]. Therefore,
the summing cell keeps silent with objects moving to the left
but is excited by motion in the other three directions (R, U, and
D).
The excitatory flow gathered in an cell will be

(9)

where is the global inhibition weight.
2) L Cell: The excitations in the cells are summed by

the left inhibitory cell . However, to reach the summation cell,
excitations should be able to exceed the threshold

(10)

The membrane potential of the left inhibitory cell is

(11)

The membrane potential of the cell is then transformed using
a sigmoid function

(12)

where is the total number of the cells in layer. Since
is not less than zero according to (11), the membrane poten-

tial varies sigmoidally from 0.5 to 1.
The membrane potential for right inhibitory cell ,

for up inhibitory cell and for down inhibitory cell can
be obtained in a similar way. The outputs of the network L, R,
U, and D, etc. are then combined to extract collision cues.
3) DSNs: In the previous research the direction selective

neurons have been successfully organized for collision recog-
nition [64]. In this paper, a layered network [see Fig. 1(b)] is
used to fuse the several neurons for collision recognition and
the efficiency of this structure has been demonstrated in recent
study [65], [68]. For a fusion network with layers, each layer

has intermediate cells, the inputs to the network are the ex-
citation in the direction selective neurons, i.e.,

(13)

where , , , and are the excitation in the and
neurons, and is the input array to the FNs. The output

of the layer can be formulated in matrix form as

(14)

where and is the excitation array in and
layer respectively, is the weight matrix.
A spiking cell sums its adjacent layer’s excitation. If the

excitation in the spiking cell exceeds the threshold ,
a spike is produced as the output. If several successive spikes

are produced, a collision is recognized by the neural
system DSNs.
In the DSNs, the direction selective neurons are considered as

developed parts and will be fixed without change during evolu-
tion processes. These direction selective neurons are at a similar
level to the LGMD. The adaptable variables of the DSNs are the
connection weights and threshold of the next level of their or-
ganization where the outputs of the directionally selective neu-
rons are combined [see Fig. 1(b)].

C. The Hybrid Neural Subsystem

The hybrid neural subsystem is represented by a neural net-
work which combines the outputs of the LGMD and the DSN
neural subsystems and outputs its own spikes. As illustrated in
Fig. 1(c), the output of the LGMD and the final and interme-
diate outputs from the DSNs are fused in the cooperative neural
network. Detail of the Hybrid neural subsystem is similar to the
LGMD and DSNs’ and is not illustrated again.
The adaptable part is the cooperative neural network in which

the weights and threshold are adjustable. Note that the hybrid
system not only depends on the weights and threshold of the
cooperative neural network but also the input from the DSNs
and the LGMD which are also flexible during evolutionary
processes.

D. The Switch Gene

As described in the above, among the three collision recog-
nition neural subsystems, the LGMD is at the lowest level in
terms of complexity with fewest adaptable variables; the DSNs
is at an intermediate level and the Hybrid system represents the
highest level with the greatest number of adaptable variables.
Since the three neural subsystems coexist within a whole neural
system and evolve in the same environment for the same vi-
sual task, a switch gene is introduced to determine which neural
subsystem plays the collision recognition role within the neural
vision system as a whole. As schematically illustrated in Fig. 2,
the agent takes its name from the neural subsystem that is con-
nected to decision making.
During the evolutionary development period of the whole

neural system, the switch gene adapts within a range of values
from 0.5 to 3.5. As shown in Fig. 2, if the switch gene is located
within the range 0.5 to 1.5, the LGMD neural subsystem plays
the collision recognition role; the outputs of the DSNs and the
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Fig. 2. Schematic illustration of the three collision recognition agents. Three
neural subsystems- the LGMD, the DSNs and the Hybrid are coexist in the same
entity- an agent or a bigger neural system. The switch gene controls the informa-
tion flow from the three neural subsystems to the decision making level. Only
one neural subsystem’s decision can feed to the final decision making and the
whole neural system is named after that type of agent. Once the connection
from a certain neural subsystem to the decision making has been made, other
neural subsystems were blocked from sending output to the decision making.
The double arrow between the DSNs and the Hybrid represents two levels of
excitation flow from the DSNs to the Hybrid. (a) DSNs agent. (b) Hybrid agent.
(c). LGMD agent.

Hybrid are blocked and become redundant; the whole neural
system is termed an LGMD agent. If the switch gene is located
within the range from 1.5 to 2.5, the Hybrid plays the role,
the LGMD and DSNs are the functioning part of the hybrid
system but are blocked frommaking any direct connection to the
decisionmaking and the whole neural system is termed a Hybrid
agent. Otherwise, the DSNs plays the role, the LGMD and the
Hybrid are blocked and become redundant, and thewhole system
is termed a DSN agent. The range of switch genes’ value can be
any other real numbers rather than 0.5 to 3.5 as long as equal (or
randomized) opportunity is provided for each type of agent.

E. Parameter Setting

Parameters of the LGMD are set before the experiments. The
range of adaptable variables is mainly decided based on em-
pirical experience to balance computing, searching costs and
opportunities.
The input video images are 100 (in horizontal) by 80 (in ver-

tical) pixels; images are grey scale ranging from 0 to 255 (pa-
rameter without unit, similar parameters hereafter will not be

TABLE I
THE PARAMETERS OF THE LGMD

TABLE II
THE PARAMETERS OF THE DSNS

restated). Therefore there are 8000 cells in layer and the same
number of cells in , and layers, respectively. The lateral in-
hibition spread to its neighbors 1 layer away and with one frame
delay. The local inhibition weights are set as: 25% for the four
nearest neighbors and 12.5% for the four diagonal neighbors.
Other parameters are listed in Table I. These parameters are set
based on the early experiments and are not adaptable in the fol-
lowing evolution experiments unless stated.
The inhibition weight is adaptable within (0.5 2.0);

the FFI threshold adapt within the range from 0.5 to 1.0
and the LGMD cell’s threshold are also adaptable within the
range 0.0 to 30.0 during the evolution.
The selectiveness of DSNs is supposed to be a developed

character of the DSNs in this study and is not be alterable during
the evolution. Parameters of the DSNs are given in Table II
based on our experimental study. The local inhibition weight

is set to be as strong as 5.5 to ensure inhibitory effect and
directional selectivity. The four direction selective neurons used
in this paper are: left inhibited DSN , right inhibited DSN ,
upward inhibited DSN , downward inhibited DSN .
There are four intermediate cells in the DSNs. In this case,

there are a total of 21 weights and thresholds that are adaptable
in the evolution process. The connection weights are allowed to
adapt between . The threshold of the spiking cell
is allowed to adapt within (0.0 10.0).
There are six input cells connected to the spiking cell of the

Hybrid, the six connection weights are all adaptable, within
and the spiking cell threshold is within (0.0

4.0).

F. Setting up Evolution Experiments

Evolutionary computation has been very successful in dif-
ferent applications—computer vision is one of the areas that
evolution processes have been used to tackle problems in a va-
riety of different levels (for example, [12], [30], and [64]).
For this study, similar specialized neural subsystems coexist

in a vision system; they need to compete with each other for the
specific roles—collision recognition, or cooperate to achieve a
better performance. All these competition and cooperation hap-
pens simultaneously in one evolution process. As stated above,
the coevolution computation strategies are not adopted directly.
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Fig. 3. Samples from video sequences making up the robotic laboratory envi-
ronments in which the three types of agents were evolving. The number under
each image is the number of its corresponding video sequence. The arrows in
the images are added for schematically indicating the visual motion direction.
The black ball is 95 mm in diameter. In video sequences 1 and 2, the ball was
moving across the field of view from left to right at an intermediate speed, taking
19 and 20 frames respectively; in video sequences 3 and 4, the robot was turning
anticlockwise at about 50 while moving forwards, at 3.2 cm/s; in video se-
quences 5 and 6, the robot was turning clockwise at about 50 while moving
forwards, at 3.2 cm/s; in video sequences 7, the ball was bouncing to the right;
in video sequence 8 and 9, the ball was bouncing up and down; in video se-
quences 10, the ball was bouncing to left; in video sequences 11, the ball was
approaching the robot at 0.4 0.5 m/s from right side; in video sequence 12
and 13, the ball was approaching the robot at 0.4 0.5 m/s from the central
area; in video sequence 14, the ball was approaching the robot at 0.4 0.5 m/s
from the left side. There were 60 frames in each video sequence. The collision
sequences were numbers 11 14. The robot’s field of view was 60 [64].

In coevolution computation (e.g., [12] and [21]), relative fit-
ness is often used for judging one agent against another but in
different groups. However, in this study, not only the number
of agents in a whole population is an important indicator, but
also the absolute fitness value which represents the overall per-
formance of different agents in the specific environment is ex-
tremely important as well. The solution for our case is to in-
troduce the switch gene which determines one of the three sub-
systems to play for visual collision recognition for the whole
entity. In this case, a normal genetic algorithm [8] with slight
modification becomes the best procedure once the switch gene
is incorporated.
1) Algorithm Setting: A population of agents (60 hereafter,

unless restated differently) in each generation are processed
via a genetic algorithm [8], [17], [61]. The first generation
is produced randomly. To form a new generation, the worst
performing agents (20% of the whole population in a gener-
ation) are replaced. New agents (20% of a whole population)
are produced by the best performing parents in the previous
generation through crossover. Single-point crossover routine
is used to perform crossover with probability set to 0.75 [8].
Mutation is made to the chromosomes (binary coded) of these
newly produced agents with a mutation rate 0.1.

In an evolution process, different types of agents evolve in
the same environment simultaneously and are therefore affected
by the presentation of the rivals. Different groups of agents are
evaluated according to their absolute fitness value which was
assigned under the same rule. Therefore, the worst performing
type of agents may be driven to extinction by the best per-
forming agents. Because of the random factor in producing new
agents, mutation may bring the extinct agent back again in sub-
sequent generations.
2) Fitness: Each agent’s behaviour is evaluated based on its

weighted success rate [64], i.e., fitness value. In each genera-
tion, an agent that responds to all visual events correctly, i.e.
recognize imminent collisions and make no mistakes on trans-
lating scenes or other challenges, scores a fitness value (success
rate) of 100%; an agent that fails in all events scores a fitness
value 0%; an agent that fails in a noncolliding challenge scores
a lowered fitness value (reduced success rate); an agent that fails
in a colliding event get a sharp reduction in success rate since
a collision event is much more important in scoring than a non-
collision one—for example, failure in a collision sequence may
be equal to four times the failure in a noncollision event. How-
ever, an agent scores 50% in fitness value if it only fails in all
collision events or only fails in all no-collision events.
The fitness of an agent may be formulated as the following:

(15)

where is the fitness value of the agent in the population,
is the score for the in events in the total events,
is the highest possible scores, and depends on per-

formance: failure or success

failure in collision event
failure in noncollision event

success
(16)

where is the score for failure in a collision event,
is the score for failure in a noncollision event. For a collision
event, failure means no collision signal is sent out by the agent
3 30 frames before real collision. is several times bigger
than to assure that an agent only fails in all collision events
and an agent only fails in all noncollision events will have the
same fitness value: 50%. In an evolutionary process,
(including 4 collision events), is 2.5, is 1 and
is 20.
3) Evolving Environments: To cultivate well performing

agents, the evolving environment should include as many visual
events as possible. However, a huge video database may result
in unacceptable computing time. Balance can be achieved by
carefully selecting visual events to form the evolving environ-
ment. As illustrated in Fig. 3, a group of video sequences, which
were recorded in a robotic laboratory with a Khepera II mobile
robot,1 are selected to form the environment for the agents to
evolve in. Each sequence represents one event that can cause
strong excitation in the photoreceptor layer. These sequences

1http://www.k-team.com
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Fig. 4. Results with three groups of collision recognition agents evolving during the four rounds of evolution. The number of best agents means the number of
agents with success rate equal or greater than 90%. (a) Round 1; (b) round 2; (c) round 3; and (d) round 4.

include a robot interacting with a black ball and turning around.
Since these video sequences were recorded directly from a
mobile robot, many visual perturbation challenges such as
bumping and shaking were presented. These video images were
all taken at about 25 frames per second.

III. RESULTS AND DISCUSSIONS

Four rounds of evolution have been conducted with three
types of neural subsystems coexisting and evolving simultane-
ously with the same parameter and environment setting. Fol-
lowing this, another three rounds of special evolution, in which
only one type of neural subsystem is allowed to play the recog-
nition role in each evolution, have then been conducted in the
same environment. Each evolution ran for about 16 hours on a
Dell laptop computer (P4 CPU 2.8 GHz). Results are shown in
Fig. 4 to Fig. 9, respectively.
As shown in Fig. 4, there are about the same number of the

three types of agents in the first generation in the four rounds of
evolution. However, the LGMD agents have quickly established

themselves with increasing number of kin agents (“kin agents”
here means agents that are using the same neural subsystem for
collision recognition) and dominated the whole population after
about 10 [see Fig. 4(a), (b), and (c)] to 40 [see Fig. 4(d)] genera-
tions. Though the Hybrid agent also showed very strong ability
in the early generations of the 3rd and 4th rounds of evolution
and in a specific isolated evolution process in which only the
Hybrid agents were involved in collision recognition in the evo-
lution [see Fig. 5(b)]. The LGMD agent performed well in a
specific isolated evolution with high averaged fitness and best
fitness value [see Fig. 5(a)]. The above results showed that the
LGMD has the ability to detect collisions robustly and leaves no
opportunity for others to do the same work in this environment.
The values of switch gene versus generation number in the

four rounds of evolution have also been plotted in Fig. 6. It is
found that the distribution of the switch genes tended to lock to
the LGMD neural subsystem in 10 to 20 generations. However,
the initial distribution in the first generation was uniformly dis-
tributed. The distribution trend over generations illustrated the
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Fig. 5. Results of three rounds of special evolution in which only one specific
type of agent is allowed to be involved in collision recognition in each evolution.

number of different agents and reflected the competence of cer-
tain types of agents.
The gene value converged very quickly as shown in Fig. 7.

The majority of the gene values lay within a narrow area (see
Fig. 7, 50th and 100th generation) which meant that the LGMD
genes were converged and remained stable over several gener-
ations. The number of its kin agents also demonstrated the ro-
bustness of the LGMD in recognizing collisions, since a slight
change in the gene value had not caused significant behavioural
difference (see Fig. 7 and Appendix). In contrast, the gene of
DSNs and the Hybrid neural subsystem showed little conver-
gence over the generations, for example, the 18th gene of DSNs
and the 3rd gene of Hybrid neural subsystem in Fig. 8.
The LGMD agent was also tested using similar visual clips

and results are shown in Fig. 9. The LGMD agent was picked
up from the 100th generation’s 48 best LGMD agents. The
chromosome of the 13 of those 48 agents was transformed
from binary to decimal value and is shown in the Appendix.
The chromosome of the agent used in the test was in the first
column. Note that only the 22nd–24th gene belongs to the
LGMD neural system and the others are either the redun-
dant DSNs or Hybrid gene or switch gene. The test showed
the LGMD agent was able to recognise collision in similar
scenarios [see Fig. 9(a) and (b)] and did not respond to noncol-
lision scenes [see Fig. 9(c), (d), and (e)]. As shown in Fig. 9,
the optimal combination of the LGMD cell and the FFI cell
resulted in the observed good performance. The selectivity for
looming objects over translating objects was largely based on
this optimal combination.

Fig. 6. Switch gene value in each generation in the four rounds of evolution.
Note that in each generation there were 60 different agents each with its own
switch gene value; some of the gene value were very close and may overlap
in the plot. The LGMD played the collision recognition role if the switch gene
value fell within the range (0.5 1.5), Hybrid played the role if it was within
(1.5 2.5) or DSNs played the role if it was within (2.5 3.5). (a) round 1;
(b) round 2; (c) round 3; (d) round 4.

The LGMD agent was also challenged with two unfamiliar
scenes. One scene was captured when the robot moved towards
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Fig. 7. Distribution of the three gene values of the LGMD neural subsystem in
the 1st, 50th, and 100th generations. Data are from the first round of evolution.

clustered blocks without collision psee Fig. 9(f)[. The agent
responded to it correctly—no repeated spikes were sent out.
The other scene was captured when a ball approached the robot
on a collision course in the first stage and missed the robot
at the final stage [see Fig. 9(h)]. It was no surprise that the
LGMD agent detected a collision at round frame no. 40, because
the LGMD agent tended to detect collision quite early [e.g.,
Fig. 9(a) and (b)] during the approach stage [ see Fig. 9, (h)].
Since the LGMD, the DSNs and the Hybrid neural subsystem

extracted and fused visual cues at different levels—LGMD at
lower level, DSNs at intermediate level and Hybrid at higher
level, and their flexibilities were also different due to their phys-
ical structure, it had been hard to predict which one would win
the competition. Through the above evolutionary experiments,
it became clear—if the DSNs coexisted with the LGMD, they
may not have had the chance to develop themselves for colli-
sion recognition in the specific environments; the cooperation
of the DSNs and the LGMD for collision recognition would also

Fig. 8. Distribution of the 18th gene in the DSN neural subsystem and the 3rd
gene in the Hybrid neural subsystem in the 1st, 50th, and 100th generations. Data
are from the 1st round of evolution. The two genes were randomly selected.

be difficult to develop in this case. However, the DSNs and the
Hybrid agents could reach high success rate evolving alone (see
Fig. 5) which meant that if the LGMD’s output was blocked, the
chances for the DSNs alone and the cooperative Hybrid neural
subsystem to play the collision recognition role would be high.
The results may also suggest that the DSNs may have to be in-
volved in other visual tasks instead of collision recognition, if
they were to coexist with the LGMD. In the future, more vi-
sual tasks may be introduced into the evolution to investigate
the possible function diversity and coordination of these neural
vision subsystems.
For visual neural systems, the evolving environment was also

critically important in forming and determining a structure for
certain tasks. Often, the best agent in one specific environment
may not be the best in another unfamiliar environment. Inter-
estingly, quite similar results were obtained when we put the
competition and coordination game into another dynamic envi-
ronment involving driving scenarios as briefly shown in Fig. 10.
The LGMD agents also dominated most of the population after
several generations in our driving scenario experiments, how-
ever, we noted that the best scored agent was not always a
LGMD one, the DSNs and the Hybrid scored very high fitness
value in three out of four rounds of evolution, which was con-
sistent with previous studies, in which only one type of DSN
was allowed to evolve in a specific environment [63], [64]. It
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Fig. 9. One of the best agents (LGMD agent, from the 1st round of evolution) processing different test scenes. The adaptable value of this agent is detailed in
Appendix C in the first column. Frame numbers are shown under each image frame. The dashed horizontal lines are the thresholds for LGMD (blue) and FFI (red).
Excitation levels are indicated in solid lines with LGMD in blue and FFI in red. Spikes are represented by asterisks. For the approaching cases, the last image
shown is the one taken when the ball touched the robot. (a) Processing an approaching ball on a direct collision course. (b) Processing another ball approaching
on a direct collision course. (c) Processing a moving ball translating at the same range from the camera. (d) Processing a bouncing ball. (e) Processing a nearby
translating ball. (f) Processing turning scenes. (g). Processing forward motion in a clustered environment. (h) Processing a near miss scene.
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was also harder for the LGMD to gain domination in the whole
population [see Fig. 10(b), 4th round].
The LGMD agents may benefit from its relatively stable

structure with a smaller searching space, although the switch
gene has structurally provided each type of agent with equal
opportunity. Further experiments have been carried out, by
assigning 18 dummy variables to the LGMD agents in addition
to its three variables. These dummy variables involved in
some simple addition and deduction operation but exerted
no final contribution to the LGMD outputs. Two rounds of
evolution were conducted and the results (see Fig. 11) showed
no significant difference compared to that from the previous
experiments. Additional experiments with introduced signif-
icantly enlarged random factor (higher mutation rate, in this
case) have also been carried out three times, in order to see
if this can provide a better chance for the DSNs or Hybrid
agents. The three rounds of evolution results are shown in
Fig. 12. More random changes in the gene has not lowered
the LGMD agent’s competence, though the success rate of the
LGMD agents has understandably dropped down with a higher
mutation rate (see Fig. 12(c), right column).

IV. FURTHER DISCUSSIONS

The domination of the LGMD agent may be explained by
the robust computational structure of the LGMD neural system
for collision recognition. An LGMD subsystem is stable as it
‘sums’ the excitations resulting from expanding edges (e.g.,
[40]–[42]) regardless of the direction of their movement. The
excitation level of the LGMD system in response to similar
visual stimuli, for example Fig. 13(a)–(d), will be the same as
these expanding edges are summed without directional bias.
However, these similar visual stimuli [see Fig. 13(a)–(d)],
will elicit quite different outputs from the directional sensitive
neurons of the DSNs—making the learning process much more
difficult for their postsynaptic network. For the same reason, it
will not be any easier for the hybrid neural subsystem to adapt
to these challenges quickly.
The computational structure of each collision recogni-

tion subsystem determines the learning efficiency. A robust
agent, such as a well performing LGMD agent in the above
experiments, produced offspring that also performed well
though these offspring’s gene was slightly altered due to both
crossover and mutation. It is obvious that, in the competitive
developmental process described above, the DSNs and even
more complex cooperative hybrid agents had difficulties in
generating offspring that performed well. The robustness of the
LGMD suggested that it could be a good model for designing
artificial vision systems for collision recognition and avoidance
for mobile robots, vehicles, airplanes and other high speed
mobile machines.
On the other hand, the experiments demonstrated the way

three different types of functioning neural subsystems coexist
and work in one entity via a switch gene. The full potential
of DSNs and the hybrid subsystems has been confirmed and
demonstrated in separate experiments (see Fig. 5). In product
design and system engineering, redundancy is often specially
introduced for enhancing reliability. Redundant structures in an

Fig. 10. (a) Sample images from video footages representing a driving envi-
ronment in which the agents evolved. The number under each image is the video
sequence number. Video sequence 1 was a car collision scene while driving at
high speed, video sequence 2 was a car collision scene while driving at low
speed, video sequence 3 was a leftward translating van while the camera was
stationary, video sequence 4 was of a left running pedestrian while driving at
very low speed, video sequence 5 wais a left walking pedestrian while driving
at very low speed, video sequence 6 was a turning car while driving at low
speed, video sequence 7wais a fast translating car while waiting at a round-
about, video sequence 8 was a car cutting in while driving at normal speed on
a motorway, video sequence 9 was the scene with road symbols- arrow while
driving at high speed, video sequence 10 was road symbols- arrows and zebra
lines while driving at high speed. (b). Results of the four rounds of evolution.
Left column shows the number of agents over generations and right column
shows the fitness over generations.

artificial vision system may be necessary to gain further robust-
ness and reliability. In future research, it is important to inves-
tigate how the collision recognition functionality could be reor-
ganized from the redundant structures if malfunction occurs in
the dominant subsystem.
The results of this study are useful for both the design of arti-

ficial vision systems and in understanding biovision systems but
the limitation of this study is also obvious. The video database
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Fig. 11. Results of three groups of collision recognition agents evolving (in
the robotic lab, Fig. 3) during the two rounds of evolution in which 18 dummy
variables were assigned to LGMD agents in addition to its original 3 variables.
The LGMD and DSNs agents were with the same number of variables in the
evolution. The number of best agents means the number of agents with success
rate equal or greater than 90%. (a) Round 1 and (b) round 2.

used in this study only represented a limited number of collision
patterns; however, colliding objects and patterns in an environ-
ment can be very diverse. Although previous studies showed that
these motion-sensitive neural vision systems could cope with a
wide range of colliding objects evenwhen trained in a simple en-
vironment with simple objects [64], it may be interesting to in-
vestigate if the cooperation is necessary when these agents are
challenged with very complex and diverse scenes with colliding
objects. It is also worth investigating how these neural systems
may evolve for multiple visual tasks in the future.
The LGMD in locusts and direction selective neurons in

many animal species including locusts are still under investiga-
tion (see [15], [16], Santer [46]–[48], and [67]). The interaction
of these direction selective neurons to guide behaviour in
animals is also a subject of speculation (e.g., [11]). Our study
above shows that an evolution method may provide chances
to explore possible competition and coordination mechanisms
between these neurons for specific visual tasks. We hope that
by using modeling and evolutionary computation methods,
together with the increasing information revealed by scientific
investigations in insects’ visual pathways and the continuous
investigation on developmental brain science (e.g., [27] and
[56]), efficient and robust active vision systems could be cre-

Fig. 12. Results of three groups of collision recognition agents evolving (in
the robotic lab, Fig. 3) during the 3 rounds of evolution in which mutation rates
were set to (a) 0.4, (b) 0.6, and (c) 0.8, respectively to introduce more random
factor in the evolution. (a) Round 1; (b) round 2; and (c) round 3.

Fig. 13. Examples of similar looming (collision) visual stimuli each has edges
moving to three different directions as indicated with arrows. All the four
looming objects will elicit similar level of LGMD excitation but will trigger
different outputs from the four directional sensitive neurons. For example,
(b) will only trigger responses from L, R, and U but D directional neuron—the
DSNs collision recognition system has to learn to cope with each of these
looming objects differently.

ated for future autonomous robots to interact with dynamic
environments effectively.

V. CONCLUSION

In the above sections, we have investigated the competence
and cooperation between the LGMDand the DSNs for the visual
collision recognition role via evolution processes. Represented
by threedifferent typesof agents, i.e., theLGMDagent, theDSNs
agent and the cooperative Hybrid agent, the neural subsystems
evolved in the environments simultaneously. The experiments
showed that, the LGMD has the ability to establish its role for
collision recognition very quickly and therefore reduce the other
neural systems chance of developing the same skill.
The LGMD is very robust in detecting collisions therefore it is

an idealmodel for designingartificial vision systems for the colli-
sionrecognition task.Althoughthecooperationof theLGMDand
the DSNs can be very successful, there has been little chance for
the neural system to develop coordination aimed solely at colli-
sion recognition—theLGMDwould have already gained a dom-
inate role in this case. TheDSNsmayhave to develop themselves
for other visual tasks to maintain existence.
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This study gave us a chance to look at the developmental
process of several specific neural subsystems fighting for their
places via evolution. The above results provide useful informa-
tion for the design of novel artificial vision systems for colli-
sion recognition which can be used in robots, cars, and many
other application areas. With similar methods, the coordination
between these visual neural systems for multiple visual tasks
could be investigated in the future.

APPENDIX

The binary to decimal transformed chromosome of the first 8
of the 48 best agents (which are all LGMD agents) in the 100th
generation from the 1st round of evolution:
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