
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018 1143

Hierarchical Temporal Memory Features with
Memristor Logic Circuits for Pattern Recognition

Olga Krestinskaya, Graduate Student Member, IEEE, Timur Ibrayev, Student Member, IEEE,
and Alex Pappachen James, Senior Member, IEEE

Abstract—Hierarchical temporal memory (HTM) is a machine
learning algorithm inspired by the information processing mech-
anisms of the human neocortex and consists of a spatial pooler
(SP) and temporal memory (TM). In this paper, we develop cir-
cuits and systems to achieve the optimized design of an HTM
SP, an HTM TM, and a memristive analog pattern matcher
for pattern recognition applications. The HTM SP realizes an
optimized hardware design through the introduction of mean
overlap calculations and by replacing the threshold determina-
tion in the inhibition stage with a weighted summation operator
over the neighborhood of the pixel under consideration. HTM
TM is based on discrete analog memristive memory arrays and a
weight update procedure. The operation of the proposed system
is demonstrated for a face recognition problem, using the stan-
dard AR, ORL, and Yale databases, and for speech recognition,
using the TIMIT database, with achieved accuracies of 87.21%
and approximately 90%, respectively, given an SNR of 10 dB.
Visual data processing using binary HTM SP features requires
less storage and processing memory than required by the tradi-
tional processing methods, with the area and power requirements
for its implementation being 0.096 mm2 and 1756 mW, respec-
tively. The design of the TM circuit for a single pixel requires
23.85 µm2 of area and 442.26 µW of power.

Index Terms—CMOS, face recognition, hierarchical temporal
memory (HTM), HTM features, memristors, spatial pooler (SP),
template matching, temporal memory (TM).

I. INTRODUCTION

H IERARCHICAL temporal memory (HTM) is a machine
learning algorithm that attempts to mimic human neo-

cortex operations [1]. The HTM architecture consists of a
spatial pooler (SP) and temporal memory (TM) and is charac-
terized by sparsity, modularity, and hierarchy [2]. The HTM

Manuscript received March 15, 2017; revised June 26, 2017; accepted
August 13, 2017. Date of publication August 31, 2017; date of current ver-
sion May 18, 2018. This paper was recommended by Associate Editor Y. Shi.
(Corresponding author: Alex Pappachen James.)

O. Krestinskaya is with the Bioinspired Microelectronics Systems Group,
Nazarbayev University, Astana 01000, Kazakhstan.

T. Ibrayev was with the Bioinspired Microelectronics Systems Group,
Nazarbayev University, Astana 01000, Kazakhstan. He is now with Purdue
University, West Lafayette, IN 47907 USA.

A. P. James is with the Bioinspired Microelectronics Systems Laboratory,
School of Engineering, Nazarbayev University, Astana 01000, Kazakhstan
(e-mail: apj@ieee.org).

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors. The file contains the
formal description of HTM spatial pooler and temporal memory algorithms.
The total size of the file is 190 kB.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2748024

SP performs sparse distributed representation of the input data,
while the HTM TM is responsible for the learning process [3].
The imitation of human brain functionality makes HTM a
core-adjustable algorithm applicable to various operations such
as visual data processing [4], object categorization [5], pattern
discovery [6], and data classification [7].

Although HTM-based algorithms have applications in image
processing [3], [8], [9], the hardware circuits for HTM SP
and HTM TM implementation remain an open-ended research
question [10]. Hardware-level implementation is essential to
allow sensor-level integration of HTM circuits and systems
that has the potential to be included in modern Internet
of Things applications. The smaller area and lower power
requirements make such sensor integration an important topic
to address regarding the intelligent processing of the ever-
increasing requirements on the volume, veracity, and versa-
tility of sensory data. We propose a set of circuits for building
a face and speech recognition system consisting of three main
parts: 1) the HTM SP; 2) the HTM TM; and 3) a memris-
tive pattern matcher. The HTM SP is used for the extraction
of important face and speech features. The HTM TM par-
ticipates in the learning process during system training. The
memristive pattern matcher is applied for feature comparison
and final decision making during the recognition stage.

In contrast to our previous work on HTM [11], the fol-
lowing work proposes a modification of the HTM SP that
includes the replacement of the conventional [winner-takes-all
(WTA)-based] threshold calculation in the inhibition phase of
the HTM SP to the threshold calculation with a weighted sum-
mation operator considering the neighborhood of the pixel.
The proposed HTM TM concept is then applied for the
learning operation during the training phase of the recogni-
tion operation and is based on the weight update procedure.
The hardware implementation of the HTM TM includes the
discrete analog memristive memory array consisting of the
memristive memory cells and the circuit for the weight update
process.

Although the work presented in [11] proposed memristive
crossbar circuits for the conventional HTM SP and enabled
the compact storage and parallel processing of synapses, it
established certain limitations to processing speed. Ensuring
that the design remained similar to conventional HTM SP
algorithms required circuits presented in [11] to process input
space block by block in a serial manner, thereby, increasing
the total processing time. Hence, the new circuits presented
in this paper and the resulting novelties, expressed in terms
of modifications of the HTM SP as well as the addition of

0278-0070 c© 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:apj@ieee.org
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

1144 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

analog HTM TM, were required to be introduced to opti-
mize the overall processing of the HTM system. As a result,
a better performance of the HTM SP as well as easier hardware
implementation and circuit realization were achieved.

The constructed hardware architecture for face and speech
recognition has an advantage in terms of the required memory
space for data processing and improved processing speed. The
traditional hardware for visual data processing is designed for
processing analog signals, which requires a large amount of
memory. If the conversion from analog signals to digital is
required, analog-to-digital converters are applied [12]. When
the converted signal is input to co-processors or FPGAs, the
processing speed and sampling rate are significantly decreased.
In contrast, HTM overcomes this problem and goes beyond
traditional computing methods. The proposed HTM SP is able
to convert analog signals into digital signals without using
analog-to-digital converters. The signal after HTM SP pro-
cessing is completely digital; this enables a required memory
space for data processing. In addition, because the HTM SP
avoids using analog-to-digital converters, the processing speed
and sampling rate are increased. The HTM TM part is also
purely analog, which allows the analog data to be stored in
a memristive memory array without converting the data into
digital form and training the system without application of
additional algorithms and computing software.

The main contributions of this paper include the following.
1) We report a new design of a scalable face recognition

system based on the HTM principle and implemented
with CMOS-memristive analog circuits for generating
and comparing image features in a parallel, hierarchical
and modular manner.

2) We present practical solutions to reduce the num-
ber of hardware components required for face and
speech matching by creating HTM SP face and speech
templates.

3) We develop a simplified approach to implement the
HTM SP circuit based on a memristive averaging circuit.

4) We introduce the HTM TM concept and its purely
hardware implementation based on the discrete analog
memristive memory array and memristive-CMOS circuit
for updating the stored data.

5) We conduct extensive experimental studies and circuit
simulations on benchmark data sets, which verify the
usefulness of our proposed approach.

This paper is organized into six sections. Section II
describes conventional HTM and related works. Section III
proposes a modified HTM SP and HTM TM model.
Section III-B introduces the overall architecture of the face
recognition system and illustrates the circuit implementation
of the system components. In Section V, a discussion of the
proposed system and the obtained results are given. Section VI
concludes this paper.

II. CONVENTIONAL HTM

HTM was inspired by the neocortex functions and describes
the overall theory outlined in the book On Intelligence [13].
The HTM theory was developed based on several func-
tional and structural biologically relevant observations of
the neocortex. These observations included the structure and

Fig. 1. Single level within the hierarchy of HTM.

functional hierarchy of information processing within the
neocortex, the generality of the neocortex algorithms, the abil-
ity to process features in a sparse, distributed manner, the
layered process of extracting and deciphering complex infor-
mation, the real-time encoding of sensory information, the
dynamic streaming and sequencing of memories for data pro-
cessing, and the ability to process data online. These principles
are incorporated into HTM algorithm design, which consists
of two distinct modules: 1) SP [14] and 2) TM [15].

The design and architecture of HTM are based on the mod-
eling of pyramidal neurons in the cortex and are very different
from those of the neuron models used in artificial neural net-
works. The model permits active dendrites for the recognition
of independent patterns from a large population of cells. The
ability to integrate synapses into the model enables the predic-
tion of the sequence transition of cell activities. Furthermore,
the HTM architecture relies on the principles of Hebbian learn-
ing, the network connectivity of sensory cortices, homeostatic
excitability control, and the structural plasticity, which depends
on the activity.

The HTM algorithm is organized into regions comprising
columns of cells, as shown in Fig. 1, with each column of cells
forming a single computational unit in which SP operates. The
mechanism of emulating the sparse activation of neurons is
referred to as inhibition, which is the ability of columns in
SP to inhibit neighboring columns within an inhibition radius
(size of the local neighborhood) from becoming active. The
junctions between cells are called synapses, and the synapses
on a columns dendritic segment enable connecting to the bits
in the input space. The receptive field is the available input
space in which the columns can connect, and the permanence
value is a measure of growth between columns and one of
the cells in the receptive field. If the value of a synapse’s
permanence is above a permanence threshold, it is considered
to be fully connected.

Since HTM is a cortical algorithm, it provides a new
model and direction for the hardware implementation of
neocortical functions [16]. The robustness and feasibility
of HTM have been tested using image processing, object
categorization, and recognition applications [5]. These algo-
rithmic implementations are promising. Melis et al. [7] and
Deshpande [17] depicted early digital designs for the VLSI
architecture and FPGA implementation of HTM, respectively.
The analog design implementations include a memristor-based
design [18] and scalable memristor crossbar architectures [11]
for the SP and a mixed-signal design of spin neurons and a
crossbar-based implementation [19] for both the SP and TM.

The SP on its own is capable of learning and classifying
different data sets, such as numbers, letters, and pixels [20].
Thus, the implementation of the SP alone in applications
such as image processing, pattern recognition, and speech
recognition yields good performances. The SP is realized via

KRESTINSKAYA et al.: HTM FEATURES WITH MEMRISTOR LOGIC CIRCUITS FOR PATTERN RECOGNITION 1145

implementation in four phases: initialization, overlap compu-
tation, inhibition, and learning [2]. The steps for implementing
the SP are as follows.

1) The SP accepts input data bits from sensory data or from
other regions of the HTM.

2) The HTM regions are initialized by selecting a fixed
number of columns that can receive inputs. Each column
is connected to the input using a dendrite segment hav-
ing a set of potential synapses. The potential synapse and
its corresponding permanence value are initialized ran-
domly around the permanence threshold. Some of these
potential synapses with a permanence value greater than
the permanence threshold will already be connected.

3) The number of synapses on each column connected to
active (ON) input bits is calculated; these connected
synapses are referred to as active synapses.

4) These active synapses are multiplied by a boostingİ
factor. The boosting factor represents the frequency of
activeness of the column relative to its neighborhood.

5) Within the inhibition radius, the columns with the high-
est activations become active, while the others are
disabled. Since the inhibition radius depends on the
spread of input bits, the column activations are sparsely
distributed.

6) The SP region follows a Hebbian-style learning rule
to update the permanence values of all the potential
synapses; thus, the synapses are changed from being
connected to being unconnected and vice-versa.

7) Step 3 is repeated for subsequent inputs.
The activation rule in step 5 is implemented using the

k-winners-take-all computation within a local neighborhood.
Ideally, the parameter k can be adjusted to regulate the desired
number of winning columns [2]. However, in [11] and [18],
the inhibition phase is implemented by the WTA circuit; as a
result, the value of the desired activity level is limited to 1.
A more formal mathematical description of SP is provided in
the supplementary material.

The second part of HTM is the TM. Whereas the SP is
responsible for the sparse representation of the input data, the
TM considers the changes that occur over time, learns the
patterns and attempts to make predictions based on the history
of input information. The TM aims to learn the connections
between cells within the same layer, while the SP aims to learn
the feed-forward connections between input bits and columns.
The TM algorithm is also known as the sequence memory. The
main roles of the TM are the following: 1) to learn sequences
of active columns from the SP over time and 2) to predict
which patterns come next based on the temporal context of
each input.

The TM collects the input from the SP, with the feed-
forward inputs of the TM originating from the active columns.
The steps for implementing the TM are as follows.

1) Activate the cells in each of the active columns that are
in the predictive state. If none of the active columns are
in the predictive state, then activate all of the cells in the
column. These active cells now represent input related
to prior input.

2) Find the total number of synapses connected to active
cells for all the dendrite segments of every cell in a given

layer. If this number exceeds a threshold, the correspond-
ing dendrite segment is assigned to be active. The cells
corresponding to this dendrite segment are set to the
predictive state unless already set because of the feed-
forward input. The collection of cells in the predictive
state represents the predicted pattern for the layer.

3) The activation of a dendrite segment is required to
update the permanence values of the synapses in the
given segment. The permanence values of the poten-
tial synapse are increased for active cells and decreased
for inactive cells. These modifications are temporarily
marked, and the synapses on already trained segments
are made active, leading to prediction.

4) The feed-forward inputs can change the cell state from
inactive to active (if this occurs, the temporary marks
are removed) and affect each potential synapse of the
cell. In other words, the permanence of synapses is only
updated in the case of the correct prediction of feed-
forward activation of a cell.

5) On the other hand, to change the cell state from the
predictive state to the inactive state, we need to undo
any permanence changes marked as temporary for each
potential synapse. When one cell incorrectly predicts the
feed-forward activation of another cell, the permanence
values of the previously active synapse are decreased.

The predictive state in the TM is purely an internal state
of the cell. The active cells resulting from the feed-forward
input propagate their activity to avoid the chain of predictions
leading to further predictions. A more formal mathemati-
cal description of the TM is provided in the supplementary
material.

III. PROPOSED HTM ARCHITECTURE

In this paper, we differentiate the conventional HTM algo-
rithm that is discussed in the previous section from the
algorithm that we propose for implementation. The latter algo-
rithm will be referred to as the modified HTM algorithm. We
highlight the major aspects of the proposed modifications in
following Section III-A. The circuit designs as well as the
system-level algorithms for modified HTM are presented in
Section III-B and supplementary material provides additional
algorithmic representation of the operating principle of the
proposed system.

A. Overview of Proposed Architecture

1) Spatial Pooler: The primary difference from the afore-
mentioned HTM algorithm is that we are changing the criteria
for the selection of winning columns that occurs in the inhi-
bition phase. Instead of considering the k-th largest overlap
value, we propose to calculate the threshold and establish the
selection of the winning columns based on the average value
of the overlaps in the modified SP.

The implementation of the proposed SP design is discussed
in Section III-B and requires consideration of the availabil-
ity of resources. Two types of resources being regarded in
the hardware design of interest are processing speed and
on-chip area. The user preferences concerning the above-
mentioned resources dictate whether the operations will be

1146 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

performed in parallel or serially. The former implementation
requires concurrent replication of the circuit for each of the
inhibition blocks such that the processing of an image is per-
formed at once. This benefits the design in terms of fast
processing. However, a high on-chip area demand is suffered.
Alternatively, serial implementation would require a single
module for the processing of one inhibition block after another,
which would reduce the required on-chip area. Thus, tradeoffs
between high-speed processing and a low-area network should
be made.

2) Temporal Memory: In this paper on TM, we use a single
training image known as a class map. The class map considers
the training images within the same class and combines all of
their features. This allows the matching of the patterns in each
of the trained classes to be executed through the comparison
of the testing image with a single image. As a result, the
memory requirements as well as the time for the processing
are reduced.

Such a design of TM is based on two properties: 1) focusing
and 2) reflection. The fact that the circuit of TM is established
after the realization of the SP shifts the focus of the learn-
ing procedure onto the important and unimportant features of
the original training images. The reflection property is related
to the changes in the features over time. This is realized by
considering the importance of the input bits and introducing
corresponding changes to the weights of the TM cells.

The weights of the TM cells can be incremented or decre-
mented by the weight update value ±�. The positive weight
update procedure, i.e., increasing the weight by +�, occurs
when the input bit represents an important bit, in other words,
when the input bit from the feature extracted image is 1. A
0 value of the input bit of the feature extracted image repre-
sents an unimportant feature and will contribute to the negative
update of the weight (−�). Thus, in contrast to the process
of the formation of the feature extracted images, which used
binary weights with values of either 1 or 0, the learning process
utilizes the multivalued weights of the TM cells.

The formation of the class map for one of the image classes
is demonstrated on Fig. 2. The inputs to the TM are the multi-
ple feature extracted binary images, while the output is a single
analog image of the same size that combines all the impor-
tant and unimportant features. The training sequence that is
applied in the TM eliminates the memory cells that initially
had the same weights.

B. Circuit Design of Modified HTM Architecture

1) System Overview: The overall design of the proposed
face recognition system is shown in Fig. 3. The system con-
sists of an input data controller with data storage, the HTM
SP, an output data controller, HTM TM and a memristive pat-
tern matcher. The images from the capturing device, such as
a camera, are sent to the input data controller, which selects
the required number of images and stores them in the input
data storage. Depending on the capacity of the system, the
size of the input images and the number of available on-chip
resources, the input data controller selects a parallel or serial
processing type and rearranges the images into blocks, fol-
lowed by preprocessing and filtering. Then, the testing image
or parts of the image are processed by the proposed modified

Fig. 2. Underlying principle of single-class-map formation using TM and
feature extracted images obtained from the SP.

HTM SP, which performs feature extraction and produces the
binary output image containing only the most relevant facial
features. Next, the HTM SP output image is sent to the output
data controller, which routes the images to HTM TM or the
memristive pattern matcher according to the training or test-
ing mode, respectively. Note that the test images in the testing
mode and the training images in the training mode are separate
sets of images.

During the training mode, the output data controller saves
the image with the corresponding class number into the TM.
When a new training image of the same class arrives, the train-
ing template of this class, called the class map, is updated
according to the proposed HTM TM algorithm. In the test-
ing mode, the output data controller directs the image into
the memristive pattern matcher and retrieves the class maps
of each class from TM. The memristive pattern matcher com-
pares the testing image with all class maps and determines the
similarity score for each comparison based on XOR logic and
averaging operations. The class of the image corresponds to
the match with the minimum difference between the testing
image and the training class map (or the maximum similarity
score) and is determined using a WTA circuit.

2) Spatial Pooler: Fig. 4 illustrates the circuit diagram of
a single processing block of the proposed SP of the modified
HTM. The process of extracting features from an input image
is achieved by initially reading input bits (in yellow) from
the input space (in purple) by processing the entire image in
a block-by-block manner. Each of such blocks on the input
space, which are called inhibition regions (in red), circum-
scribes the input bits constituting different RB regions (blue
boxes in the top-right inhibition region). A single processing
block, illustrated in Fig. 4, processes a single inhibition region
and determines which bits within it are important and which
are not important.

Fig. 5 illustrates the structure of a single RB, which per-
forms an operation similar to that of a single HTM column
in HTM theory (hence, both of the terms will be used inter-
changeably). An illustrated exemplar RB has in total N × K
random weight synapses, each of which is implemented by
a memristor device, and the permanence value of the block

KRESTINSKAYA et al.: HTM FEATURES WITH MEMRISTOR LOGIC CIRCUITS FOR PATTERN RECOGNITION 1147

Fig. 3. High-level block diagram of the proposed pattern recognizer based on Modified HTM. The pattern recognizer consists of an input data controller for
captured image storage and preprocessing, an HTM SP for feature extraction, HTM TM for training of the recognizer, an output data controller to control
switching between train and testing modes and a memristive patter matcher used for image classification.

Fig. 4. HTM SP configuration. The processed image is divided into receptor blocks (RBs) consisting of N image pixels. M RBs form a single inhibition
block. An inhibition block consists of two main parts: a thresholding calculation block and a threshold comparison block. The inhibition block produces a
binary output.

Fig. 5. Structure of a single RB, illustrating parallel synaptic connections
represented by N ×K memristors and a block calculating mean of those input
synapses, which represents the output of the single RB.

corresponds to the memristance value of the device. A synap-
tic connection is counted as either connected or disconnected
based on whether the memristance value is high (RH) or low
(RL), respectively. If there are M RBs within a single process-
ing block, as illustrated in Fig. 4, then within each of these
RBs, the group of N synaptic connections having the same
index number k such that k ∈ [1, K] acquire the same set of
random weights. According to the proposed design, the param-
eter K is chosen to have a fixed value K = 10, representing
ten repetitions of the same input data.

Hence, the repetition operation is achieved when the bits
of a single RB region are fetched by a corresponding RB.
Specifically, the voltage signals representing input bits are
applied to the memristors of a particular RB j such that
j ∈ [1, M] to produce the output signal VRBj, which represents
the averaged weighted sum of its input bits. As illustrated in
Fig. 5, the average within each RB (designated as the RB
mean) is determined by memristor devices having the same
high memristance value, RH . According to HTM theory, the
output signal VRBj can then be said to represent the overlap
value of the column j, which indicates the importance of the
bits connected to it in comparison with the bits connected
to other columns within the inhibition region also having M
columns.

Next, as illustrated by the threshold calculation block in
Fig. 4, based on the output voltage value of each RB, the aver-
age value VAVG is calculated for the entire inhibition region.
As illustrated by the threshold comparison block in Fig. 4,
this average value VAVG is used as a reference in determin-
ing which bits are important and which are not important
within a single inhibition block. If the output overlap value
VRBj of an RB j is higher than the average value VAVG, then
the bits connected to that RB are counted as important. This,
in turn, results in the output voltage signal having the value
of Vfj = 1.8 V. Selecting a 180 nm TSMC CMOS technology,
the voltage 1.8 V corresponds to logic “1,” while V = 0 V
refers to logic “0.” In contrast, when the overlap value VRBj
is less than the average value, the bits connected to that RB

1148 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

Fig. 6. Exemplary image consisting of 16 × 16 = 256 bits along with four
different possibilities of how the image can be processed.

are counted as unimportant, and the output voltage signal
will be Vfj = 0 V.

By processing all the inhibition regions of the input image in
the same way, a binary feature extracted image is produced.
A feature extracted image will have white bits representing
important features and black bits representing the remainder
of an image or unimportant features. White bits will be placed
at locations of the original image that had important bits. This
means that, regardless of their original value, all the bits con-
nected to the RB having VRBj ≥ VAVG will be represented
by the white bits or by the output voltage signal Vfj = 1.8 V.
On the other hand, black bits will be placed at locations where
the original image had unimportant bits. This means that the
remaining bits will be represented by black bits or by the
output voltage signal Vfj = 0 V.

The proposed design was verified using the memristor
model proposed by [21] for each synaptic connection. The
model parameters were set to emulate the memristor device
proposed by [22]. The threshold comparison block was simu-
lated using the BSIM model for a TSMC CMOS technology
size of 180 nm. In particular, the comparator consists of
pMOS transistors having width-to-length ratios of W1/L1 =
W2/L2 = 3.24μ/0.18μ as well as nMOS transistors having
width-to-length ratios of W3/L3 = W4/L4 = 2.0μ/0.18μ and
W5/L5 = W6/L6 = 1.08μ/0.18μ. The inverter, in turn, con-
sists of a pMOS transistor with W7/L7 = 0.72μ/0.18μ and
an nMOS transistor with W8/L8 = 0.36μ/0.18μ. The supply
voltages VDD1 = VDD2 = 1.8 V.

3) Selection of Parameters and Design Tradeoffs: There
are certain circuit parameters that need to be selected accord-
ing to design tradeoffs, as will be explained in this section.
Specifically, this includes the selection of N and M circuit
parameters of a single processing block, which is illustrated
in Fig. 4, as well as the total number of such processing blocks,
indicated by the parameter P, required to create a whole SP.

Fig. 6 shows an exemplary image consisting of 16 × 16 =
256 bits along with four different possibilities of how it can

be processed. Depending on the selected pair of parameters
(N, M), the image can be processed by dividing its bits (green
boxes) into RB regions (black boxes) and inhibition regions
(red boxes) of various sizes. Although a single RB region with
dimensions of n × n bits reads in total N = n × n bits, a
single inhibition region with dimensions of m×m incorporates
signals from, in total, M = m×m RBs. As a single processing
block processes the input bits of a single inhibition region, the
circuit illustrated in Fig. 4 is capable of processing a total of
N × M bits.

The whole SP then consists of P number of such processing
blocks. As each processing block is independent in terms of
computations, the entire SP is capable of processing P×M×N
bits simultaneously. This, in turn, allows the whole image to
be processed in a parallel manner by dividing its bits into
inhibition regions, each of which is processed by a separate
processing block. If the input to the system is preprocessed to
have fixed dimensions of X × Y bits, the require parameter P
can then be calculated as P = (X × Y)/(N × M).

The selection of appropriate N, M, and P parameters is
crucial to providing the most optimal system characteristics. In
particular, the performance of the proposed SP was evaluated
in terms of its on-chip area and dissipated power as well as
its qualitative effect on the system’s processing time and its
quantitative effect on the system’s recognition accuracy.

Consider the exemplary image having in total 16×16 = 256
bits (Fig. 6) processed by the SP constructed by processing
blocks having (N, M) = (1, 4) parameters (top-left corner) and
(N, M) = (4, 16) parameters (bottom-right corner). Assuming
that all input images are preprocessed to have exactly the same
dimensions, in the case when (N, M) = (1, 4), the SP should
consist of P = 64 processing blocks, and in the case when
(N, M) = (4, 16), the SP should consist of P = 4 process-
ing blocks. As the number of components required for the SP
is higher in the first case, the on-chip area and the dissipated
power are expected to be higher for P = 64 in comparison with
P = 4. The time required to process an input set is, however,
the same, as all the bits are fetched in parallel. Finally, it will
be shown later that because the inhibition process with P = 64
becomes more localized, the accuracy results are higher for
P = 64 compared to P = 4. Hence, this paper incorporates
the analysis to determine circuit parameters to achieve opti-
mal system characteristics based on the face database that was
selected for verification.

4) Temporal Memory: The hardware implementation of
HTM TM consists of a discrete analog memristive memory
array and circuit for updating data in the array based on the
proposed HTM TM concept. The memory array consists of
memristive memory cells, where each cell corresponds to a
single image pixel. For an image of size A × B, a memory
array consisting of A × B memory cells is required.

The operating principle of a single memory cell is based
on the ability of a memristor to memorize its state and change
the resistance according to the applied voltage. Fig. 7 shows
the proposed memristive memory cell consisting of three
branches. Such a cell requires five input signals, Vw1, Vw2,
Vw3, Vr, and Vc, and produces one output signal: Vo. The
input signals Vw, Vr, and Vc correspond to the process of writ-
ing (storing) the value to the cell, reading stored values and

KRESTINSKAYA et al.: HTM FEATURES WITH MEMRISTOR LOGIC CIRCUITS FOR PATTERN RECOGNITION 1149

Fig. 7. Proposed memristive memory cell consisting of three branches. Vw1,
Vw2, and Vw3 are input write voltages; Vr corresponds to the input read
voltage; and Vc refers to the input clear voltage. Vo is the output produced
during the read cycle. M1, M2, and M3 are memristance values that change
according to the applied voltage. R1, R2, and R3 are the resistors values,
where R1 �= R2 �= R3.

clearing the cell, respectively. The memristive memory cell
allows one to store L = vk different values, which implies the
use of distinct resistor values (R1 �= R2 �= R3). The parameter
L refers to the number of possible distinct values that can be
stored in the cell, v is the number of voltage levels that can be
applied to change the memristance of M1, M2, and M3, and
k is the number of memory cell branches. For the selected
memristor model introduced in [21], three voltage levels v
can be applied to change the memristance: 1.2, 2, and 3 V.
Fig. 7 illustrates the memory cell with three branches, which
means that the number of possible voltage values L that can
be stored in the cell is 27. Depending on the application and
required memory capacity, the number of cell branches can be
increased, which would lead to an increase in L.

To store (write) the value to the memory array, a set of
voltages Vw1, Vw2, Vw3 must be applied to each cell branch.
Each combination of write voltages (1.5, 2, and 3 V) cor-
responds to a particular voltage value that is stored. During
the write cycle, the resistance values of the memristors are
changed and preserved until the read cycle. In the write cycle,
Vr and Vc are grounded. During the read cycle, the input volt-
age Vr = 0.05 V should be applied, while all Vw and Vc are
set to 0. When the read voltage Vr is applied, the cell gener-
ates a particular Vo value corresponding to the stored value. To
rewrite the data stored in the memory cell, the clear operation
is used. To clear the cell, the signal of 3 V should be applied
to Vc, while Vr and Vw-s are grounded.

The proposed memristive memory cells form a discrete ana-
log memristive memory array to store the training image of
a particular class, where each array cell represents a sin-
gle image pixel. For c number of classes, c discrete analog
memristive memory arrays are required. During the training
mode, the memory arrays are updated. Fig. 8 illustrates the
circuit diagram of the proposed HTM TM and update oper-
ation. The HTM TM update circuit consists of comparator,
summing amplifier and thresholding circuit. The first training
binary image of each class is saved in a corresponding mem-
ory array. During the training mode, each memory array is
updated when a new training image of a corresponding class
arrives. During the update process, the training image tem-
plate stored in the memory array becomes grayscale due to
the ±� operation. When the training of a certain class is fin-
ished, the final training template is binarized and stored in a
corresponding memory array again.

In the training mode, when a new training image from the
HTM SP is directed to the HTM TM by the output data
controller, each pixel of this image is processed by the com-
parator. The comparator circuit determines whether a training
image pixel is black (with a voltage of 0 V) or white (with
a voltage of 1.8 V). If the comparator input Vf is 0, the
comparator output Vcout is −�. If the input is 1, the output
becomes +�. The comparator consists of two CMOS invert-
ers with pMOS and nMOS transistors. In the first inverter,
VDD1 = 1.8 V and VSS1 = −0.5 V. In the second inverter,
VDD2 = +� and VSS1 = −� to ensure that the com-
parator output Vcout is ±�. For this paper, the � value is
selected as 0.05. For both inverters, the pMOS transistor ratio
is W1/L1 = W2/L2 = 0.72μ/0.18μ, and the nMOS transistor
ratio is W3/L3 = W4/L4 = 0.36μ/0.18μ. The second inverter
of the comparator circuit is an underdrive inverter to ensure
that the ±� operation can be carried out.

The comparator output is applied to the summing amplifier.
The CMOS-memristive summing amplifier consists of an aver-
aging phase, corresponding to the memristors M1 and M2, and
an amplification phase. The pixel value of the training class
map Vt stored in TM and the comparator output Vcout are
averaged by the memristive averaging circuit with M1 = M2
to obtain the value of Vave, where Vave = (Vcout + Vt)/2. The
memristance values M1 and M2 are selected to be approxi-
mately 30 k� to eliminate the effect of the summing amplifier
on the comparator output Vcout. The memristors M1 and M2
are preprogrammed to be 30 k� before the training phase.
Then, the amplifier doubles Vave to produce an output sig-
nal Vo = Vcout + Vt, which implies updating of the saved
training value Vt by ±�. The modified amplifier configura-
tion proposed in [23] is used in the amplification part. To
double the amplifier input Vave, the memristance value ratio
M4/M3 = 285k/100k is selected. The transistor ratios are
W5/L5 = W6/L6 = W8/L8 = W9/L9 = W10/L10 = 2μ/0.18μ

and W7/L7 = 2.02μ/0.18μ. The voltage values are VDD =
1.8V , VSS = −1.8 V and VB = −0.4 V. The value of VSS
is adjusted to compensate for the effect of the offset in the
summing amplifier. In addition, the current source Ic, which
provides a current of 36 μA, can be adjusted to ensure a
precise ±� operation and to select the desired level of the
output voltage Vo. The output value Vo is within the range
from 0 to 1 V.

After the amplification stage, a new training pixel value is
either used to update the memory array or is sent to the bina-
rization circuit. If the training image is not the last image
for this particular class, the switch S is kept in position 1,
and the memory array is updated. During the update process,
a memory cell in the array corresponding to this particu-
lar pixel is cleared, and the obtained new training pixel is
stored (written) to this cell. The voltage level Vo is stored
in the memory array using a specific writing circuit and
is read from the memory array using the reading circuit.
The voltage Vt that is stored in the memory array is within
the range from 0 to 1 V. If the training image is the last
image for this particular class, the switch is moved to posi-
tion 2, and the obtained pixel value is binarized using the
thresholding circuit. The thresholding circuit generates output
Vout = 1.8 V if Vo > Vth and Vout = 0 V otherwise, where

1150 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

Fig. 8. HTM TM configuration and memory update circuit for a single image class, consisting of a memory array, comparator, summing amplifier, and
thresholding circuit. The memristive memory array is used to store the temporary grayscale training class map. When the new training image arrives, the
training template is updated using the comparator and the summing amplifier. When the training phase for the class is finished, the training class map is
binarized using a thresholding circuit and stored in the same memory array.

Vth is the threshold voltage, selected as 0.8 V. The parameters
of the thresholding circuit are VDD3 = 1.8 V, VSS3 = 0 V,
W11/L11 = 3.24μ/0.18μ, W12/L12 = 3μ/0.18μ, W13/L13 =
W14/L14 = 2μ/0.18μ, W15/L15 = W16/L16 = 1.08μ/0.18μ,
W17/L17 = 0.72μ/0.18μ, and W18/L18 = 0.36μ/0.18μ. The
final training pixel output value Vout is stored in the same
TM array, and the training stage for this particular class is
finished. The final class map preserved in the memory array
is further used in the recognition (testing) stage. The values
that are read from the memory array during the recognition
stage are normalized to logic “high” (1.8 V) and logic “low”
(0 V), which allows the direct pattern matching operation to be
carried out.

5) Memristive Pattern Matcher: During the testing mode
of operation of the proposed system, the memristive pattern
matcher is used for comparison of the testing image with all
class maps. The matcher circuit is based on XNOR thresh-
old logic gates [24] and the averaging operation to produce
the output, which demonstrates the weighted value of how
many bits from the testing image are similar to the bits of
the class map. Fig. 9 demonstrates the circuit diagram of the
2-bit XNOR pattern matcher. As demonstrated in the diagram,
the circuit-level implementation of the XNOR gate is based
on the XOR gate, which in turn utilizes the memristor-CMOS
implementation of the NOR gate.

The memristive NOR gate is constructed by two memristors
with memristance values of M1 and a third memristor having
a memristance of MNOR being placed in parallel, followed by
the CMOS inverter. The memristance values M1 and MNOR are
selected as high. The same configuration that is used for the
NOR gate can be utilized for the NAND gate by controlling
the voltage Vc. For a supply voltage level VDD = 1 V, the
NOR gate implementation requires a voltage Vc = 1, while
for the NAND gate, it should be Vc = 0. However, for the
180 nm TSMC CMOS process and a supply voltage VDD =
1.8 V, the voltage level Vc and memristor MXOR should be
accurately adjusted because of the high sensitivity of these
logic gates to the changes in these two parameters. The voltage
Vc is set to 0.61 V, and MXOR is preprogrammed such that
MXOR = 1.2 M�.

The obtained structure of the NOR gate can be used to con-
struct the XOR gate by adding three additional memristors
and an inverter. The memristance value MXOR depends on the

Fig. 9. Two-bit XNOR pattern matcher, created through the combination of
memristive XNOR and memristive NOR configurations of memristive memory
threshold logic.

output voltage of the NOR gate VNOROUT. For the high voltage
value of VNOROUT, which occurs when the two inputs to the
gate are low (say, Bsample1 = Bsample2 = 0), MXOR should be
taken as a low value. For all the other combinations of two
gate inputs, which produce an output voltage of the NOR gate
of VNOROUT = 0, the value of the memristance MXOR is set
as high. Finally, an additional inverter is used to obtain the
XNOR logic gate. All the three inverters are identical, with
the voltage supply of VDD = 1.8 V. The parameters for the
transistors of the XNOR pattern matcher circuit are as follows:
W1/L1 = W3/L3 = W5/L5 = 0.72μ/0.18μ and W2/L2 =
W4/L4 = W6/L6 = 0.36μ/0.18μ for pMOS and nMOS tran-
sistors, respectively. The memristors M1, M2, and MNOR are
set to Roff = 2.5 M�.

The outputs from the memristive XNOR gate are averaged
using the set of memristors with the same high memristance
value M. The final Output from the memristive pattern matcher
circuit can be treated as a weighted similarity score. This is
because the obtained value represents the number of testing
bits that are similar to the bits in the class map divided by
the number of bits. The averaging operation can be replaced
by the summing operation, which would show the total num-
ber of similar bits; however, this would require significantly
larger on-chip area and increased power dissipation. The class
number can be found by fetching all pattern matcher outputs
and sending them to the WTA circuit and then by obtaining
the maximum XNOR output. The maximum XNOR output
corresponds to the minimum difference between the images.

KRESTINSKAYA et al.: HTM FEATURES WITH MEMRISTOR LOGIC CIRCUITS FOR PATTERN RECOGNITION 1151

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Timing diagram for HTM SP operation. (a) Input voltages of RB 1
and RB 2, (b) input voltages of RB 3 and RB 4, (c) example of the outputs
of the bunches of random weight synapses inside the RB, (d) outputs of RB 1
and RB 2 and threshold calculation VAVG, (e) outputs of RB 3 and RB 4,
and (f) HTM SP output pattern.

IV. VERIFICATION RESULTS OF THE

NEW REVISED ARCHITECTURE

A. Architecture Performance Results

1) HTM SP Simulation Results: The simulations are per-
formed using 0.18 CMOS TSMC technology and the 50 nm×
50 nm titanium dioxide TiO2 memristor models in SPICE and
VerilogAMS [21]. The SPICE codes required to simulate large
circuits are generated using MATLAB scripts. Fig. 10 presents
the simulation results of the feature processing circuit for the
inhibition block with M = 4 and N = 4, i.e., the inhibi-
tion block containing four RBs with four inputs per block.
Fig. 10(a) and (b) presents the pulse waveforms that were gen-
erated as the inputs to the RBs in the sample SP configuration,
where RB 1 and RB 2 have the same input signals and RB 3
and RB 4 have the same input signals. The same set of voltages
was selected to show that the outputs of the RBs for the same
inputs are slightly different, as shown in Fig. 10(d) and (e).
This discrepancy is caused by the random weights of the mem-
ristive synapses. An example of the voltage distribution inside
an RB is shown in Fig. 10(c). The inputs of a particular RB
are averaged ten times using the memristors, yielding ten dif-
ferent outputs VRM_N . These ten outputs are sent to the RB
mean to produce the final RB output VRBM, which corresponds
to ten iterations to ensure a sparse random distribution of the
input pattern. Even with the same set of input voltages, the
separate bunches of random weight synapses (Fig. 6) can pro-
duce slightly different outputs after the mean operation due to
randomization of the memristive synapses.

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Simulation results of the HTM TM update circuit, which consists
of four clock cycles. In the first three clock cycles (0−30 μs), the switch
S is in position 1, whereas in the last clock cycle (30−40 μs) the switch S
is in position 2. The input signal Vf refers to the new training image pixel.
Vt is the value of the class map currently stored in the memory array. Vcout
is the comparator output, Vave is the output of the averaging stage of the
amplifier, Vo corresponds to the amplifier output, and Vout is the output of
the thresholding circuit corresponding to the binarized final training class map.

The average of the four RB output values is set as the
threshold value, which is denoted as VAVG. As the differ-
ence between the outputs of the RBs is not large and the
inputs are selected symmetrically, the threshold VAVG shown
in Fig. 10(d) and (e) is the same for all four clock cycles. The
comparator performs the comparison between the obtained
threshold value and the RB outputs. The output from the com-
parator is inverted. As soon as the threshold value is applied
to the positive input of the comparator, the inhibition block
output is high (1.8 V) if the RB output VRBM is higher than
VAVG, where M = 1, 2, 3, 4 in this example, and vice-versa.
The output voltages of the inhibition block corresponding to
the four RBs are shown in Fig. 10(f).

2) HTM TM Simulation Results: Fig. 11 illustrates the sim-
ulation results for the HTM TM circuit. The results of four
clock cycles are presented. In the first three clock cycles, the
train image is not assumed to be the last, and the switch S
is set to position 1. The output of the summing amplifier Vo
is stored in the memory array. The output from the previ-
ous clock cycle becomes the summing amplifier input Vt of
the subsequent clock cycle. In the last clock cycle, we assume
that the image is the last training image for the particular class,
and the switch S is set to position 2. The amplifier output Vo
is sent to the thresholding circuit, which produces the output
Vout for the final training image pixel for this particular class.

Fig. 11(a) shows the input to the comparator Vf from
HTM SP, and Fig. 11(b) illustrates the input to the summing

1152 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

amplifier Vt from the training class map (discrete analog mem-
ristive memory array). Fig. 11(c) presents the comparator
output Vcout, and Fig. 11(d) shows the output of the averag-
ing stage of the amplifier Vave. Fig. 11(e) presents the outputs
of the summing amplifier Vo. Fig. 11(f) corresponds to the
thresholding circuit output Vout. In the first clock cycle (from
0 μs to 10 μs), the input Vf from the new training image is
0 V, and the corresponding comparator output Vcout is approx-
imately −� = −0.05. The previously stored training class
map value Vt is 0.8 V. The average value Vave of Vt and Vcout
is 0.35 V. The summing amplifier output Vo for this clock
cycle is 0.75 V, which means that the initial value stored in
the memory array Vt = 0.8 V was reduced by 50 mV. The
output Vo is stored in the TM array and used as the input Vt
of the second clock cycle. Even if the logic high output from
HTM SP corresponds to 1.8 V, the logic high output produced
by the summing amplifier and stored in the TM array is nor-
malized between 0 V for logic low and 1 V for logic high to
ensure the correct addition of the ±� value. The thresholding
circuit is turned off for the first clock cycle.

For the second clock cycle (from 10 μs to 20 μs), the
pixel value of the new training image Vf is 1.8 V, corre-
sponding to the comparator output Vcout = +� = +0.05.
The averaging circuit output Vave = 0.37 V, and the ampli-
fier output Vo = 0.794 V, which are stored in the TM array.
In the last clock cycle, the switch is set to position 2, which
activates the threshold circuit. In the last clock cycle, the sum-
ming amplifier output is 0.789 V, and the thresholded output
Vout = 1.8 V. This output is stored in the TM array and used
in the recognition stage.

3) Pattern Matcher Simulation Results: Fig. 12 shows the
simulation results for the pattern matcher (Fig. 9). Fig. 12(a)
and (b) illustrates two inputs to the XNOR gates. The four
clock cycles represent four different combinations of logic
high (1.8 V) and logic low (0 V) values. Fig. 12(c) presents the
average value Vavg1 for the memristive NOR gate. Fig. 12(d)
presents the output of the memristive XNOR gate VNOROUT. In
the ideal NOR gate output, the first three clock cycles must be
equal to 0. However, because the circuit was adjusted to make
it compatible with the 180 nm CMOS technology and the nom-
inal VDD was set to 1.8 V, the NOR gate output is not precise,
which is not critical in this circuit configuration. Fig. 12(e)
presents the average voltage Vavg2 for the memristive XOR

gate and the inverter threshold. To obtain nominal values for
the 180 nm technology, the inverter threshold was increased
to approximately 0.8 V. Fig. 12(f) shows the XOR gate and
XNOR gate outputs. The final XNOR output is high for the
same inputs and low for different inputs. Finally, the outputs
of the pattern matchers are averaged and sent to the WTA.
Therefore, if the input pixels of the pattern matcher are the
same, the average output value corresponding to a particular
class increases.

4) Power and Area Calculations: Table I shows a sum-
mary of the area and power calculations for the three circuits
that were demonstrated in this paper: SP, TM, and memristive
pattern matcher. The values in Table I are represented based
on consideration of the minimum on-chip area and the worst-
case scenario for power dissipation. The maximum amount of
power is dissipated when the inputs to the circuit are supplied

(a) (b)

(c) (d)

(e) (f)

Fig. 12. Memristive pattern matcher timing diagram. (a) Pixel 1 input value
Bsample1, (b) pixel 2 input value Bsample2, (c) average voltage Vavg1, (d) NOR

gate output VNOROUT, (e) average voltage Vavg2 and inverter threshold, and
(f) XOR and XNOR outputs.

TABLE I
AREA AND POWER CALCULATION FOR THE

PROPOSED MODIFIED HTM DESIGN

by the voltage sources with the maximum value, which is 1
for the applications discussed in this paper, and all random
resistance values of the memristors are set to Ron.

The area and power for the SP implementation were cal-
culated for different configurations, i.e., different sizes of the
receptor and inhibition blocks. A closer look at the area and
power calculations for a particular value of M reveals that

KRESTINSKAYA et al.: HTM FEATURES WITH MEMRISTOR LOGIC CIRCUITS FOR PATTERN RECOGNITION 1153

Fig. 13. Two-variable analysis performed to include recognition accuracy as
an additional criterion in the selection of optimal values for the N = n × n
and M = m × m circuit parameters.

values do not change significantly with increasing n × n size.
More precisely, the values of the maximum dissipated power
do not change for a given M. This is because an increase in
N increases the number of synapses within a single column,
which are in turn represented by the memristive devices, which
are very compact and do not dissipate significant amounts of
power. In contrast, an increase in M results in more columns. A
single column require a comparator and an inverter for the pro-
cessing. Thus, the threshold comparison operation significantly
affects on-chip area and power requirements.

Table I also shows that the pattern matching could be imple-
mented by the compact CMOS-memristor-based circuitry at
low power consumption.

5) Selection of the Optimal Parameters: In addition to
these values, a two-variable analysis was performed to include
recognition accuracy as an additional criterion in the selection
of optimal values for N and M. This was achieved by perform-
ing face recognition analysis on the AR face database [25] with
the initial assumption that the optimal delta for TM should
be as small as � = ±0.05. Fig. 13 illustrates the relation
between the n and M circuit parameters and the recognition
accuracy results for input images having fixed dimensions of
120 × 160 bits. As can be seen, the best recognition accuracy
for the AR database is achieved with the small values of the n
and M parameters. This is because when the inhibition region
dimensions increase, the number of bits being suppressed by
the inhibition block increases as well. This means that small
values for n and m must be selected to increase the number
of regions within which decisions are made and to ensure that
there is no loss of important features.

Considering the results illustrated in Table I, for a fixed
input of 120 × 160 = 19 200 bits, the optimal circuit parame-
ters were selected to be N = n×n = 1 and M = m×m = 4, for
a total of P = 4800 processing blocks, a single unit of which
is illustrated in Fig. 4. Thus, for the proposed design, the SP
weights are not trained. Rather, learning is initially achieved
via standard filtering; subsequently, mainly within the TM part,
the optimal performance is achieved when either all or none
of the potentials of the SP part are activated simultaneously.

Fig. 14 illustrates the analysis that was performed to deter-
mine the optimal delta parameter required for TM. This was
achieved with the SP having the fixed parameters listed above
and performing face recognition for different values of training

Fig. 14. Optimal Delta estimation based on recognition accuracy results,
with the SP having fixed circuit parameters of N = 1, M = 4, and P = 4800.

images. It can be observed that as the number of training
images increases, the best recognition accuracy is achieved
±� with a value of less than or equal to ±0.1. Hence, the
optimal delta value was selected as � = ±0.05.

B. End-to-End Evaluations for Applications

1) Face Recognition: The algorithm was tested using two
human face databases: 1) AR and 2) ORL. The AR database
is the largest database having 100 classes of images, meaning
that the faces of 100 different people are taken. There are 26
face images per person with different facial expressions, emo-
tions and occlusions such as light, scarves and eye glasses [25].
The other tested database is the ORL database, which includes
40 classes of images containing ten different images [26]. The
database contains different facial expressions and occlusion
details in addition to rotated faces up to 20 degrees and 10%
scale variations [26]. This enables the evaluation of the impact
of facial angle and scale changes on face recognition accuracy
and on the efficiency of the proposed algorithm. The overall
simulation of the system for performance analysis is carried
out in MATLAB by utilizing the results of circuit level simula-
tions using the SPICE tool. In all our experiments, the dataset
is divided into two distinct sets: 1) training images and 2) test-
ing images. In addition, no overlap is allowed between these
sets.

Fig. 15(a) illustrates the recognition accuracy results for
the AR face database for various ratios of training-to-testing
images, thereby comparing three different architectures. The
first architecture is based only on the conventional HTM SP
presented in [11]. The second architecture is the conventional
HTM SP [11] along with the analog HTM TM presented in this
paper. The third architecture is the proposed modified HTM
SP with the proposed analog HTM TM.

The effectiveness of including the proposed analog TM
can be observed from the more accurate results achieved by
the two architectures utilizing it in contrast to the pure con-
ventional HTM SP architecture. Next, a comparison of the
accuracy results achieved by the modified HTM SP with those
achieved by the two other architectures emphasizes the advan-
tage of changing the decision criterion within the inhibition
region.

Similarly, Fig. 15(b) illustrates the same pattern when the
same circuit parameters are used for face recognition on the
ORL face database for various ratios of training-to-testing
images.

1154 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

(a)

(b)

Fig. 15. Recognition accuracy results achieved using three different archi-
tectures for various ratios of training images to testing images for (a) AR face
database and (b) ORL face database.

TABLE II
RESULTS OF CLASSIFICATION OF THE TEST IMAGES INTO EACH

CATEGORY OF THE AR DATABASE UNDER THE THREE DIFFERENT

ARCHITECTURES USING A SINGLE TEMPLATE OR A CLASS

MAP FOR EACH CLASS, CONSISTING OF 13 TRAINING

IMAGES AND 13 TESTING IMAGES

Table II illustrates the results when classifying test images
of the AR database into one of the four categories under
the three different architectures. The setup divided the AR
database images into 13 training and 13 testing images for
each class. For architectures utilizing the proposed TM, train-
ing images were used to create a single class map, which was
then used to determine the class of the testing images. For
the architecture that is based only on the conventional HTM
SP proposed in [11], the training images are initially averaged
and only then fetched to the SP to produce a single train-
ing template, which was then used to determine the class of
the testing images. This setup is implemented to enable fair
comparison of the three architectures.

It can be observed that the addition of the proposed analog
TM increases the capability of the system to differentiate dif-
ferent categories by almost 7%. Moreover, the change in the
decision criterion within the inhibition region, which is the
replacement of the conventional SP circuitry by the modified
SP circuitry, results in an additional increase in the accuracy
of approximately 4%.

Fig. 16. Impact of image resolution or generally scaling on the classification
accuracy. The 100% image size in x-axis corresponds to 120 × 160 pixels.

Fig. 16 shows the impact of image scaling on the recogni-
tion accuracy using the proposed HTM architecture. It can be
observed that with increase in resolution there is an increase
in the accuracy for the optimal set of parameters.

2) Speech Recognition: The proposed system was also
verified on a speech recognition application. The TIMIT
database [27] was used to estimate the capability of the pro-
posed system to recognize quickly varying temporal patterns.
Although the database consists of a vast number of unique
words, few of them, mostly articles and prepositions, are
repeated enough to perform training of the system. Hence,
only two samples, which are usually used for speaker recog-
nition, are used in this analysis as two separate classes. Two
classes are created by combining instances of the sa1 sample
and instances of the sa2 sample, which are given as

sa1: She had your dark suit in greasy wash water all year.
sa2: Do not ask me to carry an oily rag like that.
Then, the training set is created by combining 50 instances,

and the testing set is created by combining 15 instances of
each class, providing a total of 130 instances to process by
the system.

As the proposed system is constructed to process input data
in the form of an image, speech waveforms are initially pre-
processed using the perceptual linear prediction (PLP) feature
extraction method. Images representing 12th-order PLP fea-
tures of sample waveforms without RASTA filtering were
obtained according to the procedure and codes described
in [28]. As a result, speech samples were converted into
images without significant degradation of temporal details.
These images were then fetched to the proposed system to per-
form a recognition procedure similar to that used to perform
face recognition.

Fig. 17 illustrates the recognition accuracy results for speech
recognition with initial waveforms having either no additive
white Gaussian noise or AWGN with SNR being equal to 20,
10, or 5 dB. It should be noted that because the PLP feature
extraction method produces output images having dimensions
of 420×560 bits, which is much larger than the dimensions of
the AR images, the M parameter was adjusted accordingly to
M = 49 RBs within a single inhibition region. With the intent
to increase the dimensions within which the decision rule of
the Modified SP is performed, this results in an increase in
recognition accuracies and in noise robustness.

KRESTINSKAYA et al.: HTM FEATURES WITH MEMRISTOR LOGIC CIRCUITS FOR PATTERN RECOGNITION 1155

Fig. 17. Speech recognition accuracies obtained under the three different
architectures for various SNRs using the PLP feature extraction method as
preprocessing.

V. DISCUSSION AND COMPARISON

In this paper, we presented the circuit-level design of an
HTM system for pattern recognition that incorporates the
optimized architectures of the HTM SP and HTM TM. The
simulation results on the optimum values of the M and N
parameters for the processing of P blocks for fixed image
dimensions revealed that the highest accuracy is achieved with
the lowest M and N values. Thus, for image processing on
images with dimensions of 120×160, the SP circuit will con-
sist of P = 4800 processing blocks, each having M = 4
columns with N = 1 synaptic connection per column. As a
result, using Table I, the total on-chip area and power con-
sumption for the implementation of the proposed SP circuit
for image processing are 0.096 mm2 and 1756 mW, respec-
tively. Compared to the previous works [11] and [19], one of
the major advantages of the proposed HTM architecture is the
scalability of the design. As the previous implementations of
the HTM SP were based on the crossbar architecture, the sneak
path problem limited the application of HTM to small-scale
tasks. However, the use of memristors and averaging circuits
in the proposed HTM design ensures the scalability of the
architecture and the application of HTM to large-scale prob-
lems. Consideration of the recent publications on the topic of
HTM proves the feasibility of the proposed design.

One of the recent designs of the SP was presented in our
earlier work [11]. The design [11] is based on parallel mem-
ristive crossbar arrays and presents the implementation of the
conventional SP algorithm. In this paper, we demonstrated the
superiority of the modified HTM over the conventional HTM
in terms of achieved recognition and classification accuracy
results. In addition to the improved accuracy results that were
demonstrated in Section V, the proposed design of the SP
circuit offers a reduction in the time required for the process-
ing of an image. This is because the crossbar implementation
requires three cycles for operation. The first two cycles are
related to the write operation of the memristive crossbar. The
two-step write technique is applied to write the high and low
values on the memristive devices, which will represent strong
and weak synaptic connections. The third cycle is referred to
as the read operation, during which the connectedness of the
synapse is checked. In the research work [11], the best sim-
ulation results were demonstrated for a crossbar design that
is based on the 6 × 6 inhibition block. This implies that for
the processing of an input image having 120 × 160 = 19 200
bits, the memristor-crossbar architecture for the SP [11] will

be composed of four parallel crossbar slices each having nine
synapses (nine rows) within each of 533 serial columns. The
sneak path leakage current issue associated with the crossbar
structure does not allow for operations within each of the serial
columns to be performed in parallel. As a result, considering
the switching speed of memristive devices of 10 ns as well as
three cycles for the operation of the proposed architecture, the
minimum time required for the processing of an image will
be 3 cycles×10 ns×533 serialcolumns = 15 990 ns ≈ 16 μs.
In contrast, the design proposed in this paper allows the pro-
cessing to be performed in parallel. The delay in the circuit
is attributed to the memristor switching time of 10 ns and the
amplifier and inverter response times of approximately 2 ns.
Thus, the response time of the circuitry will be significantly
lower.

Another hardware design of an SP was presented by
Streat et al. [29]. The proposed nonvolatile architecture [29]
was implemented in the VHDL and demonstrated a high
level of classification accuracy (91.89%). This design showed
requirements in terms of area footprint of 104.26 mm2 and
power consumption for an 8-channel model of the SP of
64.394 mW. The significant reduction in the on-chip area
requirement for the implementation of the proposed design
can be noticed and is due to the use of nano-scale memristive
devices and 180-nm TSMC CMOS technology. However, the
use of amplifiers introduces a significant portion of the power
dissipation. This problem can be solved by designing a better
circuit for the comparison operation. In addition, the increase
in the number of synaptic connections N will reduce the total
number of amplifiers required for processing and consequently
will reduce the power consumption. However, this might lead
to a reduction in recognition accuracy because, as mentioned
earlier, a large N will reduce the number of regions in which
the decision is made upon the importance of the features.

VI. CONCLUSION

This paper presented several novelties in the area of a
brain-inspired machine learning algorithm known as HTM. We
proposed a simplified algorithm for SP realization based on
averaging operations as well as its possible implementation as
the memristor-CMOS circuit. In addition, we reconsidered the
concepts of TM and demonstrated an analog memristive mem-
ory array for its hardware implementation. We discussed both
algorithms and circuit implementations in detail and demon-
strated the accuracy and efficiency of the proposed methods
for face and speech recognition applications. We achieved an
average accuracy of 87.21% for face recognition and 92%
for speech recognition. To process images with dimensions of
120×160, the calculated area and power requirements for the
proposed HTM SP design implementation are 0.096 mm2 and
1756 mW, respectively. The proposed HTM TM circuit design
for a single pixel requires 23.85 μm2 of area and 0.442 mW
of power.

ACKNOWLEDGMENT

The support of I. Fedorova and A. Irmanova in the prelimi-
nary review of the literature and cross-verification of memory
cell is acknowledged.

1156 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

REFERENCES

[1] D. George and J. Hawkins, “A hierarchical Bayesian model of invariant
pattern recognition in the visual cortex,” in Proc. IEEE Int. Joint Conf.
Neural Netw. (IJCNN), vol. 3. Montreal, QC, Canada, Jul./Aug. 2005,
pp. 1812–1817.

[2] “Hierarchical temporal memory including HTM cortical learning
algorithms,” Numenta, Inc., Redwood City, CA, USA, Tech. Rep.
VERSION 0.2.1, 2006.

[3] O. Krestinskaya and A. P. James, “Bioinspired memory model for HTM
face recognition,” in Proc. Int. Conf. Adv. Comput. Commun. Informat.
(ICACCI), Jaipur, India, Sep. 2016, pp. 1528–1532.

[4] N. Farahmand, M. H. Dezfoulian, H. GhiasiRad, A. Mokhtari, and
A. Nouri, “Online temporal pattern learning,” in Proc. Int. Joint Conf.
Neural Netw., Atlanta, GA, USA, Jun. 2009, pp. 797–802.

[5] A. B. Csapo, P. Baranyi, and D. Tikk, “Object categorization using VFA-
generated nodemaps and hierarchical temporal memories,” in Proc. IEEE
Int. Conf. Comput. Cybern. (ICCC), Gammarth, Tunisia, Oct. 2007,
pp. 257–262.

[6] I. Ramli and C. Ortega-Sanchez, “Pattern recognition using hierarchical
concatenation,” in Proc. Int. Conf. Comput. Control Inf. Appl. (IC3INA),
Bandung, Indonesia, Oct. 2015, pp. 109–113.

[7] W. J. C. Melis, S. Chizuwa, and M. Kameyama, “Evaluation of the
hierarchical temporal memory as soft computing platform and its VLSI
architecture,” in Proc. 39th Int. Symp. Multiple Valued Logic, Naha,
Japan, May 2009, pp. 233–238.

[8] L. Rodriguez-Cobo, P. B. Garcia-Allende, A. Cobo,
J. M. Lopez-Higuera, and O. M. Conde, “Raw material classifi-
cation by means of hyperspectral imaging and hierarchical temporal
memories,” IEEE Sensors J., vol. 12, no. 9, pp. 2767–2775, Sep. 2012.

[9] X. Chen, W. Wang, and W. Li, “An overview of hierarchical tempo-
ral memory: A new neocortex algorithm,” in Proc. Int. Conf. Model.
Identification Control, Wuhan, China, Jun. 2012, pp. 1004–1010.

[10] A. M. Zyarah and D. Kudithipudi, “Reconfigurable hardware archi-
tecture of the spatial Pooler for hierarchical temporal memory,” in
Proc. 28th IEEE Int. Syst. Chip Conf. (SOCC), Beijing, China,
Sep. 2015, pp. 143–153.

[11] A. P. James, I. Fedorova, T. Ibrayev, and D. Kudithipudi, “HTM spatial
Pooler with memristor crossbar circuits for sparse biometric recogni-
tion,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 3, pp. 640–651,
Jun. 2017.

[12] E. C. Gangl, “Evolution from analog to digital integration in aircraft
avionics—A time of transition,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 42, no. 3, pp. 1163–1170, Jul. 2006.

[13] J. Hawkins and S. Blakeslee, On Intelligence. New York, NY, USA:
St. Martin’s Griffin, 2004, pp. 156–158.

[14] Y. Cui, S. Ahmad, and J. Hawkins, “The HTM spatial Pooler: A neo-
cortical algorithm for online sparse distributed coding,” bioRxiv, 2017,
Art. no. 085035.

[15] Y. Cui, S. Ahmad, and J. Hawkins, “Continuous online sequence learn-
ing with an unsupervised neural network model,” Neural Comput.,
vol. 28, no. 11, pp. 2474–2504, 2016.

[16] D. George and J. Hawkins, “Hierarchical temporal memory: Concepts,
theory and terminology,” Numenta, Inc., Redwood City, CA, USA, Tech.
Rep., 2006.

[17] M. Deshpande, “FPGA implementation and acceleration of building
blocks for biologically inspired computational models,” M.S. thesis,
Dept. Elect. Comput. Eng., Portland State Univ., Portland, OR, USA,
2011.

[18] T. Ibrayev, A. P. James, C. Merkel, and D. Kudithipudi, “A design of
HTM spatial Pooler for face recognition using memristor-CMOS hybrid
circuits,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Montreal, QC,
Canada, May 2016, pp. 1254–1257.

[19] D. Fan, M. Sharad, A. Sengupta, and K. Roy, “Hierarchical temporal
memory based on spin-neurons and resistive memory for energy-efficient
brain-inspired computing,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 9, pp. 1907–1919, Sep. 2016.

[20] A. M. Zyarah, “Design and analysis of a reconfigurable hierarchical
temporal memory architecture,” M.S. thesis, Rochester Inst. Technol.,
Rochester, NY, USA, 2015.

[21] D. Biolek, Z. Kolka, V. Biolkova, and Z. Biolek, “Memristor mod-
els for SPICE simulation of extremely large memristive networks,” in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Montreal, QC, Canada,
May 2016, pp. 389–392.

[22] M. D. Pickett et al., “Switching dynamics in titanium dioxide memristive
devices,” J. Appl. Phys., vol. 106, no. 7, 2009, Art. no. 074508.

[23] H. Sato and S. Takagi, “Low-voltage amplifier with improved linear-
ity using triode region MOSFET,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), Lisbon, Portugal, May 2015, pp. 2469–2472.

[24] A. K. Maan, D. A. Jayadevi, and A. P. James, “A survey of memristive
threshold logic circuits,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28,
no. 8, pp. 1734–1746, Aug. 2017.

[25] A. Martınez and R. Benavente, “The ar face database,” Centre de Visió
per Computador, Universitat Autònoma de Barcelona, Bellaterra, Spain,
Tech. Rep. 24, 1998.

[26] R. Ahdid, S. Safi, and B. Manaut, “Approach of facial surfaces by con-
tour,” in Proc. Int. Conf. Multimedia Comput. Syst. (ICMCS), Marrakesh,
Morocco, Apr. 2014, pp. 465–468.

[27] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett,
“DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM.
NIST speech disc 1-1.1,” NASA, Washington, DC, USA, NASA
STI/Recon Tech. Rep. 93, 1993.

[28] D. P. W. Ellis. (2005). PLP and RASTA (and MFCC, and Inversion)
in MATLAB. [Online]. Available: http://www.ee.columbia.edu/∼dpwe/
resources/matlab/rastamat/

[29] L. Streat, D. Kudithipudi, and K. Gomez, “Non-volatile hierarchi-
cal temporal memory: Hardware for spatial pooling,” arXiv preprint
arXiv:1611.02792, 2016.

Olga Krestinskaya (GS’16) received the Bachelor
of Engineering (with Hons.) degree in electrical
engineering with a focus on bio-inspired memory
arrays in 2016. She is currently pursuing the grad-
uation degree in neuromorphic memristive system
with Electrical Engineering Department, Nazarbayev
University, Astana, Kazakhstan.

Her current research interests include hierar-
chical temporal memory and pattern recognition
algorithms.

Timur Ibrayev (S’16) received the Bachelor of
Engineering (with Hons.) degree in electrical engi-
neering with a focus on HTM circuits in 2017. He
is currently pursuing the Ph.D. degree with Purdue
University, West Lafayette, IN, USA.

His current research interests include memristive
HTM circuits and systems for neuromorphic vision,
pattern recognition system, and pattern recognition
circuits using HTM.

Dr. Ibrayev was a recipient of the Travel Grant
for presenting a paper in ISCAS 2016.

Alex Pappachen James (SM’13) received the Ph.D.
degree from the Griffith School of Engineering,
Griffith University, Nathan, QLD, Australia.

He is currently the Chair of Electrical
Engineering Department, Nazarbayev University,
Astana, Kazakhstan. His current research interests
include brain-inspired circuits, memristor circuits,
algorithms and systems. He has a sustained expe-
rience of managing industry and academic projects
in board design, very large scale integration and
pattern recognition algorithms, and semiconductor

industry.
Dr. James is an Associate Editor of Human-Centric Computing and

Information Sciences, IEEE ACCESS, IEEE TRANSACTIONS ON EMERGING

TOPICS IN COMPUTATIONAL INTELLIGENCE (special issue), and IET
Cyber-Physical Systems: Theory and Applications (special issue). He is
the Chair of IEEE Kazakhstan section. He is a Senior Fellow of Higher
Education Academy, U.K.

http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/
http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

