
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018 629

How Preserving Circuit Design Hierarchy During
FPGA Packing Leads to Better Performance

Dries Vercruyce, Graduate Student Member, IEEE, Elias Vansteenkiste, Graduate Student Member, IEEE,
and Dirk Stroobandt, Member, IEEE

Abstract—Generating a configuration for a field-
programmable gate array (FPGA) starting from a high
level description of a design is a time consuming task. The
resulting configuration should have a high quality so that
the FPGA resources are used in an efficient way while being
able to run at high clock frequencies and having a low power
consumption. In this paper, we present MULTIPART, a new
hierarchical packing algorithm that obtains better quality
and faster runtimes when compared to the frequently used
AAPack packer in VPR. MULTIPART combines the benefits of
partitioning-based and seed-based packing approaches. It tries
to preserve the design hierarchy during packing. This results in
a gain of 32% in total wirelength and a gain of 10% in critical
path delay. The partitioning-based methodology allows us to
exploit multithreading, leading to 9.3× faster packing runtimes
on a CPU with 10 cores. We also gain in the total routing runtime
because MULTIPART reduces congestion problems on a higher
level. The subcircuits in the partitioned circuit are clustered
with a seed-based packer. This allows MULTIPART to deal with
the constraints of complex heterogeneous architectures. In short,
MULTIPART targets heterogeneous commercial FPGAs with a
lower runtime while increasing the quality of the configuration.
The source code of MULTIPART is available in our FPGA CAD
framework on Github.

Index Terms—Design hierarchy, field-programmable gate
array (FPGA), packing, partitioning.

I. INTRODUCTION

GENERATING a configuration for an field-programmable
gate array (FPGA) takes a lot of runtime, especially, for

large designs that are common in commercial applications [1].
This configuration should have a high quality in terms of
the three important metrics: 1) cost; 2) speed performance;
and 3) power consumption. The required amount of FPGA
resources determines the cost of the design. The maximum
clock frequency is an indicator of the speed performance.
Each of these quality requirements makes it difficult and hence

Manuscript received December 23, 2016; revised March 30, 2017; accepted
May 16, 2017. Date of publication June 20, 2017; date of current version
February 16, 2018. This work was supported by the European Commission in
the Context of the H2020-FETHPC EXTRA Project under Grant 671653.
The work of D. Vercruyce was supported by the Ph.D. Grant of the
Research Foundation Flanders (FWO). A portion of this work was pub-
lished in the 26th International Conference on Field Programmable Logic
and Applications (FPL), 2016. This paper was recommended by Associate
Editor Y. Chen. (Corresponding author: Dries Vercruyce.)

The authors are with Ghent University, 9000 Ghent, Belgium
(e-mail: dries.vercruyce@ugent.be; elias.vansteenkiste@ugent.be;
dirk.stroobandt@ugent.be).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2717786

time-consuming to find a configuration with good quality.
Several techniques are proposed in the literature to improve
the runtime of the FPGA CAD flow without degrading the
quality of results. Most of them rely on multithreaded imple-
mentations. They leverage the multicore processors that have
become a commodity in the last decade [2], [3].

Modern FPGA architectures have a hierarchical structure
to improve area and delay [4]. On each hierarchical level a
number of equivalent blocks are available. The blocks are con-
nected by a local programmable interconnection network on
that level. The routing pathways on the lowest hierarchical
level are short, and hence fast, while the top level routing
infrastructure is slower. Due to this hierarchical structure a
packing step is introduced in the FPGA CAD tool flow. During
packing, all the low level primitives in the circuit are clus-
tered into the high level functional block types available in the
FPGA architecture. These clusters are then placed and routed
on the highest hierarchical level.

Several optimization criteria are used during packing such
as minimum channel width (MCW), total wirelength (TWL),
area, critical path delay (CPD), and power consumption. They
are evaluated after the design is routed. The MCW is the
maximum number of tracks in a channel needed to route the
design. Finding this value takes a lot of runtime because many
routing iterations are required, each time with a smaller chan-
nel width (CW) until congestion problems prevent a routable
solution. The MCW of a design is closely related to the
TWL [20], [21], [23]. Therefore, TWL is a good measure for
the number of required routing resources. It is also closely
related to the power consumption. The area is mainly deter-
mined by the number of high level clusters in the packing
solution. However, if a design is too tightly packed, it can
lead to congestion problems [1]. Congestion prone designs
require extra wire tracks in the routing channels. This leads to
more area and metal layers and may force the FPGA designer
to move toward a larger more expensive chip. Connections at
the lower hierarchical levels are short and have a lower capac-
itance, which makes them faster. Consequently, the CPD can
be minimized by using these fast connections for the critical
connections in the design. They should also be favored for
connections with a high switching activity if reducing power
consumption is an objective. Packing can greatly influence the
end result of the entire tool flow. If the fast interconnection
network on the low hierarchical levels is used efficiently, gains
in TWL, CPD, and power consumption are obtained in the
routed design.

0278-0070 c© 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:dries.vercruyce@ugent.be
mailto:elias.vansteenkiste@ugent.be
mailto:dirk.stroobandt@ugent.be
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

630 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

In this paper, we propose a fast multithreaded packing
algorithm, MULTIPART, that improves the quality of the
routed design by preserving the design hierarchy during
packing. MULTIPART reduces the TWL with 32% and the
CPD with 10% when compared to the conventional seed-
based packing (SBP) approach in VPR for the heterogeneous
benchmark designs in the Titan23 design suite targeted to
Altera’s Stratix IV FPGA [1]. This is an important result
because it closes a major part of the gap between commer-
cial and academic results in terms of TWL. Murray et al. [1]
reported a TWL gap of 2.19× comparing VPR with Altera
Quartus II. In this paper, we use the same architecture, bench-
mark designs, placement and routing algorithms as in the work
of Murray et al., only the packing algorithm is replaced with
MULTIPART. The achieved wirelength gain greatly reduces
the gap between academic and commercial results by just
replacing the packing algorithm. An additional advantage of
partitioning-based packers is the opportunity to implement a
multithreaded version of the algorithm as the partitioned parts
can be treated independently. Our implementation has an aver-
age runtime speedup factor of 9.3× on a CPU with 10 cores
when compared to AAPack.

The remainder of this paper is organized as follows. In
Section II, background concepts are explained. A global
overview and contributions are given in Section III. The prin-
ciples and improvements to the partitioning and SBP step are
described in more detail in Sections IV–VI. In Section VII,
the additional functionality in the timing-driven version of
MULTIPART is explained. Experiments are described in
Section VIII and this paper concludes with future work and a
conclusion in Section IX.

II. RELATED WORK

Existing packing approaches can be divided into three main
classes: 1) seed-based; 2) depth-optimal; and 3) partitioning-
based packers. Seed-based packers are fast because they pack
the circuit in a single pass. They produce tight packings but
are unable to escape from local minima because they use a
bottom-up approach and lack a global overview. For each
new functional block a seed block is selected with a cer-
tain optimization criterium in mind. Then an affinity metric
between the seed block and its surrounding blocks is calcu-
lated. The block that scores the highest on this affinity metric
is packed into the cluster. This is repeated until the clus-
ter is full. Several cost functions for the affinity metric are
proposed to improve the quality for a specific optimization
criterium. A well-known seed-based packer is T-VPack [5].
Its latest version AAPack [6] is used in the VTR tool
flow [7]. This packer is used as a baseline in our experiments.
The main objective of this packer is minimizing the CPD.
A routability driven affinity metric is proposed in iRAC [8]
and T-RPack [9]. Un/DoPack [10] and T-NDPack [11] try
to increase routability with depopulation-based clustering
methods. These packers resolve congestion problems in the
routing network by preventing that functional blocks are
completely filled. The total area of the functional blocks is
thereby increased because the functional logic is spread across

the FPGA. P-T-VPack [12] and W-P-T-VPack [13] incorpo-
rate switching activities of the nets in the affinity metric.
This reduces power consumption at the cost of an increased
MCW and CPD. The multiobjective packers MO-Pack [14]
and YAMO-Pack [15] incorporate several criteria in the affinity
metric to obtain good quality for all optimization criteria.

Due to synchronization problems, it is hard to apply
multithreading to the seed-based approach. Each thread would
have its own seed. Picking blocks from the neighborhood of
that seed could conflict with the neighborhood of the seed
from other threads that run concurrently. To our knowledge,
no multithreaded seed-based packer is proposed yet.

Depth-optimal methods are proposed in TLC [16],
RCP [17], and MLC [18]. These packers try to optimize the
critical path by duplicating timing-critical netlist primitives.
Although these methods reduce the CPD, they lead to an
increase in total area.

In partitioning-based packers [19]–[23] the clusters are
determined by performing a hierarchical partitioning of the
circuit. Hierarchical partitioning is a top down-approach. First
the circuit is bipartitioned. The partitioning algorithm min-
imizes the number of connections cut while splitting the
circuit in two. The two parts of the circuit are then fur-
ther bipartitioned independently. The resulting parts are again
bipartitioned and this repeats itself recursively until the parts
contain less primitives than a predefined limit.

Fully partitioning-based packers are proposed in
Marrakchi et al. [19], PPack [20], and PPack2 [21].
These partitioning-based methods obtain good quality results
but still have some fundamental problems that we solved in
our packing approach. The first problem is that it is hard to
impose constraints during partitioning. It is not possible to
restrict the number of pins on each subcircuit, while functional
blocks on physical chips have a limited number of input
pins. Partitioning tends to minimize this number, but there
is no guarantee that every subcircuit will have less than the
allowable number of pins. Furthermore, it is hard to control
the number of blocks in each subcircuit. It is likely that there
are too many or too few blocks in a subcircuit compared to
the number of available positions in a functional block. Due to
these problems a constraints enforcing post processing step is
required. This results into a loss of quality because the natural
hierarchy of the circuit is disturbed. In Marrakchi et al. [19]
blocks are swapped between the clusters until all constraints
are met. In PPack and PPack2, a theoretical architecture
without an input bandwidth constraint for the functional
blocks is used. This is far removed from the commercial
FPGA devices. Even with this unrealistic architecture it is
required to swap blocks between the clusters because a limited
number of blocks can be packed into a functional block.

Another problem for partitioning-based packers is the large
packing runtimes because many subcircuits have to be parti-
tioned. Each time a subcircuit on a certain hierarchy level is cut
in half, it leads to two new subcircuits on the next hierarchical
level. In total the number of required cuts to fully partition a
circuit is approximately equal to the number of blocks in that
circuit. In PPack2, a runtime overhead of 10× is reported for
the MCNC-20 benchmark circuits when compared to VPR4.3.

VERCRUYCE et al.: HOW PRESERVING CIRCUIT DESIGN HIERARCHY DURING FPGA PACKING LEADS TO BETTER PERFORMANCE 631

Luckily, partitioning-based packing offers an opportunity for
multithreaded parallelism. Once a subcircuit is split in half,
the two resulting subcircuits can be partitioned concurrently
by spawning a separate thread for each subcircuit.

HDPack [22] and PartSA [23] solve the fundamental prob-
lems while preserving the reduction in TWL. HDPack uses a
seed-based clustering method but incorporates physical infor-
mation from a global placement in the affinity metric. This
global placement is obtained by partitioning the circuit to a
certain hierarchical level. All blocks in the subcircuits on this
level have a physical location on the architecture assigned. The
physical information leads to a gain of 16% in TWL and a gain
of 8% in CPD when compared to T-VPack for the MCNC-20
benchmark designs. However, these gains come at the cost
of additional runtime to partition the circuit. PartSA proposes
a fully partitioning-based packer with a simulated annealing-
based clustering step instead of the constraints enforcing post
processing step. It uses the distance in the partition tree as
a cost metric in the annealing method. This way it is possi-
ble to impose a bandwidth constraint on each functional block
by adding an additional cost, relative to the number of input
pins. The problem with the size of the subcircuits is solved
because the annealing-based packer fills all clusters until no
more empty positions are left. This packer achieves a gain
of 26% in TWL when compared to AAPack. As it is pos-
sible to use multithreading, up to 2.3× faster runtimes are
obtained for the largest VTR benchmark circuits on a CPU
with four cores. A problem occurs when complex architec-
tures with sparse local interconnect crossbars are used. Each
time two blocks are swapped, a detailed routing would be
required to check if a legal solution is obtained because not
all connections are possible in the sparse local interconnection
network. This results in large runtimes because many swaps
are required in the simulated annealing algorithm to obtain a
result with a low wiring cost and it takes too much time to
perform a detailed routing every time.

III. CONTRIBUTIONS

In this paper, we further elaborate on a preliminary version
of MULTIPART [23]. MULTIPART combines the advantages of
partitioning-based and SBP in one algorithm. It consists of two
main parts (Fig. 1): 1) a partitioning step to partition the circuit
hierarchically into a set of subcircuits and 2) an SBP step that
clusters all these subcircuits concurrently. This approach has
a number of advantages over classical packing methods.

1) A large reduction in TWL is achieved because the natu-
ral hierarchy of the circuit is retained in the partitioning
step.

2) No partitioning is required on the deep hierarchical lev-
els which saves runtime. When a certain hierarchy level
is reached, the fast SBP approach is used to cluster the
subcircuits concurrently. A multithreaded implementa-
tion can be used because the subcircuits are weakly
interconnected.

3) Heterogeneous designs can be packed on commercial
architectures with sparse local interconnect crossbars.
The required detailed routing is taken care of by the
seed-based packer.

Fig. 1. Overview of the MULTIPART algorithm. The tool consists of two
steps: a partitioning step to split the circuit into a set of subcircuits and an
SBP step to cluster these subcircuits concurrently.

To allow a hierarchical packing of heterogeneous designs
we extend the functionality of the partitioning and SBP step
in the preliminary version of MULTIPART. The main contri-
bution in the partitioning step is a hard block swap. The swap
redistributes the hard block primitives between both subcir-
cuits after each cut (Fig. 1). This way the available hard block
types in the architecture are used efficiently while maximally
preserving the natural hierarchy in the circuit. A prepartition-
ing step is added to improve packing quality. We apply a global
hard block assignment to ensure that the memory hard block
types (M9K and M144K) are used efficiently. Furthermore,
specific netlist primitives are clustered into molecules prior to
the partitioning step to prevent that they are scattered over
the subcircuits, similar to the prepacking step in AAPack [6].
We also generate a design specific architecture to reduce the
SBP runtime overhead. The design specific architecture file
only contains the modes used in the design. Timing-driven
MULTIPART now focusses on critical edges instead of critical
paths, leading to a larger gain in CPD.

The new functionality allows us to cluster large heteroge-
neous designs. We use large designs to analyze the oppor-
tunities of MULTIPART on commercial applications. Most
academic packers are evaluated with small nonheterogeneous
designs. In the experiments section of this paper, we ana-
lyze the scalability of our tool with increasing design size
and increasing number of available threads.

Next to the additional functionality, we also explored the
parameter space using HPC. Long placement and routing run-
times are required to generate a configuration for the large
designs in the Titan23 suite. Therefore, this exploration would
not be possible on commodity hardware. In this paper, we
propose a parameter combination for the best runtime-quality
tradeoff. With the presented results, other parameters can be
chosen if MULTIPART is used for high quality or fast pack-
ing purposes. In the parameter sweeps, we use the 13 smallest
Titan23 designs in order to keep the total packing, placement,

632 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

and routing runtime acceptable. In the experiments section,
MULTIPART is analyzed with all routable Titan23 designs.

Our main contributions are as follows.
1) MULTIPART: A multithreaded partitioning-based pack-

ing tool that is able to generate high quality configura-
tions in less runtime (based on [23]).

2) An enhanced version of the partitioning and SBP step to
allow the clustering of large and highly heterogeneous
designs.

3) A better parameter exploration of MULTIPART and an
extraction of the best parameter values for the runtime-
quality tradeoff.

4) A scalability analysis of our multithreaded approach in
function of the number of available threads and the size
of the designs.

IV. HIERARCHICAL CIRCUIT BIPARTITIONING

Digital designs are built up hierarchically to cope with the
increasing vastness and complexity of applications. The appli-
cation is divided into several subproblems, which are in turn
divided into smaller subproblems. Typically, the complexity
within these subproblems is high while there are a small num-
ber of connections between them. This hierarchical structure
is exploited in our partitioning-based packing tool to reduce
the total required wirelength in the routed design.

In the partitioning phase, the circuit is split hierarchically
into a set of weakly interconnected subcircuits. MULTIPART

recursively bipartitions the circuit while minimizing the num-
ber of connections to be cut. This way an optimal Rent
characteristic [24] is obtained and the natural hierarchy of the
circuit is preserved [21]. Rent’s rule states that the relation
between the number of terminals, nt (cut nets), and the num-
ber of internal blocks, nb, will be a power law (1) on each
hierarchical level of a recursively bipartitioned circuit in case
the circuit is hierarchically partitioned while minimizing the
number of cut nets. Rent’s rule emerges because of the natu-
ral hierarchy present in the circuit, which is introduced by the
human hardware designers

nt = t ∗ (nb)
rent_exponent. (1)

Hierarchical circuit bipartitioning works as follows. First,
the circuit is split into two parts. The amount of cut edges
is minimized and the difference in size between the parts is
limited by an unbalance factor. This leads to two subcircuits
on the first hierarchy level of the partition tree. Then the two
resulting subcircuits are further bipartitioned leading to four
subcircuits on the next hierarchy level. The number of hier-
archy levels is approximately equal to log2(N), with N the
number of blocks in the circuit.

V. CLUSTERING THE SUBCIRCUITS CONCURRENTLY

WITH THE SEED-BASED PACKER

In the second phase, we cluster all subcircuits that result
from the partitioning phase with a seed-based packer. We
use the seed-based packer AAPack 7.0 [6] because it is
able to cluster highly heterogeneous designs on complex
architectures. The result of the partitioning step is a set

Fig. 2. Result of the partitioning step: the circuit is split into a set of
weakly interconnected subcircuits. All edges that interconnect two subcircuits
are replaced by an input/output pin combination.

of weakly interconnected subcircuits (Fig. 2). Due to the
low interconnection complexity between the subcircuits they
can be treated independently by the seed-based packer. This
leads to the opportunity to cluster all independent subcircuits
concurrently on a separate thread without a synchronization
overhead between the threads. Prior to SBP all edges that
interconnect two subcircuits are replaced by an input/output
pin combination (Fig. 2). After the independent clustering all
the packed blocks have to be merged into a single netlist. The
methodology has a number of drawbacks though.

1) Resource Quantization: The resources in the FPGA
architecture (functional blocks) can not be shared
between the subcircuits because they are all packed
independently.

2) Difficult Selection of RAM Types: As all subcircuits are
packed concurrently, no information is available on the
FPGA resources used by the other subcircuits. This leads
to a problem for RAM primitives because they can be
packed into multiple RAM block types.

3) Runtime Overhead: Each subcircuit is packed with
AAPack on a separate thread. Launching an AAPack
thread introduces a runtime overhead. Initializing the
structure of the complex architecture causes the largest
overhead.

4) Lack of Correct Timing Analysis: All combinational
paths that span over more than one subcircuit are
cut. Consequently, the seed-based packer lacks correct
timing information for these cut paths.

To mitigate the first three drawbacks, functionality is added
before partitioning (prepartitioning step) and during partition-
ing (hard block swap). First we discuss the prepartitioning
step, then the hard block swap is explained. In the timing-
driven section (Section VII), we explain how the timing
problem is solved.

A. Prepartitioning

Prepartitioning consists of two steps. In the global hard
block assignment an RAM type is assigned to all RAM prim-
itives in the design. Then we cluster netlist primitives into
molecules to prevent that they are scattered over the subcir-
cuits during partitioning. This way we reduce the resource
quantization problem. Further improvement to this problem is

VERCRUYCE et al.: HOW PRESERVING CIRCUIT DESIGN HIERARCHY DURING FPGA PACKING LEADS TO BETTER PERFORMANCE 633

achieved in the hard block swap. Besides this, we also generate
a design specific architecture to solve the runtime overhead
problem.

1) Global Hard Block Assignment: Commercial architec-
tures provide multiple hard block types for some of the hard
block primitives in a design. In the Stratix IV architecture
two RAM block types are available: 1) 9-Kbit M9K blocks
and 2) 144-Kbit M144K blocks. AAPack uses the follow-
ing policy for the RAM blocks: if a memory slice can be
packed into an M9K block then this block should be used. If
the memory slice is not supported by the M9K blocks or no
more M9K blocks are available then the primitive is packed
into an M144K block. As MULTIPART clusters all subcircuits
independently, no information is available about the M9K and
M144K usage by the other subcircuits. Consequently it is not
possible to know if free M9K blocks are available. To solve
this problem, an RAM block type is assigned to all memory
slices before partitioning because then a global overview of
the design is available. The following methodology is used:
first all slices get the best suitable RAM block type assigned.
An M9K block is preferred over an M144K block because
it consumes less area and there are more available positions
on the chip. Then the RAM block usage is analyzed. If too
many M9K blocks are required then slices that are currently
assigned to an M9K block are changed to M144K until enough
M9K blocks are available. Hereby, we use the RAM blocks
efficiently by minimizing the sum of the required M9K and
M144K blocks.

2) Molecule Generation: In the molecule generation step,
groups of netlist primitives which should stay together dur-
ing partitioning are clustered into molecules. This step is
adopted from the prepacking step in AAPack [6]. We generate
molecules for primitives that are part of a chain and DSP and
RAM primitives. Many carry and share chains are part of a
long combinational path in the circuit, leading to a large path
delay in the routed design. Modern architectures have short
and hence fast dedicated connections built-in for these chains.
If a connection is cut during partitioning, then this connection
is routed with the slow interconnection network. For this rea-
son connections between blocks that are part of a chain should
remain uncut. To avoid that such connections are cut, we gen-
erate molecule blocks that contain all atom blocks in a chain.
For some of the DSP and RAM block primitives we know
that they should be clustered into the same hard block prior
to the partitioning phase. Each DSP element in modern archi-
tectures consists a few multiplier primitives connected to an
accumulator. The multiplier and accumulator primitives should
be packed into the same DSP block. Similarly, if a set of RAM
primitives with the same address and control signals can be
packed in a single RAM block, then the primitives should be
clustered before partitioning.

3) Design Specific Architecture Generation: When AAPack
is launched, it builds the structure of the architecture in the
memory. Modern architectures lead to a large initialization
overhead because they consist of many different functional
block types which support multiple operation modes. This
large overhead nullifies the runtime speed-up obtained with
the multithreaded SBP approach because each subcircuit is

(a) (b)

Fig. 3. Influence of hard block redistribution in the partitioning step on the
total number of required hard blocks. (a) Without hard block swap. (b) With
hard block swap.

clustered on a separate thread with AAPack. To enable fast
packing on complex architectures, we automatically gener-
ate a design specific architecture in which only the required
functional blocks and modes are described. This architecture
does not only diminish the initialization overhead, it also
reduces the total SBP runtime because all redundant modes
are removed from the architecture.

B. Hard Block Swap

The hard blocks in an FPGA architecture are typically able
to implement a number of netlist primitives [25]. All memory
slices that share the same address and control signals can be
packed together into the same RAM block as long as the depth
of the block is large enough. Similarly, a DSP block is able
to implement two DSP molecules. The hard blocks can not be
shared between the subcircuits because they are clustered inde-
pendently. If a set of M memory slices with the same address
and control signals are scattered over all the subcircuits then
each subcircuit requires at least one RAM block to imple-
ment the slices. In the worst case, this leads to M required
RAM blocks. To address the problem we add a hard block
swap during recursive bipartitioning. The aim is to redistribute
the hard block primitives between both partitions after each
cut. An example is shown in Fig. 3 for eight memory slices
that share the same address and control signals. Consider an
architecture in which the RAM blocks are able to implement
three of these slices. The minimum number of RAM blocks
to implement these slices is thus equal to three. When no hard
block swap is used during partitioning, five RAM blocks are
required [Fig. 3(a)]. The first subcircuit requires two blocks,
while the others require one. When hard block redistribution
is added, memory slices are swapped between both parts after
each cut if this reduces the total number of required RAM
blocks [Fig. 3(b)]. In this case, only three blocks are required
to pack all slices.

The difference with the molecule generation step is that the
netlist primitives in this step are clustered to a molecule prior
to partitioning. We do this because there is little or no choice
for the blocks we cluster. These blocks have to be packed into
the same functional block. During partitioning, we add a hard
block swap because there are many candidate primitives that
fit into a few hard blocks. Choosing a hard block instance for

634 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

each of these primitives before partitioning could disturb the
natural hierarchy of the circuit. The decision can not be based
on the hierarchy that is only obtained during partitioning.

The algorithm is defined as follows. Before partitioning we
group all hard block slices that can be implemented by the
same hard block type. Let us assume that one of these groups
consists of P hard block primitives and that each hard block
of this type can implement N slices. In total, we thus require
H = �(P/N)� hard blocks of this type. When a circuit is
partitioned in two parts, C1 and C2, the parts have PC1 and
PC2 hard block slices, respectively. Hereby, the sum of PC1

and PC2 is equal to P. Now a total of H1 + H2 hard blocks
are required, with H1 equal to �(PC1/N)� and H2 equal to
�(PC2/N)�. If H1 + H2 is larger than the original number of
required hard blocks (H), then a hard block swap is introduced
after partitioning. The aim is to redistribute the hard block
primitives in such a way that H1+H2 = H. In this swap blocks
are moved from C1 to C2 or from C2 to C1. The direction in
which primitives are moved is determined by calculating the
number of moves M12 and M21 that are required to ensure
that H = H1 + H2 when blocks are moved in the C1→2 and
C2→1 direction, respectively. The best direction is determined
by the minimum of M12 and M21. Once the direction is known,
we move blocks between the subcircuits until H = H1 + H2.
Hereby, the moved blocks are chosen in such a way that the
total number of cut edges is minimized. Each time a block is
moved, the minimum cut increase is chosen by comparing all
possible moves. This way, the design hierarchy is maximally
preserved.

Once the number of hard block primitives in a subcircuit
is smaller than the number of available positions in a hard
block instance then all these primitives should be packed into
a single hard block. In this case, the primitives are clustered
into a molecule to prevent that they are further partitioned.

C. Resource Quantization of the LABs

Each time a subcircuit is split into two parts, connections
between LUTs and FFs are cut. If an edge between two prim-
itives that can be packed into the same LAB is cut then the
number of LABs increases. The primitives are now located
in different subcircuits which are packed independently, each
with its own resources. In the experiments section, we observe
that this problem leads to a small area increase for some of
the designs. A possible solution is assigning a larger weight
to connections between LUTs and FFs that should be packed
into the same LAB. Unfortunately, this solution leads to a
loss in quality because imposing additional constraints on the
cut connections disturbs the natural hierarchy of the design.
An example is an LUT-FF pair with a single connection
between them. Other examples are LUT-LUT connections in
long combinational paths and LUT/FF connections with a high
criticality.

VI. RUNTIME-QUALITY TRADEOFF

IN RECURSIVE BIPARTITIONING

The problem of computing an optimal partition is
NP-complete. However, because many application areas

Fig. 4. Multilevel partitioning algorithm that is used in the hMetis partitioning
tool. The algorithm consists of three phases: a coarsening phase, an initial
partitioning phase, and an uncoarsening and refinement phase.

benefit from partitioning-based approaches, many heuristic
algorithms have been developed. In the hMetis tool [26] a
multilevel partitioning technique is used (Fig. 4). This tech-
nique consists of three phases: a coarsening phase, an initial
partitioning phase, and an uncoarsening and refinement phase.
In the coarsening phase, vertices and edges are collapsed to
reduce the size of the graph. Then this smaller graph is cut
in the initial partitioning phase. The uncoarsening and refine-
ment phase constructs a partition of the original graph. hMetis
is used in the partitioning step because it is fast and able to
generate bipartitions with high quality.

A. Multithreaded Runtime Speed-Up

Besides the fact that partitioning is an NP-complete
problem, the partitioning step also introduces a runtime over-
head. In a purely SBP approach the circuit is immediately
clustered. In our approach, we first partition the circuit into a
set of weakly interconnected subcircuits which are then clus-
tered independently with a seed-based packer. To speed up the
partitioning step we use a multithreaded implementation. Once
a circuit is split in half then both subcircuits can be further
bipartitioned independently on two separate threads. The max-
imum number of threads is parameterized and is best adapted
to the number of cores on the used CPU.

B. Optimizing the hMetis Parameters

Several parameter values are used to optimize the function-
ality of the hMetis partitioning tool [27].

1) The values of CType, RType, and Vcycle select different
algorithms in the multilevel partitioning technique.

2) hMetis computes Nruns different bisections and selects
the best as the final solution.

3) The maximum unbalance in the number of blocks
between both parts of the partition is determined by an
unbalance factor (UB).

The value of the parameters is important because they
determine the quality of the cut and the total required par-
titioning runtime. They should be optimized to the problem at
hand because each application has a different type of graphs.

VERCRUYCE et al.: HOW PRESERVING CIRCUIT DESIGN HIERARCHY DURING FPGA PACKING LEADS TO BETTER PERFORMANCE 635

Fig. 5. Influence of the hMetis parameters on the number of cut nets and the
partitioning runtime. Four parameter combinations are chosen as four standard
quality settings (Q1 → Q4).

(a) (b)

Fig. 6. Influence of the hMetis quality on partitioning runtime with (a) TWL
and (b) CPD.

In MULTIPART, the graphs are a representation of digital cir-
cuits. To find the optimal hMetis parameters, we bipartition
large heterogeneous circuits for a range of parameter combi-
nations. This range consists of all CType, RType, and Vcycle
combinations. For the Nruns parameter, values between one
and ten are analyzed. The unbalance factor is not considered
in this grid search, instead it is separately analyzed below.
Fig. 5 shows the number of cut nets in function of the required
hMetis runtime.

The number of cut nets varies from 471 up to 2425 whereas
the partitioning runtime varies from 0.27 to 14.5 s (not all
parameter combinations are shown in Fig. 5). The important
parameter combinations are those that lie on the Pareto front.
In MULTIPART four of the Pareto optimal parameter combi-
nations are used as four quality standards in the partitioning
step. These are highlighted as orange dots in Fig. 5. The fastest
quality setting (Q4) requires a geomean runtime of 0.58 s to
partition a graph and results in a cut of 606. This is reduced
to 471 at the cost of a runtime increase (5.75 s) in the best
quality setting (Q1).

The influence of the partitioning quality on the post-routing
TWL and CPD is shown in function of the total required parti-
tioning runtime in Fig. 6. As expected, less wires are required
when partitions with a better quality are used. This comes at
the cost of an increase in total runtime. For the CPD a simi-
lar behavior is observed when the quality increases from Q4
to Q2. The parameter combination that results in the smallest

(a)

(b)

Fig. 7. Influence of the unbalance factor on the total required partitioning
runtime. (a) UB 40. (b) UB 25.

cut (Q1) leads to an increase in CPD when compared to Q2.
The difference between the parameters in Q1 and Q2 is the
type of V-cycle refinement. The V-cycle refinement in Q2 thus
leads to a lower CPD in the routed design. It is important to
note that although a clear trend is observed, the differences
in TWL and CPD are small. The quality setting Q2 is used
as the optimal runtime-quality tradeoff. If fast packing is the
main objective to use MULTIPART then it is useful to consider
the fastest parameter combination Q4.

C. Unbalance Factor

The UB determines the maximum unbalance in number of
blocks between both parts during the partitioning of a circuit.
For an unbalance equal to UB, the boundaries of each
subcircuit with size NS are set by

NO
50 − UB

100
< NS < NO

50 + UB

100
(2)

with NO the number of blocks in the original circuit. Thus
the larger the value of UB, the larger the maximum allowed
unbalance will be.

The best unbalance factor is a tradeoff between runtime and
quality. First we explain why a large UB leads to an increase
in the total partitioning runtime. Then we search for the best
UB value by analyzing the runtime-quality tradeoff.

1) Partitioning Runtime: The larger the value of UB, the
larger the total required partitioning runtime will be. This is
due to the effect shown in Fig. 7. In this figure, the size of
the partitioned subcircuits is shown in function of time for
two values of the unbalance factor. The partitioning of the
original circuit with a size equal to N starts on time instance
t0 and is finished at time t1. In the example with UB equal
to 40 [Fig. 7(a)], the partition leads to two subcircuits with a
size between 0.1N and 0.9N. The main objective of hMetis
is minimizing the number of cut edges. It is highly probable
that cutting through the center of the circuit will lead to a
larger amount of cut edges. Consequently, it is likely that the

636 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

Fig. 8. Total partitioning runtime and CPD in function of the unbalance
factor.

size of the subcircuits will be approximately equal to 0.1N
and 0.9N. Then two hMetis threads are launched to partition
both subcircuits concurrently. The small subcircuit is quickly
recursively bipartitioned to the threshold hierarchy level (t3).
For the large subcircuit, the process is repeated. Now the size
of the circuit is equal to 0.9N. At time t2 the large subcircuit is
partitioned into a small subcircuit, which is quickly partitioned
to the threshold hierarchy level, and a large subcircuit, which
is again partitioned into a small and a large subcircuit. This
recursive process repeats itself until the threshold circuit size
is reached for all subcircuits.

The partitioning runtime increases with an increasing unbal-
ance factor because the partitioning runtime is dominated by
the large part in each cut. In Fig. 7(b) the partitioning of the
same circuit is shown for an unbalance factor of 25. In this
case, less time is required to fully partition the circuit.

2) Post-Routing Total Wirelength and Critical Path Delay:
Using a small unbalance in the partitioning step leads to fast
runtimes but worse quality because the partitioning tool has
less freedom. When the value of UB is large then the size
boundaries of both subcircuits are large. Consequently, hMetis
has a lot of freedom to cut the circuit into two parts. Mainly,
the CPD is influenced by changing the unbalance factor. In
timing-driven MULTIPART, timing edges with an increased
weight are introduced to reduce the CPD (Section VII). hMetis
tries to avoid cutting a critical edge because it leads to a large
cut increase. When a small unbalance factor is used then it will
be difficult to avoid cutting a critical edge due to the reduced
freedom, leading to an increase in CPD (Fig. 8). The default
unbalance factor in MULTIPART is set to 25. This value is a
good tradeoff between the partitioning runtime and CPD.

D. Partition Depth: Optimizing the Number of Subcircuits

The recursive bipartitioning step ends when a certain hierar-
chy level is reached. To define this hierarchy level, a maximum
cluster size (Nmax) is set for all subcircuits. If the size of a
subcircuit is smaller than this value then it is clustered with the
seed-based packer. The smaller the value of Nmax, the larger
the number of subcircuits (Nsub) will be (Table I). There are a
few conflicting motivations to determine the optimal number
of subcircuits.

To improve quality, the number of subcircuits should be
maximized. The deeper we go in the partition tree, the more
information we have about the design hierarchy. This leads to
better results for the TWL and CPD as shown in Table I.

TABLE I
INFLUENCE OF THE PARTITION DEPTH ON THE NUMBER OF

SUBCIRCUITS, AREA (LAB COUNT), QUALITY, AND

RUNTIME. ANALYZED FOR ALL ROUTABLE

TITAN23 BENCHMARK DESIGNS

On the other hand, going deeper in the partition tree has two
important drawbacks: 1) higher LAB usage and 2) an increased
partitioning runtime. First, when a connection between two
netlist primitives is cut then these primitives can not be packed
into the same functional block. This leads to an increase in
the number of required LABs (and area) as we go deeper in
the design hierarchy because the deeper we go, the more con-
nections between primitives are cut. Notice that going deeper
in the hierarchy only results in an increase in the number of
required LABs. The DSP and RAM hard block types are used
efficiently because the hard block primitives are redistributed
between both parts after each cut (Section V-B). Second, the
partitioning runtime increases with decreasing Nmax because
more partitions are required until all subcircuits have a size
smaller than Nmax.

In addition to the two opposing forces discussed above, we
should also consider the SBP runtime. Each thread that packs a
subcircuit with the seed-based packer introduces an overhead.
The main overhead is caused by launching and initializing
AAPack. Thus the more subcircuits we have, the larger the
overhead will be. However, this is not reflected in the SBP
runtime when Nmax ranges from 30 000 to 1750 (Table I). The
runtime decreases as Nsub increases for two reasons: the usage
of the available threads and the size of the subcircuits. First,
if a small number of large subcircuits are available then it is
not likely that all threads will be used efficiently because it is
difficult to balance them over the available threads on a 10-core
CPU. The impact of thread balancing is best noticed when
Nmax decreases from 30 000 to 10 000. Second, the runtime per
block (i.e., the time required to pack one block in the circuit)
decreases when smaller subcircuits are packed with AAPack
[Fig. 9(b)]. The AAPack runtime thus scales badly with an
increased size of the subcircuits. This results in a reduction
of the total SBP runtime if the circuit is partitioned into a set
of smaller subcircuits [Fig. 9(a)]. Notice in Fig. 9(a) that the
large gain in total clustering runtime is partly nullified by the
runtime overhead for each clustered subcircuit.

We conclude that Nmax should be as small as possible.
This way a maximum gain in TWL and CPD is achieved.

VERCRUYCE et al.: HOW PRESERVING CIRCUIT DESIGN HIERARCHY DURING FPGA PACKING LEADS TO BETTER PERFORMANCE 637

(a) (b)

Fig. 9. Influence of the partition depth on the SBP runtime for sparcT1_chip2.
In this simulation only one thread is used to avoid the thread balancing effect.
(a) Total SBP runtime to cluster all subcircuits in function of the number of
subcircuits. (b) Average runtime per block in function of the subcircuit size.

We choose as the minimal Nmax, the value where the gain in
quality is justified by the increase in required area (LABs).
The runtime is not much influenced by Nmax. The additional
runtime overhead of the partitioning step is nullified by a gain
in SBP runtime when Nmax is larger than 1750. An Nmax value
of 2500 is used as the default value.

VII. TIMING-DRIVEN MULTIPART

During static timing analysis the timing constraints are
checked. A typical constraint is a lower limit for the clock
frequency. To analyze when violations will occur, a timing
graph is constructed. In this graph, we add information about
the delays in the circuit. The arrival time of a signal is the
time elapsed for a signal to arrive at a certain point, Tarr.
The required time, Treq, is the latest time at which a signal
can arrive at a node without timing violations. The slack of
an edge with source node A and sink node B, is the differ-
ence between the required and the arrival time of those nodes,
subtracted with the delay of that edge

Slack(A, B) = Treq(B) − Tarr(A) − delay(A, B). (3)

A positive slack at a node implies that the arrival time at that
node may be increased without affecting the maximum delay
in the circuit. Conversely, a negative slack implies that a path
is too slow, and the path must be sped up (or the reference
signal delayed) if the timing constraints have to be met. The
worst negative slack (WNS) indicates the critical path of the
circuit. The timing violations will not improve unless this path
is taken care of. To indicate how critical an edge is, a criticality
measure is introduced

Critedge = 1 − Slackedge

WNS
. (4)

MULTIPART adds timing information to the partitioning and
SBP step. The partitioning tool is unable to decide which edges
are critical and which are not because the cost of cutting a
connection is the same for all connections. The seed-based
packer clusters all netlist primitives in the subcircuits, while
minimizing the CPD of each subcircuit. It is not possible to
minimize the delay of timing paths that span multiple subcir-
cuits because they are cut on the edges between the subcircuits
(Fig. 2). Table II shows the ratio of the CPD for the Titan23

TABLE II
CPD OF THE TITAN23 BENCHMARK DESIGNS WITH AND

WITHOUT ADDED TIMING INFORMATION

benchmark designs when compared to AAPack. We notice
that the lack of timing information results in a large CPD for
some of the designs. In this section, we explain the added tim-
ing functionality. The functionality does not only reduce the
CPD for the problematic designs, on average a gain of 3%
is obtained. The results shown in Table II are averaged over
20 iterations for each design. Timing-driven MULTIPART also
reduces the variance over those iterations.

A. Timing Information in the Partitioning Phase

During placement the clusters are assigned to a physical
location on the architecture. The placer tries to minimize the
TWL, so blocks with a higher interconnectivity are placed
closer together. This results in a smaller distance between
clusters that are close to each other in the partition tree.
Consequently, edges on the critical or a near critical path
should not be cut on high hierarchical levels because this
leads to long and slow connections in the interconnection
network.

To prevent cutting critical connections, we introduce timing
edges to the circuit graph before it is passed to the partitioning
tool. The timing edges are added in parallel with the critical
connections in the design. They avoid that a critical or a near
critical path is cut when a partition is possible without cutting
this path. The amount of timing edges added and the weight
of these edges are important parameters. Adding too many
timing edges with too large weights results in partitions that
violate the natural hierarchy of the design.

A static timing analysis determines where the timing edges
should be added. For all connections we calculate the slack and
its corresponding criticality. If a net has multiple sink nodes
then all source-sink connections in the net are analyzed sep-
arately. No detailed timing information of the connections is

638 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

(a) (b)

Fig. 10. Criticality of all connections in (a) MCML and (b) EKF_SLAM.
The minimum criticality of EKF_SLAM is increased to ensure that maximum
20% of the connections are assigned as critical.

(a) (b)

Fig. 11. Influence of the minimum criticality on (a) TWL and (b) CPD.

available after synthesis. Therefore, we optimistically assume
that the fastest possible route is used between the primitive
blocks in the netlist. A timing edge is added in parallel to each
connection with a criticality larger than a predefined threshold
value, the minimum criticality (Cmin).

We distinguish two types of circuits to determine the min-
imum criticality: 1) circuits with only a few long paths
[Fig. 10(a)] and 2) circuits with a more gradual path delay
distribution [Fig. 10(b)]. For the circuits with only a few long
paths the process is straightforward. All edges with a critical-
ity larger than Cmin are added. An example of such a circuit
is MCML [Fig. 10(a)]. To find the best value for the minimum
criticality, we analyzed the post-routing results for a range of
minimum criticalities. Enough critical edges are added to the
circuit to control the CPD as long as Cmin is smaller than 0.8
[Fig. 11(b)]. As expected, a higher Cmin reduces the TWL of
the designs [Fig. 11(a)]. Less timing edges are added to the
circuit graph if Cmin increases, resulting in less distortion in
the design hierarchy during partitioning. As the best value we
choose 0.7, this way some safety margin is build in at the
cost of a small wirelength increase. In Fig. 11(b), a Cmin of
0.7 leads to a larger CPD when compared to a Cmin of 0.75.
This is due to the variance in results. The difference between
the CPD for Cmin equal to 0.7 and 0.75 is smaller than the
noise margin.

However, some circuits have a more gradual path delay dis-
tribution. Adding a timing edge for every connection with a
criticality larger than Cmin would lead to a large amount of
timing edges. For these circuits we avoid adding too many
edges by considering only the 20% most critical edges. The
minimum criticality for these circuits is thus increased in such
a way that maximum 20% of the edges in the design have a
criticality larger than this value [Fig. 10(b)].

Fig. 12. Partitioning of a circuit with cut and uncut critical path. The cut
critical path results in shorter paths in both subcircuits. Delay information is
passed to the seed-based packer by making use of the SDC format.

All edges with a criticality larger than Cmin are defined
as critical. For each critical edge a timing edge is added to
the circuit in parallel with the critical connection. A weight is
assigned to each timing edge, in order to differentiate between
the critical and near critical edges. The weight of a timing edge
(Wedge) is proportional to the criticality of that edge (5). The
larger the criticality of an edge, the larger its corresponding
weight will be. The multiplication factor M in (5) is used for
two reasons. First, hMetis only allows integer values for the
weights [27]. The criticality of the edge is multiplied with M
and rounded to the nearest integer value. Second, the timing
edges should have a larger weight than the nets in the circuit.
This way cutting a critical edge is delayed as much a possible.
By analyzing post-routing results, we found that M should be
equal to 10. This value of M results in the best CPD without
deteriorating the natural hierarchy of the circuit

Wedge = �M ∗ Critedge�. (5)

B. Timing Edge Weight Update

If a critical path is cut during recursive bipartitioning then
this path should have special attention. Otherwise, it could
be cut several times and lead to multiple slow connections in
the interconnection network. To prevent this, all timing edges
on a critical path have a very large weight assigned once
the path is cut. This ensures that other uncut critical paths
are cut first if no partition is possible without cutting critical
edges.

C. Timing Information in the Seed-Based Packing Phase

For some circuits it is impossible to avoid that critical edges
are cut. This introduces a problem because a cut critical path
results in smaller paths in both subcircuits. In Fig. 12, the
critical path P2 is cut during partitioning. This leads to two
subcircuits where the cut critical edge is replaced with an
input/output pin. When these subcircuits are clustered, the path

VERCRUYCE et al.: HOW PRESERVING CIRCUIT DESIGN HIERARCHY DURING FPGA PACKING LEADS TO BETTER PERFORMANCE 639

TABLE III
PROBLEMS WITH THE TITAN23 BENCHMARK DESIGNS

P2 will not be considered as critical by the seed-based packer
because now it is shorter than in the original circuit.

To solve this problem, additional information is passed on to
the seed-based packer. We use the synopsis design constraints
format in our implementation [28]. In this format, it is possible
to assign a delay to any input and output pin of the circuit. In
MULTIPART, these delays are added to all input/output pins
that result from a cut critical edge. This way, the seed-based
packer knows the total delay of all critical paths in the circuit
and is able to minimize the maximum delay.

VIII. EXPERIMENTS

A. Methodology

The Titan23 suite is used for benchmarking. The target
device for the Titan23 benchmark designs is Altera’s Stratix IV
FPGA. The experiments are performed on a workstation with
an Intel E5-2660v3@2.6 GHz (10 cores) and with 128 GB
work memory. Post-routing TWL and CPD are obtained
by placing and routing the packed circuits with VPR 7.0.7
r75b47d3. MULTIPART and AAPack are compared on the
same architecture. The CW and dimensions of the FPGA
are optimized for each design separately. The CW is cho-
sen in such a way that medium stress routing is required for
the designs. This way a fair comparison is possible between
AAPack and MULTIPART.

All experiments are run 20 times, each time with a different
seed for placement. The results shown below are averaged out
over these iterations. We were not able to use all designs in the
Titan23 suite. From the 23 available designs, 18 are success-
fully placed and routed. The problems with the five remaining
designs are shown in Table III. The design sparcT2_core is
used, but it has a problem with the clustering of M9K blocks
during the SBP step with AAPack [29]. This leads to an
increase in the number of required M9K blocks (Table IV).

The area requirements, quality metrics and runtime of
MULTIPART are compared to the state-of-the-art academic
packer AAPack. Area results are shown in Table IV. The
quality metrics and runtime are given in Table V.

B. Area

MULTIPART leads to a minor average increase in the total
number of required LABs because the weakly interconnected
subcircuits are clustered independently. Over all designs, this
leads to an LAB increase of 1.6%. The LAB increase is rela-
tive to the number of LABs after packing with AAPack, which
is efficient at densely packing the designs with the seed-based
bottom-up approach. MULTIPART outperforms AAPack for

TABLE IV
AREA: NUMBER OF LAB AND RAM BLOCKS

some designs. Better results are obtained because MULTIPART

has a top-down approach with a global overview of the design.
This is an advantage, for example, for circuits with long com-
binational paths (segmentation and denoise) because these
paths span over a large amount of LABs. The greedy clus-
tering approach of AAPack lacks a global overview of these
long paths. On the other hand, we notice that a large LAB
increase is introduced for all sparc designs, which are µP
cores. The LAB increase depends on the type of application,
its corresponding connectivity, and design hierarchy.

In contrast to the LAB increase, less area is required for the
hard blocks due to the high quality of the prepartitioning step
and the hard block swap. The number of required DSP blocks
is exactly the same in MULTIPART and AAPack. The total
area of the RAM blocks is reduced with 2.6%. This partly
nullifies the area increase of the LABs. In total 1.1% more
area is required to implement all netlist primitives.

C. Quality

The main goal of MULTIPART is reducing the TWL by
preserving the natural hierarchy in the circuit during packing.
Over all designs, a gain of 32% in TWL is obtained. The
gain ranges from 10% up to 48%. The large gain is achieved
because the connections in the interconnection network are
shorter and is not due to a lower number of point-to-point
connections in the clustered design. There is a slight increase
in the number of routed nets (1.2%), but the nets have a
smaller average fanout. The reduction in TWL has some major
advantages.

1) Minimum Channel Width: The area of the routing
network in an FPGA is proportional to the CW and requires a
large amount of the total FPGA area. Because of the improved
packing algorithm less wires are required to route the designs,
leading to a smaller minimum required channel width (MCW).

640 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

TABLE V
QUALITY AND RUNTIME OF AAPACK AND MULTIPART FOR THE TITAN23 BENCHMARK DESIGNS

TABLE VI
MCW OF FIVE SMALL TITAN23 DESIGNS

In Table VI the gain is shown for five small Titan23 designs.
Small designs are used because finding the MCW for the
large designs leads to extremely long runtimes due to the
large number of required routing iterations. The gain in MCW
is larger than the gain in TWL for these five designs. On
average a gain of 38% is obtained. This result is important,
because it means that smaller and thus cheaper FPGAs can
be used to implement the applications. It also completely
justifies the small area increase of the required functional
blocks.

Additionally, this also increases the usability of the Titan23
suite. With AAPack five of the used Titan23 designs fail
to route with the default Stratix IV architecture targeted. In
this architecture, the CW is equal to 300. If MULTIPART is
used then all designs can easily be routed without congestion
problems on the default architecture.

2) Routing Runtime: The gain in TWL results in less
congestion. It is easier to find a routable routing solution.
Consequently, a gain of 38% in the total routing runtime
is achieved. MULTIPART thus not only has faster packing
runtimes, it also greatly reduces the routing runtime.

Fig. 13. Geomean runtime of MULTIPART in function of the number of
available threads.

3) Maximum Clock Frequency: There is a gain of 10%
for the CPD due to the improved design hierarchy after
packing.

D. Packing Runtime

The packing runtime for all designs is shown in Table V.
An average runtime speed-up of 9.3× is achieved on a CPU
with 10 cores. It is interesting to note that the geomean of the
AAPack runtime is equal to 721 s, while the single-threaded
version of MULTIPART only needs 611 s (Fig. 13). Even
though the partition step introduces a runtime overhead, single-
threaded MULTIPART is faster than AAPack for two reasons.
First, less runtime is required to cluster the subcircuits because
a design specific architecture is used (Section V-A3). Second,
the total SBP runtime is lower because a set of small sub-
circuits is clustered, leading to a smaller runtime per block
[Fig. 9(a)].

VERCRUYCE et al.: HOW PRESERVING CIRCUIT DESIGN HIERARCHY DURING FPGA PACKING LEADS TO BETTER PERFORMANCE 641

(a) (b)

Fig. 14. Scalability in size of the designs for (a) AAPack and
(b) MULTIPART: absolute runtime per block and linear interpolation of the
values.

1) Scalability in Number of Threads: The partitioning-
based methodology offers an opportunity for multithreaded
parallelism in the partitioning and SBP step. In Fig. 13 the
total runtime of MULTIPART is shown in function of the num-
ber of available threads. The tool consists of three main parts:
1) a sequential; 2) a partitioning; and 3) an SBP part. The
sequential part consists of the static timing analysis and the
prepartitioning steps. Its relative importance increases when
more threads are used. The SBP step requires no synchro-
nization between the concurrently packed subcircuits. This
leads to a large runtime gain if more threads are used. If
the number of threads increases from 1 to 19 then 15.6×
faster runtimes are obtained. Further increasing the number
of threads does not influence the runtime on the used 10-
core CPU. The partitioning step is parallelized by splitting
the subcircuits independently. Partitioning does not scale well
with an increasing number of available threads due to hier-
archy dependencies and post-partitioning runtime overheads.
A maximum runtime speed-up of 2.1× is reached when four
threads are used. Hierarchy dependencies result from the fact
that new subcircuits are only available when the subcircuits
on the previous hierarchy level are split and processed. The
post-partitioning runtime overhead is introduced by the hard
block swap (Section V-B) and the timing edge weight update
(Section VII-B). MULTIPART thus achieves large runtime
speed-ups when more threads are used, but is not able to fully
exploit CPUs with a large number of threads. Increasing the
number of threads from one to five leads to four times faster
runtimes. Further increasing the number of threads to 19 leads
to a maximum gain of 8× (Fig. 13).

2) Scalability in Size of the Designs: The runtime per block
in function of the design size is shown for the Titan23 designs
in Fig. 14. For AAPack there is a clear increase in the runtime
per block when the size of the designs increases. This behav-
ior is also noticed in Fig. 9(b) where the runtime per block is
analyzed for different sizes of the subcircuits after partition-
ing. MULTIPART has a much better scalability with increasing
design size because the circuit is hierarchically partitioned into
a set of small subcircuits. The number of subcircuits increases
linearly with the size of a design. Partitioning also scales well
with increasing design size. Only one additional partitioning
step is required to split the circuit in two subcircuits if the
size of the design doubles. Both resulting subcircuits are then
further partitioned independently.

The designs in Table V are organized from small to large.
Due to the better scaling the gain in packing runtime is larger
if the design size increases. The smallest gain is equal to 5.8×
(neuron) and increases to 12.9× (sparcT1_chip2).

IX. CONCLUSION

In this paper, we presented an extended version of
MULTIPART. MULTIPART is a partitioning-based packing tool
that consists of two phases: 1) a partitioning phase and 2) an
SBP phase. The hierarchical packing approach obtains bet-
ter quality results in less runtime at the cost of a small area
increase because more logic blocks are required. MULTIPART

is able to obtain faster runtimes (9.3×) because we can easily
implement multithreading without consequences for the qual-
ity. The quality of the results improves because the design
hierarchy is preserved during packing. The quality of pack-
ing has a great influence on the post-routing TWL and CPD.
On average MULTIPART leads to a gain of 32% in TWL
and 10% for the CPD. This closes a major part of the gap
between commercial and academic results in terms of TWL.
Murray et al. [1] reported a TWL gap of 2.19× comparing
VPR with Altera Quartus II. In this paper, where the AAPack
packer is replaced with MULTIPART, we greatly reduced this
gap by just replacing the packing algorithm. As a large reduc-
tion in TWL is obtained, it is possible to route the designs on
an architecture with a smaller channel width. Such an archi-
tecture requires less routing resources and is thus smaller and
cheaper. The source code of MULTIPART is released on Github
in our FPGA CAD framework [32].

In the future we would like to investigate if we could
reuse the information that is obtained in the partitioning step.
Currently, this information is not used during placement and
routing. In the future, we want to use the hierarchical infor-
mation to provide a better initial placement for the functional
blocks.

ACKNOWLEDGMENT

The computational resources (Stevin Supercomputer
Infrastructure) and services used in this work were provided
by the VSC (Flemish Supercomputer Center), funded by
Ghent University, FWO and the Flemish Government -
department EWI.

REFERENCES

[1] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Timing-driven
titan: Enabling large benchmarks and exploring the gap between aca-
demic and commercial CAD,” ACM Trans. Reconfig. Technol. Syst.,
vol. 8, no. 2, 2015, Art. no. 10.

[2] A. Ludwin, V. Betz, and K. Padalia, “High-quality, deterministic paral-
lel placement for FPGAs on commodity hardware,” in Proc. 16th Int.
ACM/SIGDA Symp. Field Program. Gate Arrays, Monterey, CA, USA,
2008, pp. 14–23.

[3] G. Jain et al., “Multi-threaded deterministic router,” U.S.
Patent 8 671 379, Mar. 11, 2014. [Online]. Available: https://
www.google.com/patents/US8671379

[4] A. Marquardt, V. Betz, and J. Rose, “Speed and area tradeoffs in cluster-
based FPGA architectures,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 8, no. 1, pp. 84–93, Feb. 2000.

https://www.google.com/patents/US8671379
https://www.google.com/patents/US8671379

642 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

[5] A. S. Marquardt, V. Betz, and J. Rose, “Using cluster-based logic blocks
and timing-driven packing to improve FPGA speed and density,” in Proc.
ACM/SIGDA 7th Int. Symp. Field Program. Gate Arrays, Monterey, CA,
USA, 1999, pp. 37–46.

[6] J. Luu, J. Rose, and J. Anderson, “Towards interconnect-adaptive pack-
ing for FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, Monterey, CA, USA, 2014, pp. 21–30.

[7] J. Luu et al., “VTR 7.0: Next generation architecture and CAD system
for FPGAs,” ACM Trans. Reconfig. Technol. Syst., vol. 7, no. 2, 2014,
Art. no. 6.

[8] A. Singh, G. Parthasarathy, and M. Marek-Sadowska, “Efficient circuit
clustering for area and power reduction in FPGAs,” ACM Trans. Design
Autom. Electron. Syst., vol. 7, no. 4, pp. 643–663, 2002.

[9] E. Bozorgzadeh, S. O. Memik, X. Yang, and M. Sarrafzadeh,
“Routability-driven packing: Metrics and algorithms for cluster-based
FPGAs,” J. Circuits Syst. Comput., vol. 13, no. 1, pp. 77–100, 2004.

[10] M. Tom, D. Leong, and G. Lemieux, “Un/DoPack: Re-clustering of large
system-on-chip designs with interconnect variation for low-cost FPGAs,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, San Jose, CA,
USA, 2006, pp. 680–687.

[11] H. Liu and A. Akoglu, “Timing-driven nonuniform depopulation-based
clustering,” Int. J. Reconfig. Comput., vol. 2010, Jan. 2010, Art. no. 3.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1863644

[12] J. Lamoureux and S. J. E. Wilton, “On the interaction between
power-aware FPGA CAD algorithms,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, San Jose, CA, USA, 2003, pp. 701–708.

[13] L. Easwaran and A. Akoglu, “Net-length-based routability-driven power-
aware clustering,” ACM Trans. Reconfig. Technol. Syst., vol. 4, no. 4,
2011, Art. no. 38.

[14] S. T. Rajavel and A. Akoglu, “MO-Pack: Many-objective clustering for
FPGA CAD,” in Proc. 48th Design Autom. Conf., San Diego, CA, USA,
2011, pp. 818–823.

[15] M. Yang, J. Lai, and J. Tong, “Yet another many-objective cluster-
ing (YAMO-Pack) for FPGA CAD,” in Proc. 23rd Int. Conf. Field
Program. Logic Appl., Porto, Portugal, 2013, pp. 1–4.

[16] J. Cong and M. Romesis, “Performance-driven multi-level clustering
with application to hierarchical FPGA mapping,” in Proc. Design Autom.
Conf., Las Vegas, NV, USA, 2001, pp. 389–394.

[17] M. E. Dehkordi and S. D. Brown, “Performance-driven recur-
sive multilevel clustering,” in Proc. IEEE Int. Conf. Field-Program.
Technol. (FPT), Tokyo, Japan, 2003, pp. 262–269.

[18] C. Sze, T.-C. Wang, and L.-C. Wang, “Multilevel circuit clustering for
delay minimization,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 23, no. 7, pp. 1073–1085, Jul. 2004.

[19] Z. Marrakchi, H. Mrabet, and H. Mehrez, “Hierarchical FPGA clustering
based on multilevel partitioning approach to improve routability and
reduce power dissipation,” in Proc. ReConfig, Puebla, Mexico, 2005,
p. 25.

[20] W. Feng, “K-way partitioning based packing for FPGA logic blocks
without input bandwidth constraint,” in Proc. Int. Conf. Field-Program.
Technol. (FPT), Seoul, South Korea, 2012, pp. 8–15.

[21] W. Feng, J. Greene, K. Vorwerk, V. Pevzner, and A. Kundu, “Rent’s rule
based FPGA packing for routability optimization,” in Proc. ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays, Monterey, CA, USA, 2014,
pp. 31–34.

[22] D. T. Chen, K. Vorwerk, and A. Kennings, “Improving timing-
driven FPGA packing with physical information,” in Proc. Int. Conf.
Field Program. Logic Appl., Amsterdam, The Netherlands, 2007,
pp. 117–123.

[23] D. Vercruyce, E. Vansteenkiste, and D. Stroobandt, “Runtime-quality
tradeoff in partitioning based multithreaded packing,” in Proc. 26th Int.
Conf. Field Program. Logic Appl. (FPL), Lausanne, Switzerland, 2016,
pp. 1–9.

[24] B. S. Landman and R. L. Russo, “On a pin versus block relationship
for partitions of logic graphs,” IEEE Trans. Comput., vol. C-20, no. 12,
pp. 1469–1479, Dec. 1971.

[25] Stratix IV Device Handbook, Altera Corporat., San Jose, CA, USA,
Jan. 2016. [Online]. Available: https://www.altera.com

[26] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: Applications in VLSI domain,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 7, no. 1, pp. 69–79, Mar. 1999.

[27] G. Karypis and V. Kumar, “hMETIS 1.5: A hypergraph partitioning
package,” Dept. Comput. Sci. Eng. Army HPC Res. Center, Univ.
Minnesota, Minneapolis, MN, USA, Tech. Rep., Nov. 1998. [Online].
Available: http://www.cs.umn.edu/metis

[28] J. Luu et al., VPR User’s Manual (Version 7.0), Dept. Elect. Comput.
Eng., Univ. at Toronto, Toronto, ON, Canada, Tech. Rep., 2013.

[29] Sparct2_Core GitHub Issue. Accessed on Oct. 2016. [Online]. Available:
https://github.com/ verilog-to-routing/vtr-verilog-to-routing/issues/160

[30] LU_Network GitHub Issue. Accessed on Aug. 2016. [Online]. Available:
https://github.com/ verilog-to-routing/vtr-verilog-to-routing/issues/111

[31] Gaussian Blur GitHub Issue. Accessed on Aug. 2016. [Online].
Available: https://github.com/verilog-to-routing/vtr-verilog-to-routing/
issues/115

[32] E. Vansteenkiste, D. Vercruyce, and S. Lenders. (2016). FPGA
CAD Framework: MultiPart and Liquid. [Online]. Available:
https://github.com/EliasVansteenkiste/FPGA-CAD-Framework

Dries Vercruyce (GS’16) received the Master of
Applied Science degree in electronics from Ghent
University, Ghent, Belgium, in 2015, where he
is currently pursuing the Ph.D. degree from the
Department of Electronics and Information Systems,
Computer Systems Laboratory.

He has a special interest in the back end of the
FPGA CAD tool flow. His current research interest
includes improving the quality of the configuration
by providing hierarchy information of the design.

Elias Vansteenkiste (GS’13) received the Master
of Applied Science degree in electronics from
Ghent University, Ghent, Belgium, in 2011 and the
Ph.D. degree from the Department of Electronics
and Information Systems, Computer Systems
Laboratory, Ghent University in 2016.

His current research interests include hardware
acceleration for FPGA CAD algorithms and
convolutional networks and new deep learning
techniques for high dimensional data.

Dirk Stroobandt (M’98) received the Ph.D.
degree from Ghent University, Ghent, Belgium,
in 1998.

He is currently a Professor with the Department of
Electronics and Information Systems and Computer
Systems Laboratory, Ghent University. He cur-
rently leads the Hardware and Embedded Systems
Research Group of about ten people, interested in
semi-automatic hardware design methodologies and
tools, runtime reconfiguration, and reconfigurable
multiprocessor networks.

Dr. Stroobandt was a recipient of the ACM/SIGDA Outstanding Doctoral
Thesis Award in Design Automation in 1999. He has also been initiated
and co-organized the International Workshop on System-Level Interconnect
Prediction since 1999. He has been the Associate Editor and Special Issue
Guest Editor of a few international journals.

http://dl.acm.org/citation.cfm?id=1863644
https://www.altera.com
http://www.cs.umn.edu/metis
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/160
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/160
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/111
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/111
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/115
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/115
https://github.com/EliasVansteenkiste/FPGA-CAD-Framework

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

