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Abstract—Deep neural network (DNN)-based video analysis
has become one of the most essential and challenging tasks to
capture implicit information from video streams. Although DNNs
significantly improve the analysis quality, they introduce intensive
compute and memory demands and require dedicated hardware
for efficient processing. The customized heterogeneous system
is one of the promising solutions with general-purpose pro-
cessors (CPUs) and specialized processors (DNN Accelerators).
Among various heterogeneous systems, the combination of CPU
and FPGA has been intensively studied for DNN inference with
improved latency and energy consumption compared to CPU +
GPU schemes and with increased flexibility and reduced time-
to-market cost compared to CPU + ASIC designs. However,
deploying DNN-based video analysis on CPU + FPGA systems
still presents challenges from the tedious RTL programming,
the intricate design verification, and the time-consuming design
space exploration. To address these challenges, we present a novel
framework, called EcoSys, to explore co-design and optimization
opportunities on CPU-FPGA heterogeneous systems for accel-
erating video analysis. Novel technologies include 1) a coherent
memory space shared by the host and the customized accelera-
tor to enable efficient task partitioning and online DNN model
refinement with reduced data transfer latency; 2) an end-to-end
design flow that supports high-level design abstraction and allows
rapid development of customized hardware accelerators from
Python-based DNN descriptions; 3) a design space exploration
(DSE) engine that determines the design space and explores the
optimized solutions by considering the targeted heterogeneous
system and user-specific constraints; and 4) a complete set of
co-optimization solutions, including a layer-based pipeline, a fea-
ture map partition scheme, and an efficient memory hierarchical
design for the accelerator and multithreading programming for

Manuscript received December 19, 2020; revised April 19, 2021; accepted
June 9, 2021. Date of publication June 29, 2021; date of current version
May 20, 2022. This work was supported in part by the IBM-Illinois Center
for Cognitive Computing System Research (C3SR)—A research collaboration
as part of the IBM AI Horizons Network; in part by the National Science
Foundation’s Major Research Instrumentation Program under Grant 1725729;
and in part by the University of Illinois at Urbana–Champaign. The work
of Xiaofan Zhang was supported by a Google Ph.D. Fellowship. This article
was recommended by Associate Editor G. Tagliavini. (Corresponding author:
Xiaofan Zhang.)

Xiaofan Zhang, Yuan Ma, and Deming Chen are with the Department
of Electrical and Computer Engineering, University of Illinois Urbana–
Champaign, Urbana, IL 61801 USA (e-mail: xiaofan3@illinois.edu;
yuanm2@illinois.edu; dchen@illinois.edu).

Jinjun Xiong is with the Cognitive Computing Systems Research, IBM
T. J. Watson Research Center, Yorktown Heights, NY 10598 USA (e-mail:
jinjun@us.ibm.com).

Wen-Mei W. Hwu is with NVIDIA Research, NVIDIA, Santa Clara,
CA 95051 USA (e-mail: whwu@nvidia.com).

Volodymyr Kindratenko is with the National Center for Supercomputing
Applications, University of Illinois Urbana–Champaign, Urbana, IL 61801
USA (e-mail: kindrtnk@illinois.edu).

Digital Object Identifier 10.1109/TCAD.2021.3093398

the CPU. In this article, we demonstrate our design framework to
accelerate the long-term recurrent convolution network (LRCN),
which analyzes the input video and output one semantic cap-
tion for each frame. EcoSys can deliver 314.7 and 58.1 frames/s
by targeting the LRCN model with AlexNet and VGG-16 back-
bone, respectively. Compared to the multithreaded CPU and pure
FPGA design, EcoSys achieves 20.6× and 5.3× higher throughput
performance.

Index Terms—Acceleration, coherent accelerator processor
interface (CAPI), deep neural network (DNN), heterogeneous
system, HW/SW co-design.

I. INTRODUCTION

V IDEO content analysis is one of the most challeng-
ing applications that allows computers to understand

the human world, which contains copious incomplete and
nonstructural information. By adopting deep neural networks
(DNNs), such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), the quality of video content
analysis has been greatly improved. Recently, we have seen
a rapid development of DNNs for image/video recognition
tasks, and among them, the long-term recurrent convolutional
network (LRCN) is one of the most prominent solutions for
video content analysis, such as performing activity recognition
and content captioning for the input videos [1]. Such a capa-
bility allows machines to handle more real-life applications
that originally require human efforts. For example, the videos
captured by the surveillance systems can be fast examined by
machines to identify particular dangerous scenes without man-
ual interventions. Some emerging applications, such as video
and image annotations, can also benefit from the development
of DNN-based video analysis in order to generate the desired
output descriptions automatically.

The workflow of LRCN is shown in Fig. 1. The input video
frames are first passed to a CNN to extract its spatial features.
These features are fed into an RNN composed of multiple long
short-term memory (LSTM) layers to finally produce a video
content description. The advantages of LRCN come from its
hybrid neural network structure combining both CNN and
RNN layers: the CNN is first used to capture the input’s spa-
tial information, while the following RNN takes these spatial
features sequentially and generates text descriptions. Although
LRCN is a powerful tool for video analysis, it involves more
complex network structures and requires more intensive com-
pute and memory demands during inference compared to a
single CNN or RNN. To efficiently handle such a unique
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Fig. 1. LRCN adopts both CNN and RNN for video content analysis. The
CNN generates spatial features of the inputs while the RNN outputs a sentence
as the video content description in a recurrent manner, which starts with the
entry <BOS> (beginning of sequence) and ends up with <EOS> (end of
sequence).

DNN, customized heterogeneous systems are developed with
the hardware combination of both CPUs and dedicated DNN
accelerators. A suitable hardware platform is important for
running LRCN efficiently. As a reconfigurable platform, FPGA
becomes a satisfactory hardware candidate to host the LRCN
than the conventional computer system due to its fine-grained
parallelism and the low-power budget.

A typical implementation of the LRCN includes an
AlexNet [2] for the CNN and multiple LSTM layers [3] for
the RNN. It contains 2.22 billion floating-point operations and
86.56 million synapse weights for processing one input video
frame. LRCN can be extended to use more advanced DNN
backbones by modifying the CNN part, such as using VGG [4]
and ResNet [5]. Such a unique DNN combination exhibits
significantly different layer characteristics with respect to the
computational complexity (the number of operations required
in one layer) and memory demands (the amount of data fetched
and stored in a certain period). For example, the convolutional
(CONV) layers are computationally intensive, so accelerating
these layers is often limited by the available compute units. In
contrast, the fully connected (FC) layers and LSTM layers are
highly memory-intensive, where on-chip memory size and the
external memory access bandwidth dominate their achievable
performance. With such characteristics, using general-purpose
processors may fail to deliver satisfactory performance and
efficiency for video content analysis using LRCN. A cus-
tomized heterogeneous system with dedicated DNN hardware
accelerators becomes essential to provide optimized solutions.

In addition to CPUs, heterogeneous systems developed
recently also include various hardware accelerators, such as
graphics processing units (GPUs), tensor processing units
(TPUs), and neural network processing units (NPUs), to attract
and leverage numerous demanding applications. Among these
accelerators, the customized accelerator, such as the FPGA- or
ASIC-based design, is one of the most promising candidates
for running DNN inference. They can be fully customized
to implement the neural network functionality with improved
performance or efficiency compared to CPU- and GPU-based
designs. For example, Qiu et al. [6] compared an FPGA-based
DNN accelerator to CPU, GPU, and embedded GPU designs.

By accelerating the same VGG16 network, the FPGA design is
1.4× and 2.0× faster than the solutions using CPU and embed-
ded GPU. Although the GPU-based design achieves 13.0×
higher performance, it requires 26.0× more power consump-
tion. Similarly, customized FPGA-based DNN accelerators
generated by DNNBuilder are more efficient and with bet-
ter real-time performance compared to the GPU solutions [7].
When benchmarking using the same DNN, Zhang et al. [7]
indicated that the accelerator implemented on an embedded
FPGA delivers 2.0× higher power efficiency than an embed-
ded GPU design, while they can reach more than 4.3× higher
efficiency using a mid-range FPGA comparing to a desktop
GPU. By reaching the same level of throughput, the FPGA-
based designs are likely to have lower batch size requirements,
which exhibit better real-time performance. Once design flex-
ibility, time-to-market, and nonrecurring engineering costs are
considered, FPGA presents even higher potential and becomes
a more suitable choice than ASIC [6]–[9].

However, using FPGA for domain-specific accelerator
designs generally requires RTL programming, hardware ver-
ification, and precise resource allocation, all of which can
be time-consuming and challenging even for seasonal FPGA
developers. These negative aspects often hinder FPGA’s adop-
tion by application developers who are used to working on
high-level programming and have less experience deploying
targeted applications onto a system containing FPGAs.

One of the popular directions to alleviate such difficulties is
to adopt a higher level of design abstraction for FPGA devel-
opment, which requires fewer lines of code and gives faster
simulation results. For example, high-level synthesis (HLS)
allows the use of behavioral-level programming languages
(C/C++) to be the abstract descriptions of hardware functions.
It thus helps reduce considerable amounts of lines of code
compared to RTL programming languages (7× for a hard-
ware design with one million logic gate [10]) and significantly
improves the design efficiency [11]. With the HLS design flow,
customized DNN accelerators have been developed to meet the
needs of various AI applications, such as accelerating image
classification [12]–[14], object detection [15]–[17], and lan-
guage translation [18]–[20]. As most DNNs are developed
by machine learning frameworks using Python, it allows an
even higher design abstraction level and creates a greater gap
between DNN designs on software and their hardware deploy-
ments. To bridge the gap, researchers have been investigating
end-to-end design flows that take DNN definition files (com-
patible with the machine learning frameworks) as inputs and
automatically generate the hardware accelerator designs to
improve accelerator design efficiency [7], [21].

Other challenges of implementing a video analysis system
come from the massive amount of memory consumption
for caching the DNN parameters (weights and biases),
intermediate results (feature maps), and inputs (video frames).
Storing all the data using on-chip memory seems to be taken
for granted. However, the required memory space of LRCN
using AlexNet can reach 346 MB, which significantly exceeds
the FPGA’s on-chip memory capacity. Therefore, most of
the parameters and intermediate results have to be placed
off-chip and require sophisticated memory management to
diminish extra data transfer overheads. Challenges also come
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from real-life video analysis applications, especially when the
DNN parameters must be updated during continuous learn-
ing to keep adopting the real scenes. The goal is to absorb a
new dataset and continually refine the DNN parameters in real
time. Such a specific requirement causes extra data transfers
between the main memory on the host side and the external
accelerator memory on the accelerator side. Besides, main-
taining the data coherence can become problematic, especially
when the tasks are distributed to different hardware devices.
In this case, the system is required to guarantee the most up-
to-date parameters are coherent and can be accessed timely by
all devices. Therefore, the more frequently the parameters get
updated, the worse performance could achieve.

To address the above-mentioned challenges, we propose
EcoSys, a novel framework to develop customized hetero-
geneous systems containing both CPU and FPGA. EcoSys
proposes an end-to-end design flow to connect the Python-
based high-level DNN descriptions with their board-level
FPGA implementations. It also integrates a comprehensive
design space exploration (DSE) to generate suitable task
partition schemes and hardware configurations for achieving
optimized performance given targeted CPU + FPGA systems.
It can also create a coherent memory space for the host CPU
and the customized accelerator and eliminate data transfer
latency between these devices. Detailed contributions of this
article are further discussed in Section III.

II. RELATED WORK

LRCN is a hybrid neural network model using both CNN
and RNN that can together learn both the space information in
vision and the sequential information in time. As depicted in
Fig. 1, video frames are entered sequentially into the system
and first processed by a CNN for the extraction of visual fea-
tures. These features of the incoming image frame are passed
to the RNN module to generate proper descriptions. The origi-
nal combination published in [1] adopts AlexNet for the CNN
and LSTM layers for the RNN, but it can be updated to use
more update-to-date CNNs (e.g., VGG, ResNet, etc.) for better
feature extraction. The unique network structure provided by
LRCN can be widely applied to handle video analysis tasks
that require capturing features in both spatial and temporal
patterns.

To leverage the complicated DNN workloads, we have seen
extensive studies in the DNN hardware accelerator. Among
these designs, FPGA-based solutions have been rapidly
developed and become one of the most promising solutions
to improve performance and efficiency [7], [15], [22], [23].
Designs presented in [24] explore the design space of loop
optimizations in a CNN implementation to locate the best
implementation point. To improve the hardware efficiency,
Qiu et al. [6] and Zhang et al. [25] investigated dynamic
quantization schemes for quantizing both DNN parameters
and intermediate feature maps. The designs in [26] and [27]
also support binary and ternary quantization, which further
relax the intensive computational pressure by replacing the
hardware-intensive floating-point multiplications with logi-
cal operations. Other optimizations include implementing fast
CONV algorithms on FPGA, such as using Winograd-based
solutions and fast Fourier transform (FFT) to replace the

original spatial CONV operations [13], [28], [29]. Recently,
we have seen more and more designs that adopt both hard-
ware and software optimizations. In [9], the targeted DNN
is first compressed and then deployed onto FPGA, while
Hao et al. [15] and Zhang et al. [16] proposed a hardware-
software co-design strategy to alleviate design contradictions
coming from the resource-demanding DNN applications and
resource-constrained hardware.

Researchers also focus on building DNN accelerator design
frameworks for improved hardware design efficiency when
deploying DNN workloads on FPGAs [7], [30]–[32]. Most of
the frameworks contain automation flows that support a high
abstraction level of design entries and deliver hardware imple-
mentations on FPGAs by assembling RTL or HLS building
blocks. Following this strategy, the design in [21] proposes
a unified representation for CONV and FC layers to facili-
tate accelerator modeling for DNNs developed by Caffe. To
improve accelerator design and optimization, DNNBuilder is
proposed to provide an end-to-end automation tool for build-
ing and prototyping high-quality FPGA-based accelerators [7].
It allows auto-optimization of the customized accelerators to
deliver real-time DNN inference even for resource-constraint
hardware. A framework proposed in [30] incorporates sys-
tolic arrays for improved computing efficiency, while the
design in [32] proposes a new architecture template by com-
bining both pipeline and recurrent architecture. Researchers
also target various heterogeneous systems and propose design
frameworks to provide the systematic design and optimization
solutions. Liao et al. [33] introduced an OpenCL-based frame-
work to support a heterogeneous cluster with CPUs and
GPUs for accelerating object detection. In [34], a sched-
ule exploration and optimization framework is published for
tensor computation on heterogeneous systems. In addition,
Zhang et al. [16] published a design framework targeting
embedded systems with CPU + FPGA and CPU + GPU
to leverage popular real-life AI applications, including object
detection and object tracking.

Instead of solely optimizing the DNN hardware imple-
mentation, researchers also explore the co-optimization
opportunities of both hardware and software. For exam-
ple, Hao et al. [15] introduced a uniform intermediate
representation for DNN and accelerator co-design, while
Zhang et al. [16] developed a hardware-efficient DNN model
and high-performance customized accelerator following the
hardware/software co-design strategy to satisfy predefined
performance targets and hardware constraints. To improve
the co-design efficiency, there have been growing interests
in using neural architecture search (NAS) with hardware
performance feedback to generate hardware-efficient DNNs
and higher-level design abstraction to develop customized
accelerators [35]–[37]. For example, a fast and a slow search
are iteratively adopted in [36] to speed up NAS and maintain
model accuracy. In [37], gradient descent is applied to enable
a fast search for suitable DNN structures and corresponding
hardware accelerators.

III. CONTRIBUTIONS

In this article, we present EcoSys, a novel framework
to deliver customized heterogeneous system design for
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DNN-based video analysis with improved performance and
efficiency. This work is partially extended from our previous
work published in FPL’17 [25] where DNN accelerator is
solely implemented on FPGA. Compared to our previous
design, EcoSys targets a heterogeneous system design with
both CPU and FPGA to better leverage network models with
both CNNs and RNNs. With the built-in DSE engine, EcoSys
is able to perform system-scale task partitioning given avail-
able hardware resources and targeted DNNs and make full use
of different devices. We then improve the accelerator archi-
tecture by adopting a layer-based pipeline and feature map
partition scheme to achieve better results than our previous
design. By supporting Python-based DNN descriptions as
inputs, EcoSys substantially raises the design abstraction
level for building customized accelerators and provides an
efficient approach to design, optimize, and integrate an FPGA-
based DNN accelerator into a heterogeneous system. With
the proposed framework, we can significantly speed up the
design process and improve the performance of CPU + FPGA
systems. To summarize, the main contributions of this work
are as follows.

1) EcoSys is the first hardware-software co-optimization
framework supporting coherent accelerator processor
interface (CAPI)-based coherent memory space [38] and
an end-to-end design flow for building customized het-
erogeneous systems targeting DNN-based video analysis
applications. It delivers a more efficient approach to
develop customized accelerators from a higher level of
design abstraction and an easier way to support data
sharing without worrying about the memory coherence
issues and excess data transfer latency.

2) We create a coherent memory space shared by the host
CPU and the FPGA accelerator. It intends to provide
an ample memory space to accommodate complicated
DNN models and reduce data transfer latency and syn-
chronization from one device to the other. In our design,
the customized accelerator is allowed to directly access
the same memory space shared by the host CPU, which
helps reduce up to 19.96% of latency compared to the
CPU + FPGA system with a traditional connection.

3) We present an end-to-end design flow from Python-
based DNN designs in the deep learning framework to
their board-level implementation on the targeted FPGA.
It includes a highly configurable accelerator architec-
ture to leverage DNN implementations and essential
supporting modules, such as DNN layers and CAPI
compatible memory interface, to ensure efficient accel-
eration of the targeted workloads. The proposed flow
enables designing and optimizing the whole system on
a high level of abstraction with improved developing
efficiency.

4) We introduce a DSE engine to leverage efficient explo-
rations within the predefined space and deliver the opti-
mized accelerators by considering various constraints,
such as available resources and the targeted work-
load. The proposed DSE engine also helps deliver task
partition schemes, where targeted workloads can be
distributed to different hardware devices in the hetero-
geneous system.

Fig. 2. CTC variations of network layers in six popular DNN models. The
layer closes to the input is numbered as 1. Noted that we consider each
inception module in the GoogleNet as one “layer” and omit the FC layers
(with CTC = 1) from all DNNs for clearer presentation.

TABLE I
PERCENTAGE OF COMPUTATION AND MEMORY CONSUMPTION IN LRCN

5) We leverage a complete set of co-optimization meth-
ods to push the achievable performance further. For
accelerator design, we include a layer-based pipeline to
boost throughput performance, a feature map partition
scheme to minimize on-chip memory utilization, highly
configurable IPs for layer dedicated hardware designs,
and an efficient memory hierarchical design for timely
data supply. Regarding the CPU side, we introduce open
multiprocessing (OpenMP) templates for multithreading
layer implementation.

IV. DESIGN CHALLENGES OF ACCELERATING

VIDEO ANALYSIS

The rapidly developing DNNs keep improving the output
quality of video analysis algorithms. They also deliver more
complicated algorithms with enormous compute and memory
demands, which require dedicated hardware accelerators to
enable real-life deployments. Before introducing the detailed
approaches for building the accelerators, in this section,
we summarize three design challenges from DNN structure,
real-life requirements, and hardware implementation.

A. Diverse DNN Layers

The unique combination of CNN and RNN creates unbal-
anced demands for different types of layers in LRCN. These
layers exhibit different characteristics in consuming com-
pute and memory resources. Regarding an LRCN model with
Alexnet backbone and 15 iterations of LSTM layers, pro-
cessing one video frame costs 2.22 giga operations (GOPs)
and consumes 86 million DNN parameters occupying 346
MB of memory. As shown in Table I, we break down the
resource demands for three major types of layers as CONV
and FC layers in the CNN and LSTM layers in the RNN. The
computation demand is dominated by the CONV layers with
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Fig. 3. Proposed EcoSys design flow with design, analysis, DSE, and construction steps to deliver optimized CPU + FPGA heterogeneous systems for
accelerating video analysis.

60.06% of the total computation, while the memory consump-
tion mostly comes from the FC layers, peaking at 67.73% of
overall required parameters.

DNN layers are considerably different regarding their com-
pute and memory-access patterns, even for layers in the same
model. We investigate six popular DNNs and summarize the
computation-to-communication (CTC) ratio (a metric for indi-
cating arithmetic intensity) of each layer with parameters
in Fig. 2. We define the Layer’s CTC ratio as the number
of multiply accumulate (MAC) operations supported by one
parameter fetched from memory. Layers with higher CTC
ratios mean that they are expected to be compute-bounded,
while layers with lower ratios indicate that they are more
likely memory-bounded. We observe a CTC downward trend
for each model starting from the front part of DNN (close
to the input layer). The gaps between the maximum and the
minimum CTC are significant for all DNN models. For exam-
ple, the maximum CTC is 255.7× and 254.7× higher than the
minimum one in VGG16 and ResNet18, respectively. Such
diverse layer characteristics pose tough challenges for efficient
hardware accelerator design and require the proposed design
to have great adaptability for different layers with expected
performance.

B. Real-Life Application Requirements

By targeting video analysis, accelerators are required to
handle streaming inputs and deliver satisfactory throughput to
match the video frame rate, such as 30 or 60 frames/s. This
type of application also needs to support frequent user inter-
actions, making real-time response indispensable. The design
difficulty then lies in where the proposed hardware accelera-
tor needs to deliver high throughput without using large batch
sizes since the extra delay in collecting batch inputs may fail
to meet the real-time requirement.

Another challenge comes from the continuous learning
demands in real time. Like most neural network models
specialized in the computer-vision domain, LRCN is first
trained on a benchmark dataset and then deployed on hard-
ware with the fixed, static parameters. To better adapt actual
application scenarios, the DNN model needs to be continu-
ously updated by using additional real-life data. In this case,
DNN parameters can not be treated as read-only data, and

the proposed hardware accelerator is required to provide an
efficient approach for parameter update.

C. Hardware Implementation Difficulties

Major layers, which dominate the compute and memory
resources, such as CONV, FC, and LSTM layers, are con-
structed by multiple nested loops from the algorithmic per-
spective. They can be optimized during implementation on
hardware, such as using loop unrolling to increase the
parallelism and loop pipelining to improve the throughput
performance. Although developing accelerators on a behavior
level can alleviate the design effort, actual hardware designs
may not always follow the designers’ intentions. For example,
the loop unrolling directive in HLS can be invalid if complex
data dependencies are found in that loop. Besides, an optimal
hardware implementation always requires careful resource
allocation since the DNN layers vary significantly in compute
and memory demands. If a DNN layer is memory-bounded,
its achievable performance is less affected by the allocated
computation resources but by how frequently it accesses
the memory and whether enough memory access bandwidth
can be provided. Thus, designers need to understand DNN
layer structures and customized hardware accelerator design
and implementation, along with a decent resource allocation
scheme to deliver an optimized hardware design.

V. PROPOSED ECOSYS FRAMEWORK

To overcome these challenges, we propose a novel design
framework called EcoSys to explore the customized het-
erogeneous system designs for running video analysis with
optimized performance. The overall design flow is shown in
Fig. 3, which includes four steps to deliver the hardware
implementation for the targeted DNN.

In the Design step, a targeted video analysis network is
developed using deep learning frameworks. After training on
the targeted dataset with satisfactory inference accuracy, the
DNN model is ready for hardware implementation. Its Python-
based definition files and parameters are passed to the next step
for detailed analysis. Meanwhile, we can set up a performance
target (e.g., throughput performance) and provide hardware
specifications (e.g., available resources of the targeted CPU +
FPGA system).
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Fig. 4. (a) Proposed customized heterogeneous system for accelerating DNN workloads specialized in video analysis. (b) Layer-based pipeline across the
accelerator and the host for higher throughput performance. (c) Highly configurable architecture unit design.

In the Analysis step, the proposed framework starts model
analysis to collect layer-wise information. The built-in parser
is responsible for understanding the input DNN architecture,
including the network’s input/output shape, layer type, layer
configuration, etc. The profiling function then captures layer’s
compute and memory access patterns, such as the number
of operations and CTC ratio, to outline the input model. The
Analysis step also collects the targeted hardware specification to
clarify resource constraints and the desired performance target.

When all the information is ready, the DSE step is launched
to explore optimized configurations for accelerating targeted
DNNs on our customized heterogeneous system. Since our
proposed system includes an FPGA-based accelerator and a
host CPU, the first task is to partition the input DNN and dis-
tribute workloads to different devices. On the accelerator side,
resource allocation is executed to provide hardware configura-
tion guidelines given the design space and available resources,
such as DSPs (compute resources), BRAMs (on-chip memory
resources), and external memory access bandwidth. Following
these guidelines, layer optimization is performed to select the
most suitable configuration for every predefined configurable
layer IP within the resource constraints. Performance estima-
tion of the accelerator is then provided to the CPU optimizer
as performance calibration. On the CPU side, the optimization
goal is to match the accelerator’s performance since the opti-
mized system-level performance requires perfect coordination
among all different devices. Overall performance estimation
is then provided as feedback to adjust the task partitioning.
Eventually, the DSE step generates the optimized solution to
configure the customized system given targeted workloads and
available hardware resources. If the result is still not satisfac-
tory, feedback with performance estimation will be sent to the
Design step for model or hardware alternations. With such a
feedback mechanism, we can significantly reduce the devel-
opment time because we do not need to wait to complete
hardware implementation before changing the design.

Design guidelines are then passed to the Construction step.
Regarding the accelerator design, layer IP configuration is
responsible for building DNN accelerators with predefined IP
templates written by Verilog hardware description language.
These IPs are highly configurable to guarantee adaptability and
scalability when targeting different DNNs with various FPGA

resource budgets. After going through the FPGA design flow,
we generate the hardware instance of the customized acceler-
ator. Meanwhile, on the CPU side, C-level design templates
(DNN layer IPs described in the C programming language)
are configured according to the optimization guidelines from
the DSE. We then use an OpenMP API to execute these tem-
plates by taking advantage of the multicore CPU architecture.
Eventually, the accelerator and the host CPU are integrated
with CAPI and form a customized heterogeneous system.

VI. CUSTOMIZED ACCELERATOR ARCHITECTURE

A. Architecture Overview

As shown in Fig. 4(a), the targeted DNN workloads are first
partitioned into two parts: the first part starting with the CNN
mapping to the accelerator and the second part mapping to
the CPU. The task partitioning scheme is determined by the
DSE (step 3 of the proposed flow) by considering various fac-
tors, such as compute and memory demands of the input DNN
and available resource budgets. Fig. 4(a) only presents one of
the possible schemes where the split point is exactly between
CNN and LSTM. It is possible to partition within the CNN
where the last few CNN layers will be mapped to CPU. We
limit the maximum split parts to two and always map the first
part to FPGA and the second part to CPU. Such a design may
restrict system-level variants, but it helps deliver a concrete
CPU + FPGA architecture template that allows more specific
optimization strategies to be applied. More importantly, it is
suitable for our targeted CNN + RNN workloads. The first part
is more compute-intensive (with higher CTC ratios accord-
ing to Fig. 2) which the customized hardware accelerator can
better address.

We adopt a CAPI-based coherent interconnection between
the host CPU and the accelerator. These hardware devices are
connected with coherent memory space for improved memory
capacity and lower data transfer latency. In our design, accel-
erators are granted privileges to access the memory banks
with the same effective addresses from the host CPU with-
out involving direct communications. This feature effectively
overcomes the limitations caused by low memory capacity and
data synchronization procedures. It also reduces the number
of data transfers because the enormous video inputs no longer
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need to be transferred to the accelerator’s own memory space
at run-time.

Since the accelerator and CPU can work seamlessly, cus-
tomized system designs generated by EcoSys can achieve
a layer-based pipeline structure for improved throughput
performance as shown in Fig. 4(b). Major layers in the
CNN dominating the computation or memory consumption
(e.g., CONV, Pooling, and FC layers) are constructed as
individual pipeline stages while the lightweight layers (e.g.,
activation layers and batch normalization layers) are aggre-
gated to their neighboring major layers. We also adopt a
fine-grained pipeline design from [7] to increase the overlap
between pipeline stages, which equivalently reduces the initial
latency. On the other side, layers in the RNN are treated as
one pipeline stage because of their recurrent behaviors. If this
part is mapped to CPU as the example showing in Fig. 4(b),
it will be launched after results from the previous layer are
available in the coherent memory space.

B. Customized Accelerator Design

For the proposed accelerator design, EcoSys generates
architecture units (AUs) as pipeline stages corresponding to
major DNN layers in the targeted network. In each AU,
EcoSys instantiates three major hardware components, includ-
ing a compute engine (CE), a weight buffer (WBuf), and an
input buffer (InBuf). As shown in Fig. 4(c), the yellow area in
the accelerator architecture represents the proposed CE, which
is highly configurable and responsible for the DNN layer oper-
ations. It supports a 2-D parallelism scheme to perform parallel
processing for each layer following the input and output par-
allelism factor called cpf and kpf. It means cpf number of
input channels and kpf number of output channels are pro-
cessed simultaneously in one CE with the total parallelism
factor as cpf × kpf. Inside each CE, there are kpf process
elements (PEs) instantiated to handle computations. We will
cover more details of the CE design in Section VI-B1. To
ensure sufficient data supply to the CE unit, we utilize input
and WBufs for on-chip data buffering. The input feature maps
from the system input or previous AU are passed horizon-
tally from the left and kept in the InBuf. To avoid buffering
an entire feature map within each AU, we adopt a partition
scheme published in [7] to keep a subset (several slices on the
height-depth plane) of the input feature map on-chip. We will
introduce this method in Section VI-B2.

Meanwhile, a fraction of DNN parameters corresponding to
the current computation is transferred from the external coher-
ent memory through an AXI-to-CAPI bridge and stored in the
WBuf. The bitwidth for memory access (MW) is also config-
urable to satisfy various bandwidth demands from different AU
designs. More details regarding memory management will be
presented in Section VI-B3. The proposed design also supports
dedicated data quantization schemes for each AU with differ-
ent bit-width combinations for input data (DW) and parameter
(WW). EcoSys can generate accelerators with great adaptabil-
ity and scalability to overcome challenges when handling the
demanding DNN-based video analysis workloads with these
configurable parameters.

1) Computation Engine Design: CE is the critical com-
ponent for handling computations in every AU. Shown in

Fig. 5. Highly configurable CE design for diverse DNN compute demands.

Fig. 5 is the detailed structure in the proposed CE, which
provides 2-D parallel processing along with input and out-
put channels of the targeted DNN layer. Assuming a CE with
parallelism configured as cpf and kpf, cpf pairs of input and
DNN weight are passed from the on-chip buffers and han-
dled by the first PE (PE1) (which is a submodule in every
CE) for MAC operations, and the generated results are pro-
duced along the first output channel dimension. Meanwhile,
PE2 ∼ PEkpf are working on the same inputs but different
DNN parameters to generate results for the next kpf−1 out-
put channels. In this case, kpf PEs are instantiated providing
a total parallelism factor as cpf × kpf. To support a dedicated
quantization scheme for each pipeline stage, the proposed CE
also contains a bit-extension and bit-truncation unit. With the
configurable IP design, EcoSys can instantiate dedicated CEs
to handle various layers operations in fulfilling the desired
performance within the FPGA resource constraints.

2) Feature Map Partition: When handling DNN-based
video analysis, the input feature can be enormous, especially
when targeting video frames with large resolution. EcoSys
fellows a feature map partition strategy called column-based
cache [7] to effectively utilize the scarce on-chip memory by
keeping a subset of feature maps instead of the entire ones.
Assuming a 3-D input feature map (D × H × W for depth,
height, and width) in a CONV layer with kernel size D×K×K
and stride S, the column-based cache only needs to keep K+S
slices of the input feature map to start sliding window opera-
tions along the H dimension. Each slice is a D×H plane and
the input elements cached on-chip is D×H × (K + S). After
computation with the cached feature map subsets, the InBuf
will release the oldest slice and start buffering the new one
and supporting CE’s continuous operations.

3) Memory Hierarchy Design: To improve the memory
access efficiency, the data access patterns need to be simple
and straightforward, which means data can be fetched fol-
lowing consecutive locations in memory. To ensure this, the
multidimensional DNN parameters are reordered into a linear
sequence that follows this order of computation. This pre-
processing can guarantee that data locality is exploited when
the CE instance accesses weight data and thus improve the
throughput of access.

To further hide the effects of off-chip memory access
latency, we overlap the computation with communication.
When a CE instance is consuming weights already fetched,
fetch requests for the new weights are sent out concurrently.
As shown in Fig. 6, we design a hierarchical memory system to



ZHANG et al.: EXPLORING HW/SW CO-DESIGN FOR VIDEO ANALYSIS ON CPU-FPGA HETEROGENEOUS SYSTEMS 1613

Fig. 6. Memory hierarchy design for timely data delivery.

Fig. 7. Block diagrams for CAPI-compatible FPGA-based accelerator design.

meet this requirement by instantiating FIFOs in the path con-
necting the on-chip buffers to external memory. The FIFOs
prefetch a few parameters first, and for every FIFO row of
parameters consumed by CE, a new row is fetched at the back
of the FIFO. In addition, the WBufs are instantiated as ping-
pong buffers to hide a few cycles of access time between the
proposed CE and the FIFO.

C. CAPI Integration

We use CAPI [38] for connecting the customized FPGA-
based accelerator and the host CPU. CAPI divides the load of
the traditional driver into two proxies as one on the host side,
named coherent attached processor proxy (CAPP), while the
other on the FPGA accelerator side, called power service layer
(PSL). As shown in Fig. 7, these two proxies are connected
to each other based on the physical layer of the PCIe. The
accelerator functional unit (AFU) is the core design to accel-
erate specific functionality, which, in this article, is the LRCN
accelerator handling the assigned layers after task partition-
ing. The AFU reads and writes data across the PCIe physical
connection and communicates with the CPU side application

TABLE II
ADAPTIVE DESIGN SPACE OF OUR PROPOSED SYSTEM

behind the PSL, with the assistance of the storage, network,
and analytics programming (SNAP) framework. SNAP con-
tains a dedicated hardware IP core that communicates between
the PSL and AFU in order to manage the requiring tasks initi-
ated from the host side. The SNAP core provides a four-state
finite-state machine (FSM), called CAPI FSM, to handle the
job management based on the memory-mapped register I/O
inputs from the host CPU. The CAPI FSM is responsible for
activating the AFU execution by the communication between
its control interface and the AFU’s FSM (which is called accel-
erator FSM). The CAPI FSM contains four states, including
wait, assign, return, and complete, among which the assign
state will signify the AFU to start execution and the return
state will initiate PSL to transmit the status information of the
AFU back to the host CPU. On the host CPU side, CAPI pro-
vides CAPP as part of the PCIe host bridge (PHB) to handle
the communications.

VII. DESIGN SPACE EXPLORATION

A. Design Space Definition

The proposed heterogeneous system provides us with an
enormous design space to explore, covering the accelerator,
host CPU, and interconnection schemes. With such a suffi-
ciently high degree of design space, we have more opportuni-
ties to deliver optimized system-level designs for accelerating
the targeted video analysis applications. We summarize the
design space in Table II.

The design space outlines our proposed design by provid-
ing configurations regarding the accelerator and the CPU. It
describes an adaptive space as its size is directly related to the
workload partitioning scheme. Assuming the first i layers are
distributed to the accelerator, the possible accelerator design
combinations for AUs can reach 4i when considering the paral-
lel factors (cpf, kpf ) and on-chip buffer setups (InBuf, WBuf ).
With more DNN layers allocated to the accelerator, the design
space grows to contain more design dimensions. Regarding the
accelerator design, we adopt three major resources as: 1) DSPs
(the computation resources); 2) BRAMs (the on-chip memory
resources); and 3) external memory access bandwidth to spec-
ify the resource constraints during DSE. For the other part of
workloads running on the host CPU, we explore the different
configurations of multithreading schemes, where the constraint
is the available thread number. All the configurable parameters
listed in Table II contribute to high-dimension design space,
providing us a great degree of design freedom and increasing
the design difficulties for choosing the most suitable design
combination by considering given resource constraints and
performance targets.
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Algorithm 1: Proposed DSE Flow
1 Input layer info L = {l1, l2 · · · ln}
2 Input resource constraints:
3 RAcc = {DSP, BRAM, BW}, RCPU = THREAD
4 Initialize best configuration: Configbest = {}
5 Initialize best performance: Perfbest = 0
6 Initialize task partitioning: TP = len(L)

7 while TP > 1 do
8 TaskAcc, TaskCPU ← TaskPartition(TP)
9 Initialize accelerator configuration: configAcc = {}

10 PF← CompAlloc(TaskAcc, RAcc)
11 {CPF, KPF, InB, WB} ← MemAlloc(PF, RAcc)
12 configAcc ← {CPF, KPF, InB, WB}
13 PerfAcc ← AccEval(configAcc)
14 Initialize CPU configuration: configCPU = {}
15 Initialize CPU performance: PerfCPU = 0
16 for thread in range(RCPU) do
17 p ← CPUEval(TaskCPU, thread)
18 if p > PerfCPU then
19 configCPU ← thread
20 PerfCPU ← p
21 end
22 Perf ← min{PerfAcc, PerfCPU}
23 if Perf > Perfbest then
24 Configbest ← {configAcc, configCPU}
25 Perfbest ← Perf
26 TP = TP− 1
27 end
28 return Configbest, Perfbest

B. Overall DSE Flow

We propose a DSE engine (Step 3 of the EcoSys flow
shown in Fig. 3) to identify suitable design configurations
and deliver the customized design to meet hardware spec-
ifications and performance targets. The whole DSE flow is
described by Algorithm 1. It takes the targeted DNN layer
information and hardware resource constraints as inputs and
generates hardware configuration guidelines for implementing
the whole system and the estimated achievable performance.

Task partitioning is first performed in Algorithm 1 to divide
the targeted workload into two halves. For a given DNN model
with n major layers, there are n − 1 partition schemes to be
explored. We use TP to denote the “split point,” meaning that
assign layer 1 ∼ TP are assigned to the customized accel-
erator while layer TP ∼ n are assigned to the host CPU.
From Line 7 ∼ 27, we start traversing all partition schemes.
In the proposed DSE design, we retain an assumption that
layers in the front part of DNN are more likely to have
higher CTC ratios (e.g., the examples shown in Fig. 2), which
are more compute-intensive and suitable to be handled by
the FPGA-based accelerator compared to layers in the rear
part.

For each partition scheme, individual optimizations are
launched to deliver configurations for the accelerator
(lines 9–13) and the CPU (lines 14–21) given available hard-
ware resources. Regarding the accelerator optimization, we
first adopt CompAlloc function to allocate the available com-
pute resources to maximize the performance of the hardware
accelerator following a pipeline architecture. These stage-wise
parallel factors are then packed as PF and passed to MemAlloc
for memory resource allocation. The utilization of on-chip
memory and external memory access bandwidth is closely
related to the parallel factor and DNN layer structure. In our

Algorithm 2: Compute Resource Allocation
1 Input available compute resource: Rtotal
2 Input stage-wise compute demands: Ci, and total demands: Ctotal

3 Resource distributed to pipeline stage i: Ri = Ci
Ctotal

× Rtotal,

Ri = 2�log2 Ri�
4 while

∑n
i=1 Ri ≤ Rtotal do

5 Select stage j with maximum
Cj
Rj

: Rj = 2× Rj

6 if
∑n

i=1 Ri ≤ Rtotal then
7 Continue
8 else

9 Rj = Rj
2

10 Break
11 end
12 Ri = cpfi × kpfi

design, the WBuf size is determined by the assigned parallel
factor and DNN kernel size, while the InBuf size is determined
by the number of cached slices of the input feature map as
mentioned in Section VI-B2. The goal of memory resource
allocation is to provide timely data delivery so that the allo-
cated compute resources can perform smoothly. In the next
step, AccEval is launched to evaluate the current accelerator
configuration.

On the host CPU side, we evaluate its performance to han-
dle the TaskCPU (with DNN layers assigned to the CPU) and
the goal is to discover a configuration that can match the accel-
erator’s performance (e.g., to achieve similar throughput for a
better system-level pipeline). We enumerate all possible con-
figurations of the thread number in a binary search manner
when using OpenMP and collect the best one.

C. Compute Resource Allocation

One of the most critical problems in FPGA-based DNN
implementation is unclear resource allocation. Therefore, we
propose a function called CompAlloc to provide resource
allocation guidelines by considering targeted workloads and
predefined hardware resource constraints. As shown in
Algorithm 2, we allocate the computation resource to balance
the latency of each pipeline stage. Assuming the computa-
tion demand of pipeline stage i is Ci (corresponding to major
layer i), the increase of allocated compute resource Ri for
this stage results in a proportional increase in parallelism
(meaning larger cpfi and kpfi) and eventually lowers the execu-
tion latency. By configuring the allocated compute resources,
we can balance the DNN workloads by coordinating every
pipeline stage and achieve the maximum throughput once the
workload for each stage is well-balanced. Since the parallelism
factors must be the power of 2, we further fine-tune the allo-
cation scheme and fills the gap between the actual and the
theoretical values.

D. Memory Resource Allocation

According to the parallel factors, the proposed DSE then
starts allocating the memory resources for each pipeline stage
to guarantee sufficient data supply. In our design, the output
bitwidth of the InBuf is assigned to DWi×cpfi, while the out-
put bitwidth of the WBuf is WWi × kpfi × cpfi, where DWi
and WWi represent the data quantization scheme of feature
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maps and DNN parameters in stage i, respectively. Such a
design ensures that sufficient data can be obtained in every
fetch performed by the proposed CE with the desired paral-
lelism. As mentioned in Section VI-B2, the InBuf of stage i
only needs to keep a small subset of the input feature map
(Ki + Si slices). When holding Si more slices of input feature
map (e.g., Ki + 2Si slices), the same DNN parameters can be
used for one more sliding window operation with a longer life
after fetching from the external memory. It means buffering
a slightly larger portion of the feature map helps lower the
bandwidth demands as parameters are fetched less frequently.
Therefore, we can also adjust the bandwidth utilization in case
the available bandwidth is not enough.

E. Accelerator Performance Estimation

In general, a complete FPGA design flow includes several
time-consuming steps, such as RTL design, logic synthesis,
and place-and-route. Even with a fully optimized RTL design,
the rest of the design flow can take hours to generate an imple-
mentation for performance evaluation. This extremely long
development process makes the proposed DSE infeasible as
every task partition scheme means hours of waiting. To provide
timely performance feedback, we adopt analytical models to
estimate achievable performance based on the hardware con-
figurations so that the DSE engine can make the most suitable
decision in a minute.

We take a DNN with n CONV-like layers as an example,
and, regarding the i-th layer, we assume the input feature
map size to be InChi × Hi × Wi and the kernel size to be
OutChi×InChi×Ki×Ki. With hardware configuration Config,
the latency Lati during the execution of layer i at working
frequency freq can be determined as

Lati = OutChi × InChi × Hi ×Wi × Ki × Ki

cpf i × kpf i × freq
. (1)

The throughput performance of the accelerator can be
described using the following equation:

Throughput = Batch size

max(Lat1, Lat2, . . . , Latn)
. (2)

The estimated throughput performance achieved by the
accelerator will be the performance target for the host CPU
when handling the rest of workloads (TaskCPU). To maintain
the optimized system-level performance, the CPU adopts a
multithreaded optimization on the software task to achieve
comparable performance. Only when the process latency of
each pipeline stage from the accelerator and the latency of
the CPU process are similar can we achieve a fully pipelined
flow.

To demonstrate the accuracy of our proposed analytical
models, we compare the estimated performance of three
DNN accelerators to their actual performance after board-
level implementation and present the results in Table III. In
this experiment, we prepare three DNN accelerator IPs target-
ing AlexNet and VGG-16 with various architecture parameter
setups (such as Batch size, cpf , kpf , etc.). As the proposed
analytical models only work for the accelerator side, we do
not consider the task partition feature. For case 1, we prepare
an accelerator IP for running AlexNet inference with batch
size = 1 at 200 MHz; for case 2, we have a larger IP instance

TABLE III
PERFORMANCE ESTIMATION ERRORS

for AlexNet with batch size = 6 at 220 MHz; for the last
case, we construct an accelerator for VGG-16 with batch size
= 2 at 235 MHz. By comparing the estimated and actual
performance after implementation in Table III, we capture the
average performance estimation error as 0.22%, which verifies
the accuracy of our proposed analytical models.

F. Multithreaded Optimization

After the DSE decides the software partitioned task for
the CPU, we then feed the original network architectural
parameters into a python-based OpenMP-enabled code gener-
ation engine with the main algorithm shown in Algorithm 3.
Within the generation process, the tool utilizes a three-layer
(CONV, FC, and LSTM layers) template to iterate the parti-
tioned network with a given threading factor for each targeted
layer. We leverage the OpenMP parallel for optimizer with
static scheduling to increase code parallelism across the output
channel dimension. Also, we utilize the OpenMP optimizer to
assign share memory for the input and WBufs of the targeted
layer and private memory for the loop indexing variables.
After the OpenMP-enabled C-based source code for the soft-
ware task is complete, we then calibrate the threading factor in
a binary search pattern that finds the design code to reach the
target latency performance asked from DSE. If such a design
is satisfactory, we then integrate this callable function into the
main function that also calls the FPGA accelerator with the
system-level pipeline.

VIII. EXPERIMENTAL RESULTS

A. Preparation Work

To carry out the EcoSys that generates the optimized CPU
+ FPGA designs, we follow the proposed four-step design
flow (Fig. 3). We first feed our proposed framework with
the targeted LRCN network information, which includes the
Python-based DNN definition file and corresponding DNN
parameters. We then enter the targeted performance and the
hardware resource constraints, which contain compute and
memory resources provided by the targeted FPGA and the
number of available threads in the host CPU. After perform-
ing the Analysis and DSE steps, the predefined RTL IPs and
the OpenMP templates are configured with optimized hard-
ware parameters listed in Table II. The RTL IPs are then
passed through the FPGA design and implementation flow
to construct a customized accelerator running on FPGA. At
the same time, the OpenMP templates are executed on the
host CPU with multithread technology. Knowing the DNN
compute behaviors from the model definition file, we parti-
tion and reorder the DNN parameters to be compatible with
the hardware design. We then apply the CAPI integration and
combine the FPGA accelerator and the host CPU to perform
a system-level pipeline shown in Fig. 4(b).
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Algorithm 3: OpenMP-Enabled Code Generation
1 SW_FUNC← source_code_prolog
2 for Li → SW_layers do
3 layer_src ← function_prolog based on Li.param
4 line_src ← “ #pragma omp parallel for

shared(Li.param.shared_buf ) privarte(Li.param.private_var)
shcedule(static) num_threads(Li.param.thread_num)”

5 layer_src.append(line_src)
6 if Li.type is fully-connected_layer then
7 � FC layer optimization
8 line_src ← “for c in output_channel”
9 layer_src.append(line_src)

10 line_src ← “for b in batch_size”
11 layer_src.append(line_src)
12 line_src ← “Li.param.out[b][c]← Li.param.bias[c]”
13 layer_src.append(line_src)
14 line_src ← “for n in input_channel”
15 layer_src.append(line_src)
16 line_src ← “Li.param.out[b][c]+ =

Li.param.in[b][n]× Li.param.w[c][n]”
17 layer_src.append(line_src)
18 layer_src.append(function_epilog)
19 end
20 else if Li.type is convolutional_layer then
21 � CONV layer optimization
22 line_src ← “for c in output_channel”
23 layer_src.append(line_src)
24 line_src ← “for b in batch_size”
25 layer_src.append(line_src)
26 line_src ← “for n in input_channel”
27 layer_src.append(line_src)
28 line_src ← “for h in image_height”
29 layer_src.append(line_src)
30 line_src ← “for w in image_width”
31 layer_src.append(line_src)
32 line_src ← “for i in kernel_height”
33 layer_src.append(line_src)
34 line_src ← “for j in kernel_width”
35 layer_src.append(line_src)
36 line_src ← “update out[b][c][h][w] with input[b][c][h+i][w+j]
37 and weight[c][n][i][j]”
38 layer_src.append(line_src)
39 end
40 else if Li.type is LSTM_layer then
41 � LSTM layer optimization
42 line_src ← “for c in output_channel”
43 layer_src.append(line_src)
44 line_src ← “for b in batch_size”
45 layer_src.append(line_src)
46 line_src ← “update out[b][c] with input[b][c] and c_tml[b][c]”
47 layer_src.append(line_src)
48 end
49 SW_FUNC.append(layer_src)
50 end
51 SW_FUNC.append(source_code_epilog)
52 return SW_FUNC

During the experiments, we select the Alpha Data ADM-
PCIE-9H3 acceleration board with a Xilinx VU35P FPGA
as our target FPGA platform for board-level implementations
of the customized accelerator design. To complete the FPGA
design flow, we adopt Vivado 2020.1 to synthesize and imple-
ment the proposed design at 250 MHz working frequency. We
adopt an IBM Power9 CPU (with 2 GHz working frequency)
as the host CPU.

B. CAPI Integration Benefits

In the traditional CPU + FPGA system, the FPGA can
only access its own memory, which locates on the FPGA
board. The data of interests, such as the input video frames,

TABLE IV
DATA MOVEMENT OVERHEAD FOR PROCESSING EVERY VIDEO FRAME

TABLE V
RESOURCE UTILIZATION OF THE PROPOSED LRCN ACCELERATORS

TABLE VI
PERFORMANCE OF THE PROPOSED LRCN ACCELERATORS

and updated DNN parameters, is commonly stored inside the
main memory accessible from the CPU. It means an extra
data movement is inevitable from the main memory to the
FPGA’s own memory before activating the FPGA accelerator.
The latency caused by such an extra data movement will sig-
nificantly affect the overall performance when accelerating the
video analysis applications. To eliminate the data movement
latency between devices, we adopt a CAPI-based solution
by providing a coherent memory space for both devices
with equal accessibility. To demonstrate the benefit of using
CAPI, we perform three experiments corresponding to test
cases 1–3 in Table IV and provide quantitative analysis regard-
ing the differences between CAPI and non-CAPI (traditional)
solution.

We first prepare two systems for comparison as one uses
traditional CPU and FPGA connection (non-CAPI), and the
other uses a CAPI-connected scheme with coherent memory
space. By targeting the same LRCN model with an identical
task partitioning scheme, we deploy the same accelerator IP
to these two systems. For test case 1, we perform continuous
single frame execution to simulate most real-life cases, where
video frames are transferred into the system one after another
and processed by FPGA and CPU following the task partition-
ing scheme. For cases 2 and 3, we increase the granularity of
execution and allow 10 and 100 frames to be transferred each
time. Latency results of all three cases are shown in Table IV,
where “HW” indicates the average process latency spending
on FPGA, while “Total” means the total average execution
time for the whole system for each input frame. Note that the
frame collecting time is not included in these experiments,
which means we assume all frames (e.g., all 10 frames in
case 2, and all 100 frames in case 3) are initially available in
the main memory.

In this experiment, we try to maintain the same performance
from the hardware accelerator side in both CAPI and non-
CAPI systems and mainly focus on the differences caused



ZHANG et al.: EXPLORING HW/SW CO-DESIGN FOR VIDEO ANALYSIS ON CPU-FPGA HETEROGENEOUS SYSTEMS 1617

TABLE VII
RESULT COMPARISON FOR RUNNING LRCN WITH ALEXNET BACKBONE

TABLE VIII
PERFORMANCE COMPARISON OF ACCELERATOR DESIGN FRAMEWORKS

by data movements. Results in Table IV demonstrate that our
proposed design (with CAPI) can reduce up to 19.96% of
latency in test case 1 compared to the traditional scheme.
The latency advantage of our design sightly decreases to
11.72% and 10.35% of latency reduction for cases 2 and 3,
respectively.

C. Baseline Designs

We select our previous LRCN accelerator design in [25] as
one of our baseline designs (named baseline 1). It is imple-
mented on a VC709 FPGA with an older technology node
(28 nm) compared to our targeted FPGA (16 nm) in this
work. To have a fair comparison, we create the second baseline
design (baseline 2) by implementing the previous design on
the same VU35P FPGA. We still maintain the same features
adopted by the previous design, such as using the same con-
figurable HLS IPs and the same memory hierarchical design.
The performance of these two baseline designs is shown in
Table VII.

D. EcoSys Proposed Designs

By following the EcoSys design flow, we generate two cus-
tomized heterogeneous system designs for accelerating LRCN
with AlexNet and VGG-16 backbones. Although these two
LRCN models have different front-end CNNs, the rest of these
models are identical, which adopt the same LSTM layers with
15 iterations. For the LRCN with AlexNet backbone, we adopt
the unpruned version with five CONV and three FC layers with
1.45 GOP compute complexity. According to the task partition
scheme generated by EcoSys, the whole AlexNet backbone is
mapped to the targeted FPGA while the LSTM layers are han-
dled by CPU. We use the original VGG-16 as the backbone for
the second design, which contains 13 CONV and 3 FC layers
with 30.9 GOP. In this case, CONV layers are distributed to
the FPGA while the FC and LSTM layers are assigned to the
CPU.

To improve hardware efficiency, we use fixed16 precision to
represent AlexNet’s activations and parameters and VGG-16’s

Fig. 8. Parallel factor configuration of the proposed designs. We label
the layers along with the x-axis. For the design using AlexNet backbone,
layers 1 ∼ 8 indicate 5 CONV and 3 FC layers; while for the VGG-backbone,
layers 1 ∼ 13 indicate all CONV layers in VGG-16. (Pooling layers are
omitted.)

activations while use fixed8 precision to represent parameters
in VGG-16. Regarding the layers mapped to the CPU, we
use float32 precision. The FPGA-based accelerators in both
designs are implemented with 250 MHz working frequency,
and resource utilization is presented in Table V. We also
present the parallel factor configurations of the proposed accel-
erators in Fig. 8. These configurations are generated by the
proposed DSE, which helps create balanced pipeline stages
for optimized overall performance.

Performance results are presented in Table VI. As we adopt
a layer-based pipeline architecture, the performance of the
hardware accelerator is limited by the slowest pipeline stage.
Latency results of these critical stages are presented in the
“Max. FPGA stage” column. On the other side, the host CPU
contributes to the last pipeline stage by handling the rest of the
workloads. So, the overall throughput of the proposed LRCN
accelerator is 314.7 FPS (with AlexNet) and 58.1 FPS (with
VGG-16).

E. Comparison Results

We compare the proposed design to other implementations
using pure CPU and FPGA by targeting the same LRCN
model with the AlexNet backbone. For the CPU design, we
use the same Power9 CPU to execute the whole LRCN and
adopt the proposed OpenMP templates for implementing all
DNN layers. We list the performance of two CPU designs
in Table VII. To search for the best thread number configu-
ration, we adopt a system-level profiling tool called OProfile
and eventually conclude that using 32 threads can reach the
optimal performance for the targeted workloads, peaking at
15.1 FPS. We also include two FPGA designs as baselines.
Compared to the multithreaded CPU and FPGA baseline 2,
our proposed design achieves 20.8× and 5.3× higher through-
put, respectively. Such a significant performance improvement
demonstrates the effectiveness of using proposed optimization
methods.

We also extend the comparison to other customized acceler-
ator design frameworks for accelerating DNN inference. Since
these frameworks are not originally built for video analysis,
they solely focus on CNNs but not CNN + RNN structures.
To enable a suitable comparison, we disable EcoSys’s task
partition feature and map the targeted CNN only into FPGA
for performance evaluation. Results are shown in Table VIII.
The target DNN is VGG-16 [4], which costs 30.9 GOPs for
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processing one input image. Our proposed VGG-16 acceler-
ator adopts a fixed16 precision for activation and a fixed8
precision for DNN parameters. After implementing on the
targeted FPGA, the proposed VGG-16 accelerator consumes
4410 DSPs, 1293 Block RAMs, 415252 LUTs, and 170033
Flip Flops. In this table, we report the actual DSP utilization
for 16-bit data multipliers. For the design using Intel FPGAs
published (e.g., [39]), the DSP utilization should be twice as
shown in [39] because one variable-precision DSP block can
support two 16-bit multipliers at the same time. By comparing
the throughput performance, our proposed design can reach
2141.0 GOP/s with batch size 2, which is 1.17× and 1.42×
higher than the second and third best designs.

IX. CONCLUSION

This article presented EcoSys, a novel framework to explore
co-optimization opportunities for building customized het-
erogeneous systems with both CPU and FPGA-based DNN
accelerator for video analysis workloads. To the best of our
knowledge, it is the first hardware-software co-optimization
framework that supports a CAPI-connected CPU + FPGA
system and provides an end-to-end design and optimization
flow from DNN design to its hardware implementation on the
heterogeneous system. To address the design challenges, we
adopted a CAPI-enable coherent memory space to connect
between the accelerator and the host CPU, which saves up to
19.96% of data transfer latency compared to the traditional
CPU + FPGA system. We proposed a highly configurable
accelerator architecture and diverse optimization strategies,
including layer-based pipeline, efficient memory hierarchical
design, high-performance RTL layer IPs for the accelerator,
and multithreaded layer templates for the CPU to satisfy
demanding workloads. We then introduced an adaptive design
space to describe the possible hardware configurations and
a DSE engine to explore optimized solutions by considering
various hardware constraints and performance targets. With
the above novel designs, EcoSys achieved 20.8× and 5.3×
higher throughput compared to the multithreaded CPU and
pure FPGA designs when targeting the same LRCN model.
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