
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 11, NOVEMBER 2021 2421

A Design Flow for Click-Based Asynchronous Circuits Design With
Conventional EDA Tools

Hui Wu, Zhe Su , Student Member, IEEE, Jilin Zhang , Shaojun Wei , Fellow, IEEE,

Zhihua Wang , Fellow, IEEE, and Hong Chen , Senior Member, IEEE

Abstract—The “event-driven” feature of asynchronous circuits enables
the circuits to work when and where needed, making it a good alterna-
tive to design low-power circuits. However, asynchronous circuits are not
widely adopted as a consequence of the lack of support by conventional
EDA tools. In this article, we propose a novel design flow to implement the
Click-based asynchronous bundled-data circuits efficiently down to mask
layout with conventional EDA tools. To ensure timing correctness, we
put forward an adaptive delay matching (ADM) method and perform
accurate static timing analysis for the circuits. Compared with other
asynchronous toolsets, the proposed design flow is more efficient and
convenient to implement asynchronous circuits. An asynchronous con-
volution neural network accelerator is implemented in TSMC 180- and
65-nm CMOS process, respectively, to verify the proposed design flow.
The silicon test results show that the asynchronous accelerator has 30%
less power in the computing array than the synchronous one in the TSMC
65-nm CMOS process, and the energy efficiency of the asynchronous and
synchronous accelerators are 1.539 TOPS/W and 1.37 TOPS/W, respec-
tively. The energy efficiency of the asynchronous accelerator in the TSMC
180-nm CMOS process is 133 GOPS/W.

Index Terms—Adaptive delay matching (ADM), asynchronous
circuits, click-based bundled-data (BD) circuits, conventional
EDA tools.

I. INTRODUCTION

Asynchronous circuits have significant potential advantages in
low power consumption and high performance [1], [2]. The “event-
driven” feature of asynchronous circuits is much like the way our
brain works so asynchronous circuits are widely adopted in neuromor-
phic chip design, such as TrueNorth [3] and Loihi [4] to achieve low
power consumption. The applications in the Internet of Things and
mobile platform also expect hardware to run in an energy-efficient
manner which needs to adopt a low-power design methodology.
Therefore, asynchronous circuits are a promising alternative to design
low-power circuits. However, asynchronous circuits are not widely
adopted as a consequence of the lack of support by conventional
EDA tools, making it challenging to design asynchronous circuits
efficiently for designers.

Manuscript received March 21, 2020; revised June 25, 2020 and
September 15, 2020; accepted November 4, 2020. Date of publication
November 16, 2020; date of current version October 20, 2021. This work
was supported in part by the National Science and Technology Major
Project from the Ministry of Science and Technology, China, under Grant
2018AAA0103100; in part by the National Natural Science Foundation of
China under Grant 61674090; in part by the Beijing National Research Center
for Information Science and Technology under Grant 042003266; and in part
by the Beijing Engineering Research Center under Grant BG0149. This article
was recommended by Associate Editor L. P. Carloni. (Corresponding author:
Hong Chen.)

The authors are with the Institute of Microelectronics, Tsinghua University,
Beijing 100084, China, also with the Tsinghua National Laboratory for
Information Science and Technology, Tsinghua University, Beijing 100084,
China, and also with the Beijing Engineering Center of Technology and
Research on Wireless Medical and Health System, Tsinghua University,
Beijing 10084, China (e-mail: hongchen@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TCAD.2020.3038337

Compared with quasi delay insensitive (QDI) circuits, asyn-
chronous bundled-data (BD) circuits cost less in terms of area
and power. Many efforts have been made on the design flow for
asynchronous BD circuits, including synthesis, physical implemen-
tation, and static timing analysis (STA). Petrify [5] synthesizes the
asynchronous BD controller circuits based on the signal transition
graph (STG). Balsa is put forward in [6] and is used to describe and
synthesize asynchronous circuits based on syntax-directed compila-
tion into communicating handshake circuits. Conventional EDA tools,
such as Synopsys design compiler (DC) and IC compiler (ICC),
are used in the design flows proposed in [7] and [8] to design
asynchronous BD circuits, in which, timing paths are obtained by
using command get_timing_path by specifying them one by one
and delay matching is performed by using command set_min_delay
in DC tools. The physical design of the asynchronous circuits is
finished with ICC. In [9] and [10], a combination of clocks is
adopted to describe every possible event propagation path in the
design based on the STG, allowing the EDA tools to fully capture
the relative timing constraints. This method can be used to per-
form STA on asynchronous BD circuits in the whole design flow.
EDA tools such as Petrify which synthesizes only controllers and
Balsa with the limitation due syntax-directed approach are less effi-
cient. Design flows proposed in [7] and [8] need many manual steps
to specify the timing paths one by one which are too complex
to handle large-scale asynchronous BD circuits design. For large-
scale asynchronous circuits, it is difficult to draw STG proposed
in [9] and [10] and an efficient delay matching method to guaran-
tee the asynchronous circuits fulfill the timing constraints should be
provided.

In this article, we propose an efficient and convenient design flow
to implement Click-based (i.e., Click element is adopted as con-
trol circuits) asynchronous BD circuits with conventional EDA tools.
There are some well-known BD asynchronous pipeline styles:
Micropipeline [11], Mousetrap [12], and Click [13]. Click element is
chosen as the handshaking circuits in our design because its out-
put pulse could be treated as a local clock, which makes it possible
to adapt the Synopsys DC tool to synthesize the Click-based asyn-
chronous BD circuits. In particular, we propose a method called
adaptive delay matching (ADM) to ensure correct timing for Click-
based asynchronous BD circuits during the synthesis process. The
encounter digital implementation (EDI) tool is adopted to imple-
ment the physical design, and PrimeTime (PT) is used to perform
STA of the circuits. Each step of the design flow is realized with the
conventional EDA tools.

The main contributions of this article and the difference from other
design flows are as follows.

1) The proposed design flow implements Click-based asyn-
chronous BD circuits more efficiently than other tools with
conventional EDA tools.

2) The proposed design flow synthesizes both synchronous and
asynchronous circuits simultaneously in one synthesis process.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2883-6996
https://orcid.org/0000-0003-1575-1520
https://orcid.org/0000-0001-5117-7920
https://orcid.org/0000-0001-6567-0759
https://orcid.org/0000-0003-0774-1410

2422 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 11, NOVEMBER 2021

Fig. 1. Click elements [13]. (a) Schematic of Click. (b) Waveforms of Click.

Fig. 2. Click-based BD asynchronous circuits.

3) Compared with the design flow proposed in [6] and [7], no
extra manual steps are needed to specify the timing paths one
by one and all timing paths can be captured with the clocks
created in DC and PT.

4) Compared with the method proposed in [9] and [10], the
method in this article is simpler to create clocks to obtain
all the timing paths without using STG based on Click-based
asynchronous circuits, and an ADM method is first proposed
to ensure correct timing of the Click-based BD asynchronous
circuits automatically.

The remainder of this article is organized as follows. Section II
introduces the Click-based asynchronous BD circuits and timing con-
straints. In Section III, the design flow for Click-based asynchronous
BD circuits is described in detail. In Section IV, CNN accelerators
are implemented in silicon to verify the efficiency of the proposed
methodology as a case study. Section V concludes this article.

II. CLICK-BASED BUNDLED-DATA ASYNCHRONOUS CIRCUITS

A. Click Element

The Click element is proposed by Peeters et al. [13], which adopts
two-phase non-return-to-zero handshake communication protocol.
The schematic of the Click element and its waveforms are shown
in Fig. 1(a) and (b), respectively. A local pulse fire is generated
to accept a new data item when the XOR gate checks that a new
data item has arrived from the left, and the XNOR checks that the
previous data item has been acknowledged from the right. Either the
rising edge or the falling edge of in_req generates a pulse fire that
is used as a local clock for data path. The transition of the in_req
signal can be delivered to out_req, which becomes the in_req signal
of the next stages. The width of pulse fire is decided by the delay
lines (not shown in Fig. 1) in the circuits.

B. Asynchronous Bundled-Data Circuits and Timing Constraints

Fig. 2 illustrates a simple asynchronous BD circuit with Click ele-
ments. The circuit adopts the two-phase handshake protocol. When
the data is ready, an transition of the request signal in_req is used to
generate a local clock fire1 to enable DFF1 to capture the data_in and
the fire1 will trigger Click2 to generate fire2. Then, a transition of the
acknowledge signal in_ack represents the completion of this action.
Both the rising and falling transition of the request signal indicate
the validity of the data, and both the rising and falling transition of
the acknowledge signal indicate the data has been captured [2]. The

latency between fire1 and fire2 equals to the delay between the Click
elements.

Obviously, the circuits in Fig. 2 should meet the requirement of
timing constraint to ensure correct function. For example, in order to
ensure DFF2 obtain correct data from CL, the delay on the green path
should be larger than that on the blue path. To specify conveniently,
we use the following terminology: D flip-flop (DFF) setup time: tsu,
DFF hold time: thold, the contamination delay of the DFF: tc−q,cd , the
maximum propagation delay of the DFF: tc−q, the time interval from
the rising edge fire1 to fire2: td1, the time interval from the rising
edge fire2 to fire1: td2, the contamination delay of combinational
logic: tlogic,cd , and the maximum delay of combinational logic: tlogic.

As we know, the setup and hold timing constraint of DFF1 and
DFF2 should be satisfied to ensure correct function of circuits (in
Fig. 2). The setup timing constraint can be described as follows [14]:

td1 > tc−q + tlogic + tsu. (1)

In order to satisfy the hold timing constraint, the delay of the
timing path, which is marked in purple dotted line in Fig. 2, should
be larger than thold. The hold timing constraint is as follows.

thold < td2 + tc−q,cd + tlogic,cd. (2)

To meet the requirement of setup timing constraint [shown in (1)],
asynchronous BD circuits need to insert delay lines (D1 shown in
Fig. 2) between the controllers which is called delay matching [2].
In most standard cell library, the minimum contamination delay of
all DFFs, tc−q,cd , is always lager than the maximum thold of the
DFFs. Additionally, according to the structure of Click element, td2
is obviously larger than thold even without D2 in Fig. 2. That is, no
buffer is needed to avoid the hold violations in the circuits during
the synthesis process.

III. DESIGN FLOW

We propose a design flow (illustrated in Fig. 3) to implement
Click-based asynchronous BD circuits. The first step is hardware
description of Asyn. BD circuits, in which the Click-based asyn-
chronous BD circuits are described with Verilog codes. And the
second step is Synthesis with ADM, in which DC is used to syn-
thesize the Verilog codes to generate a netlist of the circuits. During
the synthesis process, we put forward an ADM method. After syn-
thesis, the physical design of the circuits including place and route
(PnR) will be implemented with EDI. Then, design rule check (DRC)
and layout versus schematic (LVS) check are carried on. The final
step is STA with ADM which is an important step to check the tim-
ing of the circuits based on our ADM method. We describe all the
steps in detail in the following parts.

A. Hardware Description of Click-Based Asynchronous BD Circuits

Fig. 4 shows Click-based asynchronous BD pipeline circuits
[shown in Fig. 4(b)] and synchronous pipeline circuits [shown in
Fig. 4(a)]. Click elements are the handshake circuits in each stage
in the asynchronous pipeline circuits, while the synchronous pipeline
circuits have a global clock signal clk. The fire signals from the Click
elements can be treated as local clocks for the corresponding DFFs.
Therefore, when we use Verilog to describe the asynchronous BD
circuits in the behavioral level, we instantiate the Click elements to
build the handshaking channel and take the fire signals as local clocks.
The combinational logic (CL in Fig. 4) circuits in the asynchronous
circuits are the same as that in synchronous circuits.

WU et al.: DESIGN FLOW FOR CLICK-BASED ASYNCHRONOUS CIRCUITS DESIGN WITH CONVENTIONAL EDA TOOLS 2423

Fig. 3. Design flow for Click-based asynchronous BD circuits.

Fig. 4. (a) Synchronous and (b) asynchronous pipeline circuits.

B. Synthesis With the Method of Adaptive Delay Matching

We first design the Click elements in gate level by using the stan-
dard cells in the library. As mentioned in Section II, we take the fire
signals generated by the Click elements as the local clocks. Therefore,
we can adopt command create_clock to create clocks, with which
we can synthesize the Click-based asynchronous BD circuits with
DC. The synthesis process is different from that for synchronous
circuits in the following aspects: 1) the Click element should not
be modified to guarantee its correct operation once it is instantiated;
2) fire signals are treated as local clocks; 3) delay matching is needed;
and 4) delay lines should be inserted carefully between the Click ele-
ments to make the circuits operate correctly without hazard. The way
to create clocks and delay matching for the asynchronous circuits will
be discussed in Section III-C.

C. Adaptive Delay Matching

Delay matching is essential to guarantee the timing constraint in
expression (1) to be met for the BD circuits. Adaptive delay matching
according to corresponding data paths is critical to ensure the function
and better performance of the circuits. We could insert delay lines
with the command set_min_delay. However, the most critical step is
to determine the length of the inserted delay lines. Without a global
clock, DC tools cannot obtain the timing path, making the delay
matching impossible. In order to solve the problem, we put forward
a method called ADM, as shown in Fig. 5, with which we can perform
delay matching adaptively in asynchronous circuits.

Fig. 5. Method of ADM.

Fig. 6. Part of the synthesis scripts.

First, we generate local clocks for asynchronous circuits. In gen-
eral, the DC tools will consider two clocks are synchronous if they
share a common source and have a phase relationship. As discussed
in Section II, the fire signals in the Click-based asynchronous BD cir-
cuits have a latency, which approximately equals to the buffer delay
between the Click elements [such as D1 or D2 in Fig. 4(b)] plus the
gates delay in Click elements. As a result, we can treat all the fire
signals as local clocks which have a phase relationship. Therefore,
we create clocks for the fire signals and describe their relationship
using the command create_generated_clock. In this way, all the tim-
ing paths will be checked, and the combinational logic will also be
optimized according to the latency of the fire signals by DC. Then,
DC will find timing path1 and timing path2 as shown in Fig. 4(b)
and the setup check will be performed by DC for timing path1 and
timing path2. During the synthesis process, the worst corner is used
to perform the delay matching to guarantee the timing convergence.
The phase relationship changes with different PVT corners and the
STA on the circuits with different corners is described in detail in
Section III-E.

Second, the proposed method of ADM not only finds out the timing
paths in asynchronous circuits but also tries to find out the length of
delay lines to be inserted between the Click elements to achieve the
best performance of speed. We mark the total number of the pipeline
stages as n. Obviously, we should set n delay variables using the
command set_min_delay. As we do not know the exact delay values
before synthesis, we first create n variables with the same value,
and the latency between fire signals is set the same as the value in
the command set_min_delay. For example, if n equals 2, part of the
synthesis script is shown in Fig. 6 in which the clocks are created
according to the initial variables. The initial values of the variables
could be set to a small nonzero value, such as 0.1 ns in our case in
the TSMC 65-nm process.

Finally, we synthesize the circuits and run the command
for_in_collection to obtain the slack values of each timing path from
the report of command report_timing cyclically. Taking the parasitic

2424 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 11, NOVEMBER 2021

Fig. 7. Convolution core circuits.

Fig. 8. PE circuits.

parameters after PnR into account, only if all the slacks reported
have a margin (noted as th) of +10% with respect to the delay of
the corresponding timing paths, will the synthesis be finished. If not,
the delay variable of each stage will be reset to a new value, which
is the delay value of the current timing path plus the threshold, and
the circuit will be resynthesized. The synthesis process will be fin-
ished until the delay lines for each stage meet the timing constraint.
Generally, only two iterations of the synthesis process are needed to
finish the synthesis process according to our design if the initial value
is set bigger than zero and smaller than 5 ns.

The proposed delay matching method is totally automatic during
synthesis. This ADM method for the Clicked-based asynchronous
BD circuits can also be used to perform static analysis of the asyn-
chronous circuits. For complex asynchronous pipeline structures,
including fork, join, split, or merge, ADM can also be used to per-
form delay matching with the created clocks and control circuits for
different handshaking protocols [2], which controls the data flow to
guarantee the correctness of circuits.

D. Physical Design, DRC, and LVS

With the netlist generated by DC, we use EDI for physical design.
Commands set_interactive_constraint_modes [all_constraint_modes
-active] and set_dont_touch should be used to avoid the EDI remov-
ing the delay lines inserted during the synthesis. The DRC and LVS
check are also needed for the layout of the circuits. We should insert
D2 (shown in Fig. 2) after clock tree synthesis if hold violations
exists.

E. Static Timing Analysis With ADM

After the physical design and the parasitic parameter is extracted,
we perform STA for the circuits at all the corners with PT. As
we know, in the synthesis process, timing closure is achieved and
gate-level circuits are generated without considering the parasitic
effect which makes the timing analysis in synthesis not accurate. In
Section III, the width of the clock depends on the simulation results
without considering the parasitic parameter extracted. When we per-
form STA of the circuits, we should know the accurate width of the
fire. With command report_timing, the delay of the specified timing

Fig. 9. Test platform and micro-photograph of asynchronous CNN accelerator
in TSMC 180-nm CMOS process.

Fig. 10. Test platform and micro-photograph of asynchronous CNN
accelerator in TSMC 65-nm process.

path can be reported which determines the width of the fire signal.
According to the delay reported, we create the clocks for fire signals.
By specifying the timing path (such as the green line in Fig. 2), we
can calculate the accurate delay between the two fire signals. The
clock and generated clocks will be created according to the delay
values calculated by PT. With the clocks created, we can obtain all
the timing paths and perform timing analysis at all corners with PT.

IV. CASE STUDY

With our methodology, we implement a Lenet-5 CNN accelerator
which contains computing array (CA), input buffer, output buffer,
and memory (shown in Fig. 7). Each convolution cores contains
25 processing elements (PEs) to perform 5 × 5 convolution. Each
PE includes a register and a multiplier and its design is shown in
Fig. 8. Data reuse is considered when PE is designed. The PE has
three pipeline stages: data are loaded in the first stage, in the second
stage, the multiplication and truncation are accomplished, and the
input data will be stored temporarily in the third stage [15].

In order to verify our design flow, we first implemented the asyn-
chronous CNN accelerator in TSMC 180-nm CMOS process (shown
in Fig. 9) which can work properly and achieve the energy effi-
ciency of 133 GOPS/W. To further verify the design flow proposed
and the performance of asynchronous circuits, we implement the
asynchronous accelerator in TSMC 65-nm CMOS process. The
micro-photograph of the chip with a size of 2.1 × 2.1 mm2, and
the chip test platform are shown in Fig. 10, in which the test chip
recognizes the input picture data and sent the results to FPGA board
to display. As we can see, the picture of number six is correctly
recognized by the test chip. Fig. 11 illustrates the waveforms of the
request and fire signals from the test chip in 65-nm process, in which
we can find the time intervals between fire1 and fire2, fire2 and fire3
are 4 and 5.5 ns, respectively. The two asynchronous chips verify
the design flow proposed in different processes. In our design, the
time taken to synthesize the asynchronous and synchronous CNN
accelerators is 61 and 53 min, respectively, the time for placing is
1 h 45 min and 1 h 47 min, respectively, and the time for routing is
46 and 31 min, respectively.

WU et al.: DESIGN FLOW FOR CLICK-BASED ASYNCHRONOUS CIRCUITS DESIGN WITH CONVENTIONAL EDA TOOLS 2425

Fig. 11. Waveforms of the test chip.

TABLE I
TEST RESULTS OF ASYNCHRONOUS AND SYNCHRONOUS ACCELERATORS

CHIPS IN TSMC 65-NM PROCESS

Compared with Petrify [5], Balsa [6], and desynchronization design
flow [8], the proposed design flow can implement the asynchronous
circuits down to mask layout without any special tools or new
language with conventional EDA tools. Additionally, with ADM
designers can perform ADM for asynchronous pipeline circuits auto-
matically to achieve the best performance and ensure the timing for
the asynchronous circuits.

For further comparison, we realize a synchronous CNN accel-
erator chip with the same architecture in TSMC 65-nm CMOS
process, which differs in that the synchronous chip adopts syn-
chronous pipeline while the asynchronous chip adopts Click-based
pipeline when designing the CA. The performance comparison of
the chips is presented in Table I, from which we can see that the
area of the asynchronous one is almost the same as that of the syn-
chronous one, but the asynchronous CA save 30% power compared
with synchronous CA as a result of no clock power consumption
and consuming power when and where needed. The highest work-
ing frequency of the asynchronous chip is 1.25× than that of the
synchronous one. The energy efficiency of the asynchronous chip
reaches 1.5 TOPS/W, consuming 26.4-mW power, both of which are
11% better than that of the synchronous one. Both the test results
of the chips with 180- and 65-nm process verify our design flow for
asynchronous BD circuits, which have a better energy efficiency of
the CNN accelerator than that of the synchronous chip.

V. CONCLUSION

We put forward a design flow to implement Click-based asyn-
chronous BD circuits using conventional EDA tools efficiently down
to mask layout in this article. A novel delay matching method, ADM,

is proposed for delay matching automatically to ensure the timing
constraint and achieve the best performance. We perform STA based
on ADM with PT. Asynchronous CNN accelerator chips in TSMC
180- and 65-nm process are implemented, respectively, to verify our
design flow. Compared with other asynchronous toolsets, our design
flow can realize asynchronous circuits more efficiently with con-
ventional EDA tools. For further comparison, a synchronous CNN
accelerator with the same structure is implemented in the same pro-
cess, and the chips test results indicate that the asynchronous chip
has 30% less power consumption in CA. Future work will focus
on more automatic design flow to design larger scale and complex
asynchronous circuits with different handshake circuits.

REFERENCES

[1] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design—A
Systems Perspective. Dordrecht, The Netherlands: Kluwer Acad. Publ.,
2001, pp. 3–11.

[2] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A Designer’s Guide to
Asynchronous VLSI. Cambridge, U.K.: Cambridge Univ. Press, 2010,
pp. 7–9.

[3] F. Akopyan et al., “TrueNorth: Design and tool flow of a 65 mW 1 mil-
lion neuron programmable neurosynaptic chip,” in IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 34, no. 10, pp. 1537–1557,
Oct. 2015.

[4] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” in IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan./Feb. 2018.

[5] J. Cortadella et al., “Petrify: A tool for manipulating concurrent speci-
fications and synthesis of asynchronous controllers,” IEICE Trans. Inf.
Syst., vol. E80-D, no. 3, pp. 315–325, Mar. 1997.

[6] A. Bardsley and D. A. Edwards, “The Balsa asynchronous circuit
synthesis system,” in Proc. Forum Design Lang., Sep. 2000.

[7] A. Ghiribaldi, D. Bertozzi, and S. M. Nowick, “A transition-signaling
bundled data NoC switch architecture for cost-effective GALS multicore
systems,” in Proc. Design Autom. Test Europe Conf. Exhibition (DATE),
2013, pp. 332–327.

[8] G. Miorandi, M. Balboni, S. M. Nowick, and D. Bertozzi, “Accurate
assessment of bundled-data asynchronous NoCs enabled by a predictable
and efficient hierarchical synthesis flow,” in Proc. IEEE Int. Symp.
Asynchronous Circuits Syst. (ASYNC), 2017, pp. 10–17.

[9] G. Gimenez, A. Cherkaoui, G. Cogniard, and L. Fesquet, “Static timing
analysis of asynchronous bundled-data circuits,” in Proc. IEEE Int. Symp.
Asynchronous Circuits Syst. (ASYNC), 2018, pp. 110–118.

[10] G. Gimenez, J. Simatic, and L. Fesquet, “From signal transition graphs
to timing closure: Application to bundled-data circuits,” in Proc. IEEE
Int. Symp. Asynchronous Circuits Syst. (ASYNC), 2019, pp. 86–95.

[11] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6,
pp. 720–738, 1989.

[12] M. Singh and S. M. Nowick, “MOUSETRAP: Ultra-high-speed
transition-signaling asynchronous pipelines,” in Proc. VLSI, 2001,
pp. 9–17.

[13] A. Peeters, F. te Beest, M. de Wit, and W. Mallon, “Click elements: An
implementation style for data-driven compilation,” in Proc. IEEE Int.
Symp. Asynchronous Circuits Syst. (ASYNC), Grenoble, France, 2010,
pp. 3–14.

[14] J. V. Manoranjan and K. S. Stevens, “Qualifying relative timing
constraints for asynchronous circuits,” in Proc. IEEE Int. Symp.
Asynchronous Circuits Syst. (ASYNC), Porto Alegre, Brazil, 2016,
pp. 91–98.

[15] W. Chen, H. Wu, S. Wei, A. He, and H. Chen, “An asynchronous
energy-efficient CNN accelerator with reconfigurable architecture,”
in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2018,
pp. 51–54.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

