5246

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 12, DECEMBER 2022

ACCURATE: Accuracy Maximization for
Real-Time Multicore Systems With
Energy-Efficient Way-Sharing Caches

Sangeet Saha"’, Shounak Chakraborty
Shoaib Ehsan

Abstract—Improving result accuracy in approximate comput-
ing (AC)-based real-time applications without violating deadlines
has recently become an active research domain. Execution time
of AC real-time tasks can individually be separated into: exe-
cution of the mandatory part to obtain a result of acceptable
quality, followed by a partial/complete execution of the optional
part to improve the result accuracy of the initial result within
a given deadline. However, obtaining higher result accuracy at
the cost of enhanced execution time may lead to deadline viola-
tion, along with higher energy usage. We present ACCURATE,
a novel hybrid offline-online approximate real-time scheduling
approach that first schedules AC-based tasks on multicore with
an objective to maximize result accuracy and determines opera-
tional processing speeds for each task constrained by system-wide
power limit, deadline, and task dependency. At runtime, by
employing a way-sharing technique (WH_LLC) at the last level
cache (LLC), ACCURATE improves performance, which is fur-
ther leveraged, to enhance result accuracy by executing more
from the optional part and to improve the energy efficiency of
the cache by turning off a controlled number of cache ways.
ACCURATE also exploits the slacks either to improve the result
accuracy of the tasks or to enhance the energy efficiency of the
underlying system, or both. ACCURATE achieves 85% QoS with
36% average reduction in cache leakage consumption with a 24%
average gain in energy-delay product (EDP) for a 4-core-based
chip multiprocessor (CMP) with 6.4% average improvement in
performance.

Index Terms—Approximated computing, dynamic associativ-
ity management (DAM), dynamic cache-way shutdown, energy
efficiency, multicores, real-time scheduling.

Manuscript received 29 October 2021; revised 5 February 2022; accepted
16 March 2022. Date of publication 22 March 2022; date of cur-
rent version 22 November 2022. This work was supported in part by
the U.K. Engineering and Physical Sciences Research Council (EPSRC)
under Grant EP/R02572X/1, Grant EP/P017487/1, Grant EP/V000462/1,
Grant EP/V034111/1, and Grant EP/P016006/1; and in part by the Marie
Curie Individual Fellowship (MSCA-IF), EU under Grant 898296. This
article was recommended by Associate Editor M. Mutyam. (Sangeet Saha
and Shounak Chakraborty contributed equally to this work.) (Corresponding
author: Xiaojun Zhai.)

Sangeet Saha is with the Department of Computer Science, University of
Huddersfield, Huddersfield HD1 3DH, U.K., and also with the Embedded and
Intelligent Systems Laboratory, University of Essex, Colchester CO4 3SQ,
U.K. (e-mail: sangeet.saha@essex.ac.uk).

Shounak Chakraborty is with the Department of Computer Science,
Norwegian University of Science and Technology, 7491 Trondheim, Norway
(e-mail: shounak.chakraborty @ntnu.no).

Xiaojun Zhai, Shoaib Ehsan, and Klaus D. McDonald-Maier are with
the Embedded and Intelligent Systems Laboratory, University of Essex,
Colchester CO4 3SQ, U.K. (e-mail: xzhai@essex.ac.uk; sehsan@essex.ac.uk;
kdm@essex.ac.uk).

Digital Object Identifier 10.1109/TCAD.2022.3161407

, Senior Member, IEEE, Xiaojun Zhai
, and Klaus D. McDonald-Maier

, Senior Member, IEEE,
, Senior Member, IEEE

I. INTRODUCTION

N REAL-TIME computing, the correctness not only

depends on the precision of the results but also on the time
at which they are produced. For such critical systems, approx-
imated results obtained on time are preferable over accurate
results generated after the deadline has passed. For example,
in a real-time video application, initially an inaccurate, but the
acceptable quality image is generated from the received data.
Then, based on the available resources, the obtained image
may further be refined [1]. Thus, approximate computation
(AC) approaches [2] can minimize the possibility of tasks
missing their deadlines due to strict resource requirements. In
AC approaches, a task is decomposed into a mandatory part,
followed by an optional part [3]. The mandatory part must
be executed entirely in order to produce an acceptable result,
while the result accuracy increases with the execution cycles
spent on the optional part. Specifically, to obtain a substan-
tial amount of increase in result accuracy, a certain number
of additional cycles need to be executed from the optional
part. In order to maximize the result accuracy, while meet-
ing the power and deadline constraints, proper scheduling
approaches have to explore both the architectural character-
istics of the system and the approximation tolerance of the
applications.

Energy-efficient scheduling of the approximated real-time
tasks that target to maximize result accuracy without vio-
lating the underlying system constraints has become a
research topic of paramount importance in the recent past.
Stavrinides and Karatza [4] were among the first to pro-
pose real-time scheduling of an AC-based task set. In recent
theoretical analysis [3], the authors improved system-level
result accuracy through the task to processor allocation and
task adjustment constrained by a preset energy budget. But,
restricting the energy usage does not guarantee the thermal
safety of the chip, which can be addressed by incorporating
power constraint together with a runtime power management
technique by considering several architectural parameters.
However, comprehensive studies that combine the theoret-
ical aspects of energy-efficient processing of approximated
applications in real-time paradigm along with due consider-
ation to the runtime architectural characteristics (e.g., cache
performance, instructions per cycle (IPC), etc.) have not been
conducted so far.

A homogeneous chip-multiprocessor (CMP) platform along
with a set of AC real-time tasks can be represented by
precedence-constrained task graphs (PTGs), equipped with

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6119-4927
https://orcid.org/0000-0003-1679-6210
https://orcid.org/0000-0002-1030-8311
https://orcid.org/0000-0001-9631-1898
https://orcid.org/0000-0002-6412-8519

SAHA et al.: ACCURATE: ACCURACY MAXIMIZATION FOR REAL-TIME MULTICORE SYSTEMS

(] o o o [T]

| Precedence, Power & Temporal Constraints |

11
ILP-based Scheduling LLC-based runtime Technique
to Maximize QoS [WH_LLC + Way Shutdown
(Sec. 4.1) + Sleep] (Sec. 4.2)
Execute Ti with highest version?
Tasks
For each T, Select as per yes no
5 A WH_LLC WH_LLC
(i) Version ID + +
(ii) Processor ID LLC i Update Oj

(iii) VIF Level
(iv) Start & Finish Time

| Sleep During Slack |

11

(i) Apply WH_LLC at the LLC to stimulate performance
(ii) Trade off gained performance to-

- (a) enhance the system level result-accuracy

- (b) improve energy efficiency of the CMP

Fig. 1. Overview of ACCURATE.

multiple distinct implementable versions having various
result-accuracy levels based on the respective amount of the
optional part that is executed. By exploiting start time and the
versions of the individual task nodes, our work, ACCURATE
presented here, first determines task-to-processor allocation
with an appropriate version of the individual task, the oper-
ating voltage/frequency (V/F) level, as well as their order of
execution, such that the system-level result accuracy (i.e., QoS)
is maximized, while meeting both the deadline, precedence,
and power constraints. After the offline phase, task executions
are triggered as per the precomputed schedule and each task
will be executed with its associated V/F level assigned. During
the execution, the cache-based dynamic accuracy enhance-
ment and energy minimization techniques of ACCURATE first
attempt to improve the performance by adopting a way-sharing
mechanism at the last level cache (LLC). This LLC-based
runtime strategy ensures that improving performance through
way-shared LLC (WH_LLC) can potentially finish the task
early, which will be traded against either: 1) to enhance result
accuracy by executing a higher version of the tasks selected
on-the-fly or 2) to improve energy efficiency by dynamically
resizing the LLC.

As contemporary applications [5]-[7], that include approx-
imations that spend a significant amount of time accessing
memory, employing way-shared LLC can reduce the total exe-
cution time of the tasks and can generate slacks. ACCURATE
attempts to exploit such slacks to enhance the result accuracy
by executing a higher optional version of the task (sub-
ject to availability), or by dynamically resizing the LLC to
enhance energy efficiency while maintaining performance.
Additionally, ACCURATE exploits slacks to enhance the
energy efficiency of the system by enabling the sleep/power-
gated mode at the cores and LLC. However, our performance-
cognizant online approach enhances result accuracy for the
tasks, and improves energy efficiency, without affecting the
predetermined schedule. Fig. 1 depicts the working mechanism
of ACCURATE.

The major contributions of the ACCURATE are thus sum-
marized as follows.

1) We propose an integer linear programming (ILP)-

based scheduling scheme, ACCURATE:Offline, for the
AC real-time PTGs on a power-constrained CMP
with an objective to maximize the result accuracy,
where the tasks are executed with a selected version
(see Section IV-A).

5247

TABLE I
ACRONYMS AND THEIR ABBREVIATIONS

[Acronyms | Abbreviations [[Acronyms | Abbreviations |
AC Approximate Computing || ILP Integer Linear Programming
IC Imprecise Computing || PTG Precedence-constrained Task Graph
QoS Quality of Service || NAQ Normalized Achieved QoS
CMP Chip Multiprocessor || LLC Last Level Cache
IPC Instructions Per Cycle || DAM Dynamic Associativity Management
EDP Energy Delay Product || V/F Voltage/Frequency
TCMP Tiled CMP || 00O Out of Order

2) We further propose a dynamic accuracy enhancement
along with an online energy minimization technique, i.e.,
ACCURATE:Online (see Section IV-B), which improves
the performance of the individual tasks, where improved
performance is traded off either: 1) to enhance result
accuracy by executing a higher task version selected on-
the-fly or 2) to improve energy efficiency by dynamic
LLC resizing. Additionally, in presence of any suf-
ficiently large slacks, the system will be put into
sleep/power-gated mode for more energy saving.

We argue and empirically validate the significance of
our task scheduling approach in combination with our
online cache-based strategy (see Section V). The bench-
mark application-based evaluation with a 4-core-based base-
line CMP (equipped with 2MB 8-way associative shared L2
cache) in our simulation setup (consisted of gem5 [8] and
MCcPAT [9]) exhibits that through ILP-based task schedul-
ing ACCURATE achieves 85% QoS, and the cache-based
online strategy reduces LLC-leakage consumption by 36% on
an average with 24% average gain in energy-delay product
(EDP) combined with 6.4% average performance improve-
ment. The scheduling strategy of ACCURATE outperforms
a prior Task_Deploy [3] scheduling mechanism that offers a
QoS of 55% for our considered task set with 70% system
workload, while ACCURATE achieves a QoS of 70%. We fur-
ther empirically justify the exploitation of way-shared LLC
(having a performance improvement of 10%) over another
prior technique, Zcache [10] (having an average performance
improvement of less than 6%) in ACCURATE. To the best
of our knowledge, ACCURATE is the first scheduling mech-
anism that trades off the performance gained by employing a
way-sharing technique at LLC to improve both runtime energy
efficiency and result accuracy of the AC real-time task set.
After discussing the relevant related work in Section II, we
show how ACCURATE is different from the state of the art.

Article Organization: After presenting the relevant related
work in Section II, we will model the system in Section III
where our processor and task models will be discussed along
with the scheduling criteria. After modeling the system,
the detailed mechanisms of ACCURATE will be illustrated
in Section IV, in which Sections IV-A and IV-B discuss the
ILP-based scheduling mechanism, and dynamic LLC-based
performance improvement and energy-efficient techniques,
respectively. The efficacy of the ACCURATE is demonstrated
in Section V along with detailing the description of our sim-
ulation setup. The article is concluded in Section VI. The
acronyms used in this article are abbreviated in Table I.

II. RELATED WORK

Nowadays, energy minimization in contemporary mul-
tiprocessor embedded systems has become a topic of

5248

paramount importance [11], [12]. Energy-efficient schedul-
ing for the time-critical tasks, with precedence constraints
on multiprocessor platform, imposes significant research chal-
lenges [13], [14]. Over the last few years, several research
attempts [15]-[18] were undertaken to devise energy and
fault-aware real-time scheduling for a set of time-critical task
sets.

Recently, Cao et al. [19] introduced the concept of AC
to meet the energy budget of a large-scale real-time system
that executes tasks without precedence constraints. Other
prior efforts also explored energy-efficient AC tasks schedul-
ing [19]-[21], without considering the precedence relations
among the tasks. Yu et al. [22] coined the concept of an
“imprecise computation (IC)” tasks, where tasks also have
a mandatory and an optional portions. The authors further
proposed a “dynamic-slack-reclamation” technique to improve
the system QoS to incorporate more energy efficiency, but task
dependencies were not considered. To the best of our knowl-
edge, the first attempt to schedule IC/AC-dependent tasks can
be found in [4], where the authors compared the performance
of conventional real-time scheduling approaches like highest
level first (HLF) and least space-time first (LSTF) between
two task sets, where one set contains the AC tasks. However,
this work did not include the energy efficiency.

The energy-aware scheduling of dependent AC tasks is con-
sidered in [3] and [23] that employ DVFS at the cores to
improve energy efficiency. However, as DVFS curtails the
supply voltage and frequency to save power, the transient
faults of the system can significantly raise up the relia-
bility issues [24]. Hence, in ACCURATE, we first propose
an offline task allocation technique that schedules AC real-
time tasks with respective frequency levels by considering
precedence-power-temporal constraints. In addition, during
execution, a way-sharing LLC strategy is employed to enhance
the performance which will be further traded off toward stim-
ulating result accuracy as well as improving energy efficiency
by dynamic cache resizing.

Zang and Gordon-Ross [25] and Mittal [26] surveyed a
number of performance-cognizant low-power on-chip cache
design techniques along with their pros and cons. By employ-
ing Gated-VDD [27] at the circuit level to power gate the
cache lines, a prediction-based energy-efficient cache was
proposed in [28] for the tiled CMP (TCMP) architecture static
nonuniform cache access (SNUCA)-based architecture, that
incurs a remapping technique for the gated cache lines. To
reduce cache leakage power significantly, a bank shutdown
policy based on run-time bank usages was proposed in [29].
Fitzgerald et al. [30] and Zhou et al. [31] kept selected cache
lines into low-power drowsy/sleep mode, for minimizing cache
leakage power where the sleep mode consumes less power
but retains stored data. In addition with an effective reduc-
tion in the overall energy consumption of a CMP, dynamic
cache resizing can also assist in reducing chip temperature
significantly [32], [33].

Toward uniformly distributing the cache loads across the
cache sets, dynamic associativity management (DAM) tech-
niques have been developed where heavily used sets are
benefited by utilizing the idle ways of the underused ones.
Several DAM-based approaches [10], [34], [35] have already
been proposed with variable implementation overheads. Out
of these, FS-DAM [35] has been adopted in our work for its

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 12, DECEMBER 2022

lesser implementation complexities along with the privilege of
dynamic restructuring of the groups.

ACCURATE Over State of the Art: The majority of
the prior scheduling approaches attempted to minimize the
makespan time, however, in the case of AC-based precedence-
constrained tasks, the objective becomes to maximize the
overall result accuracy, rather than makespan minimization.
Moreover, most of these prior energy-efficient scheduling
mechanism employed DVFS at the cores, but have not con-
sidered on-chip LLCs that significantly contributes to the total
on-chip power consumption [25]. As the majority of LLC
power comes from their leakage consumption and a large
portion of these LLCs remain underutilized during execution,
prudential LLC resizing can be a viable knob to achieve energy
efficiency [32], [33]. To exercise such energy-efficient mech-
anisms in real-time systems, promising techniques like DAM
can be employed at the LLCs to safeguard the performance. In
ACCURATE, after generating the schedule of the tasks through
an ILP-based strategy (see Section IV-A), we have studied
the potential of a DAM-based way-sharing technique at the
LLC in performance improvement for AC real-time task set.
During execution, ACCURATE further trades off this gained
performance (see Section IV-B), either:

1) to save runtime energy by the selective shutdown of
LLC ways, where ways will be turned on if performance
degrades, or;

2) to improve result accuracy by executing a higher version
of the optional parts of the tasks, subject to availability.

ACCURATE also exploits the sufficiently large slacks to
save more energy by enabling power-gated/sleep mode at the
cores and LLCs. Our results also show, ACCURATE surpasses
state-of-the-art techniques. To the best of our knowledge,
ACCURATE is the first technique that considers an LLC-based
online mechanism to enhance both result accuracy and energy
efficiency without violating the deadline constraint.

III. SYSTEM MODEL AND ASSUMPTIONS

We consider a CMP consisting of m homogeneous cores,
denoted as P = {Py,Pa,...,P,}. Each core supports L
distinct V/F settings denoted as V = {V{,V,,...,V.} and
F={F,F,,...,FL},where V; < Vi;1 and F; < Fiy1. A real-
time AC application (A) is modeled, as a PTG, G = (T, E),
where T is a set of tasks (T = {T; | 1 <i < n})and E is a set of
directed edges (E = {(T;, 1) | 1 <i,j < n;i #j}), represent-
ing the precedence relations between a distinct pair of tasks.
An edge (T, Tj) refers to the fact that a task 7; can begin its
execution only after the completion of 7;. The source and sink
tasks have no predecessors and no successors, respectively.
Being a real-time application, .A must be executed within the
given deadline, Dprg, by executing all of its associated task
nodes within the interval.

The worst case execution length, len;, for each task T;
(1 < i < n) is logically decomposed into M; cycles for the
mandatory part, and O;, the maximum cycles for the optional
part. We further assume that a task 7; may have k; different
versions, that is, 7T; = {Til, T,-2, e, Tl.k 71, which are distinct by
their given execution lengths of their respective optional parts
(0)), denoted as O} s 01-2, A Ofi, where Of achieves a higher
result accuracy than O?, if p > g. The length (lenﬁ-) of the
Jjth version of task 7; (i.e., T{ where 1 < j < k;) can now be

SAHA et al.: ACCURATE: ACCURACY MAXIMIZATION FOR REAL-TIME MULTICORE SYSTEMS

defined as follows:
le!, = M; + 0. (1)

Note that, length of T{ (.e., lenf») includes the memory cycles
needed to access LLC, which has been obtained by executing
individual tasks for a particular configuration (see Fig. 4). The
result accuracy Acci- of T{ is defined by the executed optional

part of the task, d (.e., Acci» = Oi-). Thus, the overall system-
level result accuracy, which we also use to define the QoS of
the system, is defined as the sum of the executed cycles of 0{
for all the tasks [19] and can be represented as follows:

QoS(A) = >0l T; =T,)
i=1

If a task T; executes at frequency F; then its execution time
ET; can be denoted as |len;/F;], which is a bound on task-
execution time. We used this execution time for the offline
phase. If F, > F}, then |len;/F,] < |len;/F}]. To enhance
the result accuracy of an individual task, while maintaining
its deadline, a higher version of the task needs to be executed
at a higher clock frequency of the core. However, increasing
the clock frequency increases the power consumption (Pow),
which might increase the core’s temperature. Hence, we fur-
ther assume an overall system-wide power limit (Pow_BGT),
which includes both dynamic and static power, where the
estimation for the static power in our theoretical model has
been performed by considering a fixed temperature.! Note
that, Pow_BGT includes power consumption of both cores
and caches, where dynamic power consumption at the cores
is higher than the static counterpart and caches are accounted
for their static power consumption [25], [32]. However, toward
maintaining accuracy in estimating the power consumption,
both dynamic and static power have to be considered. Hence,
our runtime power consumption is modeled by employing
the McPAT [9] tool, that estimates power consumption values
(both dynamic and static power) for both cores and caches for
our specific system configuration detailed in Section V-Bl1.

IV. ACCURATE

In this section, the working mechanism of ACCURATE
is illustrated. After elaborating the ILP-based scheduling
in Section IV-A, we will discuss the runtime LLC-based
power minimization and accuracy enhancement mechanism of
ACCURATE in Section IV-B. First, ACCURATE generates the
schedule and provides the following information: 1) task to
core mapping; 2) start and end times of the individual tasks;
3) assigned frequency; and 4) respective tasks’ versions. A
dispatch table stores the generated scheduling information by
arranging the tasks as per their execution order, which will
be used to execute the tasks at runtime. During execution,
ACCURATE traverses the dispatch table, selects, and fetches
individual tasks to execute according to their start time stamps.
Basically, while running the task set, ACCURATE:Online
allows the measurements of release and completion times for
each task. These measures of time correspond to the gener-
ated schedule which is presented afterward in Table IV and the

10ur assumed fixed temperature is 350 K, which is a reasonable average
temperature of our considered processing platform while executing PARSEC
benchmarks [32], [33].

5249

respective pictorial timing diagram is shown in Fig. 3. Note
that, the dispatch table is stored and maintained in a repository
residing in memory.

To empirically validate ACCURATE, at first we employ the
tool CPLEX [36] to verify the constrained scheduling, with
an example task set represented as a DAG, where we created
a task with PARSEC applications” [5] (see Section V). After
that, by accessing the dispatch table, the generated information
for this task set will be used in our online simulation frame-
work consisting of gem5 [8] (a full system simulator for
performance traces) and McPAT [9] (power simulator). Our
evaluation framework for the online mechanism considers a 4
out-of-order (Oo0) core-based TCMP [37] (discussed further
in Section V with the detailed simulation setup). To enable way
gating at the cores, ACCURATE incorporates power-gating
mechanism [27] at the way-level granularity of each LLC
bank, having negligible implementation overhead.

A. ACCURATE:Offline (ILP-Based Scheduling)

We present a scheduling strategy based on ILP. For this
purpose, we define a binary decision variable, Zjjp, where,
1,2,....n; k = 1,2,...,k; |l = 1,2,...,L; and
60 =1,2,...,m; Here indices, i, k, [, and 6 denote task ID,
corresponding version ID, particular V/F level, and the pro-
cessor ID, respectively. Zjp = 1, if the kth version of T; (i.e.,
Tl-k) executes on processor 0 at /th V/F level, otherwise 0. We
define another binary variable Yj;, where Y;; = 1, if task T;
starts before T}, else 0.

Let tgart(T;) and tapish(7;) denote the start time and finish
time of the task 7, respectively. Then, we have

ki L m k
len?
thnish (T7) = tstart(T) + Y Y LTI’JZM. 3)

k=1 =1 6=1

I =

The required constraints on the decision variable to model
our scheduling strategy are stated as follows.

1) Each task T; is assigned to exactly one processor with

a particular version and executed at one frequency level

ki m

L
S Zig = 1.)

k=1 I=1 6=1

2) The application A meets its end-to-end absolute dead-
line Dprg. Hence, the sink node 7,, must be finished by
Dprg. This constraint can be represented as follows:

tnish (1) < DprG. (5)

3) The peak power consumption of the system should not
exceed the given power budget. Let Powpeax represents
the peak power consumption of the system as follows:

Powpeak = max{Powys } (6)
where
Powpeax < Pow_BGT. (7)

Powgys is the power (both dynamic and static) con-
sumption of all the busy cores and can be obtained

2We have also collected both CPU and memory cycles and power usages
for each task by executing them on our simulation setup.

5250

TABLE 11
COMPLEXITY OF ILP

Equation # Constraints # Variables Per Constraints
Equation 4 O(n) O(K)
Equation 5 O(1) O(K)
Equation 6 O(n) O(K)
Equation 7 O(n) O(K)
Equation 8 O(n?) O(K)

by summing up power consumption of all the tasks
executing at that instant.

4) Execution dependency between tasks should be satis-
fied. The execution of 7; must commence only after the
completion of its predecessor T;

V((Tiv Tj)) €E |tstart(Tj) > ffinish (T7)- (8)

5) To ensure, the tasks have no overlapping executions in
the same processors, the following inequalities need to
be satisfied: Y((7}, T})) € A, where i # j

Yj+Yji >0 ©)
Y+ ¥ <1 (10)
thinish (T7) < tstart(Y}') + (1 - Y,:') x M. an

Equation (11) prevents timewise overlap of two tasks on the
same processor, i.e., T; must start after completion of 7;, if T;
starts before T;. If tasks are executed in the opposite order,
we use big-M nullification to deactivate the constraint. M has
been considered as: M = max{l_leni-c JF}Vi VL.

Objective: The objective of the formulation is to choose the
feasible solution, which maximizes QoS of the application.

Hence, the objective can be written as follows:
Maximize QoS(A). (12)

Here, in the context of this ILP formulation, QoS(A) can be
found as follows:

m n k L
QoS(A) = Z Z Z ZZikze x Ok

0=1 i=1 k=1 I=1

13)

subject to the constraints presented in (4)—(11).

Complexity Analysis: We present the complexity analysis for
our ILP in Table II. The second column of this table lists the
upper bound of the number of constraints for each equation.
The unique resource constraint in (4) should be determined
for all n tasks, hence, for a given PTG, overall n constraints
will be required. Similarly, the number of variables for this
constraint can be represented as O(K - L-m), where K denotes
the maximum number of possible versions of a task. However,
as the number of processors (m) and the number of frequency
levels (L) are typically constants for a given system, thus the
complexity may be considered as O(K). For deadline con-
straint in (5), this condition should be checked for a single
sink node, and thus, only O(1) constraints will be required.
In this way, the total complexity of ILP (in terms of the num-
ber of constraints) can be represented as on?). It may be
noted that the complexity of ILP is independent of the num-
ber of processing elements in a platform and the deadline
of a PTG.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 12, DECEMBER 2022

TABLE III
PARAMETERS AND THEIR VALUES, FOR EXAMPLE, TASK SET

Task M, O; Pow; || Task M, O; Pow;
(#cycies) (#cycﬁes) (#cycies) (#cyczles)
1 1

T]1 10 6 20 T 20 6 30
ng 20 5 T‘i 20 12

T23 20 7 30 T% 8 3

T% 20 10 T% 8 4 40
T3 20 4 T51 8 5

T% 20 8 20 T, 20 8 20
T3 20 10 Tg 20 10

Available Versions

OO-®

Selected
Version

k2X1

LX1 PTG

VIF Level

@---@

Available VIF Levels

Fig. 2. Task graph.

TABLE IV
OUTPUTS OF THE CONSTRAINED SCHEDULING

Task Mapped Selected Execute o Assigned
askKS Processor Version Start Time i V/F Level

T Py 1 0 6 1

T, P, 3 16 10 1

T, P, 3 16 10 1

Ty P> 1 46 1

Ts Py 3 46 5 0.5

Ts Py 1 72 8 1
Achieved QoS 45

Example (Constrained Scheduling at Work): Let us consider
the real-time task graph according to Table III and Fig. 2.
This PTG application needs to be scheduled on two processors
(m = 2), with a deadline Dpyg = 100 time units. Our assumed
power budget for both processors is set as Pow_BGT = 50.
As per the constrained scheduling strategy, CPLEX [36], the
ILP solver generates the scheduling output shown in Fig. 3.
The results are also represented in tabular form in Table IV.

From Fig. 3, it can be found that tasks T, 73, and T5 were
executed with their highest versions on processor P;. Out of
these three tasks, 75 executes in lower V/F level (i.e., 0.5) for
satisfying the power constraint. On the other hand, task 75 is
able to execute with its highest version (of the available three
versions) on the processor P, to maximize the overall QoS of
the system. However, T4 and Ty are executed on P, with their
respective lowest versions, in order to maintain the temporal
constraint. It is evident that the entire PTG is able to finish by
100 time units and thus, Dprg = 100 has been fulfilled. The
total obtained QoS value is 45.

SAHA et al.: ACCURATE: ACCURACY MAXIMIZATION FOR REAL-TIME MULTICORE SYSTEMS

A Dpre = 100 —
1 S0 B W__l
30 40 50 60 70 80 90 1‘o
A

10 20
PzT [Tz I T4 I Ts

10 20 30 40 50 60 70 80 90 100
Single Highest Z Highest Version
Version DVersion %/% in Lowest Frequency

Task allocation by constrained scheduling.

Lowest
Version

Fig. 3.

B. ACCURATE:Online (Dynamic Accuracy Enhancement
and Power Minimization)

Once the tasks are scheduled, the execution will be trig-
gered and our runtime mechanism will first boost up the
performance by incorporating a way-sharing-based technique
(WH_LLC) [35] at the LLC (detailed in Section IV-BI).
By logically increasing the cache associativity on-the-fly,
WH_LLC reduces the number of cache misses, which limits
the number of off-chip (memory) accesses. Thus, the run-
ning time of the task is reduced, and it generates a set of
idle processor cycles (which will be called private slack for
individual tasks in this article from here onward) at the end
of the execution of each individual task in the predetermined
schedule. Next, our online technique will utilize the private
slack for each task in a couple of ways (see Section IV-B2).
The tasks, that have been scheduled with their highest version,
will exploit the private slack only for improving energy effi-
ciency by turning off a set of LLC ways on-the-fly for reducing
LLC-leakage power consumption. This dynamically trimmed
LLC might affect the performance by increasing the number
of cache misses. However, our online mechanism periodically
monitors the performance and turns on cache ways, if needed,
to maintain the predetermined schedule. On the other hand, the
tasks scheduled with a result accuracy, having room for further
improvement, might exploit the private slack by running the
highest possible versions from their optional parts to enhance
the result accuracy. Note that, in both cases, the predetermined
schedule will not be violated. However, our online mecha-
nism can be tuned further, to balance the power-performance
tradeoff as per the system requirements.

Before applying WH_LLC, we first analyzed nine PARSEC
applications [5] by running them in gem5 [8] for a stip-
ulated number of clock cycles with our simulation setup
(see Section V-B). Most of the prior analyses of the PARSEC
regarding cache access patterns have shown the sufficiency
of using 70—100M clock cycles, as by considering this anal-
ysis overall trend of cache access patterns can be realized
for most of the PARSEC applications [5], [28], [32], [33].
In ACCURATE, we have used 80M clock cycles (in Rol) for
all of our simulations related to background analyses.

Our simulation shows, a significant amount of their exe-
cution times, these PARSEC applications spend in accessing
memory, which is shown in Fig. 4. In case of memory-
intensive applications, like Can, Ded, Fluid, and Stream,
more than 50% of the execution times are spent on access-
ing memory. The adopted LLC-based way-sharing technique,
WH_LLC, and a prior way-sharing policy Zcache [10] that
significantly curtail the memory accesses by reducing capac-
ity and conflict misses through better utilization of the LLC
space and thus, improve performance. We further implemented

5251
75
5g 60
oS
g5
£S5
g3
gx 15
0
R N N S N NP SN
O Y P C R I Sl NS SN
PR A R I AP
) [
Fig. 4. Percentage of execution time for memory access.
HBaseline BWH_LLC @Zcache
1.2
8
£ 11
°
[
N o1
£
5 0.9
2z
0.8
S R N . X - S SR ST - P SR
o S F & & O Al o 2
F L ¢ O & o}@ & ¥ 0&0
Fig. 5. Improving performance with WH_LLC.

. Cache Ways -
-

Ll
Normal Ways (NT‘ Reserve Ways (RT‘

0 1 2 3 4 5 6 7
a0 | al|a2 |a3
b0 | bl | b2 | b3
cO|clfc2|c3

d0 | dl|d2 | d3

e0 el |e2 |e3

—Set0, 1, 3and 5 can
fo |fl|f2 |13 share their RT ways
g0 |gl]g2|g3

ho | hl[h2 | h3

* Total sets (S) =8

* Total ways (A) =8

* RT-ways per set (R) =4

* Fellow-group size (F) = 4

Cache Sets

N o o W N RO

- Set2,4,6and 7 can
share their RT ways

Fig. 6. Example of WH_LLC.

and compared WH_LLC and Zcache with our simulation setup
(mentioned above), and showed the performance improve-
ments for the individual benchmarks in Fig. 5. As per this
figure, WH_LLC outperforms Zcache for all of these nine
applications with 10.5% improvement in IPC (on average),
whereas Zcache achieves 5.6% average IPC improvement,
which motivated us to adopt WH_LLC in the time-critical
environment of ACCURATE.

1) Improving Performance at the LLC: Prior empirical
analyses [35], [38] showed that, due to locality of reference,
the LLC accesses of applications are distributed nonuniformly
across different granularity levels (bank, set, way, etc.) of the
LLC, that keeps a big chunk of the LLC portion underuti-
lized. Several DAM-based techniques [10], [35], [38] have
been evolved to logically handle such load distributions by
providing heavily used cache sets the privilege of using the
idle ways of the underutilized ones.

Fig. 6 illustrates the entire WH_LLC mechanism for an
8-way set associative (A) cache having eight cache sets (S).
First, a number of cache sets are grouped together to form
a fellow group based on their usages, such that each group
contains a mix of lightly and heavily used cache sets. Next,
each of these cache sets is divided into two logical regions:
1) normal ways (NT) and 2) reserved ways (RT), where any
cache set within a fellow group can use RT portions of all
member cache sets. In Fig. 6, cache sets 0, 1, 3, and 5 are
in the same fellow group and can share their RT ways, and

5252

Exec. Time

without WH_LLC
,-- Private Slack

Exec. Time
with WH_LLC,

10 20 30 40 50 60 70 80 90 100
Pz [T T‘I]I [|Ts T] E|
10 20 30 40 50 60 70 80 90 100

Fig. 7. Performance improvement with WH_LLC.

similarly, cache sets 2, 4, 6, and 7 will also share their RT
ways, respectively. Logically, the associativity of each cache
set is now increased to 20 (from originally 8), which drasti-
cally reduces the capacity and conflict misses at the heavily
used cache sets and improves the overall system performance.
Note that, WH_LLC handles the existing diversities in cache
set usages during different execution phases of the task, by
dynamically restructuring these fellow groups. The functional
correctness of the addressing mechanism in addition to the
detailed discussion on this way-sharing mechanism is out of
the scope of this article.

Fig. 7 illustrates how WH_LLC will improve the
performance in ACCURATE. The darker task blocks for
individual tasks imply the modified execution spans of the
respective ones with WH_LLC in action, while the correspond-
ing brighter portions with dotted borderlines are representing
the older schedule (see Fig. 3). We have also shown the gen-
erated private slack only for Ts. Practically, the improved
memory latency by employing WH_LLC will boost up the
overall performance, which is reflected through the reduced
execution times for the individual tasks. The change in exe-
cution time (Exec. Time) for T3 after applying WH_LLC is
explicitly shown in the figure. Note that, the performance
improvements for the tasks in Fig. 7 are not to scale/measure.
Our simulation results in Section V will show the changes
in performance for the individual tasks consisted of PARSEC
benchmarks [5] (see Table VI).

2) Enhancing Power Efficiency and Result Accuracy:
Incorporating WH_LLC logically divides each LLC set into
two parts, as discussed earlier. Hence, shutting down a phys-
ical cache way will have different impacts on the task’s
performance, depending upon if it is an NT or an RT way.
Fig. 8 shows how way shutdown will change the associativity
for an 8-way LLC, having a fellow-group size of 4 with four
dedicated ways per set for RT. Shutting down two physical
cache ways from the NT portion will reduce the logical asso-
ciativity to 18. On the other hand, if two physical ways can
be turned off from the RT part, logical associativity will be
reduced by 2 x 4, i.e., 8, so finally it will be 12. And shutting
down two ways individually from NT as well as from RT will
entail the logical associativity to 10, which is still higher than
the original one (8). So, by employing WH_LLC, even after
shutting down 50% (physical)® ways from a cache bank, we
can still maintain an associativity of 10. This can however par-
tially curtail the gained benefits of WH_LLC, but will still be
able to maintain the performance over the baseline while sig-
nificantly reducing the power consumption. Note that, in this

3By considering our system configuration (see Section V-B1), we restricted
ourselves to ensure the available cache size at least 50% during execution
based on prior cache requirement analyses of PARSEC [5]. Note that, the
value of this limit is application dependent.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 12, DECEMBER 2022

. Cache Ways -
-

Ll
Normal Ways (NT‘ Reserve Ways (R:I'Iz

0 1 2 3 4 5 6 7
a0 | al a2 [&a8
bo | b1 | B2 | b3
c0 | c1 fe23eS
do | d1 [e28ids
€0 | el [E2NPES
fo | f1 PR2NS
g0 | g1 g2 1"gS
ho | h1 | K2 | hS

* Total Physical Ways per
Set (A)=8

* Total Logical Ways per
Set with FS-DAM (F) = 20

* Ways per Set after
Gating 2 Physical Ways
from NT = 18

* Ways per Set after
Gating 2 Physical Ways
from RT and 2 Physical
Ways from NT = 10

|:|=Turned-off or Gated
Cache Ways

Cache Sets

N O O W N RO

Fig. 8. WH_LLC with gated cache ways.

Algorithm 1: Per-Core Power Reduction and Result-
Accuracy Enhancement Within a FRAME

Input: Interval_length, Sleep_Thr, Turn_ON_OH,
#available_higher_versions_of _T;

1 Interval = Interval_length, #Off_ways_at_NT[B] = 0,
#Off_ways_at_RT[B] = 0;

2 cycle_cntr =0,

3 No_LLC _resize_flag[T;] = 0;

4 # Counts number of cycles completed within a period ;

5 # Check dispatch_table if init_slack exists for the current core with the
beginning of the FRAME ;

6 # (due to execution of the source task at some other core) ;
7 if init_slack > (Sleep_Thr + Turn_ON_OH) then
8 # Put the core into sleep mode for gated_cycles ;
9 gated_cycles = init_slack — Turn_ON_OH ;
10 cycle_ctr + = Algorithm 2 (gated_cycles) ;
1 for each task (T;) assigned to this core do
12 if Highest version is scheduled for T; then
13 # Fetch T; and execute ;
14 Call Algorithm 4 (T;);
15 else
16 No_LLC _resize_flag[T;] = 1 ;
17 # Fetch M; (of T;) and execute ;
18 Call Algorithm 4 (M;);
19 Cycles_Left_O; = Extended_End_Time_T; — cycle_ctr;
20 O; = Algorithm 3 (available_higher_versions_of _O;);
21 # Fetch the updated O; ;
22 Call Algorithm 4 (0;);
23 # After execution of Tj, check if slack exists;
24 gated_cycles =
Extended_End_Time_T; — cycle_cntr — Turn_ON_OH;
25 if gated_cycles > Sleep_Thr then
26 L cycle_cntr = Algorithm 2 (gated_cycles);

work, we set the upper limit for way shutdown at 50% from
each of the NT and RT ways. For all tasks, that have been
scheduled with their highest version, the way shutdown will
be applied for reducing LLC power consumption. To avoid any
implementation conflicts, ACCURATE does not allow concur-
rent execution of dynamic LLC resizing and reconstruction of
the fellow group in WH_LLC.

Algorithms 1-6 present the complete procedure for perform-
ing way shutdown at the individual LLC banks along with
the result-accuracy enhancement. Once the schedule is gener-
ated, the individual tasks’ start time as well as end time are
determined. ACCURATE:Online next converts all such timing
parameters to cycles and stored in the dispatch table, whereas
the duration (in cycles) of the deadline is named as FRAME.

Algorithm 1 takes the following parameters as the
inputs: Interval_length, Sleep_Thr, Turn_ON_OH, and
#available_higher_versions_of _O;. During execution,

SAHA et al.: ACCURATE: ACCURACY MAXIMIZATION FOR REAL-TIME MULTICORE SYSTEMS

5253

Algorithm 2: Sleep Manager

Algorithm 5: Dynamic LLC Resizing

Input: gated_cycles
update_cycle = gated_cycles + Turn_ON_OH,
Apply power gating at the core;
while gated_cycles > 0 do
L gated_cycles--;

B WO =

5 Turn on the core;
6 return update_cycle;

Algorithm 3: Enhance Accuracy

Input: #available_higher_versions_of _O;
1 if #available_higher_versions_of _O; > 1 then
2 while Cycles_Left_O; > Exec_Len_Curr_O; do

3 if Cycles_Left_O; < Exec_Len_next_O; || Curr_O; ==
Highest_O; then

4 L # Update and return O;;

5 # Go to next version of O;;

Algorithm 4: Task Execution
Input: 7;

1 if T; is fetched then

2 Set the predetermined V/F level and start execution;

3 while Task is being executed do

4 if cycle_cntr == Interval and No_LLC_resize_flag[T;] # 1

then

5 Interval = cycle_cntr + Interval_length;

6 For each bank (B) do in parallel (Line 7 to 8);

7 # Call Algorithm 5 with #Off_ways_at_NT[B] and
#Off_ways_at_RT[B] as inputs, and update the cycles
after LLC-resizing;

8 cycle_cntr+ = Algorithm 5 (#Off_ways_at_NT[B],
#Off_ways_at_RT[B]);

9 # Execute as normal;

10 # update the counter at the end of each clock cycle;

1 cycle_cntr + +;

Algorithm 1 checks the LLC usages periodically at the end
of each Interval_length number of cycles, which is set by
considering prior analyses of LLC usages [28], [32], [33].
Sleep_Thr is a minimum threshold value for a slack span
which is also known as the processor’s break-even time [39],
and whose value is architecture dependent. Turn_ON_OH
represents the time taken for the core to be turned on from
its sleep mode. The number of available higher versions
of O; of task T; over its scheduled one is represented by
#available_higher_versions_of _O;.

cycle_cntr, a variable, keeps track of the number
of cycles within a FRAME. #Off_ways_at NT[B] and
#Off_ways_at_RT[B] counters keep track of the number of
turned off NT and RT ways, respectively, at a particular LLC
bank B. We also use a flag No_LLC_resize_flag[T;] to decide
(initialized to O at line 3), if LLC resizing for 7; will be
enabled. The end timestamp for the individual tasks (within
a FRAME on the assigned core) is modified and called as
extended end time (Extended_End_Time_T;), which is defined
as follows.

1) Extended_End_Time_T; is the scheduled start time of
the next task (say 7y) assigned on the same core, if
the current task is not the last task on its assigned core
within the same FRAME.

Input: POWER_DOWN, POWER_UP, Limit

1 resize_cycles = 0, total_cycles = 0;

2 ratio = #misses(B) /#accesses(B);

3 if (ratio < POWER_DOWN) then

4 if (#Off_ways_at_NT[B] < Limit) then

5 # Select a victim way from NT;

6 total_cycles = Algorithm 6 (resize_cycles, Way_i);
7 #Off_ways_at_NT[B]++;

8 else

9 if (#Off_ways_at_RT[B] < Limit) then

10
11
12

Select a (physical) victim way from RT;
total_cycles = Algorithm 6 (resize_cycles, Way_i);
#Off_ways_at_RT[B]++;

13 else

14 if (ratio > POWER_UP) then

15 if (#Off_ways_at_RT[B] > 0) then

16 Turn a (physical) way on from RT;
17 ‘ #Off_ways_at_RT[B]——;

18 else

19 if (#Off_ways_at_NT[B] > 0) then

Turn a way on from NT[B];
#Off_ways_at_NT[B]——;

20
21

22 Return total_cycles;

Algorithm 6: Evict Way

Input: resize_cycles, Way_i
while blocks available at Way_i do
L # evict/invalidate blocks from Way_i;

keeps track of cycles by updating resize_cycles counter;
resize_cycles + +;

5 # Turn off Way_i;

6 Return resize_cycles;

2) Extended_End_Time_T; is set to the length of the
FRAME for the last task of a particular core within the
FRAME.

For example, Extended_End_Time_T, at core P; in Fig. 3, is
46, which is the start time of T4. The Extended_End_Time_Ts5
will be 100, as T5 is the last task of the FRAME at Py. For
ease of understanding, all of these time values can be assumed
as cycles, e.g., 100 time units can be considered as 100 cycles.

With the onset of the FRAME, the algorithm first checks
if any initial slack exists at the current core by looking at
the dispatch table. Such slack can only exist, if the tasks are
waiting at the current core for the execution of the source
task at some other core. For a sufficiently large init_slack
having a length of at least Sleep_Thr + Turn_ON_OH, sleep
mode will be enabled at the current core for the duration of
the slack (lines 7-10). For enabling sleep mode at the core,
Sleep-Manager() subroutine, i.e., Algorithm 2 is called, that
maintains a counter (gated_cycles) during sleep and turns the
core on if the counter is exhausted (line 1 to 6).

For each ready task (7;), Algorithm 1 first checks if the task
is scheduled with its highest version, and the execution will be
started (line 11 to 14). If a task is not scheduled with its highest
version, the system checks for the best possible schedulable
higher version available for the task by executing enhance-
accuracy process given in Algorithm 3 (see lines 1-5). Before
inspecting the availability of the higher O;, the algorithm
will start executing M; (line 18), and on completion the time

5254

D Tasks with dy

+ Performance degraded due to Way Shutdown

! Exec. Time with }
+ higher accuracy

: private slack :

. Exec. Time .
o Without WH_LLC o :

i Exec. Time with

g HLLLC WS i

Fig. 9. WH_LLC increases power efficiency and system result accuracy by
exploiting the private slacks.

left for executing Oj, i.e., Cycles_Left_O;, will be determined
(line 19). Based upon the available higher versions which can
be fitted within the time left, O; will be updated with the
best possible one by calling Algorithm 3 and will be exe-
cuted accordingly (lines 20-22). In our example, we were
able to dynamically schedule and execute the higher version
for Te (see Fig. 9) by prudentially exploiting its private slack
(included in Cycles_Left_O;). Note that, our algorithm does
not allow dynamic LLC resizing if a task’s version can be
updated online, which, if allowed, might lead to deadline viola-
tion. Hence, the flag No_LLC_resize_flag[T;] is set to 1 for the
tasks whose version can be updated dynamically (see line 16).
Our algorithm also looks for the availability of the sufficiently
large slack span after execution of each task, and on availabil-
ity of such slacks, sleep mode will be enabled at the processor
core by calling Algorithm 2 (lines 23-26).

To execute tasks, Algorithm 1 calls task-execution method
given in Algorithm 4, that executes each task in the following
manner. Once a task is fetched, the predetermined V/F level
for this task will be set at the assigned processor core and the
execution will be started (see line 2). During execution of a
task, cycle_cntr is updated at each clock cycle, and this value
is used to determine if an Interval is encountered and current
task is eligible for LLC resizing (i.e., No_LLC_resize_flag[T;]
1) (see line 4). Once the cycle_cntr is at the Interval, and the
task is eligible for LLC resizing, the algorithm will attempt to
resize the LLC by calling Algorithm 5. ACCURATE is imple-
mented with a multibanked LLC, in which we will enable
our way-level dynamic LLC resizing strategy at each bank B.
Hence, Algorithm 5 will be called for all of these LLC banks
(lines 6-8). However, once resizing is done, the execution will
proceed normally.

Existing diversities in cache access pattern across differ-
ent execution phases of individual applications excogitate
diverse cache requirements on-the-fly. As the time critical-
ity is enforced, keeping track of the task’s cache require-
ments during different execution phases is inevitable, which
can be monitored by considering the miss rate at the bank
level granularity. Therefore, at first, a ratio is calculated by
#misses(B) /#accesses(B) for the individual banks (B) on com-
pletion of an interval (Interval) (see line 2). If this ratio is
smaller than POWER_DOWN (line 3), the algorithm will first
check if the number of turned off ways (#Off _ways_at_NT|[B])
is less than the maximum allowed (#Limit) then an NT way
is selected as a victim, and it will be shutdown eventually
after invalidation or eviction of its blocks (lines 4-7). If the
number of turned off ways (#Off _ways_at_NT|[B]) reaches the
maximum allowed (#Limit), then if the number of turned off

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 12, DECEMBER 2022

ways in the RT portion (#Off_ways_at_RT[B]) is less than the
maximum allowed (#Limit) (line 9), a way from RT will be
turned off after invalidation or eviction of its blocks (lines 10—
12). Note that, during the eviction of the blocks from the
victim way, the bank can still serve external memory accesses.
The main difference is that an eviction caused by a cache miss
will not evict the data from the victim way.

On the other hand, if the ratio is larger than POWER_UP
(line 14) and there exists at least one power-gated way at the
RT portion, then one RT way is turned on (lines 15-17).
If RT has no gated ways at present, our algorithm will
attempt to turn on a powered-off NT way (see lines 17-20).
Note that, the incorporation of two separate limits for ratio,
where POWER_UP is larger than POWER_DOWN reduces the
chance for oscillating resizing where one (physical) way is
repeatedly turned on and off during stable execution phases.
Depending on the system parameters and the average expected
workload of the system, a suitable Inferval_length and other
thresholds (POWER_UP and POWER_DOWN) can be deter-
mined (see Section V-B1). Hence, these may either be set at
design time or may be made configurable. The number of sets
that can be evicted per cycle during way shutdown is to be lim-
ited by the number of memory ports (per bank). Note that, the
block invalidation or eviction at the LLC ways is performed
by the Evict-Way method in Algorithm 6 (lines 6 and 11). As
long as the blocks are available at a particular way, this algo-
rithm will either write the block back to the main memory, if
dirty, or invalidate the block. Once this operation is done, the
way will be turned off (lines 1-6).

3) ACCURATE:Online Computational Overheads:

Theorem 1: The amortized complexity of ACCURATE:
Online (Algorithms 1-6) is O(nlogn)/FRAME per time slot.

Proof: Algorithm 1 is the heart of ACCURATE:Online tech-
nique that executes at each core, which at first investigates the
dispatch table to identify if there exists a slack at the begin-
ning of the FRAME. Such slacks can be determined just by
looking at the dispatch table, hence, it incurs a computational
overhead of O(1). A stepwise analysis of computational over-
head of Algorithm 1 due to the called functions/algorithms is
as follows.

1) On presence of a slack at the beginning of the FRAME
the core will be gated, only if the slack span is suffi-
ciently large, by calling Algorithm 2, that keeps tracking
of the time during sleeping. As sleep duration typi-
cally takes a small value, Algorithm 2 will incur a
computational overhead of O(1).

2) The “for loop” from line 11 to 26 may be executed
O(n) times in worst case, although the number of tasks
assigned to a core usually takes a small value.

a) In worst case, the loop will execute lines 16-22.
This loop calls Algorithms 3 and 4. The “while
loop” in Algorithm 3 can have a worst case com-
plexity of O(k), where k is the maximum number
of versions for a task T;.

b) Algorithms 4-6 are called during task execution.
For all practical purposes, computational over-
heads of these algorithms may be considered to be
constant, however, implementation overheads for
Algorithms 5 and 6 are limited [27].

3) Hence, the worst case computational complexity of
Algorithm 1 is O(n - k).

SAHA et al.: ACCURATE: ACCURACY MAXIMIZATION FOR REAL-TIME MULTICORE SYSTEMS 5255

4) The number of processor cores is constant. Hence, at any
FRAME, the total overhead for generating the schedules
over all processor cores for the duration of a FRAME is
O(n - k) in the worst case.

5) As the FRAME length is in O(Dprg), the
amortized complexity of ACCURATE:Online is
(1O - B1/[ODprc)D. u

V. RESULTS AND ANALYSIS

In this section, we will illustrate the efficacy of ACCURATE
by evaluating ILP-based task allocation and scheduling
(see Section V-A) and runtime energy efficiency and
performance improvement (see Section V-B). Based upon the
tasks’ parameters (e.g., execution time spans, interdependen-
cies among the tasks) and the number of available processor
cores along with the V/F levels, the tasks are allocated by
the ILP-based scheduling. Once the task allocation is over,
with the onset of the execution, our online cache-based policy
trims the execution spans of the individual tasks by activating
WH_LLC. In case the current task is scheduled with its high-
est version, then LLC-leakage consumption will be reduced
through selective power gating of the cache ways. On the
other hand, while the task is scheduled with compromised
accuracy, by trimming the execution span with WH_LLC, the
highest possible version of the task is selected for execution.
Toward standardizing our evaluations, we have considered
task-execution parameters as per AC real-time task model
of [3] in the case of our offline strategy, whereas our online
architectural technique is evaluated by employing a mixture
of compute and memory-bound PARSEC benchmark appli-
cations [5]. Moreover, a prior art claimed the eligibility of
PARSEC in real-time environment [40].

A. Evaluating ACCURATE: ILP-Based Scheduling

Performance evaluation has been carried out through a com-
prehensive set of simulation-based experiments, considering
a homogeneous multiprocessor system that executes a set of
real-time precedence-constrained tasks. Normalized achieved
QoS (NAQ) is the principal metric based on which the eval-
vation has been performed. NAQ can be defined as the ratio
between the actually achieved QoS [see 2] for the entire PTG
and the maximum possible achievable QoS by executing the
highest version of each task node. Mathematically, NAQ can
be formulated as follows:

Do ACC?

NAQ = .
ki
2im1 Acg;

(14)

It can be inferred that NAQ contributes to derive a measure
of the efficacy of the offline phase. Specifically, it determines
how much optional portion of each task has been executed,
depending upon the chosen version, by satisfying the con-
straints. Now, to show the efficacy of our offline technique,
we model a multiprocessor system along with a task set as
follows.

1) Processor System: For our experiment, we consider a
multiprocessor platform equipped with 4 Alpha 21364
cores, where per core Pow_BGT is set at 2.7 W which
is obtained through power profiling for individual tasks
in McPAT [9].

2)

3)

Task Characteristic: Each PTG consists of a set of
subtasks under dependency constraints with a dead-
line Dprg. Each subtask (7;) is a multithreaded task
(see Table VI), where all threads of a single task are exe-
cuted on the same core (in a quasiparallel manner) which
is characterized by the execution times, ET;. We also
assumed that a subtask can consume between 4 x 107
and 6 x 108 clock cycles [3]. Note that these WCET
values of tasks have been assumed to be calculated by
employing the framework as stated in [41]. This frame-
work enables to quantify the possible overestimation of
WCET upper bounds obtained by the static analysis.
The prime objective was to derive a lower bound on the
WCET to complement the upper bound. As ACCURATE
employs a hybrid offline—online approach, such static
analysis will be beneficial for us to eliminate the over-
estimation, and we can expect much realistic WCET.
It is further assumed that each task node can have a
maximum of five versions, i.e., k = 5. The assump-
tions regarding execution lengths also include memory
cycles for our individual tasks, consisting of PARSEC
benchmark applications [5], [35]. The total execution
requirement of a PTG (Cprg) is defined as the sum of
the execution times of its subtasks, Cprg = Y i ET;.
Hence, the utilization U; of a PTG can be denoted
as (Cprg/Dprc). The average utilization of a PTG is
taken from normal distribution by considering normal-
ized frequency 0.5. Given the PTG’s utilization, we can
obtain the total system utilization (Sys,;) by summing
up the utilization of all the PTGs. Given the system uti-
lization, the total system workload (Sysy,;) or system
pressure can be derived by: Sysy; = (Sys,;/m) x 100%.
For a given system utilization, we have generated the
PTGs by following the method proposed by Qamhieh
and Midonnet [42]. Given a Syswr, a set of DAGs is
created. The number of DAGs (p) within a set can be
measured as follows:

_mx SysWL. (15)
Ui
In our generated PTGs, the minimum number of tasks
(nodes) is equal to 5 and the maximum number of nodes
is set to 20. For each of our PTGs in the set, the num-
ber of nodes has been randomly generated within the
specified limit. It can also be noted that as individual
utilization (U;) of a DAG is lower than the given system
workload (Sysy;), the number of DAGs (p) within the
set will always be higher than m. All of our experiments
are carried out by using the CPLEX optimizer version
12.10.0, with a timeout of 5 h.
Task Temporal Parameters: For each task T;, based on
which portion of the len; is considered as its mandatory
portion (M;), we considered the following cases.
a) man_low: M; ~ U(0.2, 0.4) xlen; (low portion of a
task T;’s length (len;) is for the mandatory portion).
b) man_med: M; ~ U(0.4, 0.6) xlen; (medium portion
of a task 7;’s length (len;) is for the mandatory
portion).
¢) man_high: M; ~ U(0.6,0.8) x len; (high portion
of a task T;’s length (len;) is for the mandatory
portion).

5256

TABLE V
SYSTEM PARAMETERS AND THEIR VALUES

Parameters Values | Parameters Values
Technology used 32nm | ISA Alpha 21364
Max. V/F 1.02v/1800MHz | Min. V/F 0.70v/900MHz
MUL per core 1| ALU per core 2
FPU per core 1 | Fetch Width 4
Decode_width 4 | Issue width 4
#Int_Reg. 32 | #Float_Reg. 32
Cache Model SNUCA | #LLC_Banks 4
L1 I/D Cache 64KB, 4-ways | L1 Latency 3 Cycle
L2 Cache bank 512KB, 8-ways | Cache Block Size 64 Bytes

L2 Latency (512KB) 10 Cycles | Memory bank 1GB, 4KB/page

25

2

15

1

05

Average Solving
Time (in Hours)

0

3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Number of Tasks

Fig. 10. Analysis of running time of ILP formulation.

Eman_high Eman_med @man_low

30 40 50 60 70 80

Percentage of system workload

Fig. 11. Change in NAQ for various system workloads.

4) Frequency Level: We have chosen two distinct normal-
ized frequency levels as: fuorm = 0.5 and 1 for task
execution. The respective actual V/F settings for our
considered cores are given in Table V.

Scalability Analysis of ILP: Fig. 10 depicts the average
solving time per number of tasks (nodes) in each PTG. We
observed that, when the number of tasks in each PTG is within
10, the average solving time remains comparable. This implies,
if the number of tasks lies within 10, the increase in solving
time does not significantly vary with the number of tasks.
However, when the number of tasks increases further, i.e.,
more than 10, the average solving time also increases. This
observation is also supported by the complexity analysis pro-
vided in Table II. Empirically, we further noticed, with n = 20,
the ILP generates on average 5000 constraints for which the
solving time reaches approximately 140 min.

1) Results: Fig. 11 shows the NAQ obtained by
ACCURATE for various values of Sysw.. It can be observed
that ACCURATE is able to achieve 85% QoS when the
system workload is low. However, QoS is reduced by 20%
on average when the workload increases by 40%. Other two
insightful observations can be derived from this figure. First,
as the system workload increases the average number of
PTGs in the system also increases (as U; is fixed at 0.2) and
this eventually contributes to low NAQ values. This happens
due to higher number of tasks decreases the possibility
of obtaining sufficient free slots in the scheduling period
within the deadline. Insufficient free slots in turn reduce the
probability of obtaining feasible schedules by selecting higher
versions of the tasks.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 12, DECEMBER 2022

B ACCURATE B Task_Deploy
0.9

0.75

0.45

0.3
30 40 50 60 70 80

Percentage of system workload

Fig. 12. Comparing NAQ: ACCURATE versus Task_Deploy.
""""" (:)L1D
o =21 L2
Interface
Fig. 13. TCMP architecture.

Second, in the case of man_high, it imposes less adverse
effect on the achieved NAQ with the increasing value of
Sysywy. This is because when the mandatory portions of indi-
vidual tasks are high, the length of the optional portions
will be low. As a result, the variance among the different
versions of a task becomes less. However, due to fewer vari-
ations among the optional portions of a task, there will be
less impact on the achieved result accuracy. On the other
hand, in the case of man_low, we can observe the alternative
trend, and man_med offers a performance between man_high
and man_low. However, the NAQ sharply decreases while the
Syswr, increases. We have also compared our policy with a
prior strategy (Task_Deploy) [3] and the results are shown
in Fig. 12 in case of man_med. For a fair comparison with
Task_Deploy, we first derived the overall energy limit based
on our considered power budget (Powpgr) of ACCURATE’s
experimental framework. The same value is used as the energy
limit for Task_Deploy as well. It can be observed, as the
number of tasks increases (due to the increase in Sysyy),
ACCURATE maintains more QoS by achieving higher NAQ
than Task_Deploy. ACCURATE is able to maintain 70% QoS
with 70% workload where Task_Deploy achieves 55% QoS.
This is because Task_Deploy did not consider any power limit,
but assumed the energy budget would increase with a higher
number of tasks. Moreover, Task_Deploy also allows unlimited
task migration that incurs extra overheads.

B. Evaluating ACCURATE:Online LLC-Based Technique

The evaluation of the WH_LLC-based dynamic accuracy-
enhancement and power minimization is carried out by
employing architectural simulators, where our entire online
technique (discussed in Section IV-B) has been implemented.
Before the demonstration of our results, we will first discuss
the simulation setup.

1) Simulation Setup: We simulated two 4 core-based homo-
geneous TCMP with four replicated tiles (see Fig. 13) in gem5
full system simulator [8] as our baseline system, where each of
these TCMP is representing a single processing element (i.e.,
P; in Fig. 13). However, each tile of these TCMP contains an
In-Order (InO) Alpha 21364 core together with its private L1
(data and instruction) caches. The whole L2 cache (LLC in
our case) is physically distributed/sliced uniformly among the
tiles, called L2-bank, but logically the L2-banks share a single
address space. The tiles are connected through a 2-D-mesh

SAHA et al.: ACCURATE: ACCURACY MAXIMIZATION FOR REAL-TIME MULTICORE SYSTEMS

HMaximum EMinimum [Average

=4 =4 =4
o o o
= =3 &

cache miss ratio
o
o
N

Black Body Can Ded Fluid Freq Stream Swap X264 Gmean

Fig. 14. Range of cache miss ratio (ratio in Algorithm 5).

NoC, hence, each tile is also equipped with a router (depicted
by the circles in Fig. 13). We implemented Algorithms 1-6 in
the Ruby module of gem5 and associated performance over-
heads for implementing these algorithms are also considered
in our simulation. For estimating power/energy consumption
(based on 32nm technology nodes), performance traces are fed
to another simulator, McPAT [9]. The incurred energy over-
heads for implementing the online mechanism of ACCURATE
are also derived from McPAT.

By considering prior empirical analysis based on cache
locality [28], [33], the length of an interval (Interval_length
in Algorithm 1) is set to 2 million clock cycles. To set
POWER_UP and POWER_DOWN in Algorithm 5, the range
of the ratio for nine PARSEC applications was observed over
80 million clock cycles (within Rol), while applying FS-DAM
at the LLC. Fig. 14 shows the ranges of ratio for individual
PARSEC benchmarks. It can be noticed that the miss ratio
is varying between less than 1% and more than 8% with an
average of 2.75%. This small difference between the mini-
mum and the average values indicates that for most intervals
the miss ratio is small. For our evaluation, in this work, we set
the values for POWER_UP and POWER_DOWN as 0.04 and
0.025, respectively, i.e., for a bank, the miss ratio of more than
0.04 will turn on a physical cache way while a value less than
0.025 will turn off a physical cache way in the LLC-bank.

Table V contains the configuration parameters for the
processor cores and memories used in the evaluations. We gen-
erated our tasks by using the PARSEC benchmark suite [5]
which can be fitted in an AC-based paradigm [7], [43].
In their work, Sidiroglou-Douskos er al. [43] showed how
PARSEC benchmark programs can be used in the approxi-
mation paradigm through the loop perforation technique. To
simulate our application (mentioned in Table III), we use six
tasks where each processor (i.e., each 4-core-based TCMP)
executes the allocated tasks without any preemption. The tasks
are framed by randomly combining executions of multiple
PARSEC benchmark programs together, where each one might
also appear multiple times (see Table VI). This implies,
each of our tasks is multiprogrammed, hence, our applica-
tion (A) is a collection of multiprogrammed tasks. Basically,
in Table VI, we show how each T; in Fig. 2 (described
in Section IV-A) is formed by PARSEC benchmark programs.
Toward simulating the whole system with PARSEC, we fur-
ther scale up the values of M;, O; and Dprg by 100 million.
Note that, the individual task cycles include both proces-
sor and memory cycles for the specific cache configuration
given in Table V. Toward empirically validating and verify-
ing ACCURATE with the contemporary workloads, we employ
multithreaded PARSEC benchmark programs, where each
individual program is executed with four threads. However, the
discussion related to the detailed allocation of the benchmarks
and their threads inside each task to the cores of the TCMP,

5257

TABLE VI
APPLICATION FORMATION WITH PARSEC. (ACRONYMS:
BLACKSCHOLES (Black), BODYTRACK (Body), CANNEAL (Can), DEDUP
(Ded), FLUIDANIMATE (Fluid), FREQMINE (Freq), STREAMCLUSTER
(Stream), SWAPTIONS (Swap), AND X264 (X264)). CONSIDERED INPUT
SIZE (FOR ALL): Large. THE EXECUTION LENGTHS (EXEC. LENGTH
([M;], [O;])) OF THE TASKS ARE IN SCALE OF 100 MILLION CYCLES

Tasks H PARSEC Benchmarks ‘ Exec. Length
([M;], [O:D
Ty || Black (2 copies), Fluid (4 copies) and Swap (2 copies) || [10], [6]

T> || Body (3 copies), Freq (3 copies) and Stream (2 copies) || [20], [5, 7, 10]
Ts || Can (2 copies), Ded (2 copies) and Fluid (4 copies) || [20], [4, 8, 10]
Ty || Black (2 copies), Swap (4 copies) and X264 (2 copies) || [20], [6,12]
Ts || Body (3 copies), Ded (2 copies) and X264 (3 copies) || [8],[3,4, 5]
Te || Can (2 copies), Swap (4 copies) and X264 (2 copies) || [20], [8,10]

which is internally managed by our simulation setup, is out of
scope of this article.

The Baseline values in all of our results that evaluate run-
time techniques of ACCURATE are produced by executing
the schedule generated by ILP-based scheduling (discussed
in Section IV-A) without incorporating any changes during
execution. Also note that, as we mentioned earlier, all timing
parameters derived from the scheduling strategy are converted
to clock cycles while filling up the dispatch table with the
task details. The task details regarding their execution length
(for mandatory and optional parts) in cycles for a partic-
ular configuration of the processing platforms need to be
made available beforehand. Details of the processing plat-
form include the number of cores per processor (e.g., it is 4
in ACCURATE), available operational processing frequencies,
cache configurations, and memory sizes (see Table V). The
processor and memory cycles for each task are also derived
prior task scheduling through preexecutions of the tasks. The
percentage of execution time spent for memory accesses is
shown in Fig. 4 for individual PARSEC benchmark program.

2) Change in Performance at the Task Level: After imple-
menting WH_LLC and dynamic way-shutdown techniques
(Algorithms 1 and 5) in the Ruby module of gem5, we
noticed the changes in IPC at the task levels during exe-
cution. Employing WH_LLC significantly boosts up LLC
performance, by reducing capacity and conflict misses that fur-
ther reduces off-chip accesses and resulting into improved IPC.
But, incorporation of way shutdown (proposed in Algorithm 5)
further aggravates performance gained through WH_LLC,
however, this performance degradation is compensated by a
remarkable reduction in leakage consumption (discussed next).
We further compared WH_LLC with another DAM-based prior
work, Zcache [10], that yields increased LLC associativity
rather than the actual number of ways by increasing the num-
ber of replacement candidates. Fig. 15 shows the impacts
on performance of WH_LLC, ACCURATE (WH_LLC + LLC
resizing), and Zcache for the individual applications over the
baseline. WH_LLC is able to improve performance by 10% on
an average for all tasks, with a minimum improvement of 9.5%
in case of T1. However, this result shows ACCURATE curtails
performance gained by WH_LLC for individual applications,
but is still able to maintain a better IPC over baseline, which
ensures meeting of the real-time constraints.

Among all of our tasks (mentioned in Table VI), 7> and Ts
are memory intensive, whereas the other tasks are comprised
of mixed (memory plus computational) workloads. Hence, the

5258

HBaseline BWH_LLC EACCURATE EZcache

11
1.05

0.95
0.9
0.85
0.8

Normalized IPC

T1 T2 T3 T4 T5
Fig. 15. Change in performance (IPC) by applying WH_LLC at the LLC
along with way shutdown and Zcache.

mBaseline MACCURATE

ge

Normalized LLC_Leaka

T1 T2 T3 T4 T5

T6 Gmean

Fig. 16. Reduction in LLC leakage with way shutdown.

performance degradation is comparatively higher in the case of
T, and T5 in ACCURATE, than in the other tasks. However,
our dynamic way turn on the mechanism (in Algorithm 1)
safeguards the executions from violation of deadlines by pro-
viding more cache space to the tasks, on demand. Note that,
even after shutting down cache ways on-the-fly, our technique
still shows better performance than the baseline, as well as
Zcache. Our technique ACCURATE still maintains a mean
performance improvement of 6.4% over baseline, which is
10.4% with only WH_LLC (over the baseline), whereas Zcache
boosts performance up by 5.7% over baseline. Moreover, this
empirical result implies that any task for which a higher ver-
sion is available, with an additional execution span (in clock
cycles) of within 10% of the currently scheduled version, can
enhance the result accuracy by executing its higher version.
Additionally, energy efficiency can be enhanced by enabling
the sleep mode, subject to availability of the private slack.
3) Reduction in LLC Leakage: We set the upper limit for
way shutdown to 50% in Algorithm 5 [44] that reduces around
36% of leakage power on an average across the applications.
Fig. 16 exhibits the reduction in LLC-leakage consumption
for the individual applications, where the leakage reduction
is more in case of the mixed workload-based tasks (T, T3,
T4, and Tg). The requirement of higher run-time cache space
curtails the leakage reduction for the memory-intensive tasks
(T» and T5) for which Algorithm 1 was unable to maintain a
lower cache size for a long time-span on-the-fly. Note that, we
executed all of these tasks with their respective highest ver-
sions (i.e., the best possible ones) along with the assigned V/F
level (at the core) (by scheduling mechanism in Section IV)
toward illustration of the efficacy of our online mechanism.
4) EDP Gains: For the same set of applications executing
with their respective highest version, our cache-based online
technique shows lesser EDP gains in the cases of memory-
intensive tasks (7> and Ts), due to their comparatively lesser
reduction in LLC leakage. On the other hand, mixed work-
loads (T, T3, Ts, and Tg) are able to provide higher EDP
gains due to higher reduction in the LLC-leakage consump-
tion while applying ACCURATE. Fig. 17 shows significant
gains in EDP across the tasks while applying ACCURATE.
Our online LLC-based strategy is able to offer a significantly

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 12, DECEMBER 2022

W Baseline BACCURATE

Normlized EDP

T1 T2 T3 T4 T5 T6 Gmean

Fig. 17. ACCURATE: EDP gains.

mBaseline BACCURATE

Normalized Energy

T1 T2 T3 T4 T5 T6 Gmean

Fig. 18. Overall task-level energy savings.

higher average EDP gain of 24% and this gain lies between
the range of 19%—28% for our task set. Note that, EDP for
each application includes the power consumed by both the
processor cores and the two levels of caches.

C. Gains From ACCURATE in Nutshell

The offline mechanism first generates the schedule and is
able to achieve around 85% NAQ (see Section V-A), while
maintaining the system constraints. Our online cache-based
strategy shows a significant performance improvement of 6.4%
on average (see Section V-B2) while reducing 36% LLC-
leakage power consumption on an average (see Section V-B3)
by shutting down a number of LLC ways. The overall
performance improvement of the online policy ensures to meet
the timing constraints determined by the offline scheduling.
However, while maintaining the deadline constraint, our cache-
based online technique is able to reduce a significant amount
of energy by generating private slacks, which are employed
for sleep that enables to a noticeable overall energy reduction
of 44% (see Fig. 18).

By employing Algorithms 1 and 5, we have modified the
schedule online, which is reported in Table VII. For tasks
Ty, T», T3, and Ts, Algorithm 1 applies WH_LLC along
with the way shutdown, whereas for T4 and T, Algorithm 1
attempted to improve the result accuracy. The Scheduled Time-
span column in Table VII shows the output of our offline
technique, and the next two columns present the actual run
time with WH_LLC and ACCURATE (that includes WH_LLC
and dynamic LLC resizing), respectively. In our schedule, for
T4 and T¢ we have scopes to improve the result accuracy, as
they are not scheduled with their respective highest versions.
Our algorithm is able to improve the result-accuracy online for
Ts, which is highlighted in the green background whereas red
background in case of 74 implies it cannot be executed with
its higher version due to violation of the schedule. For T, the
actual running time with WH_LLC and ACCURATE are lower
than its predetermined execution spans, and note that for Tg,
way shutdown was not performed. The private slacks gener-
ated at the end of the execution of any tasks will be employed
for sleep. Note that, during the execution of source (77) as
well as sink (7¢) tasks, only one core where the source/sink
task is assigned will be active, and the rest will be kept in the

SAHA et al.: ACCURATE: ACCURACY MAXIMIZATION FOR REAL-TIME MULTICORE SYSTEMS

TABLE VII
FINAL SCHEDULE WITH ENHANCED RESULT ACCURACY.
THE EXECUTION LENGTHS OF THE TASKS ARE IN
SCALE OF 100 MILLION CYCLES

Scheduled Run-time only Run-time with Private

TaskS Time.span with WH_LLC ~ACCURATE Slack
T 16 145 149 11
T, 30 26.8 28.5 15
Ty 30 27 27.9 2.1
26 234 234 1.6
Ts 23 20.5 22.0 1.0
Erem 28 272 27.6 0.4

sleep mode. By executing a higher version in the case of Tg,
our technique is able to achieve a result accuracy of 47, which
was 45 at the end of our offline scheduling. Finally, our overall
energy savings for individual task level are shown in Fig. 18.
This figure shows, by incorporating way shutdown and sleep,
we achieve 44% savings in overall energy consumption for
our task set. So, the amalgamation of these techniques in
ACCURATE (offline plus online) can offer an energy-efficient
AC real-time task-allocation strategy with higher achievable

QoS.

VI. CONCLUSION

QoS improvement in AC real-time systems without violat-
ing the precedence-power-temporal constraints has become an
active research topic in recent times. Accuracy of such AC
tasks can be stimulated by executing more from their optional
parts along with executing their respective mandatory parts.
In this article, ACCURATE proposed: 1) an efficient schedul-
ing strategy toward maximizing result accuracy for a set of
AC real-time applications modeled as PTGs on multicores,
along with 2) an online cache-based mechanism toward fur-
ther refinement of the result accuracy together with reducing
run-time energy of the underlying circuitry.

Once the tasks are allocated to the processor cores by
employing an ILP-based scheduling technique, our online
strategy orchestrates a DAM-based way-sharing mechanism at
the shared LLC to significantly reduce the running time of the
applications. This improved performance is traded off toward
enhancing result accuracy by executing more workload from
the optional part of the applications and by turning off a con-
trolled number of LLC ways to enhance the energy efficiency,
dynamically, while respecting the system-wide constraints.
Our evaluation reveals that the offline strategy of ACCURATE
achieves 85% QoS while maintaining the system constraints
and the cache-based online mechanism reduces LLC leakage
by 36% on an average with 24% average gain in EDP and
6.4% improvement in performance for our 4-core-based CMP
baseline system.

REFERENCES

[11 H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Optimal
reward-based scheduling for periodic real-time tasks,” IEEE Trans.
Comput., vol. 50, no. 2, pp. 111-130, Feb. 2001.

[2] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surveys, vol. 48, no. 4, p. 62, May 2016.

[3] L. Mo, A. Kritikakou, and O. Sentieys, “Approximation-aware task
deployment on asymmetric multicore processors,” in Proc. DATE, 2019,
pp. 1513-1518.

5259

[4] G. L. Stavrinides and H. D. Karatza, “Scheduling multiple task graphs
with end-to-end deadlines in distributed real-time systems utilizing
imprecise computations,” J. Syst. Softw., vol. 83, no. 6, pp. 1004-1014,
2010.

[5]1 C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc. PACT,
2008, pp. 72-81.

[6] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proc. PPoPP, 2013, pp. 1-12.

[71 S. Achour and M. C. Rinard, “Approximate computation with out-
lier detection in Topaz,” in Proc. ACM SIGPLAN Notices, 2015,
pp. 711-730.

[8] N. Binkert et al., “The gem5 simulator,” in Proc. ACM CAN, 2011,
pp. 1-7.

[9] S. Li et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. MICRO,
2009, pp. 1-12.

[10] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling ways and
associativity,” in Proc. MICRO, 2010, pp. 187-198.

[11] S. Narayana, P. Huang, G. Giannopoulou, L. Thiele, and R. V. Prasad,
“Exploring energy saving for mixed-criticality systems on multi-cores,”
in Proc. RTAS, 2016, pp. 135-146.

[12] S. Pagani, J.-J. Chen, and J. Henkel, “Energy and peak power effi-
ciency analysis for the single voltage approximation (SVA) scheme,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 9,
pp. 1415-1428, Sep. 2015.

[13] Z. Guo, A. Bhuiyan, A. Saifullah, N. Guan, and H. Xiong, “Energy-
efficient multi-core scheduling for real-time DAG tasks,” in Proc.
ECRTS, 2017, pp. 1-21.

[14] S. Safari, S. Hessabi, and G. Ershadi, “LESS-MICS: A low energy
standby-sparing scheme for mixed-criticality systems,” [EEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 12, pp. 4601—
4610, Dec. 2020.

[15] A. Bhuiyan, Z. Guo, A. Saifullah, N. Guan, and H. Xiong, “Energy-
efficient real-time scheduling of DAG tasks,” ACM Trans. Embedded
Comput. Syst., vol. 17, no. 5, p. 84, 2018.

[16] Z. Guo, A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, and N. Guan,
“Energy-efficient real-time scheduling of DAGs on clustered multi-core
platforms,” in Proc. RTAS, 2019, pp. 156-168.

[17] K. Kanoun et al, “Online energy-efficient task-graph scheduling
for multicore platforms,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 33, no. 8, pp. 1194-1207, Aug. 2014.

[18] S. Saha, X. Zhai, S. Ehsan, S. Majeed, and K. McDonald-Maier, “RASA:
Reliability-aware scheduling approach for FPGA-based resilient embed-
ded systems in extreme environments,” [EEE Trans. Syst., Man, Cybern.,
Syst., early access, May 14, 2021, doi: 10.1109/TSMC.2021.3077697.

[19] K. Cao, G. Xu, J. Zhou, T. Wei, M. Chen, and S. Hu, “QoS-adaptive
approximate real-time computation for mobility-aware IoT lifetime
optimization,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 38, no. 10, pp. 1799-1810, Oct. 2019.

[20] I. Méndez-Diaz, J. Orozco, R. Santos, and P. Zabala, “Energy-aware
scheduling mandatory/optional tasks in multicore real-time systems,” Int.
Trans. Oper. Res., vol. 24, nos. 1-2, pp. 173-198, 2017.

[21] J. Zhou, J. Yan, T. Wei, M. Chen, and X. S. Hu, “Energy-adaptive
scheduling of imprecise computation tasks for QoS optimization in real-
time MPSoC systems,” in Proc. DATE, 2017, pp. 1406-1411.

[22] H. Yu, B. Veeravalli, and Y. Ha, “Dynamic scheduling of imprecise-
computation tasks in maximizing QoS under energy constraints for
embedded systems,” in Proc. ASP-DAC, 2008, pp. 452-455.

[23] L. Mo, A. Kritikakou, and O. Sentieys, “Energy-quality-time optimized
task mapping on DVFS-enabled multicores,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 37, no. 11, pp. 2428-2439,
Nov. 2018.

[24] M. A. Haque, H. Aydin, and D. Zhu, “On reliability management of
energy-aware real-time systems through task replication,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 3, pp. 813-825, Mar. 2017.

[25] W. Zang and A. Gordon-Ross, “A survey on cache tuning from a
power/energy perspective,” ACM Comput. Surveys, vol. 45, no. 3, p. 32,
2013.

[26] S. Mittal, “A survey of architectural techniques for improving cache
power efficiency,” Sustain. Comput. Inform. Syst., vol. 4, no. 1,
pp. 3343, 2014.

[27] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated-Vdd: A circuit technique to reduce leakage in deep-submicron
cache memories,” in Proc. ISLPED, 2000, pp. 90-95.

http://dx.doi.org/10.1109/TSMC.2021.3077697

5260

[28] A. Mandke, B. Amrutur, and Y. N. Srikant, “Adaptive power
optimization of on-chip SNUCA cache on tiled chip multicore archi-
tecture using remap policy,” in Proc. WAMCA, 2011, pp. 12-17.

S. Chakraborty, S. Das, and H. K. Kapoor, “Static energy efficient cache
reconfiguration for dynamic NUCA in tiled CMPs,” in Proc. ACM SAC,
2016, pp. 1739-1744.

B. Fitzgerald, S. Lopez, and J. Sahuquillo, “Drowsy cache partitioning
for reduced static and dynamic energy in the cache hierarchy,” in Proc.
IGCC, 2013, pp. 1-6.

H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte, “Adaptive
mode control: A static-power-efficient cache design,” in Proc. PACT,
2001, pp. 347-372.

S. Chakraborty and H. K. Kapoor, “Exploring the role of large cen-
tralised caches in thermal efficient chip design,” ACM Trans. Design
Autom. Electron. Syst., vol. 24, no. 5, p. 52, Sep. 2019.

S. Chakraborty and H. K. Kapoor, “Analysing the role of last level
caches in controlling chip temperature,” IEEE Trans. Sustain. Comput.,
vol. 3, no. 4, pp. 289-305, Oct.—Dec. 2018.

S. Das and H. K. Kapoor, “Dynamic associativity management using
fellow sets,” in Proc. ISED, 2013, pp. 133-137.

S. Das and H. K. Kapoor, “Dynamic associativity management in tiled
CMPs by runtime adaptation of fellow sets,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 8, pp. 2229-2243, Aug. 2017.

C. Bliek, P. Bonami, and A. Lodi, “Solving mixed-integer quadratic
programming problems with IBM-CPLEX: A progress report,” in Proc.
RAMP Symp., 2014, pp. 171-180.

“Oracle’s Sparc T3-1, Sparc T3-2, Sparc T3-4, and Sparc T3-1B Server
Architecture.” Oracle. 2011. [Online]. Available: http://www.oracle.com/
S. Das and H. K. Kapoor, “Dynamic associativity management using
utility based way-sharing,” in Proc. ACM SAC, 2015, pp. 1919-1924.
M. E. T. Gerards and J. Kuper, “Optimal DPM and DVFS for frame-
based real-time systems,” ACM Trans. Archit. Code Optim., vol. 9, no. 4,
p. 41, 2013.

A. Farrell and H. Hoffmann, “MEANTIME: Achieving both minimal
energy and timeliness with approximate computing,” in Proc. USENIX
ATC, 2016, pp. 421-435.

H. Cassé, H. Ozaktas, and C. Rochange, “A framework to quantify
the overestimations of static WCET analysis,” in Proc. WCET, 2015,
pp. 1-10.

M. Qamhieh and S. Midonnet, “Simulation-based evaluations of DAG
scheduling in hard real-time multiprocessor systems,” ACM SIGAPP
Appl. Comput. Rev., vol. 14, no. 4, pp. 27-39, 2015.

S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in Proc. ACM SIGSOFT, 2011, pp. 124-134.

S. Chakraborty and H. K. Kapoor, “Static energy reduction by
performance linked dynamic cache resizing,” in Proc. VLSI-SoC, 2016,

pp. 1-6.

(291

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
(38]

[39]

[40]

[41]

[42]

[43]

[44]

Sangeet Saha received the Ph.D. degree in
information technology from the University of
Calcutta, Kolkata, India, in 2018.

He was a Research Scholar with Tata Consultancy
Services (TATA), Mumbai, India, in 2018. After
submitting his Ph.D. thesis in 2017, he worked as
a Visiting Scientist with Indian Statistical Institute
Kolkata, Kolkata. He is currently associated with
the Department of Computer Science, University of
Huddersfield, Huddersfield, U.K., as a Lecturer and
with the Embedded and Intelligent Systems (EIS)
Research Group, University of Essex, Colchester, U.K., as a Visiting Fellow.
From May 1, 2018 to October 31, 2021, he was a Senior Research Officer
with the EPSRC National Centre for Nuclear Robotics, EIS Laboratory,
University of Essex. He published several of his research contributions in
conferences like CODES+ISSS, ISCAS, and NASA AHS, and in journals
like ACM Transactions on Design Automation of Electronic Systems, IEEE
TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, and The Journal
of Supercomputing (Springer). His current research interests include real-time
scheduling, scheduling for reconfigurable computers, real-time and fault-
tolerant embedded systems, and cloud computing.

Dr. Saha is a recipient of the YERUN Research Mobility Award 2021.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 12, DECEMBER 2022

Shounak Chakraborty (Senior Member, IEEE)
received the Ph.D. degree in computer science and
engineering from the Indian Institute of Technology
Guwahati, Guwahati, India, in February 2018.

He is currently associated with the Department
of Computer Science, Norwegian University of
Science and Technology, Trondheim, Norway, as
a Postdoctoral Researcher (through Marie Curie
Individual Fellowship from European Union [Grant
898296]). He published several of his research
contributions in conferences like DATE, ASAP,
CODES+ISSS, ACM SAC, IPDPS, VLSI-SoC, and GLSVLSI. He has also
published several of his research outcomes in journals like ACM Transactions
on Architecture and Code Optimization, ACM Transactions on Embedded
Computing Systems, ACM Transactions on Design Automation of Electronic
Systems, IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, and The
Journal of Supercomputing (Springer). He also serves as a reviewer of The
Journal of Supercomputing (Springer) and ACM Transactions on Embedded
Computing Systems. Primarily, his broad area of research is computer archi-
tecture, however, specifically, his research interests include high-performance
computer architectures, emerging memory technologies, and thermal-aware
architectures.

Xiaojun Zhai (Senior Member, IEEE) received the
Ph.D. degree from the University of Hertfordshire,
Hatfield, U.K., in 2013.

He is currently a Senior Lecturer with the
Embedded Intelligent Systems Laboratory,
University of Essex, Colchester, U.K. He has
authored/coauthored over 100 scientific articles in
international journals and conference proceedings.
His research interests include the design and
implementation of the digital image and signal
processing algorithms, custom computing using
FPGAs, embedded systems, and hardware/software co-design.

Dr. Zhai is also a member of BCS and a Fellow of HEA.

Shoaib Ehsan received the B.Sc. degree in electri-
cal engineering from the University of Engineering
and Technology, Taxila, Pakistan, in 2003, and the
Ph.D. degree in computing and electronic systems
(with specialization in computer vision) from the
University of Essex, Colchester, U.K., in 2012.

He has an extensive industrial and academic expe-
rience in the areas of embedded systems, embed-
ded software design, computer vision, and image
processing. His current research interests are in
intrusion detection for embedded systems, local fea-
ture detection and description techniques, and image feature matching and
performance analysis of vision systems.

Dr. Ehsan was a recipient of the University of Essex Post Graduate Research
Scholarship, the Overseas Research Student Scholarship, and the Prestigious
Sullivan Doctoral Thesis Prize awarded annually by the British Machine
Vision Association.

i

Klaus D. McDonald-Maier (Senior Member, IEEE)
received the Doctoral (Dr.rer.nat.) degree from the
Faculty of Mathematics and Computer Science,
Friedrich-Schiller-University Jena, Jena, Germany,
in 1999.

He is currently the Head of the Embedded and
Intelligent Systems Laboratory, University of Essex,
Colchester, U.K. He is also the Chief Scientist with
UltraSoC Technologies Ltd., Cambridge, U.K., the
CEO of Metrarc Ltd., Cambridge, and a Visiting
Professor with the University of Kent, Canterbury,
U.K. His current research interests include embedded systems and system-
on-chip design, security, development support and technology, parallel and
energy-efficient architectures, computer vision, data analytics, and the appli-
cation of soft computing and image processing techniques for real-world
problems.

Dr. McDonald-Maier is a member of VDE and a Fellow of the BCS
and IET.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

