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Robust Surface Recognition With the Maximum Mean Discrepancy:
Degrading Haptic-Auditory Signals Through Bandwidth and Noise

Behnam Khojasteh , Graduate Student Member, IEEE, Yitian Shao , Member, IEEE,
and Katherine J. Kuchenbecker , Fellow, IEEE

Abstract—Sliding a tool across a surface generates rich sensations that
can be analyzed to recognize what is being touched. However, the optimal
configuration for capturing these signals is yet unclear. To bridge this
gap, we consider haptic-auditory data as a human explores surfaces with
different steel tools, including accelerations of the tool and finger, force and
torque applied to the surface, and contact sounds. Our classification pipeline
uses the maximum mean discrepancy (MMD) to quantify differences in
data distributions in a high-dimensional space for inference. With record-
ings from three hemispherical tool diameters and ten diverse surfaces,
we conducted two degradation studies by decreasing sensing bandwidth
and increasing added noise. We evaluate the haptic-auditory recognition
performance achieved with the MMD to compare newly gathered data to
each surface in our known library. The results indicate that acceleration
signals alone have great potential for high-accuracy surface recognition
and are robust against noise contamination. The optimal accelerometer
bandwidth exceeds 1000 Hz, suggesting that useful vibrotactile information
extends beyond human perception range. Finally, smaller tool tips generate
contact vibrations with better noise robustness. The provided sensing guide-
lines may enable superhuman performance in portable surface recognition,
which could benefit quality control, material documentation, and robotics.

Index Terms—Haptic-auditory sensing, haptic surface recognition,
kernel methods, machine learning.

I. MOTIVATION

The biological sensing and transduction processes that occur during
tool-surface interactions are remarkably sophisticated, enabling hu-
mans to perform ubiquitous tasks such as fine material discrimination
and dexterous manipulation. Accurate surface perception is often a
necessary step toward targeted and effective object manipulation, as
motor commands need to be adjusted to fit the physical interaction
taking place. Recognizing surfaces is a multidimensional task of sensing
and interpreting the complex sensations of contact.

It would be useful if artificial systems could capture, process, and
accurately recognize the rich contact signals elicited during surface
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Fig. 1. (a) Recording setup. (b) Set of ten diverse surfaces. (c) Three steel tool
tips with different diameters.

exploration. Prior research introduced a diverse set of surface-sensing
hardware [1], [2], [3], but it is not clear what combination, quality,
bandwidth, and acuity of sensor data are necessary to match the
efficiency and accuracy of humans. Contact vibrations, in particular,
present a promising source of information because they exhibit complex
patterns [4], [5], propagate widely [6], [7], offer high temporal resolu-
tion for spatial touch-information decoding [8], and make multimodal
surface classification robust [8], [9]. Similarly advantageous is the
fact that the MEMS-based accelerometers typically used to capture
these vibrations are compact, low-cost, robust, energy-efficient sensors
with simple mounting, a straightforward electrical interface, and easy
calibration.

Many machine-learning algorithms have been proposed for surface
classification in the past decade. The plethora of research includes
recognizing surfaces with cues from visual-haptic-auditory [9], [10],
[11], [12], [13], [14], haptic-auditory [15], [16], and only haptic [17],
[18] data. Generalizing to surface-contact data recorded by a different
human is known to be more challenging, and promising cross-user
compensation approaches have been developed [9], [10], [11], [16],
[19].

Feature-engineered classifiers or deep neural networks may suffer
from overfitting due to subjective choices or limited training data [2],
[20]. In contrast, mapping distributions of surface time series was
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Fig. 2. Design of the test bed and sample recording from each sensor for an experimenter dragging a steel tool (d = 6 mm) on the laminate surface.

recently proven to be highly effective for surface recognition [9]. This
approach builds on the framework of kernel two-sample testing [21] for
data that is not independent and identically distributed (i.i.d.) [22] to
quantify differences in distributions of surface data using the maximum
mean discrepancy (MMD) – a metric that effectively quantifies the
difference between two distributions in a high-dimensional space by
considering all their statistical moments. This framework unlocked an
automated sample-efficient technique to classify multimodal surface
data (e.g., images, haptic signals, and sounds) without the constraints
of feature engineering or large training datasets.

The choice of the sensing tool greatly affects the mechanical sig-
nals that are produced during surface interactions [23]. However, our
understanding of the influence of the sensing tool on the mechanical
basis of surface encoding is incomplete. A study by Kirsch et al. showed
that vibrotactile signals that are elicited from various hard steel tool tips
with surfaces exhibit complex distributions and time-series characteris-
tics [24]. Strese et al. reported better multimodal surface-classification
capabilities of their scanning system equipped with a steel tool tip in
comparison to a human finger [2]. They pointed out that this trend may
originate from the hard-hard contacts that amplify mechanical signals,
therefore facilitating surface classification. However, the effects of the
sensing tool’s dimensions have not been systematically explored.

To guide the choice of sensing hardware and sampling rates, we
systematically investigated which signal bandwidths are most effec-
tive for artificial surface classification with haptic-auditory recordings
generated from three steel tools. In addition, due to the ubiquity of
mechanical and electrical noise, we evaluated the pipeline’s robustness
by adding white noise to the captured signals. These investigations
are all performed on newly captured high-quality surface data us-
ing the automated MMD-based recognition framework of Khojasteh
et al. [9]. They demonstrated a sample-efficient approach for learning
to recognize 108 surface textures from multimodal (visual, auditory,
and haptic) sensor readings obtained from a public data set recorded by
eleven different people. Their algorithm achieved higher recognition
rates than traditional machine-learning models based on expert knowl-
edge, also requiring less training data and optimization compared to
standard deep-learning methods. To support research progress in this
domain, we also share our haptic-auditory recordings [25].

II. HAPTIC-AUDITORY SURFACE RECORDINGS

To provide insights into both the hardware and software sides of ar-
tificial texture perception, we conducted a degradation study involving

bandwidth and noise. Haptic-auditory contact data were recorded from
human-guided surface exploration (Fig. 1(a)) with an instrumented
tool, as such data have previously been shown to reflect the friction,
hardness, and texture of the surface being touched [26]. We prefer
human-operated rather than automatic haptic data collection because
the hardware costs less and can be made portable for field use [3]. We
carefully selected a set of C = 10 surface textures (Fig. 1(b)) from the
Penn Haptic Texture Toolkit [27] drawn from material categories that
are also representative of other surface datasets [2], [3]; similar pairs
of materials (e.g., wood and laminate) were purposefully included to
make recognition more challenging.

We considered three solid steel tools of the same length with ther-
mally hardened hemispherical tool tips of 4, 6, and 8 mm diameter
(Fig. 1(c)); their masses are 11.6, 26.1, and 46.4 g, respectively. To
capture relevant haptic and auditory data from surface texture inter-
actions, the test bed (Fig. 2) comprises two miniature digital high-
bandwidth low-noise accelerometers (STMicroelectronics, IIS3DWB)
securely mounted to the tool itself and the experimenter’s finger via
double-sided tape (tesa SE), a six-axis force/torque sensor (ATI Indus-
trial Automation Inc., Nano43) underneath the surface sample, and a
high-fidelity microphone (Brüel and Kjaer, Type 4955) above the rigid
surface platform. A motion-capture system (Vicon, Vantage 5) tracked
the tool position and orientation, but these data were not analyzed for
the reported studies.

A. Measurement Protocol

Khojasteh et al.’s data-driven method effectively mitigated speed-,
force-, and session-dependent effects during tool-surface interaction in
order to generalize from one user to the other ten users [9]. In this
context, a simple distribution shift of time-series data was sufficient
to boost the recognition accuracy by 9%, up to the near-perfect score
of 97.2%. As we adopt their effective multimodal multi-user surface-
recognition framework, we focus on data recordings by one human.
During data acquisition, an experimenter recorded rich surface data
between the selected tool and surface by varying their tool speed and
applied normal force, which ranged from 10 to 440 mm/s and 0 to
5.1 N, respectively. The experimenter was asked to choose a free circular
motion to capture rich signals from different contact conditions and
phenomena, as in [1], [27]. From two long data recordings for each
surface c, we obtained ten trials that are each five seconds long without
any transient artifacts. Thus, in total we have 300 trials of multimodal
surface data (C = 10 surfaces × 3 steel tools × 10 trials). During data
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Fig. 3. (a) Pipeline with degradation studies and classification framework. (b) Illustration of white noise addition on a time-domain (force) signal. (c) Adopted
spectral sampling strategy of time-series (acceleration) data from two surfaces [9]. The two distributions are mapped into a reproducing kernel Hilbert space
(RKHS) in order to estimate the MMD through MMD2

b .

recording, the sampling rate was 26 667 Hz for the two accelerometers
and 44 100 Hz for the force/torque sensor and the microphone.

B. Information Sources

Each surface trial consists of five information sources from the four
sensors during tool dragging on the surface. The time-series information
sources are: three-axis acceleration of the tool (act) and fingertip
(acf), three-axis contact forces (for) and the corresponding three-axis
torques (tor), and one-dimensional contact sounds (mic); Fig. 2 shows
sample data.

III. DEGRADATION AND CLASSIFICATION

We investigated the role of (1) frequency bandwidth B (i.e., Nyquist
frequency) and (2) additive noise on tool-mediated surface recognition
by degrading the haptic-auditory signals through these parameters. This
paper analyzes 110 conditions of 10 varying signal bandwidths and 11
wide-ranging noise levels. Our approach leverages ideas from recent
work on automatic classification of visual-haptic-auditory data of 108
surfaces [9]. The degradation studies and the recognition framework
are elaborated in the following.

A. Problem Formulation

Our goal is to classify unseen multimodal sensor recordings from
physical surface interactions with the same sensing tool. From a
mathematical perspective, we address this surface-recognition task by
focusing exclusively on data distribution differences. We model surface
interactions as realizations of a dynamical system [22]. We assume
that a set of C ∈ N unique surfaces will induce different distributions
P1, . . . ,PC , respectively. The classifier compares unlabeled surface
trials to the known surface distributions in the library to determine
the surface class c from which it most likely came. To infer whether an
unseen testing trialZ and a training trial Y (c) from a library come from
identical or non-identical surfaces, we quantify distribution differences
between the two trials.

B. Downsampling

To identify the relevant bandwidth B for surface classification, we
systematically downsample all five information sources after applying a
low-pass filter and mirror padding to prevent aliasing and edge artifacts,
respectively. In all conditions, the sampling rate is twice (2 ·B) the

bandwidth (Nyquist frequency) of focus (Fig. 3(a)). The sampling rates
in all configurations of the degradation studies are lower than the actual
data acquisition rate for all sensor readings. These reduced sampling
rates entail lower spectral resolution, so this degradation simulates
digital sensors with lower sampling rates, as are often used in surface
classification. The bandwidth of interest always starts at DC (0 Hz),
and we vary the upper end of the considered frequency range. For the
upper frequency end, we consider ten logarithmically spaced values
between the sensor’s bandwidth (given by the manufacturer, reduced
for the force/torque sensor due to the attached surface) and a value
that is 1000 times smaller. The maximum spectral bandwidth for the
analysis is 0–6300 Hz for the accelerometer readings (act and acf),
0–2100 Hz for the force/torque sensor (for andtor), and 0–20 000 Hz
for the microphone data (mic), which includes the full human-audible
perception band.

C. Noise Infusion

We infuse broad-bandwidth white noise from a zero-mean normal
distribution N (0, ε(s)2) into the sensor readings (Fig. 3(b)). Such
a signal spread indicates the noise intensity through the variance,
ε2 ∈ RD(s), where D(s) represents the number of directions or axes
in the corresponding information source. To ensure uniformity across
information sources and suitability of dataset-specific noise, we in-
corporate noise that is proportional to the standard deviation of the
original recorded signals. The standard deviation provides a balanced
representation of the signal spread for time series with and without a DC
component. The infused noise magnitude ε(s) of information source s
is statistically weighted with

σ75(s) = median75th{σmax,1(s), . . . , σmax,Q(s)} (1)

that first identifies the maximum standard deviation values over time
for each sensor axis from each of the 300 tool-surface trials, and then
determines the top 75th percentile of these maximum values. Selecting
the median from the top quartile’s maximum standard deviations serves
as a reliable representation of the variability within the higher range of
all tool-surface data. This approach is resistant to the impact of outliers,
so that a variety of noise magnitudes can be modelled without distortion.
For each information source s, the noise magnitude is

ε(s) = wε · σ75(s) (2)

with weights, wε ∈ {0, 1
5
, . . . , 2}, varying from no noise through ten

linearly spaced noise levels with an overall maximum noise magnitude
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TABLE I
MAXIMUM NOISE MAGNITUDES

FOR EACH INFORMATION SOURCE IN THREE DIRECTIONS

of 2 · σ75(s). Table I lists these maximum noise magnitudes with units
for the five information sources in all directions. Our noise infusion
approach serves as a measure for signal-to-noise ratio and therefore may
represent a variety of real-world scenarios, such as a sensor’s inherent
noise (digital vs. analog), environmental mechanical and electrical
noise, or other independent noise sources.

D. Spectral Sampling

To quantify surface similarity between a testing trial and a library
(training) trial, we consider the spectral magnitude distribution of
all Fourier-transformed information sources (Fig. 3(c)). We use the
frequency-domain representation due to the distinct high-frequency
nature of all sensor readings (Fig. 2). For consistency across information
sources, we always compute N = 6000 spectral bins for the discrete-
time Fourier transform, so that the selected bandwidthB determines the
spectral resolution. With the given resolution, we randomly extract n
=m= 300 unique spectral magnitudes at consistent frequencies from
both testing and training trials to quantify surface similarity (Fig. 3(c)).
For this approach, we have observed no significant improvement in
classification performance when more spectral magnitudes were con-
sidered; thus, we maintained 300 data points throughout the study to
avoid unnecessary increases in computation time.

E. Similarity Metric

The two sets of extracted spectral magnitudes, y and z, are fed
into the core component of our surface similarity engine, i.e., the
MMD (Fig. 3(a) and (c)). This metric gauges the distance between two
probability distributions by considering their statistical moments in a
reproducing kernel Hilbert space (RKHS), which is a space equipped
with inner products. Given its efficacy in multimodal multi-user surface
recognition [9], we use the squared bias MMD estimator by Gretton
et al. [21],

MMD2
b [PY ,PZ ] =

1

n2

n∑
i,j=1

k(yi, yj)

+
1

m2

m∑
i,j=1

k(zi, zj)− 2

nm

n∑
i=1

m∑
j=1

k(yi, zj),

(3)

where [y1, . . ., yn] and [z1, . . ., zm] are i.i.d. random variables. In our
case, these are n and m samples from surface data streams Ys and Zs

with unknown distributions PYs and PZs . For our kernel functionk(·, ·),
we use the squared exponential function along with its well-established
hyperparameter heuristics for all statistical tests due to its suitability for
visual-haptic-auditory surface data [9].

F. Global Similarity Decision

For multi-source classification, we use the geometric mean to unify
the MMD scores of multiple information sources to an overall discrep-
ancy score DS (Fig. 3(a)). This framework uses the arithmetic mean of
individual logarithm-transformed MMD values and therefore improves
MMD scale-invariance across information sources. Our full classifier
combines all S = 5 information sources, which we term all. Based on
the MMD estimator in (3), we compute the global discrepancy score

DS[Y,Z] =
S

√∏S

s=1

(
MMD2

b [PYs ,PZs ]
)ws (4)

between two trials, Y and Z; greater values for DS imply that the two
trials have a higher discrepancy. While the exponential weights ws ∈
R+ allow one to consider some information sources more strongly
than others, we choose unit MMD weights, ws = wMMD = 1, in all our
experiments. To avoid issues with geometric means, we confirmed that
all individual MMD scores are positive, i.e., MMD ∈ R+.

Our algorithm leverages the k-nearest neighbors principle to make
classification predictions with the global DS scores. An unlabeled sur-
face trial Z will be classified to the class c in the library with C surfaces
according to minc∈C DS[Y (c), Z]; it predicts a surface class through
the test-train trial pair with the smallest global discrepancy distance,
i.e., the nearest neighbor. The size of the library plays a significant role
in determining the classification complexity. When the library contains
a limited number of training instances, effectively generalizing to new,
unseen data may be challenging. This aspect is particularly crucial when
employing few-shot learning approaches, where the goal is to achieve
accurate predictions with a minimal amount of training data.

IV. EXPERIMENTS

This section begins by outlining the two recognition settings of
our experiments with different training sets: the (1) five-shot and (2)
one-shot learning experiments. Subsequently, we describe the two per-
formance metrics employed to evaluate the recognition results. These
two performance metrics are the basis for computing the 30 optimal
bandwidths (two performance metrics × S = 5 information sources ×
three tools).

A. Few-Shot Learning Experiments

In our experiments, we independently test each of our 100 surface
trials, grouped by tool-specific datasets. For testing, an unlabeled trial
is compared to a class-balanced random subset (training) of other trials
from the library for that tool diameter. The two degradation studies
are our main experiments; they consider five library trials per class for
prediction, i.e., five-shot learning. After determining the optimal sensor
bandwidths, we perform one-shot learning experiments, in which we
consider only one five-second library trial per surface class. This more
difficult scenario represents a setting that is constrained by limited train-
ing data. For this experiment, we also perform dual-source classification
to investigate which paired combinations of tactile, kinesthetic, and
auditory cues are complementary for multimodal surface recognition.

B. Classification Performance Metrics

To reduce the influence of different data distributions on recognition
performance, we run our classification pipeline in R = 5 repeated
iterations for each surface trial of the tool-specific testing sets. In
every iteration, we consider spectral magnitudes from a distinct set
of frequencies for the MMD tests. Our primary performance metric is
the classification accuracy (ACC) of the tool-specific testing set. From
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TABLE II
OPTIMAL BANDWIDTHS IN HZ FOR

FIVE INFORMATION SOURCES AND THREE SENSING TOOLS

theR iterations, we calculate the overall classification accuracy for both
individual and combined information sources. We thus obtain both the
mean accuracy and its standard deviation.

The MMD surface similarity metric, inherent in our recognition
framework, affords a novel performance metric, the average safety
margin, which serves as a measure for confidence and reliability in
the classification decision. Unlike the classification accuracy that is
bound to the range of 0–100%, the average safety margin can potentially
provide deeper insights, allowing configurations to be more precisely
assessed and altered to increase their robustness in unseen scenarios.
We define the safety margin

SMs = MMD2
b [Y

′′
s , Zs]− MMD2

b [Y
′
s, Zs] (5)

as the MMD difference in the s-th information source between a testing
trial Zs and its closest false Y ′′

s and true Y ′
s library trials. Then, for

each tool-specific testing set with the R = 5 repetitions, we compute
the overall average safety margin.

C. Optimal Bandwidth Definitions

The initial results of our degradation studies highlighted that the
optimal region for the bandwidth is below 4000 Hz for all haptic and
auditory information sources. This observation aligns with expectations
from tool-surface interactions. To precisely identify this optimal region
for the bandwidth, we performed additional bandwidth computations
without added noise to have a frequency spacing of ΔBi,i−1 = 25 Hz
spanning the range of 0–4000 Hz. This finer resolution led to a total of
H = 160 operating points. When determining the optimal bandwidth,
we exclusively incorporated those bandwidths whose performance
metrics (accuracy or average safety margin) are within a value of
five (percent or unitless, respectively) of the maximum value for that
specific information source and sensing tool; in the case of classification
accuracy, this would be: ACC ≥ ACCmax–5%. From this selected set
of high-accuracy bandwidths, we then compute the optimal bandwidth

Bopt(Accuracy) =

∑H
i=1 Bi ·ACCi∑H

i=1 ACCi

(6)

where the ith bandwidth Bi is weighted with the corresponding accu-
racy value. The optimal bandwidth based on the average safety margin,
Bopt(Margin), is computed analogously. This approach can mitigate
the effect of outliers and therefore ensures a congruent representation
of the optimal bandwidth for each information source and sensing
tool (Table II). As mentioned above, these calculations are done for
conditions without added noise (w= 0) for all five information sources,
after confirming that the maximum performance metric value was in
these noise-free configurations and not in the ones from the first noise
level.

V. RESULTS AND DISCUSSION

A. Optimal Bandwidth of Haptic-Auditory Signals

As seen in the lower noise-free performance-versus-bandwidth plots
in Fig. 4, for the majority of conditions we found a plateau for the
accuracy curve and a peak for the margin curve. The bounded and
unbounded nature of the two evaluation metrics trigger this behavior:
every parameter variation (e.g., bandwidth, noise) perturbs the MMD
metric, and therefore we usually get a peak value for the safety margin,
whereas larger parameter variations are required for the correct and
wrong surface classifications to flip. In terms of accuracy-based optimal
bandwidths, we observe the best-performing bandwidth region to end
between 200–2500 Hz for the tool accelerations (act), 200–3000 Hz
for the finger accelerations (acf), 200–1600 Hz for the contact forces
(for), 200–1000 Hz for the torques (tor), and 600–4000 Hz for
contact sounds mic. The optimal accuracy-based bandwidths of all
information sources and tools lie in these regions (Table II), validating
the approach we chose to compute these values.

Compared to the accuracy-inferred bandwidths, the optimal band-
widths from the margins are smaller in all cases. This consistent trend
happens because the margin peaks are closer in frequency to the
beginning of the high-accuracy plateaus, suggesting that the overall best
configuration might tend to occur with smaller bandwidths. While this
finding makes sense, as a smaller sensor bandwidth improves the noise
characteristics, more research is needed to verify how optimization
choices can best be inferred from the safety margins.

In the majority of configurations, tools with larger diameter have
lower optimal bandwidth. This pattern is valid for both the accuracy-
and margin-based optimal bandwidths, implying that larger tools gen-
erate more surface-relevant low-frequency signals. A smaller tool tip
will penetrate more between asperities on the surface than a larger
tool [23], thereby giving the haptic-auditory signals higher-frequency
content.

Three haptic information sources (act, acf, for) achieve
100% perfect recognition rates for several bandwidths, while torques
and contact sounds reach their best accuracies (98% and 88%) at
625 Hz and 2075 Hz, respectively. The tool and finger accelerations
both enable reliable high-accuracy classification in broad-bandwidth
configurations; the flat high-bandwidth frequency response of the ac-
celerometers is also highlighted by the manufacturer. Furthermore,
mounting the accelerometer on the rigid tool yields better classification
on average than mounting it on the experimenter’s soft skin. We believe
this trend occurs because the mechanical waves from the hard-hard
surface contacts reduce in amplitude and frequency content as they
travel through the tool and tissue.

Compared to the accelerations, the top-performing forces have a
smaller upper frequency end for the bandwidth. In contrast to the tactile
and auditory vibrations, the forces achieve decent recognition accuracy
(above 60%) for bandwidths below 10 Hz due to their expressive DC
component. The 3D forces contain important information about the
frictional surface contact and how the user adjusts their grip force.
Compared to the forces, the torques perform less well in classification.
While the definition of the torques inherently includes the 3D forces,
the lever arm to the contact point is not related the properties of the
surface; thus, a reliable surface classifier should consider forces instead
of torques. The contact sounds are the worst-performing information
source, potentially due to their lack of directionality and their sensitivity
to ambient sounds. The same trend was observed in haptic-auditory
surface classification of 108 surfaces [9], thereby suggesting that a
robust surface classifier should focus on tactile rather than auditory
vibrations.
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Fig. 4. Main results of the degradation studies for the five individual and all combined information sources and all three sensing tools: the red-yellow-green
heatmaps show how classification accuracy varies with bandwidth and noise, while the dark blue curves show average safety margin isolines at 0 and 40. Below
each heatmap, more finely calculated results without noise contamination detail how classification accuracy and average safety margin depend on the bandwidth
B. Triangles depict the optimal bandwidths for accuracy (green arrow) and average safety margin (blue arrow) from Table II.

B. Noise Robustness of Haptic-Auditory Signals

With regard to the noise resistance between sensing tools (Fig. 4),
both performance metrics show that the 4 mm tool has the best noise
robustness for the contact vibrations and the 6 mm tool the best robust-
ness for the forces and torques. This behavior originates from the signal
energies of the corresponding information sources that determined the
maximum noise levels (Table I). The maximum standard deviationsσ75

for the accelerations and sounds were chosen from the trials generated
with the 4 mm tool, and for the forces and torques they were selected
from the 6 mm tool’s recordings. We believe this trend of higher
vibration or force amplitudes is mostly caused by the differing masses
and flexural rigidities of the tools. In addition, the aforementioned trend
of smaller tool tip diameter engaging with more surface asperities also
contributes to the higher vibration magnitudes of the 4 mm tool.

The bandwidth-versus-noise heatmaps (Fig. 4) show that the tool
and finger accelerations have the highest noise robustness, followed
by the auditory vibrations. The chosen digital accelerometers have
very low noise density of 75 μg/

√
Hz. Starting with almost perfect

recognition accuracy (>99%) for the 4 mm tool’s surface recognition
without noise, adding white noise with magnitudes of 6.2 m/s2 (σ75)
and 12.4 m/s2 (2 · σ75) reduces accuracy to 85% and 50%, respectively.
The finger accelerations exhibit a similar robust behavior. In the case
of the microphone signals for the same setting, the noise-free condition
(87%) significantly deteriorates to 30% and 22%. Forces and torques
are also more susceptible to spurious noise, potentially because both
of these information sources rely on their DC components for the
surface-recognition task. Comparing the noise conditions analogously,
the 8 mm recognition accuracy for the forces drops from 98% to 32%
and 22%. For the torques and the 8 mm tool, the accuracy drops from
92% to 19% and 15%. To conclude, high-frequency tactile vibrations

are more robust to noise than the other information sources, thereby
highlighting their suitability for classifying surfaces in noisy settings.

C. Combined Information Sources

Combining all five information sources enables the full classifier to
achieve perfect recognition rates for a range of bandwidths, even at
higher noise levels. This robust classification is enabled by considering
the advantages of the different information sources (e.g., expressive
DC and AC components) The MMD is very effective at detecting
salient distribution differences in data, thereby making our classifier
very robust.

In dual-source one-shot classification (Fig. 5), combining tactile
(act, acf) and kinesthetic (for) cues boosts recognition perfor-
mance, potentially due to complementary information in the high-
and low-frequency ranges. In particular, we report superior surface
recognition when combining three-axis tool accelerations and contact
forces in this sparse data setting. This observation in artificial surface
perception closely resembles the mechanisms of human touch, where
slow- and fast-adapting mechanoreceptors provide complementary
cues for steady pressure and rapidly varying stimuli, respectively. High-
frequency contact sounds (mic) also perform best with contact forces,
gaining more new surface-relevant information in this setting than when
combined with tactile vibrations. Adding another accelerometer at a
farther location does not help in surface recognition, suggesting that an
accelerometer close to the surface contact is sufficient. Improvements
in combined force-torque classification may arise from the better noise
suppression of the strain-gauge-based F/T sensor. The torques may have
stronger frictional (planar) signals due to the lever arm, compared to the
forces. Choosing the bandwidths from the safety margins (Fig. 5(b))
is less successful than the accuracy-based approach (Fig. 5(a)) in this
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Fig. 5. Individual and dual-source classification results from one-shot learning
with optimal bandwidths from (a) accuracy and (b) average safety margin. Each
box shows the mean and standard deviation across trials.

one-shot-learning approach with the same data. Therefore, primarily
considering classification accuracy for unseen configurations seems
more promising than safety margin, but this finding needs to be in-
vestigated more in future work.

In dual-source classification, the 4 mm results show that recognition
is more difficult with sparse training data. The variability between the
4 mm trials may be higher, potentially confusing our classifier when
only one trial per surface is considered. At the same time, smaller-
diameter sensing tools have better noise robustness in terms of accuracy
and margin.

VI. CONCLUSION

Artificial surface perception is highly relevant in manufacturing,
quality control, and robotics. To identify the optimal sensing configura-
tion, we captured high-quality haptic-auditory data of ten surfaces with
three tools for open-source use. With these recordings, we conducted
two degradation studies involving signal bandwidth and noise for robust
surface recognition with our automated MMD-based classification
pipeline. We identified the optimal bandwidths and noise resistance
for the tactile, auditory, and force-torque surface signals. In particular,
high-frequency tactile contact vibrations enable the highest-accuracy
robust surface classification even with noisier accelerometers. Unlike
the common choice of 1000 Hz, we found that the optimal bandwidth
is higher for vibrotactile information in artificial surface recognition.
High-frequency transient contact forces with an expressive DC compo-
nent are also successful for surface recognition, but several commercial
haptic sensors have only low-bandwidth force sensing. In contrast to

higher default choices, our findings further suggest that tool-surface
sounds up to only 4000 Hz are helpful in classification. Sensing tools
with smaller tip diameters amplify contact vibrations, thereby enabling
better and more noise-robust recognition rates. These results provide
a set of guidelines for the design of sensor configurations for surface
perception through rigid hand-held tools.

For the future, non-Gaussian noise models could be explored to
try to represent additional complex contact conditions and external
factors such as surface contaminants and sensor malfunctions. In-
vestigating the effect of sensor resolution and sensor sensitivity on
surface-recognition performance could also be an area of focus. Other
tools and end-effectors should also be explored to identify the optimal
design. For applications involving compliant end-effectors, it would be
important to contextualize the performance and optimal bandwidth of
a soft sensing tool alongside our results for hard tools. Conducting a
comparative, systematic analysis of soft and hard tools with regard
to geometrical, material and mechanical parameters could provide
insightful information about both types of contacts. Validating our
results for acceleration and force sensors with different frequency
responses and noise characteristics could also offer additional insights.
Finally, our approach could be compared to and potentially combined
with traditional metrology methods like profilometry for characterizing
surface topography.
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