
2784 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

A Faithful Binary Circuit Model
Matthias Függer , Robert Najvirt , Thomas Nowak , and Ulrich Schmid

Abstract—Függer et al. (2016) proved that no existing dig-
ital circuit model, including those based on pure and inertial
delay channels, faithfully captures glitch propagation: for the
short-pulse filtration (SPF) problem similar to that of building
a one-shot inertial delay, they showed that every member of the
broad class of bounded single-history channels either contradicts
the unsolvability of SPF in bounded time or the solvability of SPF
in unbounded time in physical circuits. In this article, we pro-
pose binary circuit models based on novel involution channels
that do not suffer from this deficiency. Namely, in sharp con-
trast to bounded single-history channels, SPF cannot be solved in
bounded time with involution channels, whereas it is easy to pro-
vide an unbounded SPF implementation. Hence, binary-valued
circuit models based on involution channels allow to solve SPF
precisely when this is possible in physical circuits. Additionally,
using both SPICE simulations and physical measurements of an
inverter chain instrumented by high-speed analog amplifiers, we
demonstrate that our model provides good modeling accuracy
with respect to real circuits as well. Consequently, our involution
channel model is not only a promising basis for sound formal ver-
ification but also allows to seamlessly improve existing dynamic
timing analysis.

Index Terms—Binary circuit models, glitch propagation.

I. INTRODUCTION

MODERN digital circuit design relies heavily on fast
timing analysis techniques. For synchronous designs,

state-of-the-art static timing analysis tools like Synopsis prime
time are able to very accurately predict the timing behavior of
a given circuit design, and to identify setup/hold-violations and
other timing-related problems. Such tools are based on elabo-
rate timing prediction models like CCSM [1] and ECSM [2].
These models characterize the delay of a cell via (typically
manufacturer-supplied) technology data. This data can include
tabulated input/output current waveforms for varying param-
eters, such as input slew rate and output capacitive load [3].

Manuscript received August 16, 2018; revised February 18, 2019 and March
25, 2019; accepted July 26, 2019. Date of publication August 28, 2019; date
of current version September 18, 2020. This work was supported in part by
the Austrian Science Fund (FWF) through Project SIC under Grant P26436,
Project RiSE under Grant S11405, and Project DMAC under Grant P32431,
in part by the Centre National de la Recherche Scientifique Project PEPS
DEMO, and in part by DigiCosme (Working Group HicDiesMeus). This arti-
cle was recommended by Associate Editor Y. Shi. (Corresponding author:
Thomas Nowak.)

M. Függer is with the Centre National de la Recherche Scientifique,
Laboratoire Spécification et Vérification, ENS Paris-Saclay, Univeristé Paris-
Saclay and Inria, 94235 Cachan, France (e-mail: mfuegger@lsv.fr).

R. Najvirt and U. Schmid are with the Embedded Computing Systems
Group, Vienna University of Technology, 1040 Vienna, Austria (e-mail:
rnajvirt@ecs.tuwien.ac.at; s@ecs.tuwien.ac.at).

T. Nowak is with the Laboratoire de Recherche en Informatique, Centre
National de la Recherche Scientifique, Université Paris-Sud, 91405 Orsay,
France (e-mail: thomas.nowak@lri.fr).

Digital Object Identifier 10.1109/TCAD.2019.2937748

However, the timing predictions provided by static timing anal-
ysis tools do not involve any dynamic (signal trace-related)
considerations.

By contrast, dynamic timing analysis techniques rely on sig-
nal traces generated by a circuit, in response to appropriately
setup test vectors. The “golden standard” here are fully fledged
analog simulations, e.g., using SPICE [4], which are based on
detailed analog models of all elements of a digital standard-
cell library. Since SPICE simulation times of even moderately
complex circuits are prohibitively excessive. However, design-
ers have to resort to digital timing analysis/simulation tools for
Mentor Graphics ModelSim, Cadence NC-Sim, or Synopsis
VCS for those parts of a circuit where, e.g., the presence of
glitch trains may severely affect the correctness and power
consumption. Such tools are based on discrete-value (typically
binary) circuit models augmented by continuous-time delays.
More specifically, gate and wire delay estimates obtained via
CCSM or ECSM, for example, are used to parameterize pure
or inertial delay [5] channels (e.g., in VHDL-Vital or Verilog
timing libraries). The resulting executable HDL simulation
models are then used in subsequent simulation and dynamic
timing analysis runs. Clearly, the precomputed delays are con-
stants here, i.e., remain the same throughout these runs. More
accurate results can be expected from the degradation delay
model (DDM), introduced by Bellido-Díaz et al. [6], [7],
which allow channel delays to vary dynamically in a trace.

However, binary-valued circuit models do not only facilitate
accurate performance and power estimation [8], [9] of com-
plex circuits at early design stages: they also pave the way
to formal verification of complex circuits. A main driver for
verification of digital circuits is its potential to uncover race
conditions, hazardous glitches and other corner-case effects
relevant for timing-closure analysis. Obviously, such capabil-
ities rest critically on suitable foundations for a rigorous and
complete timing analysis of complex circuits. The first thing
to note in this context is that statements about the correctness
of a circuit in a model are meaningful only if they also imply
correctness of the corresponding real circuit implementation.
We call a model realistic, if a given problem can be solved
in the model if and only if it can be solved by a real circuit.
A model is faithful if it is both realistic and provides accu-
rate timing predictions. The first question to ask is whether
existing binary circuit models are faithful.

A. Short-Pulse Filtration

Függer et al. [10] studied the faithfulness of existing
binary circuit models with respect to glitch propagation.
More specifically by their ability to solve the simple short-
pulse filtration (SPF) problem, which is essentially the
problem of building a one-shot variant of an inertial delay
channel: as for inertial delay channels, no short pulses may
appear at the SPF output. In the case of long input pulses,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5765-0301
https://orcid.org/0000-0003-2987-5137
https://orcid.org/0000-0003-1690-9342
https://orcid.org/0000-0001-9831-8583


FÜGGER et al.: FAITHFUL BINARY CIRCUIT MODEL 2785

Fig. 1. Analog simulation traces of a CMOS SPF, implemented as a storage
loop followed by a high-threshold buffer. The dashed (blue) curves represent
the input signal, the solid (green) ones give the output of the storage loop.
The horizontal line at 0.8 V marks the threshold level.

however, they need not be passed unaltered. In particular, the
SPF output may settle at logical 1 even if the input does not.
The stronger variant of bounded SPF requires the output to
settle in bounded time.

The (un)solvability of (bounded) SPF is indeed a suitable
test for a model’s ability to faithfully model glitch propagation
with respect to physical circuits: on the one hand, Marino [11]
formally proved that problems like SPF cannot be solved in
a physical model when the output is required to stabilize in
bounded time [10]. On the other hand, a simple storage loop
with a high-threshold buffer at its output (see Fig. 5) solves
SPF in unbounded time: as shown in the SPICE simulation
traces in Fig. 1, sufficiently large input pulses (largest blue
dashed one) just cause the storage loop to change its state (to
1) instantaneously (left-most green solid one), very small input
pulses (smallest blue dashed one) do not affect the storage loop
(bottom green solid one). Critical input pulses (middle blue
dashed ones, overlapping, therefore appearing as if they were
one pulse) cause the storage loop to become metastable for
an unbounded time, eventually resolving to either state 0 or 1.
Therefore, appending a high-threshold buffer with a threshold
(marked by the red dotted line) clearly above the metastabil-
ity region results in a clean (= nonmetastable) output signal,
which either remains at 0 or makes a single (possibly delayed)
transition to 1. Hence, with real circuits, SPF is solvable, while
its stronger, bounded, variant is not.

B. Single-History Channels

The circuit model used in [10] combines zero-time Boolean
gates with single-history channels that model circuit delays.
They are primarily characterized by a delay function δ that
maps a transition occurring at the channel input at time t to
its corresponding output transition at time t + δ(T), where T
is the previous-output-to-input delay. Fig. 2 shows two exam-
ples. Note that single-history channels not only allow to
model decaying pulse propagation, but also vanishing pulses:
if two succeeding input transitions would, according to δ(T),
occur at the output in reversed order, they cancel each other.
Furthermore, single-history channels allow for different ris-
ing and falling transition delays, specified by two delay
functions δ↑ and δ↓, respectively.

Well-known instances of single-history channels are pure
delay channels and inertial delay channels [5]; a more
advanced example are DDM channels [6], [7]. They are all
bounded single-history channels, where the delay functions
are upper- and lower-bounded. Függer et al. [10] proved that

Fig. 2. Left: input/output signal of a single-history channel, involving the
previous-output-to-input delay T and the resulting input-to-output delay δ(T).
Right: input transition with T < 0.

no bounded single-history channel can be faithful: binary cir-
cuit models based on channels with pure (= constant) delays
do not allow to solve unbounded SPF. Bounded single-history
channels with nonconstant delays, including inertial delay and
DDM channels, allow to design circuits that solve bounded
SPF. Since this contradicts reality, as argued above, no existing
binary circuit model is faithful.

C. Main Contributions and Paper Organization

In this article, we propose a class of single-history channels
with unbounded delay functions: like their bounded counter-
parts, their delay is upper bounded; however, it is not bounded
from below. These negative delays turn out to be crucial for
accurately modeling glitch suppression. We coined the term
involution channels for them, as we require their negative
delay functions to be involutions, i.e., −δ(T) must form its
own inverse. To increase the coverage of our class of involu-
tion channels, we actually allow the delay functions δ↑ and δ↓
for rising and falling transitions to be different, and require
−δ↓(−δ↑(T)) = T and −δ↑(−δ↓(T)) = T . We prove that the
solvability/unsolvability border of SPF in a binary-valued cir-
cuit model based on our involution channels is the same as in
reality, and that the resulting model also accurately captures
the behavior of real circuits.

1) In Section II, we demonstrate that the standard first-
order model used, e.g., in [12] actually gives rise to
a simple instance of general involution channels. They
are introduced formally in Section IV. Assuming delay
functions to be involutions is hence neither artificial nor
(as our simulations and experiments reveal) inaccurate.

2) In Section III, we provide our binary circuit model,
as well as the SPF problem. In Section V, we explain
how to use our model to explicitly construct output and
intermediate signals of a circuit given the input signals,
i.e., how to perform circuit simulation.

3) In Section VI, we prove that the simple circuit consist-
ing of a storage loop and a high-threshold buffer solves
unbounded SPF in the involution channel model.

4) In Section VII, we show that bounded SPF is impos-
sible to solve with involution channels. In a nutshell,
our proof inductively constructs an execution that can
determine the final output only after some unbounded
time. It exploits an important continuity property of the
output of an involution channel with respect to the pres-
ence/absence of glitches at the channel input, which is
due to the involution property (unboundedness) of our
delay functions.

5) In Section VIII, we briefly report on the results of
the experimental evaluation [13] of the accuracy of the
predictions of our involution model for a real circuit,
which used both simulations and measurements.



2786 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Together, as we conclude in Section IX, the above results
reveal that our binary circuit model in conjunction with involu-
tion channels indeed allows to solve SPF precisely when this is
possible in physical circuits. Moreover, some (limited) experi-
mental evaluation also revealed good accuracy. Consequently,
to the best of our knowledge, our involution model seems to
be the very first candidate for a model that indeed guarantees
faithful glitch propagation.

D. Related Work

Whereas there is a wealth of research devoted to the ana-
log modeling of digital circuits (see [4], [14]–[17] for a
few references), none addressed the issue of characterizing
delay functions with respect to solvability of problems. On
the other hand, digital circuit models have been proposed
as a general approach for modeling asynchronous sequen-
tial switching circuits long time ago: Unger [5] introduced
the well-known pure and inertial delay channels, which have
been heavily used both in research and in industrial timing
simulators since then. Brzozowski and Ebergen [18] formally
proved that it is impossible to implement Muller C-elements
and other state-holding components using only zero-time log-
ical gates interconnected by wires without timing restrictions.
Bellido-Díaz et al. [6] proposed the PID model, and justified
its appropriateness both analytically and by comparing model
predictions against SPICE simulations. In [19], the PID model
[later renamed to delay degradation model (DDM)] was gen-
eralized from inverters to NAND and NOR gates. Thanks to
considerable efforts like [19], [20] spent on the question of
how to extract the DDM model parameters from technology
parameters, the DDM model has already made its way into
digital timing analysis tools [7].

II. ANALOG MODELS VERSUS INVOLUTION CHANNELS

Restricting delay functions to satisfy the involution prop-
erty −δ↑(−δ↓(T)) = −δ↓(−δ↑(T)) = T might raise concerns
about whether such an assumption makes sense at all in real
circuits, and whether/how it fits to existing analog models [4],
[14]–[17]. In this section, we will show that involution chan-
nels are indeed well-suited for modeling physical circuits, in
the sense that they arise naturally in a (generalized) standard
analog model.

More specifically, we will show that, for any given invo-
lutions δ↑, δ↓, there is an analog channel model that has
δ↑, δ↓ as its corresponding delay functions. It consists of a
pure delay component, a slew-rate limiter with generalized
switching waveforms, and an ideal comparator (see Fig. 3).
Note carefully, though, that we do not claim that this is the
only analog model that leads to involution delay functions.
There may of course be many others as well. Vice versa,
the fact that some well-known analog model leads to involu-
tions does not at all make our results incremental: besides the
fact that, to the best of our knowledge, no analog modeling
paper [4], [14]–[17] addressed the properties of correspond-
ing delay functions, it is of course not possible to generalize
results obtained for some particular involution to involutions
in general.

As a first observation, note that the timing behavior of
involution channels is fully determined by either one of
the delay functions, as δ↑(T) = −δ−1

↓ (−T) (and similarly

Fig. 3. Simple analog channel model.

for δ↓). To better understand how our delay functions inte-
grate the behavior of both transitions, consider the ansatz
δ↑(T) = −f−1

↑ (f↓(T)) and δ↓(T) = −f−1
↓ (f↑(T)), where

f↑ resp. f↓ are strictly increasing resp. decreasing functions.
Intuitively, we would like f↑ and f↓ to represent the contin-
uous switching waveforms of the output of the generalized
slew rate limiter upon the occurrence of a rising, respectively,
falling transition at its input. In the above formula, e.g., at a
rising transition, δ↑(T) returns the time by which f↑ has to
be shifted so that the output signal remains continuous with
respect to the output caused by the previous falling transition.
For realistic switching waveforms, we further need f↑(0) =
1−f↓(0) = 0 and limt→∞ f↑(t) = 1−limt→∞ f↓(t) = 1, which
requires to augment our ansatz with some additive terms,
resulting in

δ↑(T) = −f−1
↑

(
f↓

(
T + δ

↓∞
))
+ δ
↑∞ and

δ↓(T) = −f−1
↓

(
f↑

(
T + δ

↑∞
))
+ δ
↓∞ (1)

where δ
↑∞ = limT→∞ δ↑(T) and δ

↓∞ = limT→∞ δ↓(T).
Fig. 3 shows a block diagram of an idealized analog cir-

cuit corresponding to so constructed involution channels, and
a sample waveform. The pure delay time-shifts the binary-
valued input ui by some Tp. The slew rate limiter exchanges
the step functions of the resulting ud with instances of f↑ and
f↓, shifting them in time such that the output ur is continu-
ous and switches between strictly increasing and decreasing
exactly at ud’s switching times. The comparator generates uo
by again discretizing the value of this waveform comparing
it to the threshold voltage Vth, effectively adding f−1

↑ (Vth)

resp. f−1
↓ (Vth) to the instantiation times of f↑ resp. f↓. The

input–output delay of a perfectly idle channel (the last output
transition was at time −∞), i.e., δ

↑∞ and δ
↓∞ for rising, respec-

tively, falling transitions, is the sum of the pure delay and
the time the switching waveform needs to reach the threshold
voltage Vth

δ
↑∞ = Tp + f−1

↑ (Vth) and δ
↓∞ = Tp + f−1

↓ (Vth). (2)

This equation and (1) can be used to transform the parame-
ters of the model in Fig. 3 to the corresponding δ functions.
As a special case, consider a slew rate limiter implemented
as a first-order RC low pass filter; the switching waveforms
are f↓(t) = 1 − f↑(t) = e−t/τ here, with τ being the RC
time constant. Inserting these functions and their inverses



FÜGGER et al.: FAITHFUL BINARY CIRCUIT MODEL 2787

into (1) and (2), we obtain what we refer to as exp-channels
in the remainder of this article

δ↑(T) = τ ln
(

1− e−(T+Tp−τ ln(Vth))/τ
)
+ Tp − τ ln(1− Vth)

δ↓(T) = τ ln
(

1− e−(T+Tp−τ ln(1−Vth))/τ
)
+ Tp − τ ln(Vth).

(3)

Conversely to the above, given any δ↓, δ↑, there is a com-
bination of switching waveforms f↑ and f↓, pure delay Tp, and
threshold Vth, such that the circuit in Fig. 3 behaves exactly
like the corresponding involution channel. For example, one
could choose f↓(t) = e−t, f↑(t) = eδ↓(t−δ

↑∞)−δ
↓∞ , Tp such that

δ↓(−Tp) = δ↑(−Tp) = Tp, and Vth = eTp−δ
↓∞ . However, this

choice is of course not unique.

III. BINARY CIRCUIT MODEL

We next formally define the binary-value continuous-time
circuit model used in this article. Except for the involution
channels introduced in Section IV, it is essentially the same
as the model introduced in [10].

A. Signals

A falling transition at time t is the pair (t, 0), a rising tran-
sition at time t is the pair (t, 1). A signal is a (finite or infinite)
list of alternating transitions such that the following.
S1) The initial transition is at time −∞; all other transitions

are at times t ≥ 0.
S2) The sequence of transition times is strictly increasing.
S3) If there are infinitely many transitions in the list, then

the set of transition times is unbounded.
To every signal s corresponds a function R→ {0, 1} whose

value at time t is that of the most recent transition. We follow
the convention that the function already has the new value at
the time of a transition, i.e., the function is constant in the
half-open interval [tn, tn+1) if tn and tn+1 are two consecutive
transition times. A signal is uniquely determined by such a
function.

B. Circuits

Circuits are obtained by interconnecting a set of input ports
and a set of output ports, forming the external interface of
a circuit, and a set of combinational gates via channels. We
constrain the way components are interconnected in a natural
way by requiring that any gate input, channel input, and output
port is attached to only one input port, gate output or channel
output.

Formally, a circuit is described by a directed graph where:
C1) vertices are partitioned into input ports, output ports,

and gates;
C2) channels are edges with a channel function that maps an

input signal to an output signal. Multiple edges between
two vertices are allowed. Section IV specifies the proper-
ties of the channel function for our involution channels.
For simplicity of analysis, we use 0-delay channels as
edges from input ports and to output ports;

C3) input ports have no incoming channels;
C4) output ports have exactly one incoming channel and no

outgoing channel;

C5) every gate is assigned a Boolean gate function {0, 1}d →
{0, 1}, where d is the number of incoming channels, and
an initial value in {0, 1};

C6) there is a fixed order on the incoming channels of every
gate.

C. Executions

An execution of circuit C is a collection of signals s� for all
components � (vertices and channels) of C that respects the
channel functions, Boolean gate functions, and initial values.
Formally, the following properties hold.
E1) If I is an input port, then there are no restrictions on sI .
E2) If O is an output port, then sO = sC, where C is the

unique incoming channel of O.
E3) If C is a channel departing from vertex V , then sC =

fC(sV), where fC is the channel’s function.
E4) If B is a gate with d incoming channels C1, . . . , Cd,

ordered according to the fixed order of condition (C6),
gate function fB, and initial value IB, then for all
times t < 0, sB(t) = IB, and for t ≥ 0, sB(t) =
fB(sC1(t), sC2(t), . . . , sCd (t)).

D. Short-Pulse Filtration

A pulse of length � > 0 at time T ≥ 0 has initial value 0,
one rising transition at time T , and one falling transition at
time T +�. A signal contains a pulse of length � at time T
if it contains a rising transition at time T , a falling transition
at time T +� and no transition in between. The zero signal
has the initial transition (−∞, 0) only.

A circuit solves SPF, if it fulfills the following conditions.
F1) The circuit has exactly one input port and exactly one

output port. (Well-formedness.)
F2) If the input signal is the zero signal, then so is the output

signal. (No generation.)
F3) There exists an input pulse such that the output signal

is not the zero signal. (Nontriviality.)
F4) There exists an ε > 0 such that for every input pulse

the output signal never contains a pulse of length less
than or equal to ε. (No short pulses.)

Note that we allow the circuit to behave arbitrarily if the
input signal is not a single pulse or the zero signal.

A circuit solves bounded SPF if additionally the following
condition holds.
F5) There exists a K > 0 such that for every input pulse the

last output transition is before time T+K, where T is the
time of the last input transition. (Bounded stabilization
time.)

IV. INVOLUTION CHANNELS

Intuitively, a channel propagates each transition of the input
signal to a transition at the output happening after some input-
to-output delay δ(T), which depends on the previous-output-
to-input delay T . Note that T can be negative if two input
transitions are close together, as in Fig. 2 (right).

Formally, an involution channel is characterized by two
strictly increasing concave delay functions δ↑ : (−δ

↓∞,∞)→
(−∞, δ

↑∞) and δ↓ : (−δ
↑∞,∞) → (−∞, δ

↓∞) such that both
δ
↑∞ = limT→∞ δ↑(T) and δ

↓∞ = limT→∞ δ↓(T) are finite and

− δ↑
(−δ↓(T)

) = T and − δ↓
(−δ↑(T)

) = T (4)



2788 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 4. Circuit (graph) with gates v, w, z, and channels c1 and c2 (on the
left) and the physical equivalent (on the right). Reset R switches from 1 to 0
at time 0.

Algorithm 1 Channel Algorithm, Up to Time τ

1: x← value at t = −∞ in Input
2: add (−∞, x) to Output
3: Prev← (−∞, x)
4: t← earliest time of a pending transition, otherwise +∞
5: while t ≤ τ do
6: move (t, x) from Pending to Output
7: (t′, x′)← Prev
8: if x = 1 then δ← δ↑(t − t′) else δ← δ↓(t − t′) endif
9: Prev← (t + δ, x)

10: if t + δ ≤ t′ then
11: remove (t′, x′) from Pending(C)
12: else
13: add (t + δ, x) to Pending(C)
14: end if
15: t← earliest time of a pending transition, otherwise +∞
16: end while
17: return Output

for all applicable T . All such functions are necessarily con-
tinuous and, for simplicity, we will also assume them to be
differentiable; δ being concave thus implies that its derivative
δ′ is continuous and monotonically decreasing.

The behavior of an involution channel is defined by
Algorithm 1, which maps channel input signal s with event
list Input to channel output signal fC(s) with event list output.

Definition 1: An involution channel is strictly causal if
δ↑(0) > 0, which is equivalent to the condition δ↓(0) > 0
due to (4) and the functions being strictly increasing.

Lemma 1: An exp-channel is strictly causal if and only if
Tp > 0.

The next lemma identifies an important parameter δmin of a
strictly causal involution channel.

Lemma 2: A strictly causal involution channel has a
unique δmin defined by δ↑(−δmin) = δmin = δ↓(−δmin), which
is positive. For exp-channels, δmin = Tp.

For the derivative, we have δ′↑(−δ↓(T)) = 1/δ′↓(T) and
hence δ′↑(−δmin) = 1/δ′↓(−δmin).

Proof: Set f (T) = −T + δ↑(−T). This function is continu-
ous and strictly decreasing, since δ↑ is continuous and strictly
increasing. Because f (0) = δ↑(0) is positive and the limit of
f (T) as T → δ

↓∞ is −∞, there exists a unique δmin between 0
and δ

↓∞ for which f (δmin) = 0. Hence, δ↑(−δmin) = δmin.
The second equality follows from δmin = δ↓(−δ↑(−δmin)) =
δ↓(−δmin) according to (4).

The second part of the lemma follows by
differentiating (4).

We next show that δmin indeed deserves its name: a partic-
ular consequence of the following lemma is that the channel
delay for any noncanceled transition is larger than δmin.

Lemma 3: Let tn and tn+1 be the times of the nth and (n+
1)th input transitions. The following are equivalent.

1) The nth and (n+1)th pending output transitions cancel.
2) tn+1 ≤ tn + δn − δmin.
3) δn+1 ≤ δmin.
Proof: Let δ be either δ↑ or δ↓, depending on whether tn+1 is

a rising or falling transition. By definition, the two transitions
cancel if and only if

δn+1 = δ(tn+1 − tn − δn) ≤ −(tn+1 − tn − δn). (5)

Set T = tn+1 − tn − δn. By Lemma 2, equality holds in (5) if
and only if T = −δmin. Because the left-hand side of (5) is
increasing in T and the right-hand side is strictly decreasing
in T , (5) is equivalent to T ≤ −δmin. This in turn is equivalent
to tn+1 ≤ tn + δn − δmin and δ(T) ≤ δmin.

In the rest of this article, we assume all channels to be
strictly causal involution channels unless noted otherwise.

V. SIMULATING EXECUTIONS OF CIRCUITS

The definition of an execution of a circuit as given in
Section III is “existential,” in the sense that it only allows
to check for a given collection of signals whether it is an
execution or not. This also includes the involution channel
algorithm: it specifies the channel output signal, given a fixed
input signal. A priori, this does not give an algorithm to con-
struct executions of circuits with feedback loops. However,
we show in Theorem 1 that executions always exist and are
unique for circuits with strictly causal involution channels.
We can therefore give a deterministic simulation algorithm
for arbitrary circuits (that may include feedback loops).

The simulation algorithm takes as input a time τ ≥ 0 up to
which the circuit should be simulated, and a list of transitions
Fixed(I) = sI for every input port I. We denote by Init(I)
the value of the initial transition in this list (at time −∞).
When the algorithm terminates, it outputs a list of transitions
Fixed(�) up to time τ for every component � (vertices and
channels) of the circuit.

During the execution of the algorithm, it distinguishes pend-
ing and fixed transitions. Pending transitions are stored in
the variable Pending(�), while fixed ones are transferred to
Fixed(�); they are said to be marked fixed when doing so.
We will show (Lemma 6) that pending transitions can still be
canceled by other transitions. Fixed transitions on the other
hand are guaranteed to occur in the constructed execution.

For a channel C, we write Incoming(C) for its predecessor
and Delay(C) for the pair of its delay functions. Furthermore,
we store its last generated output transition (ordered by the
time of the corresponding input transitions), whether it is
canceled or not, in the variable Prev(C). For a gate B, we
write Incoming(B) for the collection of its incoming channels,
Init(B) for its initial value, and fB for its Boolean function. For
an output port O, Incoming(O) is its unique incoming chan-
nel. For an input port I, Outgoing(I) is its unique outgoing
channel.

The simulation algorithm is given in Algorithm 2. It uses the
function Latest(�, t) for a component � and a time t, which is
equal to the Boolean value of the most recent fixed or pending
transition for component � before or at time t (ordered by their



FÜGGER et al.: FAITHFUL BINARY CIRCUIT MODEL 2789

Algorithm 2 Circuit Simulation Algorithm, Until Time τ

1: for all input ports I do
2: C← Outgoing(I)
3: copy all finite-time transitions from Fixed(I) to Pending(C)
4: end for
5: for all channels C to gate B do
6: V ← Incoming(C)
7: add (−∞, Init(V)) to Fixed(C)
8: Prev(C)← (−∞, Init(V))
9: end for

10: for all gates B do
11: add (−∞, Init(B)) to Fixed(B)
12: end for
13: t← 0
14: while t ≤ τ do
15: for all comp. � with a pending transition (t, x) at time t do
16: move (t, x) from Pending(�) to Fixed(�)
17: end for
18: for all gates B do
19: (C1, . . . , Cd)← Incoming(B)
20: v← fB

(
Latest(C1, t), . . . , Latest(Cd, t)

)
21: if v 
= Latest(B, t) then add (t, v) to Fixed(B) endif
22: end for
23: for all channels C from gate B1 to gate B2 do
24: (δ↑, δ↓)← Delay(C)
25: if ∃ a transition (t, x) in Fixed(B1) at time t then
26: (t′, x′)← Prev(C)
27: if x = 1 then δ← δ↑(t − t′) else δ← δ↓(t − t′) endif
28: Prev(C)← (t + δ, x)
29: if t + δ ≤ t′ then
30: remove (t′, x′) from Pending(C)
31: else
32: add (t + δ, x) to Pending(C)
33: end if
34: end if
35: end for
36: t← earliest time of a pending transition, otherwise +∞
37: end while
38: for all output ports O do
39: C← Incoming(O); V ← Incoming(C)
40: copy Fixed(V) to Fixed(C) and to Fixed(O)
41: end for

transition times). Note the special handling of 0-delay channels
from input ports and to output ports, which is outside of the
main loop and just copies the transition lists.

If the Init(·)-values of the incoming neighbors are not com-
patible with a gate’s own initial value, then line 21 generates
a transition at time t = 0 in the first loop iteration. Thereupon,
the algorithm iteratively looks at the earliest pending transi-
tions, declaring them as fixed, and propagating their effect
through gates and channels. We highlight two noteworthy
properties of the algorithm: 1) the delay δ(T) is a function
of the previous-output-to-input delay T = t − t′ (see line 27)
and 2) a pending output transition of a channel is removed if
a later input transition causes an output transition that occurs
earlier (code line 29). In this case, the two transitions cancel
at the channel output (pulse cancellation).

We now show that this algorithm indeed constructs an exe-
cution of a circuit C (up to time τ ). Let t� be the value of t at
the beginning of iteration � ≥ 1 of the algorithm (set in line 13
or 36). Denote by δCmin > 0 the minimal δmin of all channels
in circuit C except for the 0-delay channels from inputs and
to outputs.

Lemma 4: For all iterations � ≥ 1: 1) no transition (s, x)
with s 
= t� is newly marked fixed in the iteration; 2) a tran-
sition (s, x) added during iteration � either has time s = t� or
s > t� + δCmin; and 3) every transition at time t� is fixed at the
end of the iteration.

Proof: Statement 1) is implied by the fact that transitions are
only marked fixed in lines 16 and 21, which act on transitions
at time t� only.

For 2), assume by contradiction that a transition (s, x) with
s ≤ t� + δCmin but different from t� was added in iteration �.
Such a transition can only be added via line 32. By our
assumption and line 27, δ(t� − t′) ≤ δCmin ≤ δmin must have
held, where δ ∈ {δ↑, δ↓} is the applicable channel function
with minimal delay δmin and t′ is the time of the channel’s
last output transition. However, by Lemma 3, this requires
t� + δ(t� − t′) ≤ t� + δmin ≤ t′ which is in contradic-
tion with the (negated) condition in line 29 necessary to
reach line 32.

For 3), assume by contradiction that, at the end of
iteration �, there exists a nonfixed transition (t�, x). Since
line 16 marks all transitions at time t� fixed and line 21 adds
only fixed transitions at time t�, the nonfixed transition must
have been newly added by line 32. However, as in 2), we
know that this requires δ(t� − t′) ≤ δmin, again contradicting
line 29.

From an inductive application of Lemma 4, we obtain
that the sequence of iteration start times (t�)�≥1 is strictly
increasing without bound.

Lemma 5: Either the number of transitions generated by the
simulation algorithm is finite or for all non-negative integers
k ≥ 0, there exists some iteration � ≥ 1 such that t� ≥ k · δCmin.

Proof: We prove the lemma by induction. The base case
k = 0 is trivial since t� ≥ 0 for all iterations �.

For the induction step, let t� ≥ k ·δCmin. Let N be the number
of distinct times of pending transitions in the interval [t�, (k+
1) · δCmin) at the start of iteration �. By Lemma 4, all pending
transitions added in iterations from � onward are at times s >

t�+δCmin ≥ (k+1)·δCmin. This means that all pending transitions
before time (k + 1) · δCmin are either removed or fixed at the
end of iteration �+N−1. Hence, t�+N ≥ (k+1) · δCmin, which
concludes the proof.

The following lemma proves that the generated transition
lists are well-defined, in the sense that no later iteration can
remove transitions that may have generated causally dependent
other transitions already.

Lemma 6: Consider Algorithm 2 with line 30 changed to
remove from set Pending(C) ∪ Fixed(C), i.e., both pending
and fixed transitions. Then, no fixed transition would ever be
canceled.

Proof: Assume by contradiction that some iteration � ≥ 1
is the first in which a fixed transition is canceled. Thus, there
exists a transition at time t� that generated a new transition at
some time t = t�+ δ(t�− t′) that results in the cancellation of
a fixed transition at time t′, i.e., t ≤ t′. From the fact that the
transition at time t′ is already fixed at iteration �, Lemma 4
1), and the fact that the sequence of t�, � ≥ 1, generated by
the modified algorithm is increasing, we obtain t′ ≤ t�.

However, the condition in line 29 requires t� + δ(t� − t′) ≤
t′. Since t� − t′ ≥ 0 and the channel is strictly causal
(see Definition 1), δ(t� − t′) > 0 yields a contradiction.

This allows us to use the original line 30.



2790 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 5. Circuit solving unbounded SPF, consisting of an OR-gate fed-back
by channel C, and an exp-channel HT implementing a high-threshold buffer.

We are now ready for the main result of this section, which
asserts the existence of a unique execution of our circuit C.

Theorem 1: For any 0 ≤ τ < ∞, the execution construc-
tion algorithm applied to circuits with strictly causal involution
channels always terminates. At the end of iteration � ≥ 1, the
collection of signals sσ , restricted to time [−∞, t�], is the
unique execution of circuit C restricted to time [−∞, t�]. If
the algorithm terminates at the beginning of iteration �, then
this collection of signals is the unique execution of circuit C.

Proof: From Lemma 5, we deduce that there is an
iteration � ≥ 1 such that t� > τ , thus the algorithm terminates.
From Lemma 4, we know that the algorithm does not add
transitions with times < t� during iteration �. By Lemma 6 in
conjunction with the fact that lines 23–35 implement the out-
put transition generation algorithm of Section IV, Algorithm 2
correctly computes channel outputs. To prove uniqueness of
the execution, assume by contradiction that there is a sec-
ond execution and consider the first differing transition. This
contradicts either E3) or E4).

VI. POSSIBILITY OF UNBOUNDED SPF

In this section, we show that unbounded SPF is solvable
in our circuit model with strictly causal involution channels.
We do this by verifying that the circuit shown in Fig. 5
indeed solves SPF. The circuit was inspired by the physical
solution that provided Fig. 1, which consists of a fed-back
OR-gate forming the storage loop and a subsequent high-
threshold buffer. The high-threshold buffer is implemented
by a (nonsymmetric) exp-channel, with appropriately chosen
parameters. Unless otherwise noted, δ

↑∞, δ
↓∞, and δmin will

refer to the parameters of the feedback channel.
We consider a pulse of length � > 0 at time 0 at the input

and reason about the behavior of the feed-back loop. Then, we
show that its behavior can be translated to a legitimate SPF
output by using a high-threshold buffer. We start by identifying
two extremal cases: if � is too small, then the pulse is filtered
by the channel in the feed-back loop. If it is too large, the pulse
is captured by the storage loop, leading to a stable output 1.

Lemma 7: If the input pulse’s length � satisfies � ≥ δ
↑∞,

then the OR output has a unique rising transition at time 0.
Proof: Assigning the channel output sC a single rising tran-

sition at time δ
↑∞ is part of a consistent execution, in which

the OR’s output has a single rising transition at time 0. The
lemma now follows from uniqueness of executions.

Lemma 8: If the input pulse’s length � satisfies � ≤ δ
↑∞−

δmin, then the OR output contains only the input pulse.
Proof: Channel C’s input signal contains only two transi-

tions: one at time t1 = 0 and one at time t2 = � ≤ δ
↑∞− δmin.

Since δ1 = δ
↑∞ and hence t2 ≤ t1+ δ1− δmin, the two pending

transitions of C’s output cancel by Lemma 3, and no further
transitions are generated at the OR gate’s output.

Now suppose that the input pulse length satisfies δ
↑∞ −

δmin < �0 < δ
↑∞. For these pulse lengths �0, the OR output

signal will contain the input pulse �0, followed by a series of
pulses of lengths �1,�2, . . . For all but one �0, this series
will turn out to be either decreasing or increasing and finite,
causing the output signal to be eventually 0 or eventually 1. To
compute these pulse lengths, we define the auxiliary function

f (�) = δ↓
(
�− δ↑(−�)

)+�− δ↑(−�) (6)

which gives �n = f (�n−1) for all n ≥ 2. To see this, note that
�n−1 at the channel input is also present at the channel output,
so the rising resp. falling transition is delayed by δ↑(−�n−1)

resp. δ↓(�n−1 − δ↑(−�n−1)). The first generated pulse starts
from a zero channel input and thus

�1 = �0 − δ
↑∞ + δ↓

(
�0 − δ

↑∞
)
. (7)

The procedure stops if either f (�n) ≤ 0 (pulse canceled;
the output is constant 0 thereafter) or if

f (�n) ≥ δmin > 0 (8)

(pulse captured; the output is constant 1 thereafter).
The only case in which the procedure does not stop is if

f (�1) = �1. There is a unique �1 > 0 with this property,
denoted �̃1: with κ = δ↑(−�̃1) and hence �̃1 = δ↓(−κ)

by the involution property, (6) reads δ↓(�̃1 − κ) = κ and
hence �̃1 − κ = −δ↑(−κ). Note carefully that κ is the
period of the resulting periodic signal, and γ = �̃1/κ < 1
its duty cycle (0.5 in the case of symmetric channels, as
κ = 2�̃1 here). Since the left-hand side of the resulting equa-
tion δ↓(−κ) + δ↑(−κ) − κ = 0 is positive for κ → 0 but
negative for κ → min{δ↑∞, δ

↓∞}, there is indeed a unique κ > 0
and a corresponding �̃1 = δ↓(−κ) < κ .

Given the upper bound on �0 from Lemma 7 and (7), we
must have �̃1 < δ↓(0). Since �1 → δ↓(0) as �0 → δ

↑∞ and
�1 → 0 as �0 → δ

↑∞ − δmin, there exists a unique �0 such
that �1 = �̃1. Denote it by �̃0.

The following lemma shows that the procedure indeed stops
if and only if �1 
= �̃1, and can be used to bound the number
of steps until it stops.

Lemma 9: For f (.) given in (6) with fixed point �̃1, we
have |f (�n)− �̃1| ≥ (1+ δ′↑(0)) · |�n − �̃1| for all n ≥ 1 if
�n > 0.

Proof: Differentiation of (6) provides f ′(�n) = (1 +
δ′↑(−�n)) · δ′↓(�n − δ↑(−�n)) + 1 + δ′↑(−�n) ≥ 1 + δ′↑(0),
because δ′↑(−�n) ≥ δ′(0) and δ′↓(T) > 0 for all T as δ↓(.) is
concave and increasing. The mean value theorem of calculus
now implies the lemma.

Theorem 2: The fed-back OR gate with a strictly causal
involution channel has the following output when the input
pulse has length �0.

1) If �0 > �̃0, then the output is eventually constant 1.
2) If �0 < �̃0, then the output is eventually constant 0.
3) If �0 = �̃0, then the output after the initial pulse �0

is a periodic pulse train with uptime �̃1, period κ and
duty cycle γ = �̃1/κ < 1.

Furthermore, the stabilization time in the first two cases is
in the order of loga(1/|�0 − �̃0|) with a = 1+ δ′↑(0).

Proof: If �0 ≥ δ
↑∞ or �0 ≤ δ

↑∞ − δmin, then Lemmas 7
and 8 show the theorem.

So let �0 ∈ (δ
↑∞ − δmin, δ

↑∞). By Lemma 9, the number of
generated pulses until the procedure stops is in the order of



FÜGGER et al.: FAITHFUL BINARY CIRCUIT MODEL 2791

loga(1/|�1− �̃1|). Setting g(�0) = �0− δ
↑∞ + δ↓(�0− δ

↑∞)

such that �1 = g(�0), cp. (7), and applying the mean value
theorem of calculus to this function, we see analogously as in
the proof of Lemma 9 that

|�1 − �̃1| ≥
(

1+ δ′↓(0)
)
· |�0 − �̃0|.

Hence, the number of generated pulses is also in the order of
loga(1/|�0−�̃0|). Since the period of the generated pulses is
trivially upper-bounded by δ

↑∞, we have the same asymptotic
bound on the stabilization time.

Finally, one can show that a high-threshold buffer with
arbitrary threshold can be modeled by an exp-channel with
properly chosen Vth.

Lemma 10: Let C be an exp-channel with threshold Vth
and initial value 0, and let 0 ≤ � < Vth. Then there exists
some � > 0 such that every finite or infinite pulse train with
pulse lengths �n ≤ �, n ≥ 0, and duty cycles �n ≤ �, n ≥ 1,
is mapped to the zero signal by C.

Proof: Denote channel C’s time constant by τ , its pure delay
by Tp, and its delay functions by δ↑ and δ↓ according to (3).
Recall that δmin = Tp for C.

Regarding the initial pulse �0, we observe that it is canceled
by C whenever

�0 ≤ δ↑(∞)− δmin = −τ ln(1− Vth) (9)

recall (3): since the rising resp. falling transition has delay
δ↑(∞) resp. δ↓(�0−δ↑(∞)), we find �0+δ↓(�0−δ↑(∞))−
δ↑(∞) ≤ −δmin + δ↓(−δmin) = 0.

For choosing an appropriate � that also causes a cancella-
tion of �n, n ≥ 1, we define the function

f (θ) = δ↑
(

1− �

�
θ − Tp

)
(10)

= τ ln
(

1− Vthe−
1−�
�
· θ
τ

)
+ Tp − τ ln(1− Vth).

By Lemma 2, we have f (0) = Tp. Differentiating this function
at θ = 0 gives

f ′(0) = 1− �

�
· Vth

1− Vth
> 1

because � < Vth. This, by continuity of f ′ and f ′(θ) being
decreasing, shows that there is some �f >0 such that f ′(θ)≥1
for all θ ∈ [0,�f ]. Choosing � = min{�f , −τ ln(1 −
Vth)/2}, the mean value theorem of calculus applied to (10)
provides

∀θ ∈ [0,�] : (θ) ≥ Tp + θ (11)

and trivially

� ≤ −τ ln(1− Vth)

2
= δ↑(∞)− δmin

2
. (12)

We now prove that this choice of � satisfies the statement of
our lemma. We know this already for the initial pulse �0, for
the remaining pulses �n, n ≥ 1, let t1, t2, . . . be the transition
times in the input pulse train with pulse lengths �n ≤ �

and duty cycles �n ≤ �, i.e., t2n = t2n−1 + �n and t2n+1 =
t2n + (1 − �n/�n)�n. Note that indeed the period length of
the nth pulse is �n+ (1−�n/�n)�n = �n/�n and the pulse
length is �n, which makes its duty cycle �n/(�n/�n) = �n.

We prove by induction that

∀n > 0: δ2n−1 ≥ Tp +�n (13)

where δ2n−1 is the delay of the (2n − 1)st transition. From
this, it then follows that all pulses get canceled by Lemma 3
using the equality δmin = Tp of Lemma 2 (δmin being that of
the exp-channel C), because then �n ≤ � together with (13)
implies t2n = t2n−1 +�n ≤ t2n−1 + δ2n−1 − Tp. Thus, it only
remains to prove (13).

For the base case n = 1, we note that the duty cycle of the
initial pulse may be arbitrary, hence t1 − (t0 + �0) may be
arbitrarily small. However, we find

δ1 = δ↑
(
t1 − t0 −�0 − δ↓(�0 − δ↑(∞))

)

≥ δ↑
(−δ↓(�0 − δ↑(∞))

) = δ↑(∞)−�0

≥ (δ↑(∞)+ Tp)/2 = �+ Tp ≥ �1 + Tp

where we used the involution property and (12).
For the induction step, we observe δ2n ≤ Tp by Lemma 3

and the induction hypothesis and thus

δ2n+1 = δ↑
(

1− �n

�n
�n − δ2n

)
≥ f (�n)

where we used �n ≤ �. By (10), we have

δ2n+1 ≥ f (�n) ≥ Tp +�n (14)

since �n ≤ �, which concludes the proof.
By letting the time constant τ grow, one can hence achieve

the following result.
Lemma 11: Let � > 0 and 0 ≤ � < 1. Then, there exists

an exp-channel C such that every finite or infinite pulse train
with pulse lengths �n ≤ �, n ≥ 0, and duty cycles �n ≤ �,
n ≥ 1, is mapped to the zero signal by C.

Proof: We reuse the notation of the proof of Lemma 10.
Choose Vth such that � < Vth < 1. We show that there exists

a τ > 0 for which (10) and (12) hold. After having shown this,
we are done since then the exp-channel C with initial value 0,
voltage threshold Vth, and time constant τ satisfies the property
of the lemma’s statement.

We start by determining those θ for which f ′(θ) ≥ 1. A
straightforward calculation reveals f ′′(θ) < 0 for all θ , i.e., f ′
is decreasing. Furthermore, solving the equation

f ′(θ) = 1− �

�
· Vthe− 1−�

�
θ
τ

1− Vthe− 1−�
�

θ
τ

= 1 (15)

gives the unique solution

�f = τ · �

1− �
· ln Vth

�
.

Hence, f ′(θ) ≥ 1 for all θ ∈ [0,�f ]. Because �f as well
as −τ ln(1 − Vth)/2 tend to infinity as τ → ∞, there exists
a τ > 0 that satisfies (10) and (12).

By choosing � = γ (1+ ε) < 1 according to Theorem 2 for
some ε > 0 sufficiently small and � sufficiently large, SPF
input pulses with duration �0 ≤ �̃0 are mapped to a constant
zero-output of the exp-channel according to Lemma 11. Let T
be the time when pulse �n, n ≥ 1, of the feed-back loop
with duty cycle ≥ γ (1 + ε) has started. When choosing �

so large that the feed-back loop in Fig. 5 has already locked
to constant 1 at time T + �, SPF input pulses with duration



2792 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

�0 > �̃0 lead to a single up-transition (occurring only after
T +�) at the output. We can in fact establish.

Theorem 3: There is a circuit that solves unbounded SPF.
Proof: Since �0 ≤ �̃0 leads to a pulse train with duty

cycle at most γ < � by Theorem 2, Lemma 11 guarantees a
zero-output, provided � is chosen larger than �̃1.

For �0 ≥ δ∞, Lemma 7 trivially guarantees a single rising
transition at the output. For values �0 satisfying �̃0 < �0 <

δ∞, there is some time T where a 1-pulse �n starts at the
input of the exp-channel that will (along with its subsequent
0) have a duty cycle �n ≥ � > γ . By choosing � so large
that, by time T+�, the last input transition (to 1) has already
occurred, Lemma 11 in conjunction with Lemma 12 below not
only guarantees that all pulses occurring before T cancel, but
also the ones that occur before time T +�. After all, even a
single, long pulse �n = � would still be canceled. Therefore,
since the input of the exp-channel is already stable at 1 at time
T + �, only the final rising transition will eventually appear
at the output.

VII. IMPOSSIBILITY OF BOUNDED SPF

A. Continuity of Channels

In this section, we prove that strictly causal channels are
continuous in a certain sense that we will define precisely.

To compare signals, we write s1 ≤ s2 if s2 is 1, whenever s1
is and denote with |s1 − s2| the signal that is 1, whenever the
value of s1 does not equal that of s2. Consider signals s1 and
s2 with s1 ≤ s2 supplied to a channel C. A simple induction
on the input transitions of a signal s1 is already sufficient
to show that fC(s1) ≤ fC(s2) as well: due to monotonicity
of δ↓, δ↑, the occurrence time of every rising (resp. falling)
transition can only decrease (resp. increase) when replacing
an input transition at s1 by its earlier (resp. later) matching
transition at s2, irrespectively whether additional 1-pulses at
s2 exist or not. We therefore obtain the following.

Lemma 12: Let s1 and s2 be signals such that s1 ≤ s2 and
let C be a channel. Then, C is monotone in the sense that
fC(s1) ≤ fC(s2).

We next define a distance for signals, for which channels
will turn out to be continuous.

Definition 2: For a signal s and a time T , denote by μT(s)
the total duration in [0, T], where s is 1. That is, μT(s) is the
measure of the set {t ∈ [0, T] | s(t) = 1}.

For any two signals s1 and s2 and every T , we define their
distance up to time T by dT(s1, s2) = μT(|s1 − s2|).

The detailed proof will start out from an arbitrary finite
signal s, which consists of an arbitrary but finite number k
of 1-pulses (a nonzero time where s = 1), separated by
0-intervals (a nonzero time where s = 0), within [0, T]. We
will show that inserting an arbitrary but finite sequence of
K additional 1-pulses, having duration ε1, . . . , εK with total
duration

∑K
i=1 εi ≤ ε, during arbitrary 0-intervals leads to a

signal s′ with μT(s′)−μT(s) ≤ ε and μT(fC(s′))−μT(fC(s)) =
O(ε) for ε→ 0. We will show this (in Theorem 4) by succes-
sively inserting εi into s and bounding the resulting changes
of the measure. Note that doing this iteratively is enabled by
Lemma 12. The changes of μT(fC(s′))−μT(fC(s)) result from:
1) the additional output pulse that is possibly generated by
εi and 2) the inevitable shifts of all the subsequent output
transitions.

We start with Lemma 13, which reveals that the worst-
case effect on μT(fC(s′)) is caused by an input 1-pulse that is
appended at the beginning of the (final) 0-interval where it is
inserted. We use the shorthand notation (x)+ for max(x, 0).
The subsequent Lemma 14 will show that μT(fC(s′)) is
increased by at most 1+ δ′↓(−δmin) times the duration of the
inserted input pulse.

Lemma 13: Let s be a signal that is eventually constant 0
and let C be a channel with s on its input. Denote by tn the
time of the last (falling) transition in s and by δn its delay in the
channel algorithm for C. Then, the maximal μT(fC(s′)) among
all s′ obtained from s by appending one pulse of length � > 0
after time tn is attained by the addition of the pulse at time
tn + (δn − δmin)+ (which results in a cancellation of the last
transition at the output if δn ≥ δmin, and a right-shift of the
last transition at the input if δn ≤ δmin).

Proof: We first show the lemma for T = ∞ and then extend
the result to finite T . Let s′γ be the addition of the pulse of
length � to s at time tn + γ .

For all 0 ≤ γ ≤ (δn − δmin)+, the time from tn to the last
transition on fC(s′γ ) is

f (γ ) = γ +�+ δ↓
(
�− δ↑(γ − δn)

)
.

In the class of all s′γ with 0 ≤ γ ≤ (δn−δmin)+, the maximum
of μ∞(fC(s′γ )) is attained at the maximum of f . This is because
the transition at time tn+γ cancels that at time tn in this case.
The derivative of f is

f ′(γ ) = 1− δ′↓
(
�− δ↑(γ − δn)

) · δ′↑(γ − δn).

The condition f ′(γ ) = 0 is equivalent to δ′↓(�− δ(γ − δn)) =
1/δ′↑(γ − δn), which is in turn equivalent to � = 0, as
δ′↓(−δ↑(t)) = 1/δ′↑(t) by Lemma 2. Hence, f ′(γ ) is never
zero. Since f ′(γ )→ 1 as γ →∞, as the concave δ↓, δ↑ sat-
isfy limt→∞ δ′↑(t) = limt→∞ δ′↓(t) = 0, the derivative of f
is always positive, hence f is increasing. This shows that
γ = δn − δmin is a strictly better choice than any other γ

in this class.
For the class of s′γ with γ > (δn − δmin)+ ≥ 0, the length

of the appended pulse at the output is

g(γ ) = �+ δ↓
(
�− δ↑(γ − δn)

)− δ↑(γ − δn).

Since the transitions at tn and tn + γ do not cancel in this
class, the maximum of μ∞(fC(s′γ )) is attained at the maximum
of g. But it is easy to see, using the monotonicity of δ, that g
is decreasing. The maximum of g is hence attained at γ =
(δn − δmin)+.

Consequently, the choice γ = γ0 = (δn−δmin)+ maximizes
μ∞(fC(s′γ )) in any case. By Lemma 3, this choice results in
a cancellation of the last (falling) transition in fC(s), hence a
right-shift of the latter in fC(s′). This concludes our proof for
T = ∞.

Let now T be finite. Denote by T0 the time of the last,
falling, output transition in fC(s′γ0

). In this case, transitions of
fC(s) and fC(s′γ0

) are the same except the last, falling, tran-
sition, which is delayed from tn + δn to T0. We distinguish
the two cases: 1) T ≤ T0 and 2) T > T0. In case 1), the last
transition of fC(s) is delayed beyond T in fC(s′γ0

). Because
all other transitions remain unchanged in all fC(s′γ ), the mea-
sure μT(fC(s′γ0

)) is maximal among all μT(fC(s′γ )) if T ≤ T0.
In case 2), we have μT(fC(s′γ0

)) = μ∞(fC(s′γ0
)). But because



FÜGGER et al.: FAITHFUL BINARY CIRCUIT MODEL 2793

μT ≤ μ∞ and μ∞(fC(s′γ0
)) is maximal among all μ∞(fC(s′γ )),

so is μT(fC(s′γ0
)) among all μT(fC(s′γ )).

Note that, owing to the above considerations, we can restrict
our attention to T = ∞ in the sequel.

Lemma 14: Let s be a signal that is eventually constant 0
and let C be a channel. Then, adding a pulse of length ε1 at or
after the last transition of s causes μT(fC(s′)) ≤ μT(fC(s)) +
(1+ δ′↓(−δmin))ε1.

Proof: Denote by tn the last transition in s and by δn its
delay. By Lemma 13, the worst-case effect on the μT(fC(s′))
is achieved by appending the pulse at time tn + (δn − δmin)+;
call the resulting signal s′.

We first assume δn−δmin > 0. Here, the two new transitions
in s′ are tn+1 = tn+δn−δmin and tn+2 = tn+δn−δmin+ε1. Their
corresponding delays are δn+1 = δmin and δn+2 = δ↓(ε1 −
δmin). By the mean value theorem of calculus and Lemma 2,
the duration of the resulting pulse is

ε1 + δn+2 − δn+1 = ε1 + δ↓(ε1 − δmin)− δ↓(−δmin)

=
(

1+ δ′↓(ξ)
)
· ε1 (16)

for some −δmin ≤ ξ ≤ ε1 − δmin. Since δ′↓(.) is decreasing
and δ′↓(−δmin) > 0, we hence deduce 0 ≤ δn+2 − δn+1 ≤
δ′↓(−δmin)ε1. Thus, μT(fC(s′1)− fC(s)) = ε1 + δn+2 − δn+1 ≤
(1+ δ′↓(−δmin))ε1 as claimed in our lemma.

If δn − δmin ≤ 0, then tn is effectively replaced by tn + ε1
in s′1, i.e., right-shifted. If δ↓(tn − tn−1 + ε1 − δn−1) ≤ δmin,
then the output signal is not changed since the pulse from tn−1
to tn remains canceled. If δ↓(tn − tn−1 + ε1 − δn−1) > δmin,
then the measure is changed by

tn + ε1 + δ↓(tn − tn−1 + ε1 − δn−1)− tn−1 − δn−1.

Using Lemma 3 on s gives tn ≤ tn−1+δn−1−δmin and thus the
change in measure is at most ε1− δmin+ δ↓(ε1− δmin) ≤ (1+
δ′↓(−δmin))ε1 [recall the derivation of (16)]. This concludes
our proof.

Note carefully that Lemma 14 can be applied iteratively
for appending an arbitrary sequence of new pulses ε1, . . . , εK ,
one after the other: provided

∑K
i=1 εi ≤ ε, it ensures that the

overall change in measure incurred by all the newly inserted
pulses is at most (1+ δ′↓(−δmin))ε.

However, in addition to the increase of μT(fC(s′)) as pre-
dicted by Lemma 14, which results from appending a new
or enlarging the last pulse at the output, we also need to
consider the resulting shifts of all the subsequent transitions
that may already exist in fC(s). In particular, consider the ris-
ing transition at tn+1 that ends the 0-interval where a 1-pulse
ε1 is inserted: the inserted pulse changes its previous output
transition and, hence, the delay δn+1.

To bound the resulting effects, we need to distinguish
whether the 0-interval at the input completely vanishes when
ε1 is inserted. The former will be considered in Lemma 16.
Otherwise, i.e., if the 0-interval does not vanish completely,
there are two possibilities: 1) the newly inserted pulse cancels,
and hence right-shifts, the falling output transition caused by
tn, i.e., the beginning of the 0-interval, in the output signal.
Lemma 13 revealed that this happens when the inserted pulse
starts at tn+(δn−δmin)+ (possibly causing the left end of the 0-
interval tn at the input to be shifted right as well). Lemma 14
bounds the resulting shift to be at most (1 + δ′↓(−δmin))ε1.
Note carefully, though, that this change of measure does not

include a possible effect on the delay δn+1 of the transition at
time tn+1 that ends the 0-interval. The latter will be dealt with
in Lemma 18. For the remaining case 2), where the inserted
pulse starts later than tn+ (δn− δmin)+, Lemma 15 bounds its
effect on δn+2.

Lemma 15: Let s be a signal that is eventually constant 1,
with tn and tn+1 denoting the beginning and the end of the
last 0-interval of s, and δn and δn+1 the delays caused by
channel C. Then, inserting a pulse of length ε1 < tn+1 − tn
at time t > tn + (δn − δmin)+ within this 0-interval (possibly
causing the end of the 0-interval tn+1 to be shifted left) causes
δn+1 to decrease by at most (1+δ′↑(−δmin))ε1, i.e., μT(fC(s′))
to increase by at most (1+ δ′↑(−δmin))ε1.

Proof: Let a = tn+1 − tn − ε1 − δn, and v ≥ 0 be the
difference between the falling transition of the inserted pulse
ε1 and tn+1. If v = 0, then tn+1 is shifted left by ε1 at the
input. We first show that a ≥ −δmin. This is trivially satisfied
for δn ≤ δmin since ε1 < tn+1 − tn. For δn > δmin, we have
t > tn + δn − δmin. Since obviously tn+1 ≥ t + ε, a ≥ −δmin
also holds in this case.

Let η1 ≥ 0 be the difference between δn+1 = δ↑(tn+1 −
tn− δn) = δ↑(a+ ε1) (before insertion) and δ′n+1 = δ↑(tn+1−
(tn+1−v+δd)) = δ↑(v−δd) (after insertion), with δd denoting
the delay of the falling transition of the inserted pulse. As
the delay δu of the rising transition of the inserted pulse is
δu = δ↑(tn+1 − v − ε1 − tn − δn) = δ↑(a − v), we get δd =
δ↓(tn+1 − v − tn+1 + v + ε1 − δu) = δ↓(ε1 − δ↑(a − v)). We
thus find

η1 = δ↑(a+ ε1)− δ↑
(
v− δ↓

(
ε1 − δ↑(a− v)

))
. (17)

Differentiating with respect to v, we obtain that η′1 is equal to

−δ′↑
(
v− δ↓

(
ε1 − δ↑(a− v)

))

×
(

1− δ′↓
(
ε1 − δ↑(a− v)

)
δ′↑(a− v)

)
.

Since δ′↓(ε1 − δ↑(a − v)) < δ′↓(−δ↑(a − v)) = 1/δ′↑(a − v)
by Lemma 2, we obtain η′1 < 0. Therefore, η1 attains its
maximum for v = 0. Using the involution property, this reveals
η1 ≤ δ↑(a+ε1)−δ↑(−δ↓(ε1−δ↑(a))) = δ↑(a+ε1)+ε1−δ↑(a).
Using the concavity of δ↑(.), we finally obtain η1 ≤ ε1(1 +
δ′↑(a)) ≤ (1+ δ′↑(−δmin))ε1 since a ≥ −δmin.

The next lemma handles the case where the inserted 1-pulse
fills up the 0-interval completely, i.e., tn+1 − tn = ε1 in the
notation of Lemma 15. It is actually the dual of this lemma, in
the sense that, rather than inserting a 1-pulse in a 0-interval,
it deals with deleting a 0-interval in a 1-pulse.

Lemma 16: Let s be a signal of channel C that is even-
tually constant 0, with tn+2 denoting the last falling input
transition and δn+2 its delay, with the last preceding 0-interval
ε1 = tn+1 − tn starting at tn > tn−1 + (δn−1 − δmin)+. If
the signal s′ is obtained from s by entirely dropping the
last preceding 0-interval, i.e., s′ contains a single 1-pulse
between tn−1 and tn+1, then the resulting delay δ′n+2 satis-
fies δ′n+2 ≤ (1+ δ′↓(−δmin))ε1, i.e., μT(fC(s′)) increases by at
most (1+ δ′↓(−δmin))ε1.

Proof: It is obvious that the situation is exactly dual to
Lemma 15, its proof hence applies literally after changing
every rising transition to a falling one and vice versa.



2794 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

The only remaining issue is to bound the propagation of
the shift of a single output transition to later output transi-
tions, which will be done in Lemma 18 below. It relies on the
following technical lemma.

Lemma 17: Let s be a signal containing a rising transition at
t3, and let t2 and t1 be the times of the two previous transitions,
respectively. With �2 = t3−t2 > 0 and �1 = t2−t1>0 denot-
ing the previous 0-interval and 1-pulse, starting at t2 and t1,
respectively, and δ1 denoting the channel delay of the transi-
tion at t1, the other channel delays are δ2 = δ↓(�1 − δ1) and
δ3 = δ↑(�2 − δ2), and

δ′↑(�2 − δ2)δ
′↓(�1 − δ1) < 1 (18)

irrespectively of whether there are cancellations or not.
Proof: Due to concavity of δ↑(.), we observe

δ3 = δ↑(�2 − δ2) = δ↑
(
�2 − δ↓(�1 − δ1)

)

≤ δ↑
(−δ↓(�1 − δ1)

)+�2δ
′↑
(−δ↓(�1 − δ1)

)

= −�1 + δ1 + �2

δ′↓(�1 − δ1)
(19)

in the final step, we used the involution property and Lemma 2.
Invoking the latter once again, we find the following expres-
sion for δ′↓(−δ3):

1

δ′↑
(
�2 − δ↓(�1 − δ1)

) = δ′↓
(−δ↑

(
�2 − δ↓(�1 − δ1)

))

≥ δ′↓

(
�1 − δ1 − �2

δ′↓(�1 − δ1)

)

> δ′↓(�1 − δ1)

which implies (18) and completes our proof.
Finally, Lemma 18 considers a 1-pulse and a consecutive

0-interval and focuses on the falling and rising transition of the
latter. It bounds the variation of their delays when the delay of
the rising transition of the 1-pulse is decreased by ε1, under
the assumption that the 1-pulse did not cancel at the output
initially. Note that Lemma 18 also holds (analogously) for the
dual situation, i.e., a signal with the opposite transitions.

Lemma 18: Let s be an input signal of channel C contain-
ing a rising transition at t3, with delay δ3, and let t2 and t1
resp. δ2 and δ1 be the times of the previous transitions resp.
their delays. Assume that the preceding 1-pulse is not can-
celed at the output, i.e., δ2 > δmin. With �2 = t3 − t2 > 0
and �1 = t2 − t1 > 0 starting at t2 and t1, respectively,
a shifted signal σ ′ with decreased δ′1 = δ1 − ε1, ε1 > 0,
satisfies δ2 ≤ δ′2 < δ2 + δ′↓(−δmin)ε1 and δ3 ≥ δ′3 >

δ3 − δ′↑(�2 − δ′2)δ′↓(�1 − δ1)ε1. If δ↓(.) is two-times con-
tinuously differentiable and ε1 ≤ −δ′↓(−δmin)/(2δ′′↓(−δmin)),
then δ′3 > δ3 − 2ε1.

Proof: Using the concavity of δ↓(.) in δ2 = δ↓(�1−δ1), we
obtain δ′2 = δ↓(�1− δ′1) = δ↓(�1− δ1+ ε1) ≤ δ↓(�1− δ1)+
ε1δ
′↓(�1 − δ1). Since δ2 > δmin, Lemma 2 implies �1 − δ1 >

−δmin and hence δ′↓(�1 − δ1) < δ′↓(−δmin). This confirms
δ′2 < δ2 + δ′↓(−δmin)ε1.

As for δ′3 = δ↑(�2−δ′2), the mean value theorem of calculus
yields, for some ξ ∈ [−(δ′2 − δ2), 0]

δ′3 = δ↑
(
�2 − δ2 −

(
δ′2 − δ2

))

= δ↑(�2 − δ2)−
(
δ′2 − δ2

)
δ′↑(�2 − δ2 + ξ)

> δ↑(�2 − δ2)− ε1δ
′↓(�1 − δ1)δ

′↑
(
�2 − δ′2

)
(20)

for the last step, we used the upper bound from the previous
paragraph and the monotonicity of δ′↑(.). Recalling δ3 =
δ↑(�2 − δ2) confirms the lower bound on δ′3 stated in our
lemma.

If δ↓(.) is two-times continuously differentiable, we find by
convexity of δ′↓(.) that δ′↓(x + ε1) ≥ δ′↓(x) + ε1δ

′′↓(x); note
that δ′′↓(x) is negative and increasing. Consequently, δ′↓(x +
ε1)/δ

′↓(x) ≥ 1+ ε1δ
′′↓(x)/δ′↓(x) ≥ 1+ ε1δ

′′↓(−δmin)/δ
′↓(−δmin)

for x ≥ −δmin. Using this with x = �1 − δ1 > −δmin reveals

δ′↓(�1 − δ1)δ
′↑
(
�2 − δ′2

) ≤ δ′↓
(
�1 − δ′1

)

1+ ε1
δ′′↓(−δmin)

δ′↓(−δmin)

· δ′↑
(
�2 − δ′2

)
< 2

due to (18) and ε1 ≤ −δ′↓(−δmin)/(2δ′′↓(−δmin)). This com-
pletes our proof.

Combining the previous lemmas finally leads to the proof
of continuity.

Theorem 4: Let C be a channel and let T ≥ 0. Then, the
mapping s �→ fC(s) is continuous with respect to the distance
dT .

Proof: Let s be a signal. We show that, if μT(|s− s′|)→ 0,
then μT(|fC(s)− fC(s′)|)→ 0. Because

|s− s′| = (
max

(
s, s′

)− s
)+ (

s−min(s, s′)
)

where max(s, s′)(t) = max(s(t), s′(t)) and min(s, s′)(t) =
min(s(t), s′(t)) for all t, the condition μt(|s − s′|) → 0 is
equivalent to the conjunction of both μT(|max(s, s′)−s|)→ 0
and μT(|s − min(s, s′)|) → 0. Because max(fC(s), fC(s′)) ≤
fC(max(s, s′)) and min(fC(s), fC(s′)) ≥ fC(min(s, s′)) by
Lemma 12

|fC(s)− fC(s′)| ≤ fC
(
max

(
s, s′

))− fC
(
min

(
s, s′

))

which shows that we can suppose without loss of generality
s′ ≥ s for all n.

Let an arbitrary sequence of 1-pulses ε1, . . . , εK , ordered
by insertion times, with total measure

∑K
i=1 εi ≤ ε be given,

and let s′ be obtained from the signal s by adding these pulses.
Since T is finite, s consists of an arbitrary but finite number
k of 1-pulses (a nonzero time where s = 1), separated by 0-
intervals (a nonzero time where s = 0), within [0, T]. Thanks
to monotonicity of our measure, recall Lemma 12, we can iter-
atively apply the appropriate lemmas for every εi, 1 ≤ i ≤ K,
as follows: First, Lemma 14 shows that the increase in measure
incurred directly from the inserted εi is O(εi). Furthermore,
Lemma 15 (resp. Lemma 16) bound the measure incurred
by the shift of the first output transition following the newly
inserted 1-pulse resp. deleted 0-interval caused by inserting εi
to O(εi). For a 1-pulse that does not yield a newly inserted out-
put pulse, but rather a right-shift of the falling transition at the
beginning of the 0-interval, the resulting change in measure is
bounded to O(εi) by Lemma 14 already. Finally, consecutively
applying Lemma 18 to the subsequent rising transition (or, if
the subsequent 1-pulse cancels, its dual to the previous falling
transition) shows that the shift of the every of the at most 2k
subsequent transition is at most O(εi).

Observe that inserting some 1-pulse εi does not affect a pos-
sibly newly generated 1-pulse caused by ε1, . . . , εi−1. As there
are only finitely many affected later transitions, the resulting
change of μT(fC(sn)− fC(s)) = O(εi) overall. Summing up all
the contributions leads to μT(fC(sn)− fC(s)) = O(ε) and thus
confirms μT(fC(sn)− fC(s))→ 0 as ε→ 0.



FÜGGER et al.: FAITHFUL BINARY CIRCUIT MODEL 2795

B. Impossibility in Forward Circuits

A circuit is called a forward circuit if its graph is acyclic.
Forward circuits are exactly those circuits that do not contain
feed-back loops. Equipped with the continuity of involution
channels and the fact that the composition of continuous func-
tions is continuous, it is not too difficult to prove that the
inherently discontinuous SPF problem cannot be solved with
forward circuits.

Theorem 5: No forward circuit solves bounded SPF.
Proof: Suppose that there exists a forward circuit that solves

bounded SPF with stabilization time bound K. Denote by s�

its output signal when feeding it a �-pulse at time 0 as the
input. Because s� in forward circuits is a finite composition
of continuous functions by Theorem 4, the measure μT(s�)

depends continuously on �.
By the nontriviality condition F3) of the SPF problem, there

exists some �0 such that s�0 is not zero. Set T = 2�0 + K.
Let ε > 0 be smaller than both �0 and μT(s�0). We show

a contradiction by finding a � such that s� either contains
a pulse of length less than ε [contradiction to the no short
pulses condition F4)] or contains a transition after time �+K
[contradicting the bounded stabilization time condition F5)].

Since μT(s�) → 0 as � → 0 by the no generation
condition F2) of SPF, there exists a �1 < �0 such that
μT(s�1) = ε by the intermediate value property of conti-
nuity. By the bounded stabilization time condition F5), there
are no transitions in s�1 after time �1 + K. Hence, s�1 is 0
after this time because otherwise it is 1 for the remaining
duration T − (�1 + K) > �0 > ε, which would mean that
μT(s�1) > ε. Consequently, there exists a pulse in s�1 before
time �1+K. But any such pulse is of length at most ε because
μ�1+K(s�1) ≤ μT(s�1) = ε. This is a contradiction to the no
short pulses condition F4).

C. Simulation With Unrolled Circuits

We next show how to simulate (part of) an execution of an
arbitrary circuit C by a forward circuit C′ generated from C
by unrolling of feedback channels. Intuitively, the deeper the
unrolling, the longer the time C′ behaves as C.

Definition 3: Let C be a circuit, V a vertex of C, and k ≥ 0.
We define the k-unrolling of C from V , denoted by Ck(V), to
be a directed acyclic graph with a single sink, constructed as
follows.

The unrolling Ck(I) from input port I is just a copy of
that input port. The unrolling Ck(O) from output port O with
incoming channel C and predecessor V comprises a copy of
the output port O(k) and the unrolled circuit Ck(V) with its
sink connected to O(k) by channel C.

The 0-unrolling C0(B) from gate B is a Boolean gate Xv
without inputs and the constant output value v equal to B’s
initial value. For k > 0, the k-unrolling Ck(B) from gate B
comprises a copy of that gate B(k) with the same initial value
and Boolean function. Additionally, for every incoming chan-
nel C from V to B in C, it contains the circuit Ck−1(V) with
its sink connected to B(k) with a copy of channel C with the
same channel functions. All copies of the same input port are
considered identical.

To each component � in Ck(V), we assign a value z(�) ∈
N0 ∪ {∞} as follows: z(�) = ∞ if � has no predecessor (in
particular, is an input port) and � 
∈{X0, X1}, z(X0) = z(X1)=0,

Fig. 6. Circuit C (left) and C3(O) (right) under the assumption that the
gate B has initial value 0. It is z(X0) = 0, z(I) = z(A(2)) = ∞, z(B(1)) = 1,
z(B(2)) = 2, z(C(3)) = 3, and z(O(3)) = 3: The z-values of all channels from
a vertex V are z(V) + 1, except for the channel C′ from C(3) to O(3), with
z(C′) = z(C(3)) = 3.

z(V) = z(C) = z(U) if V is an output port with incoming
channel C from U to V , z(B) = min{z(c) | c ∈ CB} if B is a
gate with set of incoming channels CB, and z(C) = 1+ z(U)

if C is a channel from vertex U to a gate. Fig. 6 shows an
example of a circuit and an unrolled circuit with its z values.

Noting that for every component � in Ck(V), z(�) is the
number of channels on the shortest path from an Xv node to �

(excluding channels to output ports), or z(�) = ∞ if no such
path exists, we get the following.

Lemma 19: The z-value assigned to the sink vertex V(k) of
a k-unrolling Ck(V) of C from V satisfies z(V(k)) ≥ k.

We also adapt the execution construction algorithm
(Algorithm 2 in Section V) to assign to each generated tran-
sition e a causal depth d(e). All input transitions and initial
transitions of gates (line 11) have causal depth 0. All transi-
tions added to channels in lines 3 and 8 have causal depth 1.
All transitions added to gates in line 21 at time t get causal
depth d(e) equal to the maximum over all causal depths d(e′)
of fixed transitions of the gate’s incoming channels up to
time t. All transitions e added to channels in line 32 get causal
depth d(e) equal to d(e) = d(e′)+ 1 where e′ is the event at
time t of the departing gate B1 of channel C. When transitions
are moved or copied in lines 16 and 40, they retain their causal
depths. We immediately get the following.

Lemma 20: For all k ≥ 1, 1) the simulation algorithm never
assigns a causal depth larger than k+1 to a transition generated
in iteration k and 2) at the end of iteration k the sequence
of causal depths of transitions in s� is nondecreasing for all
components �.

We are now in the position to prove the main result of
a circuit simulated by an unrolled circuit. The proof of the
theorem has been postponed to the Appendix.

Theorem 6: Let C be a circuit with input port I and output
port O that solves bounded SPF. Let Ck(O) be an unrolling
of C, � a component in C, and �′ a copy of � in Ck(O).
For all input signals i, if a transition e (fixed or pending) is
generated for � by the execution construction algorithm run
on circuit C with input signal i and d(e) ≤ z(�′), then e is
also generated for �′ by the algorithm run on circuit Ck(O)

with input signal i; and vice versa.

D. Impossibility Result

We can now turn to the proof that bounded SPF is not
solvable, even with nonforward circuits. For that, we first note
that the number Nk of transitions within circuit C in the time
interval (k·δCmin, (k+1)·δCmin] is upper-bounded by D+Nk−1+Ik,
where D+ is the largest out-degree of vertices in the circuit
and Ik is the number of input transitions in the same time
interval. This follows from the same argument as Lemma 5.
As a consequence, all transitions up to a bounded time have
bounded causal depth.



2796 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 7. Measured δ↓ (blue) and δ↑ (red) for UMC-90 inverter chain
for VDD = 0.6 V , which support the involution hypothesis. By contrast, there
is no perfect fit for the exponential DDM delay function (dashed green).
From [13].

We next note that the impossibility of bounded SPF also
implies the impossibility of bounded SPF when restricting
pulse lengths to be at most some �0 > 0. Now let ζ be
an upper bound on the causal depth of transitions up to the
SPF stabilization time bound �0+K. Then, by Theorem 6 and
Lemma 19, the ζ -unrolled circuit Cζ (O) has the same output
transitions as the original circuit C up to time �0 + K, and
hence, by definition of bounded SPF, the same transitions for
all times. But since Cζ (O) is a forward circuit, it cannot solve
bounded SPF by Theorem 5, i.e., neither can C.

The above arguments show the following theorem.
Theorem 7: No circuit solves bounded SPF.
We have hence proved that the bounded SPF problem is not

solvable in the involution model, matching physical reality.

VIII. EXPERIMENTAL ACCURACY EVALUATION

To support our claim that the involution model is not only
realistic but also faithful, we provide an overview of the major
results of our experimental accuracy evaluation for a real
circuit described in [13], which used both simulations and
measurements. Primary target is a chain of inverters, which
allows to track the reshaping of pulse trains along the inverter
stages. For our simulations, we considered two different VLSI
technologies available to us (UMC-65 nm and UMC-90 nm)
as well as different supply voltages (from nominal down to
close to the subthreshold regime, which causes the delays
to increase). Moreover, the inverter chains were operated at
their speed limits, we also conducted dedicated measurements
to validate the accuracy of our SPICE simulations: compar-
ing the measurement results with corresponding simulations
(using the post-layout netlists extracted from the ASIC design)
indeed showed a very good match. For all our measurements,
we used a custom UMC-90 ASIC [21] containing an inverter
chain monitored by low-intrusive high-speed on-chip analog
amplifiers attached to a high-speed real-time oscilloscope.

More explicitly, our experiments were used to validate the
following two features of our involution model.

1) Involution Property: By using input pulses of decreasing
width, we empirically determine δ↑ and δ↓ for a single
inverter. The resulting graphs for a supply voltage of
VDD = 0.6 V are depicted in Fig. 7. The involution
property −δ↓(−δ↑(T)) = T was used to extrapolate the
functions’ values for small T which do not allow direct

Fig. 8. Measured waveform (solid) for the UMC-90 inverter chain, with the
predictions according to the involution model (red long up/down-arrows) and
the DDM (blue short up/down arrows). From [13].

delay measurements. The graphs support our claim that
real delay functions can be approximated well by invo-
lutions. By contrast, the exponential delay function of
DDM channels [6] cannot be fit to the experimental data
over the whole range of T . Note that this misfit is even
more pronounced in simulations for UMC-65.

2) Good Accuracy: Using representative examples of pulse
trains, we show that the involution model with the
empirically determined δ↑ and δ↓ provides very good
accuracy. We provide an explicit simulation algorithm
for this purpose, which also has been implemented in
VHDL and thus allows timing simulations in our model
using standard digital circuit simulators like ModelSim.
Fig. 8 shows an example analog pulse train together
with the digital predictions from both the involution
model and the DDM, both showing good accuracy even
in presence of short pulses decaying when propagated.
Simulation speeds were greatly reduced compared to
SPICE: for the 20 ns trace in Fig. 8, VHDL simulation
time of the involution model was less than 1 s compared
to 33.42 s SPICE simulation time (ngSPICE revision 26,
0.01 ps resolution) run on a MacBook Pro (3.1 GHz
Intel Core i7, 2 cores, and 16-GB memory). We further
measured accuracy of the involution model and DDM
model, by the sum of times where the binary signals dif-
fered from the discretized SPICE signal. Summing over
the signals inv4 and inv6 in Fig. 8 (inv2 was used to
calibrate the DDM and involution models) we obtained
2.174 ns (involution model) and 2.471 ns (DDM model)
out of 40 ns time signal differences. Therefore, with all
due care, we can indeed claim that our involution model
may have good accuracy overall, and is hence indeed
a promising candidate for a faithful glitch propagation
model.

IX. CONCLUSION

We showed that binary circuit models based on involution
channels are a promising candidate for faithfully modeling
glitch propagation in circuits, in the sense that they allow to
design circuits solving the SPF problem precisely when this
is possible with physical circuits. Involution channels differ
from all existing single-history channels, which do not share
this property, in that they are also continuous with respect to
dropping/inserting input pulses.

Although our results prove that involution channels are
superior to all alternative channel models known so far, there
are several very important questions which are still open: first,



FÜGGER et al.: FAITHFUL BINARY CIRCUIT MODEL 2797

we did not at all address the question of quantitatively compar-
ing the modeling accuracy of alternative models: although [13]
supports our hypothesis that the modeling accuracy of properly
chosen instances of our involution channels surpasses the one
of alternative channel models, we cannot rule out the possibil-
ity that a nonfaithful model like DDM works better in some
situations. Second, addressing the SPF problem is only a first
step toward a digital model for metastability generation and
propagation. Finally, the delay of multi-input gates is likely to
depend on the history of all of its input signals; which we can-
not express in our current model. Needless to say, addressing
these questions requires major efforts and is hence a subject
of future research.

REFERENCES

[1] CCS Timing Library Characterization Guidelines, Version 3.4, Synopsis
Inc., Mountain View, CA, USA, Oct. 2016.

[2] Effective Current Source Model (ECSM) Timing and Power
Specification, Version 2.1.2, Cadence Design Syst., San Jose, CA,
USA, Jan. 2015.

[3] “CCS timing, v2.0,” Mountain View, CA, USA, Synopsis Inc., White
Paper, 2006.

[4] L. W. Nagel and D. Pederson, “SPICE (simulation program with inte-
grated circuit emphasis),” EECS Dept., Univ. California at Berkeley,
Berkeley, CA, USA, Rep. UCB/ERL M382, 1973.

[5] S. H. Unger, “Asynchronous sequential switching circuits with unre-
stricted input changes,” IEEE Trans. Comput., vol. C-20, no. 12,
pp. 1437–1444, Dec. 1971.

[6] M. J. Bellido-Díaz, J. Juan-Chico, A. J. Acosta, M. Valencia, and
J. L. Huertas, “Logical modelling of delay degradation effect in static
CMOS gates,” IEE Proc. Circuits Devices Syst., vol. 147, no. 2,
pp. 107–117, Apr. 2000.

[7] M. J. Bellido-Díaz, J. Juan-Chico, and M. Valencia, Logic-Timing
Simulation and the Degradation Delay Model. London, U.K.: Imperial
College Press, 2006.

[8] F. N. Najm, “A survey of power estimation techniques in VLSI cir-
cuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 2, no. 4,
pp. 446–455, Dec. 1994.

[9] M. Favalli and L. Benini, “Analysis of glitch power dissipation in
CMOS ICs,” in Proc. Int. Symp. Low Power Design (ISLPED), 1995,
pp. 123–128.

[10] M. Függer, T. Nowak, and U. Schmid, “Unfaithful glitch propagation
in existing binary circuit models,” IEEE Trans. Comput., vol. 65, no. 3,
pp. 964–978, Mar. 2016.

[11] L. R. Marino, “The effect of asynchronous inputs on sequential network
reliability,” IEEE Trans. Comput., vol. C-26, no. 11, pp. 1082–1090,
Nov. 1977.

[12] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T.-P. Fang,
“Q-modules: Internally clocked delay-insensitive modules,” IEEE Trans.
Comput., vol. 37, no. 9, pp. 1005–1018, Sep. 1988.

[13] R. Najvirt, U. Schmid, M. Hofbauer, M. Függer, T. Nowak,
and K. Schweiger, “Experimental validation of a faithful
binary circuit model,” in Proc. 25th ed. Great Lakes Symp.
VLSI (GLSVLSI), 2015, pp. 355–360. [Online]. Available:
http://doi.acm.org/10.1145/2742060.2742081

[14] M. A. Horowitz, “Timing models for MOS circuits,” Ph.D. dissertation,
Integr. Circuits Lab., Stanford Univ., Stanford, CA, USA, 1984.

[15] T.-M. Lin and C. A. Mead, “Signal delay in general RC networks,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 3, no. 4,
pp. 331–349, Oct. 1984.

[16] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for
timing analysis,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 9, no. 4, pp. 352–366, Apr. 1990.

[17] A.-C. Deng and Y.-C. Shiau, “Generic linear RC delay modeling for dig-
ital CMOS circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 9, no. 4, pp. 367–376, Apr. 1990.

[18] J. A. Brzozowski and J. C. Ebergen, “On the delay-sensitivity of
gate networks,” IEEE Trans. Comput., vol. 41, no. 11, pp. 1349–1360,
Nov. 1992.

[19] J. Juan-Chico, M. J. Bellido, P. Ruiz-de-Clavijo, A. J. Acosta, and
M. Valencia, “Degradation delay model extension to CMOS gates,” in
Integrated Circuit Design (LNCS 1918). Heidelberg, Germany: Springer,
2000, pp. 149–158.

[20] A. Millán, J. Juan, M. J. Bellido, P. Ruiz-de Clavijo, and D. Guerrero,
“Characterization of normal propagation delay for delay degradation
model (DDM),” in Integrated Circuit Design (LNCS 2451). Heidelberg,
Germany: Springer, 2002, pp. 477–486.

[21] M. Hofbauer et al., “Pulse shape measurements by on-chip sense ampli-
fiers of single event transients propagating through a 90 nm bulk CMOS
inverter chain,” IEEE Trans. Nucl. Sci., vol. 59, no. 6, pp. 2778–2784,
Dec. 2012.

Matthias Függer received the M.Sc. and Ph.D.
degrees in computer engineering from TU Wien,
Vienna, Austria, in 2006 and 2010, respectively.

He was an Assistant Professor with TU Wien,
and as a Post-Doctoral Researcher with LIX, École
polytechnique, Palaiseau, France, and Max-Planck-
Institut für Informatik, Saarbrücken, Germany. He is
currently with the Centre National de la Recherche
Scientifique Researcher, Laboratoire Spécification
et Vérification, ENS Paris-Saclay, Univeristé Paris-
Saclay and Inria, Cachan, France, and co-leading the

Group HicDiesMeus on Highly Constrained Discrete Agents for Modeling
Natural Systems. His current research interests include distributed computing
for highly restricted agents, circuit design, and synthetic microbiology.

Robert Najvirt received the M.Sc. degree in com-
puter engineering from TU Wien, Vienna, Austria,
in 2011, where he is currently pursuing the Ph.D.
degree with a research focuses on problems in
digital circuit design involving metastability and
asynchronous circuits.

He has been an Assistant Professor and a
Researcher with the Embedded Computing Systems
Group, TU Wien. He is currently an Industrial ASIC
Design Engineer.

Thomas Nowak received the M.Sc. degree in com-
puter engineering from TU Wien, Vienna, Austria,
in 2010, and the Ph.D. degree in computer science
from the École polytechnique, Palaiseau, France, in
2014.

He was a Post-Doctoral Fellow and a Research
Assistant with the École normale supérieure, Paris,
France. He is an Associate Professor of computer
science with the Université Paris-Sud, Orsay, France,
and École polytechnique. He is co-leading the
HicDiesMeus Group on Highly Constrained Discrete

Agents for Modeling Natural Systems. His current research interests include
discrete event systems and distributed algorithms in dynamic fault-tolerant
networks.

Ulrich Schmid received the degree in computer
science and mathematics from TU Wien, Vienna,
Austria.

He is a Full Professor and the Head of the
Embedded Computing Systems Group, Institut für
Technische Informatik, TU Vienna, where he spent
several years in industrial electronics and embed-
ded systems design. He has authored and coauthored
numerous papers in the field of theoretical and tech-
nical computer science. His current research interests
include the mathematical and logic-based analysis

of fault-tolerant distributed algorithms and real-time systems, with special
emphasis on their application in systems-on-chips, and networked embedded
systems.

Prof. Schmid was a recipient of several awards and prices, like the Austrian
START-price in 1996.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


