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Abstract—Although design automation is a key enabler of
modern large-scale digital systems, automating the transistor-
level circuit design process still remains a challenge. Some recent
works suggest that deep learning algorithms could be adopted
to find optimal transistor dimensions in relatively small circuitry
such as analog amplifiers. However, those approaches are not
capable of exploring different circuit structures to meet the given
design constraints. In this work, we propose an automatic circuit
design framework that can generate practical circuit structures
from scratch as well as optimize the size of each transistor, con-
sidering performance and reliability. We employ the framework
to design level shifter circuits, and the experimental results show
that the framework produces novel level shifter circuit topolo-
gies and the automatically optimized designs achieve 2.8×–5.3×
lower power-delay product (PDP) than prior arts designed by
human experts.

Index Terms—Circuit design automation, deep learning,
evolutionary algorithm, level shifter, reinforcement learning (RL).

I. INTRODUCTION

W ITH increasing hardware design complexity and vari-
ability of the fabrication process, design automation

has been widely adopted in a large portion of the IC design
process. For instance, various electronic design automation
(EDA) tools are now available for designing digital blocks
and System-on-Chips (SoCs). The EDA tools can generate a
large block composed of millions of logic gates very efficiently
using a standard cell library[1]. However, when it comes to
designing integrated circuits, design automation remains a
challenge. Most digital and analog circuits are still carefully
designed by human experts due to high design complexity and
reliability concerns [2].

Integrated circuit design automation can be decomposed
into two design problems: 1) circuit topology selection and
2) transistor size optimization. It is crucial to choose a proper
circuit topology in the first place since the topology mainly
sets the limit on the performance and reliability a circuit can
achieve. We also need to optimize the size of each transistor
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to realize its true potential. Various approaches have been
reported for automatic circuit topology generation. For digital
logic gates, the Boolean expression factoring method that gen-
erates series-parallel (SP) associations of transistors for the
given function was suggested [3]. Possani et al. [4] proposed
an improved graph-based method that creates a logic gate by
introducing nonseries-parallel (NSP) arrangements into the SP
structure, thus reducing the number of transistors. But these
methods regard transistors as ideal switches and, hence, are
only applicable to designing digital logic gates based on static
operations.

There have also been several circuit topology synthesis
approaches aimed at more general integrated circuits. The
library-based methods [5], [6] select one of the predefined
circuit structures (e.g., a two-stage amplifier) in the library
based on the desired operating characteristics. However, one
must construct a library containing all possible circuit struc-
tures in advance, which is a time-consuming process that also
necessitates a considerable amount of human effort. Building-
block-based methods [7]–[9] take a similar approach, but rely
on a library of smaller building blocks, such as a current mirror
and a differential input pair. They employ various algorithms
to search for the best topology, such as the multiobjective
evolutionary algorithm [7], framework for explorative analog
topology synthesis method (FEATS) [8], and graph-grammar-
based topology generation (GGTG) [9]. Since the library- or
building-block-based approaches have relatively limited search
space, they are suitable for the fast generation of integrated cir-
cuits using a well-established topology. However, the search
space is constrained within the predefined set of circuit struc-
tures or building blocks and, hence, they are less adaptive to
changes in design parameters or fabrication process. In addi-
tion, there is little possibility that they could generate a novel
topology that has not been studied yet.

On the other hand, the transistor-based methods [10]–[13]
do not rely on predefined components for topology genera-
tion; instead, they progressively construct a circuit by adding
or removing a transistor in the topology. For instance, the
circuit-constructing robot (CC-BOT) [11] starts with a single
node and conditionally adds a transistor following an evolu-
tionary algorithm. An active bot moves to a newly created node
and continues adding transistors from there. The algorithm
in [13] represents transistors and passive devices as a 3-node
graph (hypergraph) and an edge, respectively. In each gener-
ation, it removes and adds multiple hypergraphs and edges,
also following an evolutionary algorithm. The transistor-based
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approaches have a significantly larger search space and, as a
result, are capable of generating an optimal circuit topology
under different design constraints. These approaches do not
require much prior knowledge on the target circuit, remov-
ing the need for the aid of human experts during the design
process. However, they essentially rely on trial and errors;
an inefficient search algorithm results in very slow search
speed, requiring an extensive amount of SPICE simulations
to evaluate candidate integrated circuits.

Transistor sizing is another crucial part of integrated circuit
design automation since it directly affects the performance
and reliability of a circuit. Liu et al. [14] proposed the
multiobjective uncertain optimization with ordinal optimization
LSS and parallel computation (MOOLP) optimizer based
on a differential evolutionary algorithm, whereas other prior
works suggest using particle swarm optimization [15], [16]
or Bayesian methods [17], [18]. Recent works demonstrate
promising results by applying deep learning algorithms to
transistor sizing optimization. For instance, learning to design
circuit (L2DC) [19] and AutoCkt [20] adopt reinforcement
learning (RL) for optimizing transistor sizes in analog ampli-
fiers. It was demonstrated that those RL-based approaches could
successfully optimize the integrated circuit to meet the given
design constraints, such as gain, bandwidth, and input-referred
noise. While the RL-based methods achieve significantly faster
convergence than conventional optimization algorithms, they
still need numerous SPICE simulations during optimization.
Also, both L2DC and AutoCkt utilize prior knowledge on
the circuit topology during optimization (e.g., the signal path
and tightly coupled transistors), limiting their applicability to
other types of integrated circuits. To address these problems,
Wang et al. [21] employed a graph convolutional network in RL
(GCN-RL) and utilize transfer learning. They show that using
a pretrained network can reduce the number of SPICE simula-
tions in optimizing two-stage and three-stage transimpedance
amplifiers. However, the initial training of the neural network
still requires a large number of SPICE simulations, and the
pretrained network is only effective when applied to another
circuit with a similar structure.

Level shifter circuits are widely used in digital systems to
convert the level of signals between voltage domains. The
signals from the internal core must be boosted to communi-
cate with external discrete components or the data between
core blocks with different supply voltages should be level
converted for proper operation. Various level shifter circuit
topologies have been studied, and the optimal topology can
vary greatly depending on the operating conditions, such as
voltage conversion range (e.g., core to core or core to I/O) and
power budget. For instance, differential cascode voltage switch
(DCVS) exhibits better conversion speed and energy efficiency
for conversion between core voltage domains, whereas the
Wilson current mirror level shifter (WCMLS) and its vari-
ant are suitable for converting subthreshold voltage input due
to relaxed contention [22]–[24]. Therefore, we may have to
switch to a totally different topology and start the design
process again when the design constraints and operating con-
ditions change, making conventional circuit design automation
frameworks unsuitable for level shifter design.

Fig. 1. Overview of the proposed circuit design framework.

In this work, we propose a unified circuit design automation
framework that can generate an optimal circuit topology from
scratch as well as optimize the size of each transistor. Our key
contributions are as follows.

1) A 2-stage circuit design framework that significantly
speeds up the design process.

2) A new voltage-based graph representation of integrated
circuits.

3) A fast circuit optimizer adopting a multiagent RL algo-
rithm for faster convergence.

4) A process variation-aware optimization algorithm that
results in a practical, robust design.

The framework was employed to design a level shifter cir-
cuit, and the resulting level shifter circuits are fabricated in
a 180-nm CMOS process to validate the effectiveness of the
proposed circuit design framework.

The remainder of the article elaborates on the proposed
framework as follows: Section II describes the overall archi-
tecture of the framework and its distinct features. Section III
discusses the experimental results, and Section IV concludes
the article.

II. PROPOSED CIRCUIT DESIGN FRAMEWORK

The overall flow of the proposed circuit design framework
is shown in Fig. 1. Instead of relying on a single algorithm to



HONG et al.: AUTOMATIC CIRCUIT DESIGN FRAMEWORK FOR LEVEL SHIFTER CIRCUITS 5171

(a) (b)

Fig. 2. Examples of proposed graph-based circuit representation. (a) Simple
circuit with a pair of MOSFET devices. (b) Complex circuit where gates are
connected to other nodes.

design a circuit, we propose to split the design process into two
distinct stages. The first stage (topology generator) employs
an evolutionary algorithm to search for candidate circuit struc-
tures quickly. The second stage (circuit optimizer) performs
an RL-based transistor size optimization on the generated
integrated circuits to maximize performance, while guaran-
teeing reliable operation under process variations. Each stage
is described in detail in the following sections.

A. Topology Generator

In the topology generator, we represent each circuit topol-
ogy as a graph and employ a graph generation algorithm to
obtain candidate circuit structures. The graph-based method
in [4] gives an example of expressing digital circuits as a
graph, where pull-up and pull-down networks are generated
separately, and each transistor corresponds to an edge in the
graph. The two nodes connected by an edge define the source
and drain, whereas the gate connection is defined as one of
the node properties. However, this approach is not applicable
to other types of integrated circuits that do not have separate
pull-up and pull-down paths, where N-channel and P-channel
MOSFET devices can be placed more arbitrarily. Therefore,
we propose a generalized graph representation method suit-
able for a broader range of integrated circuits shown in Fig. 2.
In our representation method, an edge (transistor) has gate
and size properties, representing the net connected to the gate
and transistor size. A Node has a type property that represents
the net type (e.g., input port, output port, supply, ground, and
internal net). Additionally, we introduce a new property volt-
age in the nodes. This property represents a relative voltage
of each node and has a range of [−1, 1]. The voltage of an
edge is obtained by averaging the voltages of the nodes on
both ends (source and drain). The edges with positive voltage
translate to P-channel MOSFET devices, whereas the edges
having zero or negative voltage represent N-channel MOSFET
devices. This method allows for generating more generalized
circuit structures while preserving a common circuit property
that P-channel MOSFET devices are typically placed near the
power supply voltage, whereas N-channel MOSFET devices
are biased at lower voltages to maximize operation range.

Algorithm 1 Topology Generator
Input: Population size N, Max Generations G, Mutation
Probability
Output: Candidate Topologies

1: P: Population, C: Offspring, P0: Initial Population
2: for g = 1, 2, . . . , G do
3: Simulate all Ci(i ∈ N) and Calculate Fitness
4: Remove Stagnated Species and Extract Candidates
5: Calculate Fitness of Species sk ∈ Sg

6: Calculate Reproduction Size Rk of each sk

7: for all sk in Sg do
8: Add Best Candidate in sk to Pg+1
9: Make Parent Pool with N′ Top Candidates in sk

10: for j = 1, 2, . . . , Rk do
11: Crossover
12: Mutate
13: Add Cj to Pg+1
14: end for
15: end for
16: Speciate Pg+1
17: end for

Since we aim to generate an optimal circuit topology
without prior knowledge, we suggest employing an evolu-
tionary algorithm in the topology generator. NeuroEvolution
of Augmenting Topologies (NEAT) is a widely used evo-
lutionary algorithm for exploring artificial neural network
structures [25]. The algorithm starts from a simple network
with a single fully connected layer, and the network evolves
into more complex structures through crossover and mutation
over generations. We modify the NEAT algorithm to make
it suitable for circuit topology generation; we introduce the
voltage concept into the NEAT algorithm, and the mutation
functions and the properties of genes are heavily modified
aimed at circuit topology generation.

Algorithm 1 details the proposed circuit topology gener-
ation algorithm. An offspring represents a candidate circuit
topology and has node and connection genes. The node gene
represents a node in the graph and has type, voltage and inno-
vation number properties. The type property determines the
type of the nodes (input port, output port, supply, ground, or
internal net) and the voltage property represents its relative
voltage, whereas the innovation number is a unique identi-
fier. The connection genes represent edges in the graph with
in, out, size, gate, and innovation number properties. The in
and out properties define two endpoints of the edge (source
and drain of the transistor), and the size property defines the
relative strength of the transistor. As described above, since a
transistor is a three-terminal device, the node to which the gate
of the transistor is connected is defined by the gate property.
The innovation number is a unique identifier. A population is
a set of all offspring of the current generation. The popula-
tion is divided into several species based on similarity. Each
species has a base model, and the offspring close to the base
model are included in the species.

The topology generator first creates an initial population P0
which consists of offspring with only three node genes and
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two connection genes: VDD, VSS, and an internal node con-
nected by one P-channel MOSFET & N-channel MOSFET
pair [Fig. 2(a)]. The gate of each transistor is randomly con-
nected to the node except VDD and VSS. In each generation,
evolution begins by calculating the fitness of the species in
the current population. The algorithm converts each offspring
into a netlist and runs a SPICE simulation to calculate the
offspring’s fitness based on the observed functionality and
performance. Then, the fitness of the offsprings included in the
species is averaged to obtain the species fitness. The number
of offspring that can reproduce from each species to the next
generation is determined in proportion to the species fitness.
During circuit topology generation, simulations are performed
only at the typical (TT) corner to scan large search spaces and
find the best candidates quickly.

Before reproducing a new population, the algorithm
observes whether the fitness of the best offspring in each
species has been improved or not in the last few generations.
If the fitness of a species does not improve any further for a
certain number of generations, then the species is considered
stagnant, and offsprings of that species are removed from the
population. The evolution process is independently performed
for each species. First, the offspring with the highest fitness
in each species is automatically included in the population of
the next generation. Next, a set of offspring with the highest
fitness within each species is selected as a parent pool. Two
offspring are randomly chosen from the pool and compared
with each other, where the winner evolves through mutation
and joins the population of the next generation.

The fitness function represents the performance and relia-
bility of a circuit as a single value. We consider two types of
design constraints for fitness calculation: 1) hard constraints
and 2) soft constraints. The hard constraints are the set of
design constraints that a circuit must satisfy (e.g., rail-to-rail
output swing for level shifters), whereas the soft constraints
indicate the design quality (e.g., power consumption and con-
version delay of level shifters). The fitness of an offspring at
the xth generation is calculated as

fitx =
∑

i∈H

αif
(
qi,x

) +
{

∏

i∈H

f
(
qi,x

)
}⎧

⎨

⎩
∑

j∈S

αjf
(
qj,x

)
⎫
⎬

⎭ (1)

where fitx is the calculated fitness of an offspring, qi,x is the
observed performance of the circuit in SPICE simulations cor-
responding to the ith constraint, f (qi,x) is the score function
for each constraint, αi is the weight of the ith constraint, and
H and S represent the sets of hard and soft constraints, respec-
tively. This is similar to the reward function used in RL for
circuit optimization in [19], but our approach has two distinct
differences: 1) we use log(qi,x) instead of qi,x for the scores
that have a large dynamic range and 2) the contribution of soft
constraints in the fitness is regulated by the scores related to
the hard constraints, instead of using a hyper-parameter manu-
ally tuned for a specific type of circuit. In early generations, it
is highly likely that most offspring would fail to function prop-
erly. The scores related to the hard constraints would be very
low, making the fitness largely dictated by the hard constraints.
Hence, the algorithm focuses on finding feasible topologies

that produce a desired output. Once the algorithm finds prop-
erly working circuit topologies, the scores related to the hard
constraints saturate and do not affect the fitness. The remain-
der of the evolution process further modifies the topology to
improve circuit performance.

The topology generator employs various mutation functions
so that it can cover a wide range of circuit topologies. Note
that the nodes without any connection (i.e., floating nodes)
can be generated as a result of mutation. Hence, we label the
nodes with one or more connections as active nodes, and only
active nodes are selected for mutation. The types of mutations
are discussed as follows.

1) Add Connection: This mutation randomly chooses two
active nodes and connects them by adding a new edge. Since
an edge corresponds to a transistor in the actual circuit, it links
the gate of the new edge to one of the existing active nodes
by updating the gate property.

2) Add Node: This inserts a new node in one of the edges.
In other words, a single transistor is replaced with two stacked
transistors. The gates of the stacked transistors are connected
to the same node to which the gate of the original transistor
was connected. This process is often used when designing
a circuit to increase output resistance or minimize leakage
current.

3) Add P-Channel MOSFET and N-Channel MOSFET:
Pair A P-channel MOSFET and N-channel MOSFET pair
makes a new connection between VDD and VSS. If a sin-
gle P-channel or N-channel MOSFET transistor is placed
between VDD and VSS, this will be just a current leaking path.
Therefore, we place transistors as a pair of P-channel and
N-channel MOSFET devices when making a new connection
between the supply rails.

4) Change Gate: The gate of a transistor is connected to a
different active node except for VDD and VSS nodes.

5) Remove Connection: This mutation randomly removes
one of the connections, which allows for removing transis-
tors from the current topology. This prevents the circuit from
continuously becoming larger.

6) Change Size: The size of the connection genes repre-
sents the relative size (strength) of a transistor. Since our goal
is to quickly go through a variety of circuit topologies and
find promising candidates, we define each transistor’s strength
in only three steps: 1) strong; 2) medium; and 3) weak.
During mutation, the transistor size randomly changes in each
connection gene independently.

7) Change Output Port: This mutation changes the location
of the output port. One of the active nodes is selected as an
output.

In the original NEAT algorithm, each mutation function is
randomly selected in each mutation. Hence, multiple types of
mutations may be performed simultaneously. However, this
may result in an excessive amount of change in a circuit. For
instance, removing a transistor from the circuit and changing
the gate connection of another transistor would produce a cir-
cuit with entirely different characteristics. Hence, we limit the
mutation process to select only one of the add, remove or gate
change mutations (mutations 1 through 5 above). In addition,
other minor mutations (mutations 6 and 7) are independently
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introduced with a certain probability. Let PaddNode, PaddCon,
PaddPair, PchangeGate, and PrmCon denote the probability of
mutations 1 through 5 above. Then, the mutation process
follows the equation below:

PaddNode + PaddCon + PaddPair + PchangeGate + PrmCon = 1 (2)

During topology exploration, we do not want the algorithm
to keep adding transistors indefinitely. Otherwise, the number
of transistors in a circuit may explode, and the resulting cir-
cuit would be far from what we desire. For instance, an ideal
analog amplifier or level shifter circuit typically has tens of
transistors at most. Therefore, we balance the expected num-
ber of removed and added transistors in each mutation by
enforcing the relationship as follows:

2PaddNode + PaddCon + 2PaddPair − PrmCon = 0 (3)

since adding a node (a net in the circuit) adds two transistors,
whereas adding or removing a connection adds or removes a
single transistor in the circuit.

After a new generation is obtained by mutating all the off-
spring of the current generation, the newly generated offspring
are grouped again into a set of species. Each offspring is com-
pared to the base models of existing species. If the number
of differences in the connection genes is below the thresh-
old for one or more existing species, then the offspring joins
the closest species. Otherwise, the offspring constitutes a new
species and becomes its base model. After the grouping pro-
cess is done, the population undergoes another iteration of the
mutation process to obtain the next generation. This process
continues until it reaches the maximum number of generations
defined by the user.

The topology generator selects candidate topologies both
during and at the end of the evolution. When a stagnant species
is removed during evolution, the offspring with the best fitness
in that species is selected and added to the candidate list if
it meets all the given design constraints. When the algorithm
finishes the last iteration, the same operation is performed on
all the remaining species. Note that there may exist floating
nodes and floating paths as a result of mutation. Before adding
an offspring to the candidate list, the topology generator finds
and removes the floating nodes and paths.

B. Circuit Optimizer

The topology generator is aimed at quickly finding promis-
ing circuit topologies. Hence, each transistor is only roughly
sized during exploration (e.g., strong, medium, or weak). This
accelerates the search process by significantly limiting the
search space, but the size of each transistor must be further
tuned for optimal performance. For this purpose, we employ an
additional circuit optimizer as the second stage in the proposed
circuit design framework.

The circuit optimizer adopts a RL algorithm to optimize
candidate integrated circuits. Various RL algorithms have been
used for circuit optimization. L2DC [19] and GCN-RL [21] are
based on deep deterministic policy gradient (DDPG) [26], and
AutoCkt [20] adopts proximal policy optimization (PPO) [27].
DDPG has an actor–critic structure and generally works well

in continuous or high-dimensional action spaces. An agent
collects and saves a sample into a replay memory. Then, a
minibatch is randomly selected from the replay memory to
train the network. While PPO also has an actor–critic struc-
ture suitable for training in continuous or high-dimensional
action space, it does not have a replay memory. Instead, N
agents collect samples in parallel during an episode which
consists of T time steps, and a minibatch is constructed using
the collected samples and used for training the algorithm.
Then, all the samples are discarded. DDPG exhibits slower
convergence during training since it only uses one agent con-
trary to PPO, but has the advantage of being able to reuse the
samples stored in the replay memory. PPO trains the model
more quickly by using multiple agents, but it only uses the
samples collected in the current episode for training, which
reduces sample efficiency. In circuit optimization, samples
are obtained by running time-consuming SPICE simulations.
Therefore, it is crucial to maximize sample efficiency (i.e.,
reduce the number of samples required for algorithm con-
vergence) to speed up the circuit optimization process. To
resolve this issue, we adopt distributed distributional DDPG
(D4PG) [28] algorithm in the circuit optimizer. D4PG sup-
ports both multiagent training and sample reuse by using a
replay memory. Unlike DDPG and PPO which express future
rewards as a single scalar value, D4PG expresses rewards as
a probability distribution. It models the inherent uncertainty
imposed by function approximation in a continuous environ-
ment, resulting in better gradients and improving the training
performance compared to DDPG. It also shows more stable
performance when multiple agents are used [28].

In the RL algorithms using actor–critic structure, two differ-
ent neural networks are typically employed: an actor network
and a critic network. The actor network takes a state vector
as an input and produces an action vector, whereas the critic
network takes state and action vectors as inputs and predicts
the reward value an agent is expected to receive as a result
of the current and future actions. The RL algorithm trains
those neural networks on the observed samples. As the com-
plexity of the neural network increases with the dimension of
input vectors, it is important to minimize the dimension of
the input vector for faster optimization. Since the action vec-
tor represents relative size changes of all the transistors in the
circuit, its dimension is fixed. Hence, we aim to optimize the
critic network by reducing the dimension of the state vector.
Specifically, we use the simulated circuit performance (e.g.,
power consumption and delay) and area as a state, instead of
feeding each transistor’s size or other characteristics (e.g., Vth,
Vsat, and μ0) as did in prior works [19]–[21]. Therefore, the
dimension of the state vector is independent of the number of
transistors in the topology and the optimization process can be
efficiently accelerated when the target circuit topology consists
of many transistors.

The actor network creates an action based on the state
obtained by SPICE simulations. An action represents a rel-
ative change in the size (width, length, and multiplier) of each
transistor. If the target topology has N transistors in total, the
dimension of the action vector would be 3N. Each dimension
of the action vector has a value in [−1, 1]. Then, the amount
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of change in the size of the ith transistor is

�Size = round

(
Action · sizemax − sizemin

LmaxStep

)
(4)

where �Size is the amount of change in transistor size, Action
is the output of the actor network, LmaxStep is the number of
steps in one episode, and sizemax and sizemin are the allowable
maximum and minimum transistor sizes. This translates to the
maximum size change that can occur in one episode equal to
sizemax − sizemin. The size values are real numbers, so they
are rounded to the closest values allowed in the given process
before converted to an actual circuit.

In D4PG, when a sample collected by one of the agents is
stored in the replay memory, a minibatch is created by ran-
domly choosing samples from the replay memory. However,
as the training progresses, the amount of samples stored in
the memory becomes larger; thus, only a fraction of stored
samples is used to generate a minibatch, reducing sample
efficiency. In addition, the learner updates the network only
once in each time step, and the SPICE simulation to obtain a
new sample becomes the processing bottleneck. To address
these issues, we propose to adopt a multiupdate technique
that has been used for unbiased learning. When a sample
is obtained by the agent and stored in the replay memory,
unlike the conventional method of circuit optimization that cre-
ates one minibatch from the stored samples, we create several
minibatches and update the critic and actor networks multiple
times. This accelerates the circuit optimization process with-
out time overheads since multiple updates could be performed
while SPICE simulations are running. This scheme also allows
for unbiased learning through random sampling that removes
correlation between minibatches, reducing the possibility of
overfitting.

At the beginning of training, the actor network tends to gen-
erate the same action even if the state changes gradually in
each step. In other words, the size of a transistor continues
to increase or decrease regardless of the current state. This is
because the output is close to either 1 or −1 in most cases
when the actor network weights are randomly initialized. The
actor network typically uses the tanh function as the activa-
tion function. In a randomly initialized network, the output
of the network, which is the input to the final tanh activation
function, typically has an absolute value of 2 or larger, ren-
dering the final output close to ±1. This effect is amplified by
the fact that circuit performance is converted to a state using
a logarithmic function. Even if the state changes, the sign of
the action which determines size change direction (increase or
decrease) is likely to stay the same. In addition, the weights
of the actor network in each agent are updated only when an
episode ends, and they remain fixed for all the steps within an
episode. Therefore, in the first few episodes, the sizes of many
transistors just move to the minimum or maximum value. This
severely hinders circuit optimization by moving the design far
from the initial point, which is already a near-optimal design
found in the circuit topology generator. To solve this problem,
we propose an episode early stopping technique that limits the
number of steps in an episode in the early stage of training.
As the learning progresses, it gradually increases the number

Algorithm 2 Circuit Optimizer
Learner
Input: Number of Steps in Episode N, Batch Size M,
Replay Memory Size R, Learning Rates α0 and β0,
Multi-Update Parameter U

1: Determine Network Size by Analyzing Netlist
2: Initialize Network Weights with Kaiming Initialization
3: for i = 1, 2, . . . , N do
4: Wait for Samples from Agents
5: for j = 1, 2, . . . , U do
6: Randomly Choose M Samples from Replay

Memory
7: Compute Updates of Actor and Critic Networks

Using Samples
8: Update Network Parameters
9: end for

10: end for

Agent
Input: Number of Steps in Episode N, Number of Actors P,
Episode Early Stopping Interval T

1: repeat
2: Initialize Episode
3: Copy Actor Network from Learner
4: for step = 0, . . . , K do
5: Get Action from Actor Network and Change Size
6: Simulate and Calculate State (s) and Reward (r)
7: Send Sample to Learner
8: end for
9: Increase K every T Episodes

10: until Learner Finishes

of steps in each episode, and the episode finally proceeds with
the maximum number of steps defined by a hyperparameter.
This technique allows the network to learn more stably while
acquiring more meaningful samples near the initial point in
early episodes.

Algorithm 2 details the proposed circuit optimizer. The
exploration agent gets an action by entering the current state
into the actor network in each step. The algorithm uses the
network output (action) to change the size of transistors with
the corresponding action values and runs a SPICE simula-
tion to obtain the reward and the state. The reward function
in the circuit optimizer is identical to the fitness function (1)
employed in the topology generator, except that the scores
are obtained at different process corners, as explained later in
this section. The current state, the action, the next state, and
the calculated reward constitute a single sample and are writ-
ten to the replay memory. Each time a new sample is sent
to the replay memory, the optimizer creates multiple mini-
batches to update the neural networks. This update process
continues until it reaches a user-defined maximum number of
steps. Then, the best set of the parameters found in the course
of training is selected as the final design.

L2DC [19] uses a recursive neural network (RNN) in the
actor network and multilayer perceptron (MLP) as the critic
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network. However, RNN is typically hard to train due to the
vanishing and exploding gradient problems [29]. Also, the
state is composed of the observed values (e.g., gm and Vth)
of each transistor, and the order is determined by the sig-
nal path of the circuit, necessitating manual examination of
the circuit topology. Instead, we use an MLP as the actor as
did in AutoCkt [20], where the specifications of topology are
combined into a state vector in an arbitrary order. Also, we
initialize the weights of the MLP following the method in [30].

While the circuit optimizer primarily focuses on maximizing
circuit performance, it is also very important to guarantee that
the circuit properly operates under process variations. Contrary
to prior works on circuit optimization [19]–[21], we run SPICE
simulations at five different process corners (TT, FF, SS, FS,
and SF). The optimizer constantly observes if the circuit meets
the hard constraints at all corners during optimization. On the
contrary, the scores related to the soft constraints are only mea-
sured at TT corner. This allows the circuit to exhibit maximum
performance at the corner of most concern while still guaran-
teeing proper functionality in the worst cases. Note that the
Monte-Carlo analysis better captures the robustness of a circuit
under process variation. However, since the size of each tran-
sistor continues to change during optimization, adopting the
Monte-Carlo analysis will require a large number of SPICE
simulations in each time step, incurring a large time overhead.
On the contrary, the corner analysis requires only a few sim-
ulations for each design point and, hence, is more suitable for
fast optimization.

III. EXPERIMENT RESULT

In the previous section, we presented an unified circuit
design framework that automatically generates appropriate cir-
cuit topologies and further optimizes each design through
finding an optimal size of each transistor. In this section, we
experimentally verify the proposed circuit design framework.
By employing the framework to design level shifter circuits,
we demonstrate that the topology generator produces novel
level shifter topologies, and the circuit optimizer successfully
improves the design. Finally, the resulting level shifter designs
are fabricated and compared against prior arts designed by
human experts. All experiments are conducted on a work-
station running CentOS 7.4 with two Intel E5-2687W v4
processors, 128-GB DRAM, and an Nvidia GTX Titan X
GPU. The topology generator only uses the processors whereas
the circuit optimizer uses both the processors and GPU.

A. Level Shifter Design

We choose a level shifter circuit as a test vehicle for our
framework since it is an active research area where new circuit
topologies are continuously developed. There are many differ-
ent topologies, and an optimal topology varies with the design
constraints [24]. Therefore, the effectiveness of our framework
that is capable of finding optimal circuit topologies could be
verified more clearly. In addition, level shifter circuits share
common properties both with digital and analog circuits. For
instance, level shifters operate on a rail-to-rail input signal
and produce a rail-to-rail output in a higher voltage, similar

TABLE I
EXPERIMENTAL SETUP FOR LEVEL SHIFTER DESIGN

to digital circuits [22]. On the other hand, the internal opera-
tion is similar to that of analog circuits such as amplifiers. In
experiments, we adopt the framework to design level shifter
circuits in a 180-nm CMOS process, and the resulting circuits
are compared to prior designs reported in the literature.

A level shifter circuit converts a low-voltage (VDDL) digi-
tal signal to a high-voltage (VDDH) signal. Level shifters must
generate a rail-to-rail swing between the ground and VDDH at
the output. Therefore, we use output signal swing as a hard
constraint in the framework. Because level shifters are typi-
cally expected to operate with high conversion speed and low
power consumption with minimal footprint [31], we use the
delay, total power (Ptotal), static power (Pstatic), and area as
soft constraints. The circuit area is calculated as the number
of transistors in the topology generator, whereas the circuit
optimizer uses the total active area.

Table I shows the score functions used in each step. The
scores related to the soft constraints are calculated as -log(qi,x)
except for the area in the topology generator, whereas the score
for the hard constraint (output swing) is calculated as the swing
observed in simulation divided by VDDH. In topology gener-
ation, the area is calculated as the number of transistors in
the circuit. When the number of transistors exceeds a thresh-
old (b in Table I), the score is divided by a slope which is a
hyperparamter. In the circuit optimizer, we use the worst val-
ues across all process corners when calculating the score for
the hard constraint. Soft constraint scores are obtained at the
TT corner.

B. Topology Generation

The topology generator runs seven SPICE simulations in
parallel only at the TT corner for fast topology search. The
input inverter of level-shifter is implemented using low thresh-
old voltage (Vth) devices, whereas the other transistors are
standard Vth devices. We use a minimum-sized transistor with
180-nm channel length and 220-nm channel width as a weak
device. Medium and strong devices have 2× and 4× larger
channel width, respectively. The initial population size is set
to 450, and the population evolves for 600 generations, which
takes approximately 5 h 30 min. In addition, we experiment
with varying the soft constraint weights in the fitness func-
tion to observe how the topology generator performs under
different design constraints. The generated circuit topologies
are displayed in Fig. 3. Specifically, three cases are tested: 1)
all the constraints have the same weight [C1 in Fig. 3]; 2)
only the weight of static power is lowered (C2 and C3); and
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(a) (b) (c) (d) (e)

Fig. 3. Level shifter circuit topologies generated by topology generator (a) C1. (b) C2. (c) C3. (d) C4. (e) C5.

TABLE II
RESULTS OF TOPOLOGY GENERATION

(a) (b)

Fig. 4. Experimental results of topology generation. (a) Fitness. (b) Number
of species.

3) the weight of delay is increased while the weights of static
and total powers are decreased (C4 and C5). Table II sum-
marizes the performance and fitness of the generated circuits
(C1–C5). Simulation results show that the circuits generated
with lower static power weight (C2 and C3) exhibit higher
static power than C1. In addition, the circuits optimized for
delay (C4 and C5) achieve lower delay than C1 at the expense
of power consumption increases.

We also perform three independent runs of circuit topology
generation to estimate algorithm stability. Fig. 4 shows the
fitness and the number of species as the evolution proceeds.
The best fitness, which is the fitness of the best circuit in
the population, rapidly increases in the first 7–9 generations,
and then gradually improves through fine tuning of the circuit
topology. Note that the value of fitness is not capped at a fixed
value. While the fitness of a circuit can have an arbitrary value,
the generated circuits exhibit fitness values less than 30 in our
experiments. The number of species is nearly constant during
evolution except in the first few generations, suggesting that
stagnant species are replaced with a similar number of new
species.

C. Circuit Optimization

In experiments, we use an MLP with three hidden layers
and 200 nodes in each layer as the actor network. The critic
network has the same structure but has two hidden layers.
First, we evaluate each of the proposed RL optimization tech-
niques using WCMLS circuit, which is widely adopted in level
shifter designs [22]–[24]. Experiments are performed using a
total of seven actors, where one of them is used to estimate
the performance of the optimization algorithm in real time
(evaluation actor). Thirty thousand SPICE simulations are run
across all the actors except the evaluation actor, which takes
2 h 20 min. Since the RL algorithm has some degree of ran-
domness, we test each configuration on three independent runs
to observe its reliability. Fig. 5 summarizes the experimen-
tal results. Fig. 5(a) shows that conventional D4PG fails to
converge in two of the three runs. However, when the mul-
tiupdate technique with U = 10 is applied, the algorithm
successfully finds a correct optimization direction and properly
biases transistors in the circuit after about 7000 SPICE sim-
ulations [Fig. 5(c)]. Fig. 5(e) shows the optimization results
when the episode early stopping method is also employed.
Initially, an episode stops only after four steps, and the episode
length increases by two after every five episodes in each
exploration agent until it reaches the maximum length of
20. This method reduces the number of SPICE simulations
required to capture the bias points from 7000 to 5000, sug-
gesting that this technique accelerates RL training in the early
stage. Note that the algorithm shows more fluctuation during
optimization when the early stopping method is adopted. We
suspect that the conventional approach is exposed to more
“bad” samples, which are far from the initial nearly opti-
mized design from the topology generator, in the early stages
of training. Those samples exhibit very low rewards as they
do not meet the hard constraints. As a result, the actor is
trained to be more conservative, and once the design enters
the near-optimal region where the hard constraints are sat-
isfied, the algorithm tends to stay near that point only with
fine tuning to avoid a large drop in the reward value. On the
contrary, the episode early stopping method allows the design
to enter the near-optimal region quickly, significantly reduc-
ing the number of bad samples during initial training. When
the design approaches an optimal point during optimization,
the algorithm now searches for better design points more
aggressively. In other words, the algorithm is less reluctant
to depart from the local optima, which helps find a global
optimum.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Trends of reward improvement with and without proposed algorith-
mic optimization techniques. Proposed techniques enable a faster and more
stable optimization process. (a) D4PG. (b) DDPG. (c) D4PG with multiup-
date. (d) DDPG with multiupdate. (e) D4PG with multiupdate and episode
early stopping. (f) DDPG with multiupdate and episode early stopping.

For comparison, we experiment with the DDPG algorithm
adopted in prior work [19] using the same environment. D4PG,
which is employed in our framework, is similar to DDPG
except that it uses multiple agents in parallel, and the output of
the critic network is represented as the probability distribution.
The DDPG algorithm is trained for 30 000 SPICE simulations
in total, and the total running time is 14 h 30 min. This is more
than six times longer than the time required for our approach to
process the same number of SPICE simulations, which con-
firms the effectiveness of the multiagent training of D4PG.
The experimental results are displayed in Fig. 5. We exper-
imented with a vanilla DDPG algorithm [Fig. 5(b)], DDPG
with multiupdate [Fig. 5(d)], and DDPG with both techniques
[Fig. 5(f)]. Experimental results show that DDPG exhibits
larger variations between runs and unstable training conver-
gence compared to our approach. To observe how the type
of critic affects the training performance, we experimentally

(a) (b)

Fig. 6. Reward trends of alternative approaches for comparisons. (a) Scalar
value critic. (b) Action scaling.

(a) (b)

Fig. 7. Trends of output swing ratio when the circuit is optimized (a) at
TT corner only and (b) at all process corners. Considering process corners
significantly improves reliability.

apply the scalar value critic used in DDPG to our algorithm.
With both multiupdate and episode early stopping applied,
Fig. 6(a) shows that using the scalar value critic results in
more unstable training convergence compared to Fig. 5(e).

The episode early stopping method effectively limits the
agent’s exploration capability in the early stages of training,
and a similar effect could be achieved by scaling the output
of the actor network. We conducted additional experiments in
which we multiplied the output of the actor network with a
scaling factor before passing it to the environment. The scal-
ing factor is set to 0.2 at first and is increased by 0.1 every
five epochs, which translates to the maximum amount of size
change in each episode identical to the episode early stopping
method. Experimental results are displayed in Fig. 6(b). It can
be seen that this scaling method results in a slower conver-
gence. We suspect that this is because the actor network is
not properly trained in early episodes due to the continuously
changing scaling factor. More specifically, the actor network
is trained in a way to generate the best action for the cur-
rent state. However, the output of the actor network is scaled
before being applied to the environment and, hence, the actor
should take this into account during training. Since we are
now changing the scaling factor, the actor should be trained
in different directions as the optimization process continues,
hindering proper training.

During optimization, our framework considers multiple pro-
cess corners to make sure the circuit properly works under
process variations. Fig. 7 compares our approach to the
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TABLE III
EXPERIMENTS WITH DIFFERENT WEIGHTS IN CIRCUIT OPTIMIZATION

TABLE IV
RESULTS OF OPTIMIZING GENERATED CIRCUITS

conventional method that observes the circuit performance at
the TT corner only. When the circuit is optimized only at the
TT corner, the relative output voltage swing reaches 0.95 at
the same corner, but the design may produce much smaller
swing at different corners [Fig. 7(a)]. On the other hand, if
we obtain the score related to the hard constraint at the worst
corner during optimization, the resulting circuit achieves >0.95
output swing at all the corners.

Similar to topology generator, we also experiment with
changing the weights of the soft constraints. The sum of the
weights is fixed, and their values are allocated differently
in each case. Table III summarizes experimental results for
optimization with 32 000 SPICE simulations. The last col-
umn shows the actual weights of the soft constraint of interest
and the others. As expected, increasing the weight for total
power consumption further reduces power consumption dur-
ing optimization while sacrificing delay and area since the
circuit is subject to a tradeoff between delay, power, and area.
Similarly, using a higher weight for delay produces a faster
level shifter circuit at the expense of power and area increase.

Finally, we apply our circuit optimizer to the circuits gen-
erated by the topology generator (C1–C5). Similar to previous
experiments, we use seven actors in the RL algorithm, where
one of them is used as an evaluation actor. For each circuit
topology, 38 000 SPICE simulations were performed except
the evaluation actor, and the multiupdate constant U was set
to 13. The optimizer successfully improved all the generated
circuit topologies, which is verified by comparing the results in
Table IV to the results in Table II. Note that the area represents
the total active area, not the actual layout size.

D. Test Chip Fabrication

To validate level shifter circuits designed by our framework,
we fabricated the generated and optimized circuits C1–C5 in a

(a) (b) (c)

(d) (e)

Fig. 8. Layout of generated circuits and their size. (a) C1 (4.7 μm × 8.6 μm).
(b) C2 (3.5 μm × 11.2 μm). (c) C3 (4.5 μm × 10.3 μm). (d) C4
(4.0 μm × 8.4 μm). (e) C5 (4.0 μm × 8.2 μm).

180-nm process. Since the framework only provides a netlist
as the output, the layout was manually drawn, as shown in
Fig. 8. The input inverter supplied by VDDL is included in
the layout. It is difficult to measure the conversion delay of a
level shifter accurately, since parasitic components (e.g., I/O
cell, PCB trace, and bond wire) also contribute to the delay.
Hence, we adopt the dual-path measurement method in [32].
Two different paths with and without a level shifter are imple-
mented, and the conversion delay is indirectly measured by
subtracting their delays as depicted in Fig. 9(a). The VDDL
inverter (colored gray in the figure) converts a high-voltage
input to a low-voltage signal, which is later converted back
to VDDH by the level shifter. Each level shifter has a dedi-
cated power supply rail to measure its power consumption.
A different level shifter can be selected by a control signal
to the multiplexer and demultiplexer. The conversion delay is
measured as the difference in arrival times of OUT and REF
signals. Fig. 9(b) shows the top-level layout of the test chip,
and Fig. 9(c) is the chip micrography.

Table V displays measurement results and comparisons
against recent level shifter circuits reported in the literature
(Fig. 10). Note that the performance of the baseline cir-
cuits (B1–B5) are simulation results obtained from [31]. In
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(a)

(b) (c)

Fig. 9. (a) Delay measurement circuit, (b) test chip layout, and (c) test chip
micrography.

TABLE V
MEASUREMENT RESULTS OF GENERATED CIRCUITS

measurements, all of the generated circuits (C1–C5) success-
fully perform level conversions. Measurement results show
that our designs consume much smaller power consumption
during conversion with similar or lower conversion delay.
More specifically, our designs exhibit 2.6×–4.7× lower total
power consumption than the design with the lowest power
consumption (B3) and 1.0×–1.7× larger conversion delay
than the fastest design (B5). In addition, our designs occupy
1.5×–2.1× smaller area than the smallest design (B1). The
power-delay product (PDP) is a metric commonly used for
comparing level shifter circuits [24], [31], [33], and the gen-
erated circuits achieve 2.8×–5.3× lower PDP than the baseline
circuits.

VDDLmin represents the minimum input voltage that a
level shifter can convert to a high voltage signal. VDDLmin
was first measured for the input with 1-MHz frequency.
Generated circuits (C1–C5) achieve 320 mV or lower VDDLmin,

(a) (b) (c)

(d) (e)

Fig. 10. Baseline level shifter designs from prior work. (a) B1 [22].
(b) B2 [23]. (c) B3 [34]. (d) B4 [35]. (e) B5 [36].

(a) (b)

Fig. 11. AND gates generated by topology generator.

outperforming baseline circuits. To determine the lowest pos-
sible voltage that the level shifters could handle, we also
experimented with a 100-Hz input signal and checked if the
output shows full swing. In this case, the generated level
shifters achieve significantly lower VDDLmin less than 100 mV.

E. Applicability of Topology Generator

We conduct further experiments to observe if the proposed
topology generator could be used for designing other types
of circuits. For experiments, the topology generator is tested
on both digital (AND gate) and analog (differential amplifier)
circuits. In both cases, the algorithm starts with a P-channel
MOSFET and N-channel MOSFET pair as the initial offspring
and an initial population size of 600. For AND gate, the pop-
ulation evolves for 300 generations. We use a minimum-sized
transistor with 180-nm channel length and 220-nm channel
width as a weak device. Medium and strong devices have 2×
and 4× larger channel width, respectively. The topology gen-
erator successfully produces a standard AND gate composed
of a NAND gate and an inverter as shown in Fig. 11(a). The
left part of the circuit in Fig. 11(b) is similar to a standard
NAND gate, but the output is not fully pulled up since one of
the pMOS devices is connected to an internal node. However,
the additional pMOS keeper fully pulls up the output node,
providing a rail-to-rail output.

For the amplifier design, the population evolves for 600 gen-
erations. Since analog circuits often require proper biasing, a
bias node that supplies a dc voltage is introduced in the algo-
rithm. In addition, five sizing options are used for topology
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(a) (b)

Fig. 12. Differential amplifiers generated by topology generator.

generation. We use a transistor with 720-nm channel length
and 220-nm channel width as a baseline. Two stronger devices
have 2× and 4× larger channel width, respectively, whereas
two weaker devices have 2× and 4× larger channel length,
respectively. The topology generator successfully generates
circuit topologies that are similar to widely used amplifier cir-
cuits. The amplifier circuit in Fig. 12(a) is a self-biased 5T
OTA (Operational Transconductance Amplifier) circuit [37],
and the circuit in Fig. 12(b) is a low-voltage pseudodifferential
amplifier [38], [39].

IV. CONCLUSION

In this work, we proposed an automatic circuit design
framework for level shifter circuits. To design a circuit with-
out preconstructed building blocks and prior knowledge, the
framework implements a two-step design process using the
topology generator and the circuit optimizer. We first proposed
a new graph-based circuit representation, and the topology
generator employs an evolutionary algorithm to search for pos-
sible circuit topologies quickly, considering the given design
constraints. Then, the circuit optimizer utilizes RL to fine-tune
the size of each transistor, where we adopt various algorithmic
optimizations, such as multiagent training, process variation-
aware optimization, multiupdate, and episode early stopping
to improve sample efficiency. In experiments, the framework
was applied to designing level shifter circuits. The topology
generator produced novel level shifter topologies, and they
are successfully optimized by the circuit optimizer. Fabricated
in a 180-nm CMOS process, the test chip demonstrates that
the automatically designed circuits achieve 2.8×–5.3× lower
PDP than manually designed level shifter circuits reported in
the literature.
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