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Abstract—Detailed routing is one of the most challenging
aspects of the physical design process. Many of the violations
that occur during the detailed routing stage stem from the place-
ment of the cells. In this paper, we propose a deep learning
framework to identify short violations that can occur during
detailed routing from a placed netlist. One of the advantages of
our technique is that by using the proposed deep learning-based
predictor, global routing is no longer required as frequently and
hence the total runtime for place and route can be significantly
reduced. In this paper, we discuss the proposed framework and
the methodology for analyzing the extracted features. The exper-
imental results show that the average sensitivity, specificity, and
accuracy of Eh?Predictor is above 90%. In addition, we show
that Eh?Predictor is up to 14 times faster than NCTUgr for
smaller designs and up to 96 times faster for larger designs.

Index Terms—Data mining, design automation, imbalanced
data, machine learning, physical design, placement, routing.

I. INTRODUCTION

ADVANCES in very large scale integrated circuits (VLSI),
adds to the challenges in electronic design automation

(EDA). Routability is one of the most challenging issues
in modern designs. New technology node scales, technology
constraints and increasing design rules add to the complex-
ity of physical design. Remedial procedures after detailed
routing, such as rip up and reroute process are not always
adequate to resolve occurrences of violations, such as shorts,
pin access problems, and other detailed routing violations.
In these cases, the layout is considered unroutable and the
placement and routing stages have to be repeated. This pro-
cess can take up to several days. Therefore, routability-driven
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placement algorithms are inspired to avoid unroutable
layouts.

A. Motivation

Developing routability-driven placement algorithms requires
a realistic estimation of routability and prediction of problem-
atic areas. Conventionally, global routers are used to estimate
and evaluate the routability of a placement solution during the
placement process. However, global routers ignore the effects
of local nets. Local nets contribute a high percentage of the
total nets and can affect the quality of the final routing solu-
tion [1]–[3]. There are a few methods that take into account
local nets during global routing such as [4] that incorporate
local nets in a global-routing-based congestion analyzer using
Steiner tree wire length estimations and pin density. Another
example is presented in [5], where local net density is mod-
eled as a regression problem and machine learning is used to
solve it. Invoking a global router several times can be time
consuming. At the same time, using global routing solutions
along with local net modeling only generates a better conges-
tion map and does not directly predict the routing violations.
The motivation of this paper is to develop a fast predictor for
identifying detailed routing pin short violations without using
global routing.

B. Contributions

In this paper, we propose Eh?Predictor, a deep learning
framework to detect the short violations from a placed netlist
without using a global router. The proposed framework learns
from actual detailed routing violations and predicts the short
violation prone areas at the placement stage.

In designing this framework, the factors that can contribute
to the routing violations are determined and multiple relevant
quantitative features are defined and extracted from the placed
netlist. A deep learning model is trained using a training set
that includes feature values and labels, determined by actu-
ally routing the design. Then, the trained model is used for
predicting the presence of shorts using the feature values at
the placement stage.

The experimental results show that the proposed detec-
tion method is able to predict on average 90% of the shorts
on previously unseen data with only 5% false alarms (FAs)
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and considerably reduces the computational time. Our main
contributions include the following.

1) Proposing a machine learning framework to predict the
shorts before routing.

2) Significantly decreasing the prediction time by not using
a global router.

3) Modeling the short prediction problem as a binary
classification problem with imbalanced data.

4) Defining and extracting effective features.
5) Analyzing the extracted features and their correlation

with short violations.
6) Customizing a deep learning model that fits the problem

and its imbalanced nature.
Eh?Predictor is evaluated by empirical experiments on

advanced designs, and has shown improvement on predicting
short violations.

The remainder of this paper is organized as follows. In
Section II, backgrounds related to placement, routing, and
machine learning are reviewed. The proposed modeling and
methodology are presented in Section III. The experimen-
tal results are discussed in Section IV. Finally, Section V
concludes this paper.

II. PRELIMINARY

A. Placement and Routing

1) Placement: It is a key step in physical design synthe-
sis [6]. The process of placement tries to find an optimal
solution to determine the location of each module (cell) inside
a die surface such that a variety of objectives are optimized
while several constraints are satisfied. Some of these objec-
tives include wire length, performance, power consumption,
circuit area, reliability, and routability. However, wire length
is considered as the main objective of placement because plac-
ers leading to less wire length can better cope with emerging
challenges in modern technology processes [7]. The placement
problem is NP hard [8], [9] even if only one objective such
as wire length is optimized.

2) Routing: Routability has become critical in modern
VLSI placement [10], [11]. Wire length-driven placement
methods, which are not aware of actual routes, may result
in unroutable solutions. Therefore, a placer should not only
minimize wire length; but also must consider the routability
of the final solution during the placement process. Due to its
complexity, the routing step is performed into two main steps:
1) global routing and 2) detailed routing [12], [13].

Global routing in its core utilizes a grid of tiles (called
g-cells) with the same size. In global routing, all connections
inside a g-cell (intraconnections or local nets) and some metal
layer constraints are ignored while all connections among
g-cells (interconnections or global nets) are routed. Each
g-cell, gi, is composed of four routing edges. Two vertical
edges determine the available horizontal routing capacities of
the g-cell while two horizontal routing edges provide the avail-
able vertical routing capacities of the g-cell [14]. From the
placement viewpoint, global routing can also be utilized to
estimate routing overflows and to improve routability during
the placement process [15], [16].

In contrast with the global routing step, the detailed routing
step must consider local nets and technology constraints during

routing. Due to complicated design rules in modern technol-
ogy processes, the detailed routing is very time consuming.
For example, the detailed routing process for the benchmark
mgc_superblue11_a released in the ISPD 2015 contest [17]
takes more than three days using a commercial tool while the
runtime of its placement process using Eh?Placer [15] is less
than 40 min.

3) Technology Constraints: The technology constraints
are as follows. Fence region constraints are defined to
address issues, such as isolating separate voltage regions and
preserving space for incorporating global repeaters [17], [18].
Cells assigned to a fence region have to be placed inside
the boundary of the region while other cells have to be
placed outside of the boundary. Violating fence region con-
straints makes the placement unacceptable. These constraints
are generally considered as hard constraints. A design may
have several joint or disjoint fence regions. The target density
constraint controls how uniform cells should be distributed
over the chip area [15]. Pin shorts occur where prerouted
wires including power/ground (PG) [19] mesh or primary
inputs/outputs (PIOs) and cell pins are on the same metal layer.
PIOs should be taken into account because they are considered
as fixed objects [17], [20]. Nonedefault routing (NDR) rules
are defined for some nets to dedicate different wire width and
spacing from what are defined for regular nets.

B. Machine Learning

Machine learning is a filed of artificial intelligence (AI)
and a set of techniques that enables computers to learn and
act without explicitly being programmed [21].

1) Supervised Learning: Supervised machine learning
refers to the techniques used for developing functions from
labeled training examples that can be used to label new
data [21].

In a supervised machine learning technique, first a training
set is developed and its labels are determined. The next step is
to determine the features that would represent the learned func-
tions. These features are essentially the most important part
of a machine learning process. Once the features are deter-
mined, the type of the learned function is determined. Some
of the most well-known examples of the models are logistic
regression, decision trees, support vector machines, and neu-
ral networks. A learning algorithm is then performed on the
training set and the learned functions are obtained. Finally,
the performance of the learned functions are evaluated using
a separate test set.

2) Deep Learning: The idea of neural networks existed
for decades. However, it has caught more attention in recent
years, due to more data availability and computational scale.
Deep learning is mostly referred to large neural networks with
multiple hidden layers [22]. By using more data for training,
the performance of old learning algorithms plateaus, where,
the performance of very large neural networks or deep learning
can improve and make deep learning a popular choice.

3) Imbalanced Data Evaluation Metrics and Terms:
Imbalanced data classification problem is a supervised learn-
ing problem, where the proportion of the number of data
in classes is skewed. In a binary imbalanced data classifica-
tion problem, the majority of the data belongs to one of the
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classes [23], [24]. In the following a brief summary of the met-
rics that are commonly used for imbalanced data evaluation
are given.

Confusion Matrix: A confusion matrix is a table that
presents the performance of a classifier and is widely used
to assess imbalanced data. The rows of a confusion matrix
present actual classes while columns show the predictions. The
confusion matrix presents the following four cases.

1) True Positive (TP/TN): The number of instances that
are correctly classified as positive/negative.

2) False Positive (FP/FN): The number of instances that
are negative/positive and incorrectly classified as posi-
tive/negative.

Sensitivity or True Positive Rate (TPR): It shows the ability
of the model to classify the positive class. In our problem,
TPR presents the percentage of the tiles, a rectangular area
of a placed design, with short violations that are correctly
identified as having violation. Sensitivity is defined by

TPR = TP

P
= TP

TP + FN
× 100.

Specificity (SPC): Measures the ability of the model to
classify the negative class. In our problem, SPC presents the
percentage of normal tiles that are correctly identified as not
having violation. Specificity is defined by

SPC = TN

TN + FP
× 100.

FA: Describes cases where the developed function mistak-
enly identifies an event. In our problem, FA describes the tiles
with no shorts that are incorrectly identified as having shorts.
It is defined as

FA = FP

TN + FP
× 100 = 100 − SPC.

Accuracy (ACC): It shows the overall performance of the
classifier and is defined by

ACC = TP + TN

All
× 100.

All is the number of instances.
Matthews Correlation Coefficient (MCC): Is a metric that is

used for binary classification of imbalanced data. MCC returns
a value between −1 and +1. An MCC of +1 represents perfect
prediction. MCC is calculated as

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

4) Machine Learning in EDA: Data mining and machine
learning techniques have been applied to EDA in recent
years [25]. In [5] and [26]–[29] machine learning is used for
lithography, hot-spot detection, timing estimation, modeling
the local nets and routability prediction using global router.

III. PROPOSED METHODOLOGY

Eh?Predictor is developed to be used as a guide during the
placement by predicting the short violations without using a
conventional routing estimator.

We have modeled the problem of predicting the short
violations of a design from a placed netlist as a binary classifi-
cation problem with imbalanced data and used the supervised
machine learning approach to perform the classification. The
framework proposed to predict the shorts along with the details
of its designing are presented in this section.

A. Problem Formulation

The goal of this paper, is to detect the areas in the circuit that
are prone to the occurrence of short violations, before actu-
ally routing the circuit. For this purpose, we divide the circuit
layout into small grids, called tiles. Then, the possibility of
short occurrence in each tile is investigated. We modeled this
problem as a binary classification problem with the following
inputs and outputs.

Input: (�x(i), y(i)), where x(i)
j ∈ R and y(i) ∈ {0, 1}.

Output: ŷ(i) ∈ {0, 1}, where, i is the index of the tile, �x(i) is
the feature vector of tile t(i) from the after placement layout
of a design and x(i)

j is the jth feature in �x(i). y(i) is the binary
label of tile t(i). Here, y(i) = 0 indicates the absence of short
violations and y(i) = 1 indicates their presence. ŷ(i) is the
predicted binary label of tile t(i), where ŷ(i) = 1 indicates the
prediction of short violations. A tile t(i) is referred to as an
instance in general. A tile with short violations (y(i) = 1) is a
positive instance, and a tile without short violations (y(i) = 0)
is a negative instance.

Since the number of tiles with short violations using a fair
placer is much lower than the number of normal tiles, the
majority of instances belong to negative class. This problem
is a binary classification problem with imbalanced data.

B. Framework Flow

The flow of the proposed framework for violation prediction
and its integration in physical design flow is presented in
Fig. 1. In this figure, the blocks represent the processes and
the clouds represent the inputs and the outputs. The black dot-
ted box and the red solid box indicate the training phase and
the prediction phase, respectively. The dotted arrows are only
performed during the training phase.

The input to our predictor is a Placed Netlist, gener-
ated by a Placer from a Netlist of a design. During the
Generating tiles process, the layout of the placed design is
divided into nonoverlapping rectangular areas, called tiles T

and the tiles that completely overlap the macros are dis-
carded. The features of each tile t(i) ∈ T are extracted
during the Feature Extraction process. These features are fed
into the trained Learning Model. The binary output ŷ(i) shows
the prediction of the presence or absence of short violations
in tile t(i).

When training the model, the Placed Netlist of the train-
ing designs is also given to a Router to be routed, and the
violations, along with their locations, are extracted. Next step
is Labeling the tiles, using the location of the violations. The
tiles that have short violations reported by detailed router are
labeled as positive instances. All other tiles are labeled as neg-
ative instances. The tile features (�x(i)) and labels (yi) are fed to
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Fig. 1. Outline of Eh?Predictor.

the Learning Model for training. Once the model is trained, it
can be used as a short violation predictor on new, previously
unseen tiles.

C. Framework Design

The process of designing the proposed framework is shown
in Fig. 2.

The first step is collecting data and developing a data set
that can be used for training. The next step is designing the
initial features. The initial features are designed based on fac-
tors that can influence routing of a design. These factors are
determined by thorough research and experience in develop-
ing detailed routing aware placers. Then, the initial feature
values for the data set are calculated and analyzed. Based on
these analyses, new features are designed. In the next step
an appropriate learning model with initial settings is selected.
The model is trained by the data set with designed features
and its performance is evaluated. The model is customized
through many iterations until a satisfactory performance is
achieved. If satisfactory performance is not achieved and

Fig. 2. Design flow: the process of designing Eh?Predictor.

no more customization idea can improve the performance,
more features can be hand-engineered, extracted and added
to feature set. New features can be defined by analyzing
the instances with false prediction. Collecting more data and
adding to the data set for training is the next step to fur-
ther improve the performance of the predictor. Sufficient data,
effective feature set, and appropriate learning model are the
key factors in developing a successful predictive method. The
details of obtaining each of these factors are described in
the following.

D. Data Collection

To generate the data set, a set of designs are selected and
placed by a placer. For each placed circuit, tiles are generated.
The data set consists of information about the netlist of a
design before placement, floorplanning, tiling, and placement
of the design. For labeling the training tiles, the placed netlists
are also routed using a detailed router. The exact location of
short violations are extracted and mapped to the tiles.
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The tiles with one or more short violations are labeled
as positive and the rest of the tiles are labeled as negative.
We have used academic placer, Eh?Placer for placement and
Mentor Graphic’s Olympus router for labeling.

In the designs that macros are routing blockages, the tiles
that completely overlap the macros are discarded. The reason
is that there is no routing on these tiles and hence there is no
short violations and there is no need for prediction. Our pre-
dictor can easily predict these tiles correctly. Including macros
results in high specificity value for designs with macros and
could be misleading.

E. Feature Extraction

Selection and extraction of effective features can signifi-
cantly impact the performance of the predictor. In order to
generate the feature vector, first the factors that contribute
to violations are determined through experimentation and the
features are extracted as shown in Fig. 3.

In this process, several quantitative features are derived from
each individual factor or a combination of multiple factors
and are calculated for each tile based on the Netlist, floor-
plan, placement, and tiling information. These features form
the initial feature vector. The features are studied and analyzed
and more features are introduced based on these analyses and
added to feature vector. Then feature analyses are repeated
for the new features. Since the range of the values in feature
vector varies, the values of features are standardized to con-
tribute equally. The generated feature vector is fed to the deep
learning model. The layers of deep learning model generates
more complicated features by combining them. Performance
of predictor on different tiles are studied and examined. New
features are introduced based on these studies and are added
to feature vector and the process is repeated.

1) Effective Factors: The factors that can contribute to
violations are determined as follows.

Global Characteristics: The general characteristics of the
design, such as density of the designs, macros, regions. These
features can be informative in making decisions, as similar
designs may have similar patterns. These factors are similar
for the tiles of each design. For example, a design with higher
density is more prone to short violations.

Routing Accessibility: The area covered by macros, and
routing blockages, such as power grids, in different metal lay-
ers affect the accessibility of routing and potential violations.

Narrow Channels Effects: When macros are placed close to
each other or close to the border of the design, the narrow
channels are formed. As the macros act as routing block-
ages, the nets are forced to go around the macros which in
turns results in high density of routs in narrow channels that
can result in detailed routing violations such as shorts. The
tiles over the narrow channels are good candidates for detailed
routing violations such as shorts.

Utilization and Distribution: The cell density, pin density,
and pin distribution of a design affects the performance of
both the placer and the router.

Nets and Routes: The nets that are being routed are the
main factor of occurrence of shorts. As the goal is detecting

Fig. 3. Feature extraction process.

the shorts before actually routing the design, different features
are considered to estimate the routing and track availability.

Spacial Pins and Nets: It has been observed that presence of
some special pins and nets, such as IO pins, clock networks,
and NDR nets could affect the routability.

Relative Location of the Tile in the Design: Tiles located in
the center of a design are prone to become congested as more
global nets cross over the area. Also the design borders are
more prone to short occurrence due to input/output pins.

Neighborhood: The neighborhood of the bin that the occur-
rence of short is investigated can have a significant role in
the occurrence of the short. For example, routing results and
occurrence of possible violations can be different for exact
same tiles with neighbors that have different pin density.

The following are the potential factors from each category
that impact detailed routing and are considered in the feature
extraction phase of this paper.
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TABLE I
LIST OF FEATURES. T REPRESENTS TILE AND NH REPRESENTS NEIGHBORHOOD

2) Quantified Features: The list of features that are
extracted based on the above factors, are presented in Table I
and are explained in the following.

1) Region Density (RD)—Design Density (DD): This fea-
ture is derived based on the global characteristics and
utilization factors and presents the cell density of the
region or the design (in case the design does not have
any region) to which the tile belongs.

2) Macro Density (MD): This feature is derived based on
narrow channel effect and global characteristics factors
and is defined as the area of macros in the design divided
by area of the design.

3) Macro—Tile/Neighborhood Overlap (MT/MNH): These
features capture routing accessibility and narrow chan-
nel effect. They calculate the tile and neighborhood area
overlap with macros, respectively.

4) Placement Blockage—Tile/Neighborhood Overlap
(PBT/PBNH): These features capture the utilization
factor. They are calculated as the tile and neighborhood
area overlap with any placement blockages, respectively.

5) Routing Blockage—Tile/Neighborhood (RBT/RBNH):
These features capture the routing accessibility and nar-
row channel effect factors. They are calculated as the
tile and neighborhood area overlap with any routing
blockages, respectively.

6) Metal Layers Blockages—Tile/Neighborhood
(MiBT/MiBNH): These features capture the rout-
ing accessibility and calculate the routing blockages in
different layers over the tile and the neighborhood area,
respectively.

7) Location on x-Axis/y-Axis (X/Y): These features show
the Relative location of the tile in the design. To

calculate these values, the x-axis and y-axis positions
of the center of the tile are obtained and are normalized
to the range [0 1] for each design.

8) Cell Density—Tile/Neighborhood (CDT/CDNH): Cell
density captures the utilization factor and is the ratio
of the total area of the cells within tile/neighborhood to
tile/neighborhood area.

9) Pin Density—Tile/Neighborhood (PDT/PDNH): Pin
density also captures the utilization factor and is calcu-
lated as the total pin area within the tile/neighborhood
divided by tile/neighborhood area. As the number and
shapes of pins on different cells vary, pin density and
cell density values can be independent.

10) M1 and M2 Pin Density—Tile/Neighborhood
(M1M2PDT/M1M2PDNH): This feature captures
the utilization and routing accessibility factors
and is calculated as the total pin area within the
tile/neighborhood on M1 and M2 metal layers divided
by tile/neighborhood area.

11) Number of PIO Pins (IO): This feature shows the num-
ber of the PIO pins within the tile and captures routing
accessibility and special pins and nets factors.

12) Pin Distribution on x-Axis/y-Axis (PdistX/PdistY): This
feature is computed as the standard deviation of the
x and y locations of a pins in the tile and captures
utilization factor.

13) Local Net in Tile/Neighborhood (LNetT/LNetNH):
Local net is calculated as the total number of nets that
have at least two pins in a tile/neighborhood and captures
connectivity factor.

14) Global Net in Tile/Neighborhood (GNetT/GNetNH):
Global net is calculated as the number of nets that have
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at least one pin in a tile and at least one pin outside the
tile. Global net captures connectivity factor.

15) Horizontally/Vertically Passing Net (PNetH/PNetV):
This features also capture the connectivity and effects
of narrow channels factors by estimating the number
of the nets passing the tile horizontally/vertically. It is
computed as follows: for each column/row of the con-
structed tile grid, the number of nets having at least one
pin on both sides of the column/row is calculated and
divided by the number of the tiles in that column/row.

16) Maximum Horizontal/Vertical Tracks
(maxTrackH/maxTrackV): These features are esti-
mations of maximum number of horizontal/vertical
tracks using the line scan algorithm [30].

17) Number of Clock Pins in Tile/Neighbothood
(ClkT/ClkNH): This feature is calculated as the
number of clock pins in tile and captures the spacial
pins factor.

18) NDR Nets (NDRT): This feature represents the effects
of NDR nets, and is equal to the number of pins with
NDR nets. NDR nets are the nets that need double-wide
width and spacing when routing.

3) Correlation Analysis: Some of the defined features have
direct impact on the presence of these violations, where others
do not have a direct correlation with violations but the occur-
rence of multiple features for the same instance can affect the
routability. The correlation between some of the features and
violations are analyzed in this section.

The density of the region that the tile is located within
affects the short violation occurrence. However, there are many
more factors involved. Fig. 4 shows the short rate in the regions
with different densities. The top graph shows the higher den-
sity regions, the middle graph shows the regions from the
designs with macros, and the bottom graph shows the regions
with lower density and no blockages. It can be seen that
the highest rates belong to either high density regions or the
regions from the designs with macros with average density.
The regions with lower density from designs with or without
macros, and the regions with average density from the designs
without macros have the lowest short rate.

There are some regions from the designs with blockages
with average density that have lower short rate. By looking at
different features we realized that these designs have a big-
ger circuit area. This is shown in Fig. 5. In this figure, the
x- and y-axis show the density of the region and the short
rate, respectively. The size of the circles represent the area
size of the design and the color shows the type of the design.
The designs with bigger circuit area with similar region den-
sity and blockage coverage are the ones discussed before and
have lower short rate.

Once all the global features that were common for tiles
within the same region were studied, the individual features
of individual tiles are investigated. In Fig. 6, the tiles are
divided based on their coverage by macros. The y-axis shows
the short rate. The highest short rate belongs to the tiles that
are 30%–40% covered by the macros. Tiles with higher pin
density that are partly covered by macros have the higher short
rate. Although the tiles with NDR form about 30% of our data

Fig. 4. Shorts per hundred tiles versus Region density.

Fig. 5. Plot of shorts per hundred tiles for Region density. Color shows
details about the type of design. Size shows the area size of design.

Fig. 6. Trend of shorts per hundred tiles for macro-tile overlap area (MT).
Color shows average of tile pin density.

set, more than half of the shorts belong to the tiles with NDR.
The probability of shorts in tiles with NDR pins (2.8%) is
more than twice as the tiles without NDR pins (1.3%).

4) Feature Normalization: Before inputting the instances
into the network, the features were normalized based on the
mean and standard deviation of each feature in the data set.

5) Evaluation: The actual routing and placement of the
tiles are analyzed using different data visualization techniques.
After obtaining each round of results, we analyzed the results
based on their performance with special attention given to
regions with underperforming predictions. The differences
between these regions and the regions with high-preforming
results are analyzed to find out the specific characteristics that
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might have been missed. For example, clock pins were added
as a feature after these analysis. The feature extraction pro-
cess terminated when introducing new features did not result
in change in the performance of the predictor.

F. Learning Model Selection and Development

A supervised machine learning approach is used to perform
the classification. In selecting a suitable model, the complex-
ity of the model and its fit to the data must be balanced. The
model must be complex enough to capture the features and
simple enough not to over fit. Also, since our problem is an
unbalanced classification problem, a model that can handle
the unbalanced data should be selected [31]. We have selected
some candidate models, customized the model by modifying
the architecture and tuning the hyperparameters until satis-
factory performance is achieved. Finally, we have selected a
customized deep learning model as our main learning model
that outperforms the other candidate models. This model is
applied to all the circuits. The details of customized model is
given in Section IV-A.

IV. EXPERIMENTAL SETUP AND RESULTS

The experiments are performed on the ISPD15 routability
driven benchmark set designs [17]. The salient characteris-
tics of the ISPD 2015 benchmark circuits with 45 nm/28 nm
design rules are high area utilization, routing layer blockages,
fence regions, and fixed macros and narrow channels [17]. We
have used Eh?Placer, which includes a complete flow [15], for
placing the designs and generating the placed netlists. Mentor
Graphics Olympus router [32] is used for routing the generated
placed netlists and labeling the training data.

The feature extraction process is developed as an add-on to
Eh?Placer. The source codes for feature extraction are writ-
ten in C++ and compiled by gcc version 4.8.5 under Linux
CentOS 7.3 with two Intel Xeon E5-2620 processors running
at 2.00 GHz and 64 GB of RAM. The source codes of our
supervised learning model is developed in Python using ten-
sorflow library [33]. Training and testing are performed under
the same Linux machine the feature extraction source codes
were developed.

In this section, first we present the details of the implemen-
tation of our model in Section IV-A. Then, in Section IV-B
we elaborate the prediction results, runtime, and comparisons.

A. Setup

In this section, the details of implementation, including
determining the grid size, customizing the learning model, and
generating training and test sets are elaborated to enable the
reader to regenerate the codes.

1) Determining the Grid Size and the Neighborhood Size:
The grid size is selected based on a tradoff between the size
of data set and the noise posed by a small grid size. A big
grid size leaves us with a smaller data set and very low num-
ber of positive instances for training. Also, large tiles do not
capture local issues. Moreover, prediction on a big tile might
not be very useful and could be even counter productive as the
process to alter the placement to avoid the predicted violation

can result in new violations. On the other hand, the small grid
size results in noise in data and the data extracted from such
a small grid are not meaningful as there would not be enough
distinction for feature values. In order to benefit from advan-
tages of both small and large grid size, we selected our grid
size relatively small and considered a larger neighborhood area
of each tile to extract the features from. Empirically, we have
realized that we can achieve the best results by selecting three
rows by three rows as the most suitable grid size and nine
rows by nine rows as the most suitable neighborhood size.

2) Customizing the Learning Model: The process of devel-
oping a deep learning model for a certain application is an
empirical process and consists of the iterative process of idea,
implementation, and experiment [21]. The final setting used
for evaluation of our method is as follows.

We have modeled the problem as a binary classification
with one output node. Customizing our model includes set-
ting the network architecture, tuning the hyperparameters, and
planning to avoid overfitting.

Emperically, we have found four layers network most suit-
able for modeling our problem. Using more layers tends to
over-fit for the available data set and less layers results in
weaker performance. Input layer consists of 43 nodes which
is equal to the size of feature vector. Each of three hidden lay-
ers of our customized network consists of 100 nodes. Output
layer has one node for binary classification. Relu function [21]
is used as activation function for the nodes. Relu has constant
gradient which results in faster training compared to other
activation functions such as sigmoid or tanh functions, where
vanishing gradient problem can occur.

Initial weights are random values from a truncated normal
distribution. The generated values follow a normal distribution
with mean 0 and STD of 1, except that values whose mag-
nitude is more than 2 STD from the mean are dropped and
repicked. Initial bias values are set to 0.

We have used weighted cross entropy as loss function with
weight of 1/ratio ≈54 for positive error, where ratio is the
ratio of the number of tiles with shorts to the normal tiles.
This allows us to make up for the imbalance in our data and
tradeoff sensitivity and specificity by giving a higher cost to
a positive error relative to a negative error in calculation of
loss function. Our model penalizes the miss-classification of
positive instances by 54 times more than negative instances.

The solver used for optimizing the loss function is
Adam optimizer with the learning rate of 0.05 [34]. Adam
optimization method is a gradient-based optimization method
with adaptive learning rate, which uses the running averages
of both the gradients and the second moments of the gradients
and results in faster convergence. The gradient descent is too
slow and mini-batch methods are not appropriate choices for
this problem due to the imbalance in data. In the mini-batch
optimization methods, a batch of data is randomly selected
in each iteration and their derivatives are calculated. Since in
random the chance of having samples from positive class is
very low, it is not suitable for our problem and the classifier
tends to assign most of the samples to negative class. Whole
batch optimization is used in these experiments. In order to
avoid overfitting, dropout method with keeping rate of 0.95 is
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Fig. 7. Training cost versus iteration number.

applied on all hidden layers. Early stopping is applied when
the MCC value of the validation set starts decreasing.

The maximum number of training iterations is set to 1000.
In order to set this parameter, the change in loss function is
monitored in several experiments and the number of iterations
is selected. Fig. 7 shows the plot of the training loss or cost
versus number of iterations.

3) Generating Training and Test Sets: In order to train and
evaluate our model, the instances are divided into training set
and test set. Data from each design is split randomly into
training set (80%) and test set (20%). Test set is only used for
evaluation after the training is completed. Hold-out validation
is applied to training set to test the generalization of the model
while training. 20% of the tiles in training set is randomly
selected and assigned to validation set and used for customiz-
ing the model and tuning the hyperparameters. It should be
noted that mgc_edit_dist_a and mgc_superblue16a designs are
not included in the training and test sets as they could not be
detailed routed.

B. Results

The results of detecting short violations using Eh?Predictor
are summarized in Table II as confusion matrices. In this
table, the rows of the matrices present actual normal tiles and
tiles with violations, while each column shows the number
of prediction of each class. The total number of generated
instances are about 24k, where 4.5k of them contain short
violations. Overall, Eh?Predictor is able to predict 98% of
violations. Also 95% of the tiles without violations are cor-
rectly predicted as negative, which means the FA rate is less
than 5%. Eh?Predictor detects 99% of the shorts with 5% FA
rate in training data, and 90% of the shorts with only 5% FAs
on the previously unseen instances.

The performance of the proposed model on all data, as
well as individual designs, is evaluated and analyzed using
the results presented in Table III and Fig. 8.

In Table III, in columns 1 and 2, the design name and the
total number of instances are presented. In columns 3–6
the total number of positive instances, i.e., tiles with shorts,
the percentage of positive instances, the number of correctly
predicted positive instances and the TPR values are given. In
columns 7 and 8 the total number of correctly predicted neg-
ative instances and the SPC values are given. The last two

TABLE II
CONFUSION MATRICES FOR THE TRAINING

SET, TEST SET, AND ALL DATA

Fig. 8. Specificity versus sensitivity: each circle represent a design and color
represent the ratio of positive instances to all instances of the design.

columns show the ACC and MCC values, respectively. In order
to better interpret the results, the designs are ordered based
on the percentage of positive instances in the design (P%).
TPR and SPC are not applicable on the design without short
violations.

In Fig. 8, each circle represents a design, where the color
represents the relative short number, i.e., the ratio of the num-
ber of the tiles with shorts to the number of all tiles. Circles
with the shades of green to yellow has lower number of shorts
and circles with shades of yellow to red are the designs with
relatively higher short number.

The overall sensitivity and specificity of the predictor on all
designs are 98% and 95%, respectively. According to the table
and the graph, our predictor is highly successful in predicting
the shorts of the majority of the designs and can achieve a high
specificity for the designs with lower relative short number.

However, this value is lower for two of the designs with
the highest relative short number. That means the FA rate is
higher in actual unroutable designs. The reason is that FAs
mostly occur around the actual shorts. Although there are no
real shorts in those tiles, they have similar conditions to their
adjacent tiles that have real shorts and hence are prone to short
violations. These are the tiles that might need improvements
as well, during the placement to resolve the neighbor short
violations. Therefore, this issue does not negatively affect the
ultimate goal of the prediction, that is to improve the place-
ment to avoid short occurrence. In Fig. 9, the predictions
versus the real after routing shorts of the two design with
lowest specificity rates are presented. These are the designs
with high relative short number and with the shorts scattered
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TABLE III
PREDICTION RESULTS OF PROPOSED FRAMEWORK ON ISPD 2015 BENCHMARK DESIGNS

TABLE IV
COMPARISON OF THE RESULTS OF THE PROPOSED MODEL TO DIFFERENT LEARNING METHODS WITH DIFFERENT FEATURES [35], [36]

throughout the circuit. It can be seen that the majority of the
shorts are predicted in these designs and the FAs are around the
actual shorts. In such designs, it is very important to obtain
a good sensitivity, as these are the designs that are actually
unroutable and detecting their shorts in the placement stage
gives the opportunity to plan for avoiding them. The results
illustrate that our predictor is highly successful in predicting
the shorts of all the designs including the designs with high
relative short number. There is only one design with sensitiv-
ity of less than 90% which has only four tiles with shorts and
our predictor predicted three of them and resulted in 75% sen-
sitivity. Generally, missing only a few shorts in such a small
number of shorts results in big decrease in the sensitivity per-
centage. However, those designs are considered routable and
generally, detailed routers are capable of fixing a small number
of the shorts in circuits with very few shorts. The FA rate for
the routable designs are low and as result, using this predic-
tor as a guide at the placement stage will not result in major
changes in the designs that are already routable.

In Table IV, the performance of the Eh?Predictor is com-
pared to the performance of RUSBoost ensemble method using
less features in [35] and a shallow ANN in [36]. In this table,
first, the TPR, SPC, and MCC of the proposed method are
compared to those of the RUSBoost model. It can be seen that
the proposed model outperforms RUSBoost for the majority of
the designs in terms of MCC as a single metric and can main-
tain a better tradeoff between sensitivity and specificity. Since
the tiling method of the two methods are different, the SPC
values for designs with macros are not comparable. In calcula-
tion of the SPC of the proposed model the area used by macros
are excluded. The next set of columns show the prediction
results of the method in [36]. Again, it can be observed that
the proposed method outperforms this model by comparing
the MCC metric.

ANN is based on combining the features and uses all the
features. It can be more accurate in problems where there are
no dominant features. RUSBoost is based on decision trees
and does not use the features it does not find useful.
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Fig. 9. mgc_fft_a and mgc_fft_b floorplans showing (a) Eh?Predictor prediction results, (b) global router congestion map, and (c) real detailed routing short
violations. Here, dark green in (a) represents the shorts that are correctly detected and the light green shows the tiles correctly predicted as normal tiles.
Yellow represents the incorrectly predicted shorts or FAs and red shows the shorts that are missed by the predictor. (b) Congestion map generated by Mentor
Graphics global router and (c) real short violations after detailed routing by Mentor Graphics Olympus router.

TABLE V
COMPARISON OF THE RESULTS OF THE PROPOSED FRAMEWORK TO A DIFFERENT LEARNING METHODS WITH SAME FEATURES

In order to evaluate the efficiency of the proposed learn-
ing model and the proposed feature set in Eh?Predictor, other
learning models with same feature sets and also same learning
model with different feature sets are implemented as well, and
the results are compared.

In Table V, the performance of the proposed model is com-
pared to the performance of a model using RUSBoost and a
shallow ANN using same feature set. The weak learner used
with RUSBoost method is a decision tree with the leaf num-
ber of 30 and learning rate of 0.1. The shallow ANN used in
these experiments is a 2-layer network with 20 nodes in its

hidden layer. For minimizing the loss function of ANN Adam
optimizer with the learning rate 0.25 [34] is used. The number
of iterations is set to 3000. The weight parameter is set to 20.
That is to say the model penalizes the miss-classification of
positive instances by 20 times more than negative instances.
Comparing the MCC value of these models as a single metric,
the proposed model outperforms the other two models.

In Table VI, the performance of the proposed model is com-
pared to the performance of the same model using different
set of features to show the importance of inclusive feature
set. In this table, the first set of columns show sensitivity
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TABLE VI
COMPARISON OF THE RESULTS OF THE PROPOSED FRAMEWORK TO THE SAME LEARNING MODEL WITH DIFFERENT FEATURE SET

TABLE VII
PREDICTION RESULTS OF PROPOSED FRAMEWORK ON ISPD 2015 BENCHMARK DESIGNS WITH A DIFFERENT

PLACEMENT SOLUTION THAT ARE NOT USED IN TRAINING

and specificity values for different configurations and the sec-
ond set of columns show the corresponding MCC values. In
each set of columns, first column shows the results of model
using feature set 1. Feature set 1 includes all the features
except global features (feature number 1, 2). Second column
shows the results of predictor using feature set 2. Feature set
2 includes the features from main feature vector excluding
features related to connectivity and special pins (feature num-
ber 31–43). Third column shows the results of Eh?Predictor
using the proposed feature set. The results show that using the
proposed feature set results in better predictions.

The number of shorts in our dataset is limited and the
shorts obtained from the benchmark circuits are not evenly
distributed between all the designs. For example, more
than 25% of the shorts in dataset is obtained from design
mgc_des_perf_a. Moreover, as presented in Fig. 4, most of
the shorts are obtained from designs with high density, and
designs with blockages. These characteristics are modeled to
global features of the tiles and different designs with different
global features are needed to train the model. For example,
more than 80% of the shorts from high density designs are
obtained from design mgc_des_perf1. Therefore, excluding
all tiles of one design from training set results in loss of

global feature information and model cannot achieve its best
performance. In Table VII, the performance of the predictor
on completely unseen designs whose placement and routing
information are not used in training are presented. In generat-
ing this table, the model is trained using all the designs and
tested on the designs with different placement solution that
are generated by using a different version of Eh?Placer [15].
This model can be constantly updated by adding more labeled
data if available, i.e., different placed and routed designs and
can be used for predicting new designs with similar global
characteristics.

C. Runtime

Many placement tools, such as Eh?Placer, exploit a routing
estimator as a guide to reduce global routing congestion and
detailed routing issue during the placement process. For this
reason, we compare the runtime of our predictor with NCTUgr,
which is used in Eh?Placer during the ISPD 2015 contest.

In Table VIII, the runtime of predictor is compared to the
runtime of NCTU global routing estimator. It takes a fraction
of a second to call the predictor, where each call of NCTUgr
can take up to 22 s predictor can save a significant runtime of
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TABLE VIII
COMPARISON OF THE RUNTIME (S) OF THE PROPOSED PREDICTOR TO

ONE CALL OF NCTU GLOBAL ROUTER

placement. For example, 100 calls of the predictor instead of
global routing estimator in superblue12 can save up to 40 mins
of placement runtime. According to the table, the runtime of
global router increases rapidly with the increase in the size of
circuit (number of cells). Eh?predictor is up to 14 times faster
than NCTUgr for smaller designs and up to 96 times faster
for larger designs.

The total runtime spent for training in this experiment using
the proposed method is 1532 s. Training is a one-time task, and
once a model is trained the only runtime added to the placer
is a few seconds of prediction time. This can save hours of
prediction during placement.

V. CONCLUSION

In this paper, we proposed a deep learning framework to
identify short violations that can occur during detailed routing
from a placed netlist. The major contributions of this paper
are proposing a deep learning framework to predict the shorts
before routing, significantly decreasing the prediction time
by not using a global router, modeling the short prediction
problem as a binary classification problem with imbalanced
data, defining and extracting effective features after place-
ment, analyzing the extracted features and their correlation
with short violations, customizing a deep learning model that
fits the problem and its imbalanced nature. The results of this
paper show significant improvement in the accuracy of the
prediction and we show that Eh?Predictor is up to 14X faster
than NCTUgr for smaller designs and up to 96X faster for
larger designs.
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