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Hybrid System Falsification Under (In)equality
Constraints via Search Space Transformation

Zhenya Zhang , Paolo Arcaini , and Ichiro Hasuo

Abstract—The verification of hybrid systems is intrinsically
hard, due to the continuous dynamics that leads to infinite
search spaces. Therefore, research attempts focused on hybrid
system falsification of a black-box model, a technique that aims
at finding an input signal violating the desired temporal spec-
ification. Main falsification approaches are based on stochastic
hill-climbing optimization, that tries to minimize the degree of
satisfaction of the temporal specification, given by its robust
semantics. However, in the presence of constraints between the
inputs, these methods become less effective. In this article, we
solve this problem using a search space transformation that first
maps points of the unconstrained search space to points of the
constrained one, and then defines the fitness of the former ones
based on the robustness values of the latter ones. Based on this
search space transformation, we propose a falsification approach
that performs the search over the unconstrained space, guided by
the robustness of the mapped points in the constrained space. We
introduce three versions of the proposed approach that differ in
the way of selecting the mapped points. Experiments show that
the proposed approach outperforms state-of-the-art constrained
falsification approaches.

Index Terms—(In)equality constraints, hybrid system falsifica-
tion, search space transformation, signal temporal logic.

I. INTRODUCTION

HYBRID Systems Falsification: Cyber-physical systems
(CPSs) are hybrid systems combining physical and digi-

tal components. Quality assurance of CPS is a problem of great
importance, however, automated formal verification of hybrid
systems is almost impossible due to their physical components
that lead to infinite search spaces.

Therefore, research has proposed the more feasible approach
of falsification that tries to show the violation of a property
rather than proving its satisfaction. Formally, given a model
M that takes an input signal u and outputs a signal M(u),
and a specification ϕ (a temporal formula), the falsification
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problem consists of finding a falsifying input, i.e., an input
signal u such that the corresponding output M(u) violates ϕ.
Classical approaches solve the falsification problem by turning
it into an optimization one. To do this, they exploit the robust
semantics of temporal formulas [1], [2]: instead of the classical
Boolean satisfaction relation v |= ϕ, robust semantics assigns
a value �v, ϕ� ∈ R ∪ {∞,−∞} (i.e., robustness) that assesses
not only whether ϕ is satisfied or violated (by the sign) but
also how robustly the formula is satisfied or violated. Negative
robustness is an indicator of the violation of the system spec-
ification; therefore, the goal of falsification is to minimize the
robustness to obtain a negative value. The task is particularly
difficult due to the black box nature of the system and the
expensiveness of the robustness computation which depends
on system simulations. Therefore, optimization-based falsifi-
cation algorithms employ stochastic optimization approaches,
such as hill-climbing optimization, to generate inputs with
the aim of decreasing robustness, and they terminate when
they find an input with negative robustness (i.e., a falsifying
input). Different optimization-based falsification algorithms
have been proposed (see [3]). Also tools have been developed,
as Breach [4] and S-TaLiRo [5].

Input Constraints: Falsification typically considers a hyper-
rectangle as the search space for input signals: this is the
problem setting adopted in many works [6]–[12], and also in
tools Breach [4] and S-TaLiRo [5]. However, in real hybrid
systems, input signals are not free to assume any value within
the hyperrectangle, because there exist some constraints ψ
among them. In a vehicle, for example, the throttle and the
brake cannot be pushed simultaneously. Descriptions of CPS
usually report such constraints on the system inputs, e.g.,
[13] and [14]. In the presence of such constraints, inputs
produced by falsification should be guaranteed to satisfy
them; otherwise, the found inputs would not help the quality
assurance efforts.

For black-box optimization, several techniques have been
proposed for handling constraints, in particular, penalty-based
approaches. For example, death penalty [15] is a method that
rejects all the infeasible inputs, but it has been shown to be
inefficient [16], [17]. Other penalty-based approaches define a
penalty factor added to the objective function for those inputs
violating the constraints; in some of these, the penalty factor
is proportional to the degree of violation of the constraints,
in others it increases over time. Application of penalty-based
approaches in falsification has been studied in [18], where
constraints are formulated as an STL formula and penalty is
defined using the robustness.
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Although penalty-based approaches are sound, they usually
need to consider several infeasible samplings, before learning
the feasible part of the search space. Moreover, penalty values
that are added to the objective function can modify the fitness
landscape (i.e., values of the objective function) in a way (e.g.,
a large flat plateau with a constant value) that the performance
of the search algorithm (e.g., hill climbing) may be affected.

Another category of constraint handling methods is called
feasibility preservation, which consists of repairing the infea-
sible inputs by moving them to the feasible space. The key
of these methods is to define a proper repairing operator, but
that task is technically tricky. For example, in [19], a mapping
method is proposed. However, the performance of the method
is highly dependent on the selection of some parameters, for
which no good strategy is given; moreover, that technique is
not able to handle equality constraints.

Contribution: In this article, we propose an approach for
the input-constrained falsification problem, that aims at over-
coming the limits of penalty-based approaches. The approach
defines a search space transformation mapping each point −→u
of an unconstrained search space to a point −→π of the con-
strained input space, and defines the fitness of −→u in terms
of the robustness value of −→π . In this way, the approach per-
forms the falsification search over the unconstrained search
space, without compromising the effectiveness of hill climb-
ing (differently from what happens with the penalty-based
approaches). When a sample −→u in the unconstrained search
space is found with negative fitness, the corresponding point−→π in the constrained input space is guaranteed to be a feasible
falsifying input. The main contributions of this article are as
follows.

1) A general framework based on search space transforma-
tion for handling constraints in falsification; it consists
of mapping points from an unconstrained search space
to the constrained space, and associating their fitness.

2) A novel technique for search space transformation,
named proportional transformation, that performs the
mapping following an iterative process along space
dimensions, by considering them singularly in a given
order.

3) Three approaches that exploit the proportional transfor-
mation to solve the constrained falsification problem.
They differ in the way of using the proportional trans-
formation: the Fixed-Priority method maps each point
following a predefined order of dimensions, the All-
Priorities method considers all the possible orders,
while the MAB-Priority instantiates a multiarmed bandit
(MAB) model to learn the order that makes hill climbing
more effective.

Experiments over benchmarks used in falsification show
that the proposed approaches always outperform penalty-based
approaches, and that MAB-Priority is the best one.

Organization: Section II introduces some background.
Section III presents the problem and overviews the proposed
approach, that is described in detail in Sections IV and V.
Then, Section VI presents the experiments we performed,
Section VII reviews some related work, and Section VIII
concludes this article.

II. PRELIMINARIES

In this section, we review the widely accepted method
of hill-climbing optimization-based falsification. The core of
making use of hill-climbing optimization is the introduction
of robust semantics of temporal formulas.

A. Robust Semantics for STL

Our definitions here are taken from [1] and [2].
Definition 1 (Time-Bounded Signal): Let T ∈ R+ be a

positive real. An M-dimensional signal with a time horizon
T is a function w : [0,T]→ R

M .
We treat the system model as a black box, i.e., its behaviors

are only observed from inputs and their corresponding outputs.
So, we simply define the system model as a function.

Definition 2 (System Model M): A system model, with
M-dimensional input and N-dimensional output, is a function
M that takes an input signal u : [0,T]→ R

M and returns a
signal M(u) : [0,T]→ R

N . Here, the common time horizon
T ∈ R+ is arbitrary.

Definition 3 (STL Syntax): We fix a set Var of variables. In
STL, atomic propositions and formulas are defined as follows,
respectively: α :: ≡ f (x1, . . . , xN) > 0, and ϕ:: ≡α | ⊥ | ¬ϕ |
ϕ ∧ ϕ | ϕ UI ϕ. Here, f is an N-ary function f : R

N → R,
x1, . . . , xN ∈ Var, and I is a closed nonsingular interval in
R≥0, i.e., I = [a, b] or [a,∞) where a, b ∈ R and a < b.

We omit subscripts I for temporal operators if I = [0,∞).
Other common connectives, such as ∨,→,�, �I (always) and
�I (eventually), are introduced as abbreviations, e.g., �Iϕ ≡
� UI ϕ and �Iϕ ≡ ¬�I¬ϕ. An atomic formula f (�x) ≤ c,
where �x = (x1, . . . , xN) and c ∈ R, is accommodated using ¬
and the function f ′(�x):=f (�x)− c.

Definition 4 (Robust Semantics [2]): Let w : [0,T]→ R
N

be an N-dimensional signal, and t ∈ [0,T). The t-shift of w,
denoted by wt, is the time-bounded signal wt : [0,T − t]→
R

N defined by wt(t′) := w(t+ t′). w(t)(xi) indicates the value
of dimension xi of the signal w at time t.

Let w : [0,T] → R
|Var| be a signal, and ϕ be an STL

formula. We define the robustness �w, ϕ� ∈ R ∪ {∞,−∞}
as follows, by induction on the construction of formulas.

�

and
⊔

denote the infimums and supremums of real numbers,
respectively. Their binary versions � and � denote minimum
and maximum

�w, f (x1, . . . , xN) > 0� := f (w(0)(x1), . . . ,w(0)(xN))

�w,⊥� := −∞ �w,¬ϕ� := −�w, ϕ�

�w, ϕ1 ∧ ϕ2� := �w, ϕ1� � �w, ϕ2�

�w, ϕ1 UI ϕ2� :=
⊔

t∈I∩[0,T]

⎛

⎝ �wt, ϕ2� �
�

t′∈[0,t)

�wt′ , ϕ1�

⎞

⎠.

For atomic formulas, �w, f (�x) > c� stands for the verti-
cal margin f (�x) − c for the signal w at time 0. A negative
robustness value indicates how far the formula is from being
true. It follows from the definition that the robustness for
the eventually modality is given by: �w,�[a,b](x > 0)� =⊔

t∈[a,b]∩[0,T]w(t)(x).
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The above robustness notion taken from [2] is spatial. Other
robustness notions take temporal aspects into account, such
as “how long before the deadline the required event occurs”
(see [2], [20]). Our choice of spatial robustness in this article
is for the sake of simplicity, and is thus not essential.

The original semantics of STL is Boolean, given as usual by
a binary relation |= between signals and formulas. The robust
semantics refines the Boolean one in the following sense:
�w, ϕ� > 0 implies w |= ϕ, and �w, ϕ� < 0 implies w �|= ϕ,
see [1, Proposition 16]. Optimization-based falsification via
robust semantics hinges on this refinement.

B. Hill-Climbing-Guided Falsification

The falsification problem has attracted a lot of attention
both in industry and academia. Hill-climbing optimization is
the main adopted methodology (see [2], [3], [6], [7], [10],
[11], [21], tools Breach [4], S-TaLiRo [5]). We formulate the
problem and the methodology, for later use in our approach.

Definition 5 (Falsifying Input): Let M be a system model
and ϕ be an STL formula. A signal u : [0,T] → R

M

is a falsifying input if �M(u), ϕ� < 0; the latter implies
M(u) �|= ϕ.

The input signal u : [0,T] → R
M (see Definition 1) to

the system M usually comes with an M-dimensional hyper-
rectangle D := ∏M

k=1 Dk, where Dk is the interval of the kth
dimension of u, and such that for any t ∈ [0,T], u(t) ∈ D.

As the time domain [0,T] of u is a continuous space, it
is unrealistic to synthesize a falsifying input by searching for
values u(t) at each time point t ∈ [0,T] and concatenating
them. In practice, engineers usually discretize the time domain
of u, and interpolate based on some rules to simplify the
problem (see [22], [23]). Signals thus can be classified by the
interpolation methods. We introduce one typical interpolation,
piecewise constant, as follows.

Definition 6 (Piecewise Constant Signal): Let c be a pos-
itive integer. A signal u : [0,T]→ R

M is piecewise constant
if for all k ∈ {0, . . . , c − 1}, u(t) is a vector of M constant
values in the time interval t ∈ [k(T/c), (k + 1)(T/c)]. The
parameter c is known as control point.

We denote the discretized representation of u as a vector−→u = (u1,1, . . . , u1,M, . . . , uc,1, . . . , uc,M), and use it from
now on to indicate the input signal.

The technique for solving a falsification problem is via
transforming it into an optimization problem as follows:

min−→u
�M(−→u ), ϕ� s.t. −→u ∈ � (1)

where � = Dc is an Mc-dimensional hyperrectangle. In the
following, let n = Mc.

Assume the setting given by Definitions 5 and 6 and (1). For
finding a falsifying input, the methodology of hill-climbing-
guided falsification is presented in Algorithm 1.

Here, the function HILL-CLIMB (line 5) samples an input
signal −→u k in the space �, aiming at minimizing the robustness
rbk = �M(−→u k), ϕ�, that acts as the fitness function in this
context. It does so, learning from the previous observations(−→u l, rbl

)
l∈{1,...,k−1} of input signals −→u 1, . . . ,

−→u k−1 and their
corresponding robustness values. The algorithm records the

Algorithm 1 Hill-Climbing-Guided Falsification
Require: a system model M, an STL formula ϕ, and a time budget K

1: function HILL-CLIMB-FALSIFY(M, ϕ,K)
2: rb←∞ ; k← 0
3: while rb ≥ 0 and within the time budget K do
4: k← k + 1
5: −→u k ← HILL-CLIMB

( (−→u l, rbl
)
l∈{1,...,k−1}

)

� Hill climbing suggests −→u k based on the sampling history
6: rbk ← �M(−→u k), ϕ� � Compute robustness
7: if rbk < rb then rb← rbk� Update the best robustness so far if applicable

8: −→u ←
{−→u k if rb < 0, that is, rbk = �M(−→u k), ϕ� < 0

Failure otherwise, that is, no falsifying input found

9: return −→u

−→u k that has the best robustness over the sampling history
(line 7), and finally either returns a falsifying input that has
a negative robustness or reports a failure when no falsifying
input is found within the time budget (line 8).

Hill climbing can be implemented by various stochastic
optimization algorithms. Examples include CMA-ES (used in
our experiments) [24], simulated annealing [25], etc.

III. PROBLEM DEFINITION AND OVERVIEW OF THE

PROPOSED APPROACH

As seen in (1), in falsification, an input signal −→u of a model
is usually given in a reasonable interval, e.g., the pedal force
of throttle should be within [0, 100]. However, due to the exis-
tence of constraints among inputs, it is not always true that any
value of −→u can be taken at any time, e.g., when brake > 0,
throttle should be exactly 0 rather than a value in [0, 100]. Not
considering the input constraints could result in obtaining fal-
sifying inputs that are meaningless, as they identify situations
that cannot happen in reality.

In this article, we consider the input-constrained falsifica-
tion problem, formally defined as follows.

Definition 7 (Input-Constrained Falsification Problem):
The input-constrained falsification problem is defined as

min−→u
�M(−→u ), ϕ� s.t. −→u |= ψ,−→u ∈ �

where ψ is a constraint on the input signal −→u . The goal of
the problem is to find an input signal −→u such that −→u |= ψ ,−→u ∈ �, and �M(−→u ), ϕ� < 0.

In this article, as ψ , we consider logical combinations of lin-
ear constraints (both equalities and inequalities). We now give
the syntax of the supported constraints. Without loss of gen-
erality, we assume the logical constraints to be in disjunctive
normal form (DNF). In this article, for the sake of presentation,
constraints are not given in DNF, but of course they can be
transformed to it.

Definition 8 (Syntax of Constraints): We define an n-ary
constraint ψ as follows:

ψ :: ≡ ψ ∨ ψ | γ γ :: ≡ γ ∧ γ | ξ
ξ :: ≡

n∑

k=1

akxk + an+1 = 0 |
n∑

k=1

akxk + an+1 < 0 | ⊥ | ¬ξ.

Here, a1, . . . , an+1 ∈ R are coefficients, and x1, . . . , xn

variables, each one xi defined over a domain Di.
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Fig. 1. Proposed constrained falsification approach.

In our context, the number of variables is n = Mc, because
the input signal is a piecewise constant signal composed of M
inputs having c control points.

Example 1: The aforementioned example of constraint that
throttle and brake cannot be positive simultaneously can be
expressed as

∧c
k=1 (throttlek = 0 ∨ brakek = 0).

In Definition 7, the input space is given by the application
of ψ to �. We denote this constrained space as �ψ , which
contains all the points in � satisfying ψ , i.e., �ψ := {−→x ∈
� | −→x |= ψ}.

The input-constrained falsification problem in Definition 7
poses many challenges. Observe in Algorithm 1 the way a hill-
climbing optimization algorithm works: it comes up with new
samplings stochastically depending on the history of previous
samplings (toward more promising regions). Since the classi-
cal setting is only bounded by a hyperrectangle � [as in (1)],
sampling feasible points are easy because the boundary of the
feasible area can be precisely determined without computa-
tional cost. Instead, if the search space was more irregular,
computing the boundaries of the feasible area would be much
more difficult, and the functionality of generating samplings
will be harmed due to the limitations on the feasible sampling
region.

A. Proposed Approach

In this article, we propose an approach for the input-
constrained falsification problem. The workflow is shown in
Fig. 1.

Let 	 be an arbitrary hyperrectangle with the same num-
ber of dimensions as �ψ . In the following, we name 	 as a
search space and �ψ as an input space. The approach allows
to perform the falsification search over the search space 	
(weakly bounded, so not harming the effectiveness of hill
climbing) but, at the same time, it minimizes the fitness com-
puted based on the input space �ψ . To do this, the fitness
function r of 	 is defined in terms of the fitness (robust-
ness) distribution ρ in �ψ . More precisely, it employs a search
space transformation that firstly maps a point −→x of the search
space 	 into a point −→y of the input space �ψ through a
space mapping T (i.e., −→y = T (−→x )), and then defines the
fitness accordingly (i.e., r(−→x ) = ρ(−→y )). In this way, the con-
strained falsification problem is turned into an unconstrained
optimization problem:

min−→x
r(−→x ) s.t. −→x ∈ 	.

Once a point −→x with negative fitness in 	 is found, the
mapped point −→y = T (−→x ) in �ψ will be returned as falsify-
ing input. Formally, the process of search space transformation
is defined by the two following definitions.

Definition 9 (Space Mapping): Let 	 be the search space,
and �ψ be the input space. We define a space mapping
function T : 	 → �ψ as a total surjective function from
	 to �ψ .

We also define the fitness function of the points of the search
space 	 on the base of the fitness of the input space �ψ .

Definition 10 (Fitness Function in 	): Let �ψ be the input
space, and ρ : �ψ → R be a fitness function for �ψ . Let
T : 	→ �ψ be a space mapping from the search space 	
to �ψ . The fitness function r : 	→ R in the search space
	 is defined as r(−→x ) := ρ(T (−→x )).

The search space transformation guarantees two properties
necessary in our approach.

Proposition 1 (Soundness and Completeness of the Search
Space Transformation): Any falsification algorithm that sam-
ples over the search space 	 using the fitness function r as
guidance is guaranteed to be sound and complete.

Soundness: If a sample −→x with negative fitness
(r(−→x ) < 0) is found in the search space 	, the corresponding
input −→y = T (−→x ) in the input space �ψ is guaranteed to be a
falsifying input (ρ(−→y ) < 0). As soon as such an −→x is found,
the falsification process can stop and −→y can be returned as
the witness of the falsification.

Completeness: For each falsifying input −→y in the input
space �ψ , there is a sample −→x in the search space 	 that
maps to it, i.e., −→y = T (−→x ). This guarantees that the search
over 	 can find all the falsifying inputs (if any).

The soundness comes from the definition of r (see
Definition 10): once r(−→x ) < 0, it means that ρ(T (−→x )) < 0
and thus ρ(−→y ) < 0. The completeness is from the surjective-
ness of T (Definition 9).

Remark 1: Proposition 1 states that any space mapping
guarantees soundness and completeness of the approach.
However, these are not the only desired properties. We
would also like that the implemented space mapping does
not harm the effectiveness of hill climbing. For guarantee-
ing this, hill climbing in the search space 	 should get a
faithful representation of the fitness landscape of the input
space �ψ .

Continuity of a space mapping, i.e., mapping points in prox-
imity again to proximity, is a good criterion. We shall propose
a specific class of continuous space mappings. It is called the
proportional transformation.

IV. PROPORTIONAL TRANSFORMATION

Different search space transformations can be identified,
that differ in the way they implement the space mapping (see
Definition 9) and could lead to different performances. In this
section, we propose the proportional transformation T that
maps each point of the search space 	 into a point of the
input space �ψ , by proportionally scaling the value of each
dimension of 	. Note that such mapping does not favor any
particular part of the input space.
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We call a set of nonoverlapping intervals as interval
sequence. Formally, an interval sequence over the real domain
is defined as R := (I1, . . . , Iq), where 1) each Ij = [IL

j , IU
j ]

is a continuous interval with lower bound IL
j ∈ R and upper

bound IU
j ∈ R, such that IL

j ≤ IU
j and 2) IU

j < IL
j+1 for each

j = 1, . . . , q− 1.
We denote the length of an interval Ij as |Ij| = IU

j − IL
j ,

and the accumulated length of all the intervals in R as
accLen(R) =∑q

j=1 |Ij|.
We now provide a definition for determining the bounds of

the constrained space identified by the constraints.
Definition 11 (Feasible Interval Sequence): Let 	 be the

search space, and ψ = ∨t
i=1ψi an n-ary constraint in DNF

defined over variables −→x = (x1, . . . , xn), where each ψi is a
conjunction of equalities and/or inequalities. Given a dimen-
sion d ∈ {1, . . . , n}, we can identify the bounds of ψ over
d as follows. For each conjunction ψi, we identify the mini-
mum �L

i and the maximum �U
i of its feasible area, by solving

two linear programming problems1 (note that ψi only contains
equalities and inequalities)

min xd s.t. −→x |= ψi,
−→x ∈ �

max xd s.t. −→x |= ψi,
−→x ∈ �.

Then, the feasible interval sequence Rd of ψ on the dth
dimension is computed as follows: Rd :=⋃t

i=1 [�L
i , �

U
i ].

In the next definition, we show how a value belonging to a
continuous interval can be mapped to an interval sequence.

Definition 12 (Proportional Position): Let A = [AL,AU]
be a continuous interval and v ∈ A. The proportional position
�(v,A,R) of v in an interval sequence R = (I1, . . . , Iq) is
defined as follows:

�(v,A,R) := p · accLen(R)−
e∑

j=1

|Ij| + IL
e+1

where:
p = v−AL

AU−AL is the proportional value of v in A;

e ∈ {1, . . . , q} is the maximum index that satisfies
p · accLen(R)−∑e

j=1 |Ij| > 0.2

Definition 13 (Constraint Reduction): Let ψ be an n-ary
constraint. Given a search space 	 and a point −→u ∈ 	,
we compute the proportional position πd = �(ud, Dd, Rd)

over the dth dimension of −→u (i.e., ud). Then, the function
Reduce(ψ, πd, d) := ψ[xd �→ πd] is used to reduce ψ to an
(n− 1)-ary constraint.

We define S as a permutation of the set {1 . . . , n} of the
dimensions of 	. S identifies the order in which dimen-
sions are considered, and so it will be called priority in the
following.

The proposed proportional transformation T maps a
point −→u of 	 into a point −→π of �ψ (having the
same number of dimensions), such that −→π satisfies the
constraint ψ . To do this, it iteratively computes feasible
interval sequences (Definition 11), identifies the proportional
position (Definition 12), and performs constraint reduction

1They can be easily computed with any linear programming solver.
2Note that accLen(R) can be 0. The implementation handles these cases.

Algorithm 2 Proportional Transformation
Require: a search space 	 = ∏n

k=1 Dk , a sampled point −→u ∈ 	, a con-
straint ψ = ∨t

i=1ψi in DNF, a priority (permutation) S of the dimensions
{1 . . . , n}.

1: function MAP-POINT(	,ψ, S,−→u )
2: −→π = (π1, . . . , πn)← (0, . . . , 0) � Initialize −→π
3: MAP-DIMENSION(	,ψ, S,−→u ,−→π )
4: return −→π
5: procedure MAP-DIMENSION(	,ψ, S,−→u ,−→π )
6: if length(S) > 0 then
7: s← S.head � Obtain the first dimension in S
8: Rs ←⋃t

i=1 [�L
i , �

U
i ] � Feasible interval sequence

9: πs ← �(us,Ds,Rs) � Obtain proportional position
10: ψ ′ ← Reduce(ψ, πs, s) � Constraint reduction
11: S′ ← remove s from S
12: MAP-DIMENSION(	,ψ ′, S′,−→u ,−→π ) � Recursive call

(Definition 13), following a given priority order S, until all
values on different dimensions of −→u have been mapped to
their corresponding proportional positions. Algorithm 2 shows
the computation of the proportional transformation.

The algorithm starts by initializing an n-dimensional point−→π (line 2), and invoking the procedure MAP-DIMENSION

using as arguments the search space 	, the constraint ψ ,
and the priority S (line 3). The procedure MAP-DIMENSION

also receives the point −→π , and iteratively modifies its value
on each dimension. In each loop, the procedure obtains the
first element s of the priority S, and determines the feasi-
ble interval sequence Rs of s dimension, following the rules
in Definition 11 (line 8). Then, the proportional position
�(us,Ds,Rs) of −→u on s dimension is computed according to
Definition 12 (line 9), and the constraint ψ is reduced over s
dimension following Definition 13 (line 10). Finally, the prior-
ity S is updated by removing the first element s (line 11), and
the procedure MAP-DIMENSION is invoked again to reduce
the remaining arguments (line 12). The recursive call termi-
nates when all dimensions have been mapped. At the end, −→π
is returned (line 4) as the mapped point in �ψ that satisfies
the constraint ψ .

Proposition 2: The proportional transformation T is a
space mapping.

It is easy to see that T is a total surjection as required by
Definition 9. Indeed, one can follow its definition and con-
struct, in a step-by-step manner, a right inverse g of T (i.e.,
T ◦ g = id). Existence of such g witnesses the surjectiveness
of T . Continuity of T is easily established, too.

Example 2: We use a simple example to explain our
approach. We consider 	 = [0, 10]× [0, 10] as search space,
and ψ = (x1 + x2 − 5 < 0) as constraint defining the input
space �ψ , as shown in Fig. 2(a).

Let us consider a point −→u = (8, 8) ∈ 	. Let us call x1
and x2 the two dimensions of the search space. Using the
priority S1 = (x1, x2),

−→u is mapped to point −→π 1 = (4, 0.8);
instead, using the priority S2 = (x2, x1), it is mapped to point−→π 2 = (0.8, 4). Fig. 2(b) shows the two transformations.

Remark 2: Note that the general transformation process is
not specialized to linear constraints, and can be adapted for any
type of constraints. What needs to be adapted is Definition 11
to find the bounds over a given dimension: different types of
constraints need different solvers (for linear constraints, we
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(a) (b)

Fig. 2. Running example—proportional transformation. (a) 	 and �ψ .
(b) Two proportional transformations.

(a) (b) (c)

Fig. 3. Fitness landscape of �ψ and transformed fitness landscapes in 	.
(a) In �ψ . (b) In 	 (priority S1). (c) In 	 (priority S2).

use a linear programming solver). In this article, we focus
and perform experiments on linear constraints. Extending the
approach to nonlinear constraints is left as future work.

V. FALSIFICATION BASED ON THE PROPORTIONAL

TRANSFORMATION

In this section, we describe how we use the proportional
transformation presented in Section IV to implement a falsifi-
cation algorithm that considers the constraints existing among
the inputs. Namely, we adapt the hill-climbing-guided fal-
sification approach described in Section II-B. The approach
performs classical hill-climbing optimization over the search
space 	; sampled points −→u k are mapped to points −→π k of
the input space �ψ , using the proportional transformation
presented in Section IV. In this context, the fitness function ρ
of �ψ is given by the robustness value of the mapped input−→π k for the specification ϕ, i.e., ρ(−→π k) = �M(−→π k), ϕ�. See
the whole workflow in Fig. 1. We can notice that the hill-
climbing algorithm (performed over the whole search space 	)
has a deformed view of the fitness landscape of the input space
�ψ . The obtained deformed landscape depends on the prior-
ity used in the proportional transformation [see Section IV,
Algorithm 2, and the two proportional transformations in
Fig. 2(b)].

Example 3: Let us consider Example 2. The fitness land-
scape of the input space �ψ (produced by a given objective
function) is as shown in Fig. 3(a). By applying the proportional
transformation using the two priorities S1 and S2 [as shown in
Fig. 2(b)], we obtain the fitness landscapes in Fig. 3(b) and (c).

As we will show in the experiments in Section VI, the
chosen priority can greatly affect the performance of the falsi-
fication. In the following sections, we consider three methods
for selecting the priority: selecting one priority, considering
all the priorities, or learning which priority is better.

Algorithm 3 Fixed-Priority Approach
Require: a system model M, an STL formula ϕ, a constraint ψ , a priority

of dimensions S, and a time budget K
1: function FALS-FIXED-PRIORITY(M, ϕ,K, ψ, S)
2: rb←∞ ; k← 0
3: while rb ≥ 0 and within the time budget K do
4: k← k + 1
5: −→u k ← HILL-CLIMB

( (−→u l, rbl
)
l∈{1,...,k−1}

)

6: −→π k ← MAP-POINT(	,ψ, S,−→u k) � Proportional transformation
7: rbk ← �M(−→π k), ϕ� � Robustness value of the mapped point
8: if rbk < rb then rb← rbk

9: −→π ←
{−→π k if rb < 0, that is, rbk = �M(−→π k), ϕ� < 0

Failure otherwise, that is, no falsifying input found
10: return −→π

Algorithm 4 All-Priorities Approach
Require: a system model M, an STL formula ϕ, constraint ψ , priorities

Prior, and a time budget K
1: function FALS-ALL-PRIORITIES(M, ϕ,K, ψ,Prior)
2: rb←∞ ; k← 0
3: while rb ≥ 0 and within the time budget K do
4: k← k + 1
5: −→u k ← HILL-CLIMB

( (−→u l, rbl
)
l∈{1,...,k−1}

)

6: ← {MAP-POINT(	,ψ, S,−→u k) | S ∈ Prior} � Prop. trans.
7: −→π k ← arg min−→π ∈

�M(−→π ), ϕ� � Selection of best mapped point

8: rbk ← �M(−→π k), ϕ� � Robustness computation
9: if rbk < rb then rb← rbk

10: −→π ←
{−→π k if rb < 0, that is, rbk = �M(−→π k), ϕ� < 0

Failure otherwise, that is, no falsifying input found

11: return −→π

A. Method 1: Fixed-Priority

In this approach, the user must give a priority order S.
Algorithm 3 shows how the hill-climbing-guided falsification
is modified to implement the proportional transformation with
Fixed-Priority.

There are two differences: first, the algorithm now also con-
siders a constraint ψ and, for computing the fitness of an input−→u k sampled in the search space 	, it first maps it to a point−→π k in the input space �ψ using the proportional transforma-
tion (line 6), and then uses the robustness of −→π k as fitness
for −→u k (line 7); second, the final falsifying input (if any) is a
point −→π k of the input space (line 9).

B. Method 2: All-Priorities

Although the proportional transformation is surjective, it
changes the distribution of fitness on the base of the selected
priority, and so it influences the performance of hill-climbing
optimization. Therefore, different priorities lead to different
falsification performance and different results. The current
method is based on this observation, and so it considers all
the priorities. Algorithm 4 shows the implementation of the
All-Priorities approach.

At line 6, the approach now generates all the mapped points
 of −→u k, using the priorities contained in set Prior given as
input.

The set Prior is built as follows. Initially, all the per-
mutations of the dimensions {1 . . . , n} are added to the set.
However, some priorities are guaranteed to map the points
in the same way. Therefore, such equivalent priorities are
identified with these two rules.
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1) Only the variables contained in the constraint ψ affect
the result of the priority application. Given two pri-
orities S1 and S2, if the relative order of variables
contained in ψ is the same in S1 and S2, then they are
equivalent.

2) Two variables are independent if they occur in the same
conjunction ψi of ψ (recall that ψ is in DNF) and they
are not in the same atomic proposition. Given two pri-
orities S1 and S2, if they only differ in the relative order
of independent variables, then they are equivalent.

So, Prior is the set of all nonequivalent permutations of
{1 . . . , n}. Note that even if two priorities are not equivalent,
a point can still be mapped to the same point under both
priorities: hence, at line 6, duplicated points are removed.
At lines 7 and 8, it determines the point −→π k in  having
the minimum robustness rbk. Finally, at lines 10 and 11, it
returns a falsifying input −→π in the input space or reports
a failure.

C. Method 3: MAB-Priority

Although the All-Priorities approach guarantees to find the
best priority (i.e., the one mapping to points with minimum
robustness), it is computationally expensive, as it requires to
simulate all the mapped points. In this section, we propose a
method that tries to learn the best priority during execution: it
is based on the MAB problem, that has proven to be effective
in other contexts for falsification [26].

We first provide an introduction to the MAB problem, and
then we describe how we apply it to our context.

Multiarmed Bandit Problem: The MAB problem describes
the situation where a gambler sits in front of a row A1, . . . ,Am

of slot machines, each one giving, when its arm is played
(i.e., in each attempt), a reward according to a prescribed (but
unknown) probability distribution μi. The goal is to maximize
the cumulative reward after a number of attempts, playing a
suitable arm in each attempt. The best strategy of course is to
keep playing the best arm Amax, i.e., the one whose average
reward avg(μmax) is the greatest. However, this best strategy
is infeasible, because the distributions μ1, . . . , μm are initially
unknown. Therefore, the gambler must learn about μ1, . . . , μm

through attempts. A formal definition of the MAB problem is
as follows.

Definition 14 (MAB Problem):
Input: Arms (A1, . . . ,Am), the associated probability dis-

tributions μ1, . . . , μm over R, and a time horizon HT ∈
N ∪ {∞}.

Goal: Synthesize a sequence Ai1 Ai2 . . .AiH , so that the
cumulative reward

∑HT
k=1 rewk is maximized. Here, the reward

rewk of the kth attempt is sampled from the distribution μik
associated with the arm Aik played at the kth attempt.

Let 〈(Ai1 . . .Aik), (rew1 . . . rewk)〉 be a history, i.e., the
sequence of arms played so far (here i1, . . . , ik ∈ {1, . . . ,m}),
and the sequence of rewards obtained by those attempts (rewl

is sampled from μil ).
MAB-Based Falsification: In our context, an arm is a pri-

ority S. The reward of a priority S is based on the minimum

Algorithm 5 MAB-Priority Approach—Difference w.r.t.
Algorithm 1
Require: a system model M, an STL formula ϕ, constraint ψ , permutations

Prior = {S1, . . . , Sm} of dimensions {1, . . . , n}, and a time budget K
1: function FALS-MAB-PRIORITY(M, ϕ,K, ψ,Prior)
2: rb←∞ ; k← 0
3: while rb ≥ 0 and within the time budget K do
4: k← k + 1
5: ik ← MAB(Prior, 〈(Si1 . . . Sik−1 ), (rb1 . . . rbk−1)〉)� Selection of the priority
6: −→u k ← HILL-CLIMB

( (
(−→u l, rbl)

)
l∈{1,...,k−1} such that il=ik

)

� Hill climbing suggests −→u k based on sampling history of Sik

7: −→π k ← MAP-POINT(	,ψ, Sik ,−→u k) � Proportional transformation
8: rbk ← �M(−→π k), ϕ� � Robustness computation
9: if rbk < rb then rb← rbk

10: −→π ←
{−→π k if rb < 0, that is, rbk = �M(−→π k), ϕ� < 0

Failure otherwise, that is, no falsifying input found
11: return −→π

12: function MAB( Prior, 〈(Si1 . . . Sik−1 ), (rb1 . . . rbk−1)〉)
13: ik ← arg max

z∈{1,...,|Prior|}

(

Rew(z, k − 1)+ c

√
2 ln(k − 1)

N(z, k − 1)

)

14: return ik

robustness value observed when using S for mapping the sam-
pled point (i.e., playing that arm). The hill-climbing algorithm
implementing the MAB approach is shown in Algorithm 5
[differences with respect to (w.r.t.) Algorithm 1].

In line 5, an MAB algorithm is run to decide which priority
S, taken from a set of priorities Prior (see Section V-B), must
be executed in the kth attempt.

The function MAB takes as inputs: 1) priorities Prior =
{S1, . . . , Sm} (i.e., the arms); 2) the history (Si1, . . . , Sik−1)

of previously played arms; and 3) the history of robustness
values (rb1, . . . , rbk−1) of the previously selected inputs.

Our MAB algorithm is based on the UCB1 (upper con-
fidence bound) algorithm. UCB1 algorithm exemplifies the
exploitation and exploration tradeoff over the set of arms. It is
instantiated at line 12 of Algorithm 5: it returns the index ik
of the priority Sik that has the largest sum of exploitation and
exploration score (line 13). Given a priority Sz, the exploitation
score identifies the empirical reward Rew(z, k− 1), and it fol-
lows the formal definition in [12], that considers the robustness
obtained in previous loops: the lower the observed robustness
is, the higher the reward assigned to the arm is. The definition

is as follows: Rew(z, k − 1) = (1− minl∈{1,...,k−1} s.t. il=z rbl

maxl∈{1,...,k−1} rbl
).

The exploration score is a value negatively correlated to
the number of attempts of the arm of priority Sz. At line 13,
N(z, k− 1) identifies the number of attempts of priority Sz in
the previous k − 1 steps Si1 . . . Sik−1 . The scalar c is used to
give more importance to either exploration or exploitation.

VI. EXPERIMENTAL EVALUATION

In this section, we present the experiments we performed
to evaluate the proposed approaches. In Section VI-A, we
introduce two baseline approaches. Then, in Section VI-B,
we introduce the experimental setup, and in Section VI-C, we
illustrate the experiments and evaluate the results using some
research questions.
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A. Baseline Approaches

We compare the performance of our approaches with two
baseline approaches proposed in [18]: 1) the constraint embed-
ding method and 2) the lexicographic method. Both methods
are based on penalties, i.e., when the input constraint is not sat-
isfied, a penalty is added to the objective function. Therefore,
the optimization algorithm considers not only the original
objective function but also the penalty: it minimizes the fit-
ness function with the aim of violating the specification ϕ

while satisfying the input constraint ψ .
Constraint Embedding (CE) Method: This method embeds

the constraint ψ into the specification ϕ, by trying to falsify the
formula ψ → ϕ. Namely, given an input signal u and the
output signal M(u), the robustness ρ(〈u, M(u)〉) := �〈u,
M(u)〉, ψ → ϕ� is computed according to Definition 4, and
the optimization algorithm is guided by ρ. Once ρ is negative,
it implies that the constraint ψ is satisfied and the specification
ϕ violated: so, a feasible falsification input has been found.

Lexicographic Method (LM): It uses a global cost function
GCF that considers both the satisfaction of constraint ψ and
the violation of the system specification ϕ. The method priori-
tizes the satisfaction of the constraint ψ : when ψ is unsatisfied,
the (positive) degree �u,¬ψ� of dissatisfaction is added to
GCF and it is guaranteed to dominate GCF. Instead, if the con-
straint is satisfied, GCF is only determined by the robustness
�M(u), ϕ� related to the specification. The approach mini-
mizes GCF, and, when this becomes negative for some u, it
means that u |= ψ and M(u) � ϕ.

B. Experimental Setup

We experiment our approaches over the benchmarks used
in the falsification community [27]. In order to make a com-
prehensive and reliable comparison, we select four Simulink
models with 20 system specifications. The hardness of these
specifications depends on their parameters; in our experiments,
we vary the parameters to obtain problems of different difficul-
ties. Each specification has been experimented with different
input constraints taken from [18].

The constraints for the considered models usually predi-
cate about the inputs over time. Therefore, we allow users to
specify input constraints in STL, as done also in [18]; such
constraints predicate over variables u1, . . . , uM (one for each
input). However, the constraints we support in our approach
are a combination of linear constraints (no temporal operators)
defined over variables −→u = (u1,1, . . . , u1,M, . . . , uc,1, . . . ,

uc,M) (see Definitions 8 and 6), where, for each input ui, there
are c variables u1,i, . . . , uc,i (one for each control point). There
is a straightforward translation between the two formats.

The specifications are reported in Table I. The input con-
straints are reported in Table I, where each constraint is in its
two forms, namely, the format of Definition 8 and STL. Their
IDs identify the corresponding Simulink models, described as
follows.

Automatic Transmission (AT) [27]: It has two input signals,
th (throttle) and br (brake), and produces output signals such
as speed, rpm, gear, etc. The model is composed of six sub-
systems, one Stateflow chart, and 72 blocks in total. The th

TABLE I
BENCHMARK SET (�t(w) = wt − w). (A) TEMPORAL SPECIFICATIONS ϕ.

(B) INPUT CONSTRAINTS ψ

(a)

(b)

and br range over [0, 100] and [0, 325], respectively, each with
five control points. We select specifications AT1, . . . , AT14,
regarding system’s safety (see [12], [26], [27]). We consider
five input constraints, covering both equalities and inequalities.

Abstract Fuel Control (AFC) [14]: It takes two input sig-
nals, PA (pedal angle) and ES (engine speed), and outputs
a ratio μ reflecting the deviation of air–fuel ratio from its
reference value. In our experiment, we set the range of
PA ∈ [8.8, 70] and ES ∈ [900, 1100], each with five con-
trol points. The model is composed of 20 subsystems, and
271 blocks in total. Specifications AFC1 and AFC2 [12], [14]
reason about the expected safety properties of the system. We
specify two input constraints, one constraining the value of ES
w.r.t. the value of PA, and another one constraining the value
of PA over time.

Neural Network Controller (NN): It is a neural network con-
troller for a magnet system from Mathworks. Specifications
NN1 and NN2 [27] formalize the safety requirement about
the position Pos of the magnet w.r.t. its reference value Ref .
The input signal Ref ranges over [1, 3] with four control
points. The model is composed of 11 subsystems, including
one neural network-based controller, and 104 blocks in total.
We consider two input constraints: the first one requiring Ref
to be nondecreasing, and the second one requiring Ref to be
larger of 2.5 in at least one time point.
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Free Floating Robot (FFR) [12]: The four input signals
u1, u2, u3, u4 ∈ [ − 10, 10] are boosters for a robot, and the
goal is to steer it from (x, y) = (0, 0) to (4, 4) in a 2-D space.
The model contains 32 blocks in total. We take four control
points for each input signal. The imposed constraint is a real
one [12]: u1 and u3 should be both positive or negative, and
so should u2 and u4; otherwise, the boosters would conflict
with each other.

Experimental Platform: In our experiments, we use
Breach [4] (ver 1.2.13) with CMA-ES (the state of the art).
The experiments are executed on an Amazon EC2 c4.2xlarge
instance (2.9-GHz Intel Xeon E5-2666 v3, 15-GB RAM).

C. Evaluation

We performed a set of experiments using the two base-
line approaches constraint embedding (CE) and lexicographic
method (LM), and the three proposed approaches Fixed-
Priority (Fix), All-Priorities (ALL), and MAB-Priority (MAB).
Since Fixed-Priority requires to select a given priority, for each
benchmark, we randomly selected two priorities S1 and S2: we
name the two settings as FixS1 and FixS2 .

In our context, an experiment consists of the execution
of an approach A (CE, LM, FixS1 , FixS2 , ALL, or MAB)
over a specification ϕ for 30 trials, with different ran-
dom seeds; each single trial has been executed with a time
budget K of 900 s. For each experiment, we define the suc-
cess rate SR as the number of trials in which a falsifying
input was found, and measure the average execution time
of the successful trials. Note that time is correlated with
the number of simulations, because simulation is much more
computationally expensive than other steps, e.g., proportional
transformation.

In the following, we compare two approaches A1,A2 ∈ {CE,
LM, FixS1 , FixS2 , ALL, MAB} by comparing SR using the
nonparametric Wilcoxon signed-rank test with 5% level of
significance [28]. The null hypothesis is that there is no sta-
tistical significant difference in applying A1 or A2 in terms of
SR; if the null hypothesis is rejected, we check the alternative
hypothesis that A1 is better than A2 (higher SR).

Experimental results are reported in Table II. The gray cells
are local best performers: they have the best SR with minimum
time.

Table III reports the results of the Wilcoxon signed-rank test
between each pair of techniques in terms of SR.

We now analyze the results using three research questions.

RQ1 Do the proposed approaches outperform the two
baseline approaches?

In this RQ, we want to assess whether we improve w.r.t. the
state of the art. From Table II, we observe that sometimes the
two baseline approaches CE and LM are not able to find any
feasible falsifying input over the 30 trials: for example, AT7
for almost all the constraints, and AT8 and AT9 for ψ4

AT . Our
proposed approaches, instead, are almost always successful in
at least one trial. Exceptions are FixS1 with AT6, FixS2 with
AT7, and ALL with AT5, all under constraint ψ1

AT .
Also when the two baseline approaches do find at least a

falsifying input, our approaches in general perform better.

The statistical tests in Table III confirm the previous qualita-
tive evaluation: all our approaches are statistically better than
the two baseline approaches.

Note that both the baseline approaches and our proposed
approaches modify the fitness landscape. However, in the
baseline approaches, the fitness landscape is given by the com-
position of the degree of violation of the constraints and of the
robustness; in this way, the falsification task performed by hill
climbing is complicated. Moreover, note that the scales (i.e.,
orders of magnitude) of constraint violation and robustness
may be very different, and this has been shown to affect the
effectiveness of falsification algorithms [26]. In our approach,
instead, hill climbing operates over a fitness landscape that,
although deformed, it is only given by robustness.

We notice that in many cases the proposed approaches
improve the baselines in time. This is reasonable: since
the baselines make objective functions much more complex,
they need more simulations (thus time) to find the falsifying
input. Note that all infeasible samplings require simulation, so
wasting time for falsification.

We want now to assess the effect of the proportional trans-
formation on the execution time. For each experiment, we have
computed the average simulation time (time/#sim) for all the
techniques (not reported for the sake of space); note that, for
the proposed approaches, such value also includes the time
required by the transformation. We observed that there is no
significant difference between the approaches, meaning that
the computational cost of the transformation is negligible.

RQ2 How do the three proposed approaches compare each
other in terms of SR?

We are here interested in assessing which is the best
approach (among the three proposed ones) in terms of SR (in
the given time budget). From Table II, we notice (as already
observed in RQ1) that in very few cases the Fix approach
may be not effective: this shows that, in some cases, choosing
the wrong priority can affect the performance; a more detailed
analysis will be given in RQ3. In one case, we observe that
also the ALL method is not effective: although this is an excep-
tion considering all the other results of ALL, it is a signal that
such an exhaustive approach may be ineffective, in particular
when there are many priorities to consider.

Observing the statistical tests in Table III, we can draw
more definitive conclusions. Selecting one particular priority
(Fix) does not make any difference: FixS1 and FixS2 are
statistically equivalent. Considering all the priorities (ALL) is
sometimes better than considering only one (ALL is better than
FixS2 ), but sometimes it is equivalent (ALL is equivalent to
FixS1 ). This means that none of the two techniques, Fix
and ALL, overcomes the other, because they highly depend
on the considered specification and constraint. On the other
hand, we observe that the MAB approach outperforms all the
other proposed approaches: this shows that the MAB effi-
ciently learns the priority that must be used because it provides
the lower robustness.

RQ3 How does the selection of priority S in the Fixed-
Priority approach affect SR?

As observed in RQ2, the priority chosen by the Fixed-
Priority approach can influence the falsification ability. In this
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TABLE II
EXPERIMENTAL RESULTS. (SR: THE NUMBER OF SUCCESSES OUT OF 30 TRIALS. #SIM: THE NUMBER OF SIMULATIONS. TIME IN SECONDS.) (a)

AUTOMATIC TRANSMISSION (AT). (b) ABSTRACT FUEL CONTROL (AFC). (c) NEURAL NETWORK CONTROLLER (NN).
(d) FREE FLOATING ROBOT (FFR)

(a)

(c)(b)

(d)

RQ, we want to assess such influence. We selected eight spec-
ifications among those used previously and, for each of these,
we also selected one constraint. For each specification, we run
the Fixed-Priority approach using all the nonequivalent prior-
ities in set Prior (see Section V-B). For each fixed priority,

the falsification is run 30 times. Fig. 4 shows how the success
rate SR changes by varying priorities.

We observe that, for some specifications (AT1, AFC1, NN2,
and FFR2), the variability is low, meaning that the influence
of the selected priority is small. Some of these specifications
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TABLE III
WILCOXON SIGNED-RANK TEST BETWEEN TWO CONSIDERED

APPROACHES A1 AND A2

Fig. 4. Influence of selected priority S in the Fixed-Priority. (ψ1
AT is used

for AT specs, ψ1
AFC for AFC specs, ψ1

NN for the NN spec, and ψ1
FFR for the

FFR spec.)

are simple, such as AT1 and NN2, as we note that SR is
high. AFC1 and FFR2 are not simple but they still exhibit
small variance. For example, in FFR2, this is because the four
different inputs (i.e., the four robot boosters) play similar roles
in the system, and thus the priority over them does not matter.

On the other hand, for some specifications (e.g., AT3, AT4,
AT7, and AT12), the variability is very high, going from SR
of (almost) 0 to (almost) 30. This means that, in these cases,
some priorities perform much better than others, because they
tend to map points toward parts of the input space having
low (possibly negative) robustness. In these specifications, the
MAB-Priority approach is effective (see RQ2 and Table II):
in AT3, AT4, and AT12 with ψ1

AT , MAB-Priority approaches
achieve the highest success rate; in AT7 with ψ1

AT , it performs
better than most of the other approaches.

We also mark the performance of CE and LM methods in
Fig. 4. We note that, in almost all the cases, CE and LM
do not perform as well as the median performance of the
Fixed-Priority method; and in many cases, they perform even
worse than the worst cases of the Fixed-Priority method. This
strengthens our conclusion in RQ1 that the proposed approach
performs generally better than the baseline approaches.

VII. RELATED WORK

Stochastic optimization-based falsification has drawn a lot
of attention recently [1], [2], [4]–[12], [29], and has become
one of the most effective approaches to CPS quality assurance.
Most of research focuses on improving search techniques,
especially handling the “exploration and exploitation” tradeoff.
A comparison of falsification tools is given in [27].

However, the constrained falsification problem has not been
investigated much. Indeed, solvers used in falsification frame-
works (e.g., CMA-ES and simulannealbnd) in general do
not support constraints. The first work considering constraints
in falsification was [30], where timed automata were used

to formalize the constraints and generate meaningful sam-
ples. However, that framework cannot be integrated into the
state-of-the-art hill-climbing optimization-based falsification
framework. Two more recent approaches [18] use penal-
ties in the objective function to handle constraints; they are
the constraint embedding method and lexicographic method
that we used as baseline approaches in our experiments (see
Section VI-A).

Constrained falsification is an instance of constrained
optimization, which is a classical problem in optimization.
Since the model in falsification is black box, white box
methods used in constrained optimization cannot be used [31].

Instead, penalty-based approaches can also handle black
box systems; they add penalties to the objective function for
solutions not respecting the constraints. They are classified
in different categories. Among these, death penalty [15] sim-
ply rejects infeasible solutions, while adaptive penalty uses in
the objective function a factor proportional to the degree of
constraints violation. Instances of adaptive penalties are those
used for falsification in [18].

Our search space transformation idea is similar to a decod-
ing-based method [19] for handling input constraints in evo-
lutionary algorithms. Compared to our work, that technique
has several weaknesses: first, the performance relies on defin-
ing an origin in the input space, which is feasible in simple
problem settings, but not in our case; second, their method is
not applicable to equality constraints.

Another mapping technique is employed in the projected
gradient descent (PGD) method [31], where infeasible sam-
ples are projected to the closest point in the feasible area. In
PGD, infeasible points are mapped to a restricted set of points,
while feasible points stay the same. This leads to significant
deformation of fitness landscapes, which makes the behavior
of hill climbing in the search space very different from that in
the input space. In contrast, our approach maps all points of
the search space to the feasible area in a proportionally spread
way, and exhibits smaller deformation of fitness landscapes.

VIII. CONCLUSION AND FUTURE WORK

In this article, we proposed a technique for handling con-
straints in hill-climbing-based hybrid system falsification. The
approach defines a transformation that maps points from the
unconstrained space to the constrained one; then it performs
the search over the unconstrained space, guided by the robust-
ness of the mapped points in the constrained space. The
transformation requires to fix an order among the dimen-
sions of the search space. We considered three ways to select
the order: 1) Fixed-Priority; 2) All-Priorities; and 3) MAB-
Priority. Experiments showed that the last one (based on
MAB) outperforms the others in most cases.

As future work, we will consider a larger class of constraints
(other than logical combinations of linear constraints), and of
different complexity to better assess the scalability. Moreover,
we also plan to consider other space mappings.
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