
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 1

WAVING Goodbye to Manual Waveform Analysis
in HDL Design with WAL

Lucas Klemmer, Student Member, IEEE, Daniel Große, Senior Member, IEEE

Abstract—Starting points for design understanding and de-
bugging of a Hardware Description Language (HDL) design are
generated waveforms. However, waveform viewing is still a highly
manual and tedious process, and unfortunately, there has been
no progress for automating the analysis of waveforms. Therefore,
we introduce the Waveform Analysis Language (WAL) in this
paper. WAL allows to create and execute analysis programs on
waveforms. We have realized WAL as a Domain Specific Lan-
guage (DSL). This design choice has many advantages ranging
from a natural expressiveness of a waveform analysis problem
to providing an Intermediate Representation (IR) well-suited as a
compilation target from other languages.

We demonstrate the capabilities of WAL in four case studies,
covering the analysis of hardware performance of different
RISC-V processors, combined hardware/software profiling, the
usage of WAL to analyze bus transactions, and the implementa-
tion of a new embedded DSL using WALs macro system.

Index Terms—Design understanding, debugging, waveform,
waveform analysis, waveform analysis language (WAL), domain
specific language, automation, HDL

I. INTRODUCTION

THE development of next-generation electronic systems
poses significant challenges to all phases of the design

process. In particular, the verification phase is the most time-
consuming part. Verification aims to find design errors as
early as possible, and verification is multidimensional [1]:
Both, functional requirements and non-functional requirements
(e.g. timing, performance, latency) have to be verified, and
in practice there is often an intersection of the respective
tasks and models used [2]. If one again breaks down the
verification task, then it is dominated by debugging [3]. Even
worse, debugging is rated as least predictable since it requires
a deep design understanding [4]. The cornerstone for design
understanding is the waveform. The waveform is generated
during simulation of a Hardware Description Language (HDL)
design and describes the circuit signals together with hierarchy
information over time [5].

In both, the design phase and the verification phase of a
digital system, waveforms are heavily used. Initially, directed
test stimuli are created to see that the currently designed
Hardware (HW) blocks are “alive” and produce some mean-
ingful output. When the design matures, the verification plan is
followed and advanced verification techniques, e.g. assertion-
based methods together with coverage-based solutions, are
employed [6], [7]. Along this highly iterative process, wave-
forms demonstrating expected behavior or unexpected behav-
ior (e.g. in case of a failed assertion or a violated timing
constraint) have to be analyzed and understood. For this task,
(commercial) waveform viewers are utilized. Waveform view-
ers are software tools which allow viewing signal values over

time. Besides selecting the radix of each signal and grouping
signals together, the user can zoom in and out, can jump
to the next time point where the value of a signal changes,
can determine the time difference between two cursors, etc.
However, while all these features help in understanding and
debugging, waveform viewing is a highly manual and
tedious process.

So far, most research has either concentrated on specific
design understanding approaches such that the manual analysis
of the waveform is reduced to a minimum, or it has been
confined on the generation of “better” waveforms, e.g. by
employing formal methods, reducing their length, or mini-
mizing the signals involved in a failing trace (more details
are discussed in related work). While these approaches have
introduced automation in general, there has been almost no
progress for automating the analysis of waveforms. The
potential for automation becomes clear when looking at typical
non-trivial analysis questions raised for waveforms dumped for
instance when running Software (SW) on a processor:

• How many instructions per cycle are executed by the
processor?

• What is the latency of the bus interfaces?
• What throughput is the bus achieving?
• When and why is the processor pipeline flushed or stalled

during SW execution?
• Which parts of a program are executed on the processor?

In this work, we bring automation to the analysis
of waveforms and introduce the Waveform Analysis Lan-
guage (WAL)1. We have realized WAL as a Domain Specific
Language (DSL) [8]. WAL is based on the idea that signals
from waveforms become variables, and that simulation
time and design hierarchy are fundamental parts of the
language.

WAL Basis: For WAL, we first identified the essential
operations for processing waveform data; this includes loading
(multiple) waveforms, access to signals, time manipulation,
and logical grouping of signals. Second, since verification (and
regression) environments differ widely in terms of require-
ments and work-flows, we strive to maximize the versatility
of WAL. Therefore, we decided to define the syntax of our
proposed WAL DSL following the established Lisp principle
of symbolic expressions (or S-expressions2) [9]. S-expressions
have three main advantages: an extremely regular syntax based
on lists, code and data are represented by the same data

1WAL is available open-source at https://github.com/ics-jku/wal
2An S-expression is an atom (also called symbol) or it is a list of

S-expressions.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 2

structure, and code generation is simple as only lists have to
be created. As a consequence, we can:

1) feature a minimal and clean syntax for WAL,
2) easily integrate the above mentioned essential waveform

operations as well as advanced operations via functions,
3) provide an Intermediate Representation (IR) well-suited

as a compilation target from other languages, and
4) introduce a macro system to WAL which makes extend-

ing and modifying the language simple, opening the door
to additional DSLs build in WAL itself.

To demonstrate the capabilities of WAL, we present four
different case studies. The case studies cover the analysis of
HW performance, combined HW/SW profiling, bus transaction
analysis, and the implementation of an embedded DSL using
WALs macro system.

Paper Structure: This journal paper includes and extends
published material from the three previous conference pa-
pers [10], [11], [12]. We start by outlining the new contribu-
tions of this paper in the next paragraph. After a discussion of
related work in Section II, Section III describes the waveform
analysis problem. In Section IV, we introduce WAL: We
present requirements, review S-expressions in the context
of WAL, present the essential and advanced operations of
WAL including the macro system. WAL core, our reference
implementation of WAL is presented in Section V. The case
studies are given in Section VI. Finally, the paper is concluded
in Section VIII.

New Contributions: In comparison to the three conference
papers [10], [11], [12], new contributions in this paper include:
(1) a comprehensive overview of the major WAL functions,
(2) the introduction of a macro system for WAL, (3) a new
WAL standard library which is in part implemented using
the new macro system, (4) new analysis concepts such as
timeframes, configurable sampling, and (5) the enhancements
and the addition of (new) case studies to showcase WAL.

II. RELATED WORK

Design understanding and debugging is an active field of
research. Several methods targeting specific problems and
different abstraction levels have been proposed [13]. For
example, this includes natural language techniques to derive
assertions from specifications [14], feature localization in ESL
models [15] or in RTL descriptions [16], assertion mining at
RTL [17], identification of instruction pipelines using static
analysis on the netlist [18], template-based understanding of
circuit components [19], and reverse engineering at the gate-
level [20], [21]. However, all these solutions focus on dedi-
cated design understanding sub-problems and do not provide
a generic user-programmable analysis for waveforms.

In general, advanced testbench constructs, for example
provided by SystemVerilog, are relevant in this context.
SystemVerilog offers several features and methodologies that
can help in monitoring, capturing, and analyzing signal be-
haviors during simulation. This includes assertions, as already
mentioned in the introduction. They capture complex temporal
behaviors and are used to flag unexpected signal values or
sequences during simulation.

However, the goal of assertion-based verification is to de-
termine “only” whether the underlying temporal logic formula
evaluates to true or false on a trace (or waveform). In contrast,
WAL allows a much wider user-programmable analysis and
application: With WAL programs, complex signal relations can
be caught too, but then the user can perform arbitrary actions
for all kinds of computations including the use of high-level
data-structures, such as lists, hashmaps, etc. In principle, a user
could perform certain analysis in the testbench of a design
by utilizing, for instance, classes and the object-oriented
features of SystemVerilog. However, such an approach is
extremely complex, would require significant effort and also
re-simulation, quickly reaching the limits of practicability.

The Universal Verification Methodology (UVM) [22] does
not directly provide features for programmable waveform
analysis, as it is primarily a methodology and a library
for creating structured, reusable verification environments in
SystemVerilog. UVM focuses on the creation, management,
and use of verification components and data, such as stimulus
generation, checking mechanisms, coverage collection, and
reporting. Its primary goal is to improve the efficiency and
reusability of the verification process.

To the best of our knowledge no waveform analysis lan-
guage comparable to the user-programmable expressiveness of
WAL is available (also not in the commercial solutions from
Cadence, Synopsys, Siemens EDA, etc.).

III. PROGRAMMABLE WAVEFORM ANALYSIS PROBLEM

As already stated in the introduction, after the generation of
a waveform from a HW simulation (typically in a format such
as Value Change Dump (VCD) [23]), the contained signals and
their relations are traditionally analyzed by visual inspection
using waveform viewers. The major reason is that waveforms
are an elegant method of visually expressing concurrency and
design hierarchy. Waveforms typically contain not only the
value of signals over the simulation time, but also information
about the signals (bitwidth, type) and about hierarchical scope
information, i.e., what modules make up the design and how
they are composed. Hence, debugging and understanding of
sophisticated module behavior and inter-module interactions
can be performed. However, as the analysis is manual it
can quickly become tedious or totally impractical in case
of complex or repeating problems. Therefore, we introduce
user-programmable waveform analysis, transforming a manual
repeating analysis problem into a one-time-only effort that
scales with increasing complexity and waveform sizes and
which is often reusable across projects.

In the following, we provide a simple but illustrative exam-
ple for such an analysis problem. We will use this example
throughout the paper when introducing the proposed WAL.
Fig. 1 shows the waveform of a bus communication using the
typical request-acknowledge protocol scheme.

Two components (comp1 and comp2) are connected to the
bus and the respective req/ack signals have been traced as
can be seen in the waveform. Assume that the design team has
to determine the average latency for each component attached
to the bus for system optimization. To solve such a problem

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 3

Fig. 1: Request-Acknowledge bus communication.

with a waveform viewer is practically not possible. More
precisely, the task is to walk through the trace and count cycles
where req is high and ack is low. Finally, this result has
to be divided by the number of acknowledgments. In Fig. 1,
for comp1 we get 3 + 2 = 5 (see marked lines a to b and
c to d respectively) divided by 2, which gives the average
latency of 2.5. Clearly, manual navigation and calculation
on the waveform is a poor solution only. Even worse, for
waveforms with tens of thousands of cycles this approach fails.
In contrast, this calculation can be easily performed with WAL
as we will show later.

Moreover, the design in the example has two components
and therefore we are interested in the average latency over
all, or a subset, of the components. This requires to extend
the calculation from comp1 to comp2, which would lead to
doubling the code. For such problems, we added advanced
features to WAL which allow for writing code in a generic
and flexible way.

In the next section, we introduce WAL and show that the
average latency can be easily determined using WAL.

IV. WAVEFORM ANALYSIS LANGUAGE (WAL)

First, we consider the requirements on design and imple-
mentation of the WAL DSL (Section IV-A). Then, we briefly
review symbolic expressions as proposed by Lisp, which we
extend to accommodate the specifics of WAL and the HW
domain (Section IV-B). We continue with the essential WAL
operations (Section IV-C) and WALs macro system (Sec-
tion IV-D). Finally, we close this section with a presentation
of the advanced WAL operations in Section IV-E).

A. Design and Implementation Requirements

After conceptualizing WALs functional scope and before
starting a first implementation we had to decide upon a
suitable architecture. At first glance it seems advantageous
to implement all functionality in a library of an established
programming language (i.e. Python or C) as this provides
a proven basis and is easy to pick up for most developers.
Unfortunately, this approach has significant drawbacks to the
versatility and expressiveness of WAL as all feasible languages
are geared towards general purpose computing. This means,
that expressing waveform analysis problems would require
large amounts of boilerplate code, for example “getter” func-
tions for signal access, as many waveform specific actions
are not native to the language. However, we envisioned a
system where all aspects of the waveform and HW design
domain are first-class citizens of the language. Designing

WAL as a DSL with waveform analysis in mind enables users
to directly express their problems naturally instead of forcing
their problem onto the paradigm of a different language.
Finally, even though we developed a reference implementation
of WAL from the ground up it is possible to implement WAL
on top of other programming languages (similar to languages
implemented on top of Racket [24]).

B. S-expressions and WAL Specific Syntax

Symbolic expressions (abbrev. as S-expressions), are com-
mon in languages related to Lisp, such as Common Lisp [25]
or Scheme [26]. Fundamentally, S-expressions can be of two
kinds: atoms or lists. Atoms are literals like numerical values
(e.g., 1, 0xff), string values (e.g., "text"), Booleans (e.g., #t,
#f), or symbols. Lists are multiple S-expressions separated by
white space and enclosed in parentheses (expr1 expr2 ...).
All operators and function calls are written in prefix notation,
e.g. (+ 3 b) to compute the sum of 3 and b.

A simplified definition of WALs syntax is shown in Backus-
Naur Form (BNF) form in Fig. 2. Due to space limitations,
the definitions for numbers, symbols, and strings are omit-
ted (however, they mostly follow SystemVerilog formats).
In particular, Fig. 2 focuses on the WAL specific additions
to the S-expression syntax, namely the resolved, sliced, and
timed constructs. These three special language features are
valid WAL syntax, however they are transformed into regular
S-expressions as we will shown in Table II.

Now, let us look at S-expressions in WAL, i.e. we consider
them in the context of waveforms. As a consequence, the
symbols of S-expressions are either signal names contained
in a waveform, e.g. top.module1.out, or variable names
defined in a WAL program. With respect to evaluation of an
S-expression, we define the current time index (or just index)
for a waveform at hand. In Fig. 1 this is nothing else than
the red dashed line shown at position 4. So a signal name
(symbol) is evaluated to the value of the signal at the current
time index, for instance comp1.req = 1 and comp1.ack = 0

at the current time index 4.
Besides the access to signal values, all operations tar-

geting the analysis of waveforms are integrated into WAL
S-expressions using dedicated functions. In the following
sections, we introduce these functions and demonstrate how
they allow formulating compact and easy-to-use programs for
waveform analysis.

C. Essential WAL Operations

We provide an intuitive introduction to the essential opera-
tions of WAL and therefore we incrementally develop a WAL
program to solve the latency analysis problem as presented
in Section III. For the essential WAL operations three main
categories can be distinguished: waveform handling, signal
access, and timing. As a foundation for all WAL expressions,
WAL naturally implements all basic programming constructs
(e.g. variables, loops, user functions). Table I summarizes most
WAL functions and in the following we always refer to this
table.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 4

⟨expression⟩ |= ⟨atom⟩ | ⟨list⟩ | ⟨quoted⟩ |
⟨sliced⟩ | ⟨timed⟩ | ⟨resolved⟩ | λ

⟨atom⟩ |= number | symbol | string
⟨quoted⟩ |= ’⟨expression⟩ |

‘⟨expression⟩ |
,⟨expression⟩ |
,@⟨expression⟩

⟨resolved⟩ |= #⟨expression⟩ | ˜⟨expression⟩
⟨sliced⟩ |= ⟨expression⟩[⟨expression⟩]

⟨expression⟩[⟨expression⟩:⟨expression⟩]
⟨timed⟩ |= ⟨expression⟩@⟨expression⟩

⟨list⟩ |= (⟨expression⟩⟨element⟩)
[⟨expression⟩⟨element⟩]
{⟨expression⟩⟨element⟩}

⟨element⟩ |= whitespace⟨expression⟩⟨element⟩ | λ

Fig. 2: Simplified BNF of WAL.

1) Waveform Handling: First, a waveform must be loaded
in a WAL program in order to have access to the signal values.
The load operator reads the waveform specified by the first
argument and registers it with the optional id given as the
second argument. Assume the waveform data from Fig. 1
has been dumped to the file "waveform.vcd", as a first step
we load this file into WAL under the id t as following:
(load "waveform.vcd" 't).

After a waveform has been loaded, its time index is set to
the beginning to 0, and it is available to WAL expressions.
The step operator can be used to step the time index forward
and backward by a variable amount.

For example, (step 2) increases the time index of all
loaded waveforms by 2, while (step -1) decreases the time
index of all loaded waveforms by 1.

2) Signal Access: After loading the waveform containing
the data in Fig. 1, we can start writing our WAL solution
to determine the average latency. In a first basic version of
this program, we want to detect when comp1 requests the
bus and when there is the corresponding acknowledgment.
As mentioned before, waveform signals are first-class citizens
of the WAL language. Therefore, to access the signal value
at the current time index of a waveform, it is sufficient to
write the full signal name (i.e. a global name of the form
top.sub.signal).3

In our problem, a request is said to be acknowledged when
both the req and ack signals are high. This condition can
be expressed by a Boolean conjunction of the signals comp1

.req and comp1.ack using the following WAL expression:
(&& comp1.req comp1.ack).

In the same way we describe pending requests using the
next WAL expression, when the req signal is high but the
ack signal is low:(&& comp1.req (! comp1.ack)). This time,
the signal comp1.ack is inverted using the ! function since

3It is also possible to extract specific bits from a signal value using slicing
functions.

1 (load "waveform.vcd")
2 (d e f i n e p a c k e t s 0)
3 (d e f i n e w a i t 0)
4 (whi le (s t e p 2)
5 (when (&& comp1 . r e q comp1 . ack) (i n c p a c k e t s))
6 (when (&& comp1 . r e q (! comp1 . ack)) (i n c w a i t)))
7 (p r i n t (/ w a i t acks))

Listing 1: Average Latency for comp1.

the component has not yet processed the request and thus
comp1.ack is set to 0.

If multiple waveforms are loaded, signal name ambiguities
must be resolved by specifying the waveform id in front of
the full signal name (e.g. w$comp1.req vs. w2$Top.sig). The
id in front of the name can be omitted if only one waveform
is loaded.

Average latency for Component 1 in WAL: Now, we can
combine the presented WAL functions to solve the average
latency problem of Section III for comp1. The WAL program
is shown in Listing 1. First, in Line 1 the waveform is
loaded. As we are interested in the average latency wrt. the
complete waveform, in Line 4 we step forward4 until the
end of the waveform is reached. The “core detection” of
requests and acknowledgments is performed in Line 5-6.
To compute the average latency we have to determine the
number of all acknowledged packets. This is done in Line 5,
where the variable packets is incremented when a request is
acknowledged. For this condition, we inserted the previously
introduced expression for acknowledged requests. In Line 6,
the wait variable is incremented when the component has a
pending, unacknowledged request using the other previously
introduced expression. Finally, after the end of the waveform
has been reached, we calculate the average latency using
division and print it to the standard output in Line 7.

3) Timing: Often, interesting signal relations are not lim-
ited to a single time index. For example, detecting a value
change on a signal requires observing two values of the
same signal at different time indices. This could be achieved
by temporarily storing the first signal value in a variable,
but this quickly becomes inconvenient. WAL overcomes this
problem by allowing to modify the time index of a waveform
locally for a specific expression. For this, we introduce the
relative-eval operator reval which takes a target expression
and an offset expression that must evaluate to a signed integer,
and evaluates the target expression with a locally changed
time index according to the evaluated offset expression. The
integer specifies the time offset at which the expression is
evaluated relative to the current time index. For instance,
detecting a signal value change can be expressed using the
following WAL expression: (!= (reval sig -1) sig). As
relative evaluation is commonly needed, it can be abbreviated
by appending an @ followed by an offset to any expression.
Using this shorthand syntax, the expression (reval sig -1)
can be written as sig@-1.

As an example we assume HW designers have to check
a worst-case requirement and therefore have to find pending

4The step size is 2 since we only want to sample data at positive clock
edges which in this trace are located on every other index.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 5

TABLE I: Overview of WAL functions. This overview is not complete, some functions are left due to space limitations.

Name Description Example

load Load trace into WAL, with optional trace id t (load "trace.fst" 't)
unload Remove trace with trace id t from WAL (unload t)
step Add n to INDEX (step n)
eval-file Evaluate file f and make definitions available (eval-file f)
alias Creates an alias for a signal name (alias short very.long.signal.name)
unalias Removes an alias (unalias short)
get Get value from signal specified by string or symbol (get "top.sub.ready")
reval Locally modifies INDEX and evaluates body expression (= top.signal (reval top.signal -1))
import Import external functions (e.g., from Python) (import riscv)
call Call function from imported file (call riscv.decode tb.top.instr)

+,-,*,/,&&,|| Arithmetic and logical functions (* a b (+ 1 2))
<,>,=,<=,>= Comparison functions (< 1 2)
set Define x and bind value v to it (define x v)
set Set variable x to value v (set [x v])
let Bind value v to x and evaluate body (let ([x v]) (+ x 4))

if Conditional Branch (if (< x 5) "small" "large")
when (when c b ...) equivalent to (if c (do b ...)) (when is-sending (+ acc 1))
unless (unless c b ...) eqv. to (if (! c) (do b ...)) (unless overflow "ok")
cond Tests multiple conditions and evaluates first satisfied condition (cond [sending (+ acc data)]

else can be used as a default condition [receiving (print "Received:" data)]
[else (print "waiting")])

while Evaluate body as long as condition evaluates to true (while (! receiving) (print "."))
do Evaluates all expressions in body and returns result of last one (do (set [x (+ 1 2)])

(print x)
(+ (calc-delay) x))

defun Define a new function (defun times-two [x] (* 2 x))
defmacro Define a new macro (defmacro rev-args [xs]

`(,(first xs) ,@(reverse (rest xs))))
lambda Define a new anonymous function ((lambda [x] (* 2 x)) 4)
print Prints the arguments to the standart output (print "hello" (+ 1 2))
printf Prints the arguments to the standart output depending on format

string
(printf "%s: %d" "Res" (+ 1 2))

list Evaluate arguments and put into new list (list 1 2 (+ 1 2) "abc")
length Returns the length of a list (length (list 1 2 3))
min, max Returns the min or max value of a list (min (list 1 2 3 4))
sum, average Returns the sum or average value of a list (sum (list 1 2 3 4))
map Creates a new list by applying a function to each element in a

list. Function must take exactly one argument.
(map (lambda [x] (* x 2)) (list 1 2 3))

reverse Returns the passed list in reversed order (reverse '(1 2 3))
array Create a new array, entries can be passed are tuples (array ["a" 1] ["b" (+ 1 1)])
seta Update value in an array (seta array-var "b" 5)
geta Get value from an array (geta array-var "b")
geta/default Get value from an array, if key not in array return default value (geta array-var "default" "b")
mapa Returns a list by applying function to every key-value pair in an

array. The function must take 2 arguments.
(mapa (lambda [k v] (* 2 v)) array-var)

resolve-scope Takes the argument and appends it to the current scope to form
a full signal name

(resolve-scope signal)

The shorthand for resolve-scope is ∼ ˜signal
in-scope Evaluates the body expression in a scope. Inside signals can be

scope-resolved
(in-scope 'top.sub ˜ready)

in-scopes Evaluates the body expression in all scopes (in-scopes '(top.sub1 top.sub2) ˜ready)
resolve-group Takes the argument and appends it to the current group to form

a full signal name
(resolve-group signal)

The shorthand for resolve-group is # #signal
groups Returns a list of all groups that contain the signals passed as

arguments
(groups clk)

in-group Evaluates the body expression in a group. Inside signals can be
group-resolved

(in-group 'tb.dut (print #clk))

in-groups Evaluates the body expression in multiple groups (in-groups (groups clk) (print #clk))

find Returns a list of all indices at which expression evaluates to true (find (&& top.ready top.valid))
count Counts at how many indices the expression evaluates to true (count (&& top.ready top.valid))
whenever Evaluates the body expressions at each index where the condition

is true
(whenever (&& a (! b)) (print a))

slice Returns a slice of bits from a signal. (slice top.sig 1 0)
The shorthand for slice is [h:l] top.sig[1:0]

timeframe Evaluates body expressions in a new local timeframe. (timeframe (step 10)
When the timeframe is exited INDEX is restored (print INDEX))

sample-at Sets the sampling points to the indices passed as an argument (sample-at (find (&& (! clk@-1) clk)))

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 6

1 (&& (&& comp1.req (! comp1.ack))
2 (&& comp1.req (! comp1.ack))@1
3 (&& comp1.req (! comp1.ack))@2)

Listing 2: Detecting continuous pending requests.

TABLE II: Special shorthand syntax in WAL .

Special Syntax Transformed into

'expr (quote expr)
`expr (quasiquote expr)
,expr (unquote expr)
expr@off (reval expr off)
˜symbol (resolve-scope symbol)
#symbol (resolve-group symbol)
expr[i] (slice expr i)
expr[h:l] (slice expr h l)

requests that are persisting at least three consecutive cycles.
This can be expressed as shown in Listing 2.

D. Macro System

One of the defining features of programming languages in
the Lisp family is that most of them have very sophisticated
macro systems. Compared to macros in other languages, they
are more than mere text substitution, and since they work
on S-expressions, they can operate on the real structure of
a program. Additionally, at expansion time, Lisp macros can
utilize the full language to generate code as they can be
thought of as regular functions that just return program code
which is inserted in place of the macro call. This powerful
macro system can be used to expand the language to ones
needs, for example, to define new language constructs. We
will give examples for this in Section IV-D and Section IV-E3,
respectively.

Before a WAL expression is evaluated, it is analyzed if it
contains any macro applications. If this is the case, the macro
function is called, and the macro application is replaced by
the result of the macro function.

Using the defmacro keyword, new macros can be defined.
Defining macros is very similar to defining functions, as the
defmacro function also expects a name followed by a list of
arguments while all additional arguments form the body of the
macro.

Listing 3 shows a macro that can be used to step forward
until a condition is true. Since in WAL code and data are
represented by the same data structure5, generating code is as
simple as generating some nested lists. It is important to think
about when an expression should be evaluated. If it should
be a part of the code that is generated by the macro and
not be evaluated instantly, it must be quoted using the quote

function or its shorthand '. For example, we have to quote the
(step) expression in Line 4 or else the step function would be
evaluated immediately leading to a wrong INDEX6. However,
evaluating (step) like this during the macro expansion is not
what we want, and therefore we quote it to put the expression
as a datum into the list. This way, we are able to place the

5This is called homoiconicity.
6See also Section IV-E3

1 (defmacro step-until [condition]
2 "Step forward until condition is true"
3 (list 'while (list '&& (list '! condition)
4 '(step))
5 'INDEX))

Listing 3: Defining WAL macros with the defmacro function.

1 (defmacro step-until [condition]
2 `(while (&& (! ,condition) (step)) INDEX))

Listing 4: The step-until macro with quasiquote.

(step) expression in the code the macro generates which is
now evaluated only when the generated code is evaluated and
not at expansion time. This resulting list can now be evaluated
just as if it would be read from a WAL file.

To expand a macro without evaluating the result-
ing code, for example for debugging purposes, the
macroexpand function can be used. For example, expanding
(step-until overflow) results in the following expression
(while (&& (! overflow) (step)) INDEX).

Since WAL expressions are represented by lists, macros
that expand to more complex expressions generate deeply
nested list structures. The above macro definition is very
short, however, the expression generated by the macro is hard
to read, since all nested lists are constructed manually and
so, the macro contains many calls to the list function and
many required quotations. For example, if we want to generate
an expression of the form (+ x (* y z)), were x, y, and z

are variables that contain other expressions which should be
inserted into the expression, we would have to create a nested
list by hand: (list '+ x (list '* y z)). This is hard to
read since it contains noise (e.g., the list function calls) and
it does not look like the desired result (e.g., the + operator is
not the first element in the list).

To improve the readability of macro definitions, WAL
implements the quasiquote function known from other Lisp
languages. A quasiquoted expression is evaluated like a
normal quoted expression except that sub-expressions can be
evaluated using the unquote function. Similar to the normal
quote function, quasiquote and unquote have shorthands
(c.f. Table II). Using those two functions, the previous nested
list can be generated with `(+ ,x (* ,y ,z)). The step-until
macro can now be defined much more readable, as shown
in Listing 4. Here, the quasiquoted list will be returned as
is, with the exception that the condition expression will be
evaluated and replaced by the result that was computed.

Reducing WAL core using Macros: Using the macro system
we can now implement a large part of WALs functionality
as WAL macros and functions. Instead of implementing these
functions inside a WAL interpreter, they are now implemented
in a standalone WAL program that is evaluated before a
WAL program is run. This WAL standard library significantly
reduces the complexity of WAL interpreters, and hence WAL
core, since the number of functions that have to be imple-
mented can be reduced.

Listing 5 shows two examples for WAL functions that were

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 7

1 (defmacro count [condition]
2 `(length (find ,condition)))
3
4 (defmacro cond args
5 (fold
6 (lambda [acc branch]
7 (let ([condition (if (= branch[0] 'else)
8 #t
9 branch[0])]

10 [then (rest branch)])
11 (if acc
12 `(if ,condition (do ,@then) ,acc)
13 `(if ,condition (do ,@then)))))
14 '()
15 (reverse args)))

Listing 5: Exemplary macros from the WAL standard library.

1 (cond [(= state 0x8) (print "Sending")]
2 [(= state 0x4) (print "Received:" data)]
3 [else (print "waiting")])

Listing 6: Examplary usage of the cond macro.

previously implemented inside the interpreter, but which are
now implemented as macros in the WAL standard library file.
The first macro, count, counts how often a condition is true
on the complete waveform by combining the length and find

functions of WAL. It is expanded to calculating the length of
the list returned by a call to the find function with the given
condition.

The second macro, cond, constructs nested if-else expres-
sions by iterating over the arguments given to the cond macro.
These arguments are lists where the first element is a condition
and the rest are expressions that get evaluated if the condition
evaluates to true. This macro is a good example to showcase
how macro expansions can take advantage of the full WAL
language as it uses several advanced WAL functions such
as fold, lambda, and variable assignments to generate the
resulting code.

An exemplary usage of the cond macro is shown in List-
ing 6. There, the cond macro is used to print a log message
based on a state register. Listing 7 shows the nested if-else
expressions generated by the cond macro. Every condition
of the cond macro is translated into an if-else expression
except the last one where the else condition is translated into
an always true statement, therefore, the if expression can be
optimized away.

E. Advanced WAL Operations

The expressiveness of WAL, based on the essential opera-
tions as introduced in the previous section, is sufficient for a
wide range of analysis problems. However, the applicability
of WAL can be significantly improved by adding advanced

1 (if (= state 0x8)
2 (print "Sending")
3 (if (= state 0x4)
4 (print "Received:" data)
5 (print "waiting")))

Listing 7: Expansion of the cond expression in Listing 6.

features. This allows to write much more compact, more
generic and much easier to read WAL programs.

1) Calling External Code: WAL enables developers to
write concise, powerful and easy-to-use programs for wave-
form analysis. On the other side, many problems not related
to waveform analysis (such as UI or databases) are already
available in libraries for other programming languages. Com-
bining WAL with other programming languages saves time and
helps to integrate WAL into complex work-flows. Therefore,
WAL enables users to tap into the large ecosystems of other
programming languages. Using the import function, external
code in another language7 can be imported into running WAL
programs. After importing, external functions can be called
using the call function.

2) Logical Grouping: Our example design contains two
components connected to the bus, comp1 and comp2. Both
components share wrt. the bus communication interface a
structural similarity (e.g., same signals). Coming back to our
example, the problem “How is the latency of comp1?” is also
valid for comp2 or any other component attached to the bus.
An elegant solution requires the separation of the core problem
and the concrete signal names. WAL supports writing these
separated generic expressions through a set of concepts and
functions.

First, we introduce the concept of a group. A group is
a set of signals which are semantically connected (e.g., the
signals of a bus). Groups are defined by a prefix (a partial
signal name) and a set of postfixes for which the combination
prefix + postfix results in an existing signal name for every
postfix. For example, the waveform in Fig. 1 contains two
groups, "comp1." and "comp2.", for the set req and ack. Users
can search the design for groups using the groups function
(i.e., (groups "req" "ack") for the example).

To make use of a group, it has to be captured first.
Capturing a group, defines this group as the current active
group and allows accessing signals in the group using just the
postfixes. Groups are captured using the in-group operator,
which takes a group and then evaluates the body expression.
The in-groups function works in the same way, but expects a
list of groups and evaluates the body expression once for each
of these groups. During the evaluation of the body expression
the specified group is marked as the current group (the active
Current Group is available using the CG special variable).
Accessing signals in a group just by a postfix is called
resolution. In the body of an in-group[s] expression, signal
names can be resolved using the resolve-group function. This
function takes a symbol and appends it to the captured group.
If the resulting symbol refers to an existing signal, the value
of this signal at the current time is returned. As wrapping
all signals in resolve-group function calls leads to increased
verbosity, a shorthand for this function is to add a # in front
of a symbol (cf. Table II).

WAL expressions can make use of the hierarchical informa-
tion of waveform data. The scoping concept allows evaluating
WAL expressions in selected scopes (i.e., the submodules of
the design). Scoping is available via the ˜ shorthand and the

7This is for example code in the host language of the WAL interpreter.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 8

1 (whenever bus_ready
2 (timeframe
3 (let ([id bus_id])
4 ;; step until next ready
5 (print "Request from " INDEX)
6 (step-until (&& bus_ack (= id bus_id)))
7 (print " to " INDEX))))

Listing 8: By using a timeframe, step-until does not interfere
with the whenever function.

scoping functions. Since scoping works similar to grouping,
we omit further details.

3) Timeframes: In WAL, each trace has a global INDEX

that points into the trace and thus influences which value is
returned when a signal is evaluated. Often however, programs
need to modify the INDEX while walking over the trace,
but then need to restore the original INDEX. Of course, this
behavior can also occur nested arbitrarily deep, which in turn
results in the creation of a stack-like structure. This function-
ality could be implemented without additional functions by
manually storing and restoring the current INDEX, however,
WAL aims to make describing analysis problems as easy and
the analysis code as descriptive as possible.

Take for example a bus on which multiple transactions can
be “live” at the same time, i.e. a new request can be generated
before the previous transactions are acknownleged. For this,
each transaction is tagged with a transaction id.

A WAL program to analyze a system like that is shown
in Listing 8; please ignore the timeframe function in Line 2
for now. This program visits every timepoint at which a new
transaction is seen on the bus. It then stores the transaction id
and steps forward until the transaction with this id is acknowl-
edged and prints a debug message. Now, after the program
reaches the time at which the transaction is acknowledged it
returns to the outer whenever loop, however, as the INDEX was
modified inside the previous iteration it does not continue at
the timepoint after the bus_ready signal was high but after
the transaction was acknowledged. This is a problem, since
new transactions could have been started between these two
timepoints.

To handle situations like this in a convenient way we
propose so-called timeframes. A timeframe is an environment
that stores the current INDEX for each loaded trace (accessible
inside the timeframe via TIMEFRAME-START), evaluates its
body expressions and then restores the indices back to their
original values. Now, the problem in Listing 8 can be solved
by wrapping the whenever body inside a timeframe. By this,
the INDEX is restored back to its original value when the body
of the whenever function was entered.

4) Modifying the Sampling Points: WAL makes no assump-
tions about the semantics of signals. Therefore, for example,
clk or reset signals have no special meaning that change the
behavior of WAL. However, a lot of analysis problems are best
formulated using the clock-sampled synchronous semantics
known from RTL modeling or from assertion languages.
Please recall, that the INDEX is incremented, whenever a
value changes inside a trace. Compare this to clock-sampled
semantics where users might expect that the INDEX is only

incremented for example on each new rising clock edge.
This also influences the semantics of relative evaluation. For
example, signal@-1 should now return the value signal had
at the last clock cycle.

To achieve this, we present the sample-at function which
changes at which time points signal values are sampled from
the trace and how the INDEX is calculated. This function
expects a list of indices that has to be a subset of all indices
of the loaded trace. After sample-at is called, signals can
only be read at time points that are included in this subset
of indices. Additionally, the new time points are given new
indices starting from 0. This process of changing the sample
points of a trace is shown in Fig. 3. The trace with the original
sample points above the waveform is shown in Fig. 3a (see
arrows). Please note, how each change of a signal introduces
a new sample point and a new index (see INDEX 2 for an
asynchronous new index). In this example, we want to sample
from the trace at each rising edge of the clk signal, therefore,
we get a list of all indices at which this condition is true
by evaluating (find (rising clk)). The indices that are
contained in the returned list are shown in Fig. 3b. Finally,
by passing this list to the sample-at function, we update the
sample points of the trace which results in the new indices
shown in Fig. 3c. Now, the expressions data@-1 has the
meaning of the value of the data signal at the previous rising
clock edge instead of the value of the data signal at the time
of the last signal change.

The sample-at function is not only limited to sampling
at rising clock edges. For example, in Fig. 4 we sample only
when both clk and req signals have rising edges thus, modeling
a valid transaction on a simple bus. Now, the expressions
data@-1 has the meaning of the data signal at the last valid
transaction.

V. WAL INTERPRETER

We have implemented a Python-based interpreter for WAL
which we refer to as the WAL core. WAL core is a Python
package that contains an API for WAL integration in Python
applications, a standalone interpreter to run WAL programs in
a terminal, and a Read-Eval-Print-Loop (REPL) shell for inter-
active WAL programming. WAL core can analyze waveforms
in the VCD and FST [27] formats.

The architecture of WAL core is depicted in Fig. 5. The
inputs to WAL core are user-defined analysis programs (see
top of the figure). These programs are either WAL programs
or programs in a different language that are transpiled to
WAL. In the first case, the WAL core Reader transforms
WAL programs from text form to Internal Code. The same
flow via the Reader is also possible for a Custom Frontend.
Alternatively, a frontend has the option to utilize its own
reader, generating WAL internal code directly without relying
on the Reader module in the WAL core. An example of this
approach is our Waveform AWK (WAWK) language which is
presented in detail in [10].

Next, the internal code is run through passes. In Fig. 5, these
are Macro Expansion followed by Optimization. The macro
system embedded within WAL empowers users to construct

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 9

(a) Original sample points. (b) New sample points. (c) Updated samplepoints and new indices.

Fig. 3: Changing the sample points of a trace with (sample-at (find (rising clk))).

Fig. 4: Sampling at (&& (rising clk) (rising req))).

Fig. 5: Architecture of WAL Interpreter (referred as WAL
core).

complex operations by composing simpler operations, yielding
numerous advantages across all language levels. Furthermore,
this feature facilitates the creation of libraries, amplifying the
language’s capabilities.

The result of the passes is then evaluated, i.e. executed,
by the Evaluator. The evaluator is also the place where the
execution state is stored. The execution state consists of the
loaded traces and the context which contains all the defined
variables.

WAL core is not limited to just executing WAL program
files, it also allows embedding WAL into Python programs.
Using the API of WAL core, non-trivial analysis tasks can
be easily performed in Python applications, which we demon-
strate in Section VI. In addition, WAL core provides access
to the internal WAL structures, which in combination with the
API, enable a clean interface for WAL-IR applications. Cur-
rently WAL core is not optimized for performance, however,
it is intended as an executable specification that is both easy
to understand and easy to extend to enable further research.

Further, with the macro system we presented in Sec-

tion IV-D we shifted more functionality out of WAL core to-
wards the standard library. This makes WAL core even smaller
and provides a lot of functionality defined in WAL itself which
is now ready to use in alternative WAL implementations.

VI. CASE STUDIES

In this section, we explore case studies that represent differ-
ent WAL use cases. First, in Section VI-A, we analyze the per-
formance of several RISC-V processors using WAL. We utilize
WALs strong abstraction capabilities to apply the same generic
WAL code to a wide range of RISC-V processors with only a
small amount of additional glue code. Then, in Section VI-B
we expand the scope of the analysis to the profiling of SW
running on RISC-V processors using WAL and the symbol
information contained in the application binaries. Next, in
Section VI-C we present an APB monitoring function which
can be used to perform various tasks by providing different
callback functions. Finally, in Section VI-D, we utilize WALs
macro system to create a new SQL inspired DSL which is
embedded in WAL that allows easily gathering large amounts
of data with simple queries.

A. RISC-V Performance Analysis

Since RISC-Vs introduction, we have seen an explosion of,
often freely, available RISC-V cores. However, this develop-
ment brings its set of challenges since the huge number of
available RISC-V cores, which are often highly configurable
and extensible, makes it very hard and time-consuming for
both, designers and users, to compare different cores and
core configurations against each other [28], [29]. One method
of comparing different cores are benchmark applications that
perform a set of representative computing tasks (see e.g. [30]
or [31]). They measure the run time of these tasks and typically
give a score that indicates how well a core handled the tasks.
Yet, these benchmarks are SW applications that can only
measure the performance of the core indirectly, for example
via the run time, without the possibility of directly accessing
the microarchitectural state of the core. RISC-Vs performance
counters offer another way to acquire performance information
directly from the core. However, not every core implements
the same counters, and it is difficult to add counters since this
requires changes to the microarchitecture of the core itself.

When it comes to performance analysis, waveforms can be
considered the ground truth since all metrics of either SW
benchmarks or performance counters can be recreated from the
waveform data. The waveform captures all microarchitectural
information of the processor over the complete run time of

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 10

the executed application. Based on this comprehensive data,
arbitrarily complex performance metrics can be constructed
that can measure the performance of each component of the
core in detail (e.g., the pipeline, caches, or the bus interface).

In this section, we demonstrate the use of WAL to analyze
performance metrics of various RISC-V cores. These cores
range from extremely area efficient ones [32] to pipelined
cores with higher performance and many configuration op-
tions [33], [34]. With WAL, it is possible to split the analysis
problem into a general and a core-specific part. Thus, we can
write the code in such a way that the core analysis logic is
independent of any core-specific information. In this section,
we present a generic WAL riscv-library, thanks to which
the analysis and comparison of various significantly different
RISC-V cores is possible with just a few lines of processor-
specific glue code.

1) Instructions Per Cycle (IPC): First, we analyze the
raw performance of each core in terms of executed IPC.
Since all analyzed cores are single core architectures, the best
theoretical IPC score in this case study is 1.0 instructions
per cycle. This means that the core executes and commits
one instruction in each clock cycle. However, this is almost
impossible to achieve, for example, due to branching and
memory induced delays.

The WAL program for IPC analysis is split into two separate
parts, a generic and core-independent analysis part and the
core-specific code, which has to be provided by the user.
Listing 9 shows the code for the generic IPC analysis program
in WAL. This function performs the IPC analysis for all
waveforms passed in the traces parameter. For each trace,
first, the trace is loaded in Line 3 and then the optional setup
function is called in Line 4. The optional setup and clean-up
functions can be defined by the users to perform core-specific
setup and clean operations. Then, the number of executed
instructions is calculated in Line 5 using the user-supplied is-
valid and instr-done functions (see below). The idea is to count
how often the predicates is-valid and instr-done evaluate to 1
on the waveform. Next, the resulting IPC value is calculated
in Line 6. We divide the number of total valid cycles by the
number of executed instructions, take the reciprocal value, and
print it in Line 7. Finally, the optional clean-up function is
called, and the trace is unloaded from the WAL environment
in Line 9.

To perform the IPC analysis on a new RISC-V core, users
only have to provide the two is-valid and instr-done functions.
Lines 2-5 in Listing 10 show the implementations of these
functions for the IBEX processor [33]. The IBEX processor
always sets the instr done signal inside the id stage i module
to 1 whenever an instruction is completed. Therefore, the instr-
done function only has to return the value of this signal. The
IBEX core executes instructions when the clock is rising and
reset is low, which is checked in the instr-valid function.

2) Pipeline Stall Analysis: Our WAL riscv-library also
provides a function to calculate the relative number of cycles
at which at least one stage of the pipeline was stalled. This
metric is useful, for example, to assess how efficient the
branch prediction is working. Similar to the IPC analysis
the pipeline stall function is also written in a generic way

TABLE III: Analysis results.

Core Configuration IPC Stalled Cycles

SERV servant 0.02 not pipelined

PicoRv32 default 0.24 not pipelined

VexRiscv microNoCsr 0.33 63%
VexRiscv smallest 0.33 66%
VexRiscv smallAndProductive 0.42 54%
VexRiscv smallAndProductiveICache 0.47 51%
VexRiscv twoThreeStage 0.47 48%
VexRiscv secure 0.57 42%
VexRiscv linux 0.59 38%
VexRiscv full 0.57 35%
VexRiscv fullNoMmuMaxPerf 0.63 33%

IBEX default 0.63 48%
IBEX icache 0.89 19%

TGC 3-Stage 0.61 65%
TGC 4-Stage v1 0.72 49%
TGC 4-Stage v2 0.70 45%
TGC 4-Stage v3 0.70 44%
TGC 4-Stage v4 0.68 43%
TGC 5-Stage 0.78 40%

such that new cores can be easily analyzed by providing
certain functions. Listing 11 shows the implementations for the
required is-stalled and is-valid functions for the VexRiscv
core. In Line 1, we first create a variable that will be used
to store the names of all pipeline stages that were found in
the core. This variable will be updated by the setup function
(Line 3) whenever a new trace is loaded. The number of
pipeline stages of a VexRiscv configuration pipeline can be
changed, however, our setup function will work for every
number of pipeline stages automatically since each pipeline
stage contains an “isMoving” signal.

The is-stalled function (Line 6 in Listing 11) should
return true whenever at least one stage of the pipeline is stalled.
To check this, we create a list of the states of each pipeline
stage by iterating over all stages and getting the signal value
of the isMoving signal. If this list contains a 0, we know that
one of the stages is stalled since it is not moving forward.

Finally, the is-valid function (Line 10) should return true
at each valid cycle, i.e., a rising clock edge and no reset.

3) Results: Table III shows the analysis results for multiple
open-source and commercial RISC-V cores. The name of
the core is shown in the first column and the analyzed
configuration is shown in the second column. The last two
columns contain the analysis results.

With our generic WAL riscv-library we were able to analyze
two detailed performance metrics of cores, ranging from ex-
tremely small bit-serial cores all the way to highly configurable
commercial cores [35]. Further, only a few lines of code
are required for each core to be made compatible with our
WAL riscv-library and, if written accordingly, this glue code
is applicable even to very different configurations of the same
core.

B. Waveform-based Profiling of RISC-V Binaries

In this section, we present how RISC-V binaries, that are
executed on simulated cores, can be profiled using WAL. For
this we utilize the symbol information contained in the binary
and match this information against the instructions which were
executed during simulation. The profiling is implemented as a

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 11

1 (defun calc-ipc [traces]
2 (for [trace traces]
3 (load trace t) ;; load the trace
4 (when (defined? 'setup) (setup)) ;; if defined, run setup function
5 (let ([instructions (count (&& (is-valid) (instr-done)))] ;; count num of executed instructions
6 [ipc (/ 1 (/ (count (is-valid)) instructions))]) ;; calculate ipc value
7 (printf "%40s: %15.2f\n" trace ipc) ;; print results
8 (when (defined? 'clean-up) (clean-up)) ;; if defined, run clean-up function
9 (unload t)))) ;; unload the trace

Listing 9: Generic WAL function for the IPC analysis.

1 (defun is-valid []
2 (&& (rising TOP.IO_CLK) TOP.IO_RST_N))
3
4 (defun instr-done []
5 TOP.ibex_simple_system.u_top.u_ibex_top.

↪→ u_ibex_core.id_stage_i.instr_done)

Listing 10: IBEX specific code for the IPC analysis.

1 (define stages '())
2
3 (defun setup []
4 (set [stages (groups "isMoving")]))
5
6 (defun is-stalled []
7 (in 0 (for/list [stage stages]
8 (in-group stage #isMoving))))
9

10 (defun is-valid [] (&& (rising TOP.clk)
11 (! TOP.reset)))

Listing 11: VexRiscv specific code for the pipeline stall
analysis.

Python application (an excerpt of this application is shown
in Listing 12) that handles both, the extraction of symbol
information, and the waveform analysis using WAL. First, the
application extracts function address ranges from a given ELF
binary using the nm command from the RISC-V toolchain (this
happens in the function ranges in Line 1 of Listing 12 which
we omit for brevity). All information about the functions are
stored as triples consisting of the function name, the start
address, and the end address of the function.

Next, the WAL interpreter is instantiated in Line 3 and
the simulation trace is loaded in Line 4. The analysis is
processor independent and relies on two definitions (that can
be implemented as either functions or macros) that must
be implemented for a specific core, fire and pc. The fire
definition, when evaluated, should return true when the core
finishes an instruction at the current INDEX and false otherwise.
The pc definition, when evaluated, should return the program
counter value that is associated with the currently finished
instruction. Listing 13 shows macros that implement the
required functionality for the VexRiscv processor. The core of
the profiling analysis is the function count-function (Line 8-
13 in Listing 12) which matches the current program counter
against the function address ranges read from the binary. If
the program counter lies within a functions address range, the
counter associated with this function in the dist (short for
function distribution) array is incremented.

1 functions = ranges(BIN)
2
3 wal = Wal()
4 wal.load(VCD)
5 # config script for core-specific names
6 wal.eval('(eval-file config)')
7 wal.eval('''
8 (defun count-function [addr]
9 (for [f funcs]

10 (when (&& (>= addr f[1]) (<= addr f[2]))
11 (seta dist
12 f[0]
13 (+ (geta/default dist 0 f[0]) 1)))))
14 ''')
15
16 # calculate the time spent in each function
17 dist = {}
18 instruction_executed = wal.eval('''
19 (whenever (fire)
20 (count-function (pc))
21 (inc ninstr))''',
22 funcs=functions, dist=dist)

Listing 12: Python code for function profiling using WAL.

1 (defmacro fire []
2 `(&& (rising TOP.clk)
3 (! TOP.reset)
4 TOP.VexRiscv.lastStageIsFiring))
5 (defmacro pc [] 'TOP.VexRiscv.lastStagePc)

Listing 13: VexRiscv specific code for the function profiling.

This dist array is instanciated in the Python code in Line 17
and passed as an argument to the WAL interpreter when the
analysis is performed (Line 22). By passing the array into the
WAL interpreter like this, it is placed in the WAL execution
environment and the WAL code can directly work on it. This
showcases, how WAL and Python code can interact with each
other, thus enabling developers to partition the code such that
each sub problem can be implemented in the most natural
language.

The main analysis loop is shown in Line 18-22 of List-
ing 12. This expression will traverse the full trace calling
count-function whenever an instruction is finished by the
processor. Additionally, it also counts (and returns to the
Python code as the results of the whenever expression which
is the last evaluated statement of the body) the number of
instructions that have been executed overall.

Listing 14 shows an excerpt of the profiling results, listing
the function, its address range, and the number of times an
instruction from this range was executed.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 12

1 bss_loop [0x800000cc-0x800000d8]: 11273
2 puts [0x80000e38-0x80000e78]: 9527
3 printf [0x80000d34-0x80000e34]: 7362
4 __divsi3 [0x80002ec4-0x80002f44]: 6344
5 printf_s [0x80000c40-0x80000c74]: 1565
6 printf_d [0x80000c7c-0x80000d08]: 1325
7 main2 [0x800002f8-0x80000a78]: 400
8 __mulsi3 [0x80002ea0-0x80002ec0]: 343
9 ...

Listing 14: Excerpt of profiling results.

C. Analyzing APB Interfaces

The Advanced Peripheral Bus (APB) protocol is a widely
used communication interface for low-speed devices. It is a
synchronous protocol with two independent buses, one for
reading and one for writing, which, however, cannot be used
at the same time.

In this section, we present a monitor function which can
detect events (e.g., the end of a successful write transaction)
on an APB interface. Users can specify a callback function
for any of the supported events, which is called if this event is
detected. By plugging in different kinds of callback functions
the general APB monitor can be used to perform a wide range
of tasks.

The code for the APB monitor function is shown in List-
ing 15. Five parameters are expected by the monitor-apb

function, the group of the APB bus which should be analyzed
and four callback functions.

Lines 4-12 contain the main logic of the function. Since
APB is a clock synchronous protocol, the function visits every
timestamp at which the APB clock is rising and the active-
low APB resetn signal is high. At each timestamp at which
this condition is true, the state of the bus can be detected by
observing the psel, penable, and pready signals. On Line 5
the current values of these signals are sampled and collected
into a list. Then, we pattern match this list using the case

function against three constant lists that represent the setup,
wait, and enable states of an APB bus. If the sampled signals
now match one of the three lists, the corresponding callback
function is executed, but only if a valid callback function for
this event is available. Only for the enable state on Line 8-12
the code further checks if the transaction is a read or a write
access. The main benefit of this pattern matching approach is
that it reduces the number of nested if expressions and that it
plainly documents the possible types of APB events. However,
since the monitor function is not a protocol checker, the pattern
matching also requires that the bus adheres to the specification.

Listing 16 presents three exemplary use cases for the
monitor-apb function.

APB Stream Logging: First, in Listing 16 on Lines 1-6 a
macro is defined which can be used to print a report of the
transaction on the specified APB bus g. The macro expands to
an application of the monitor-apb function, in which only the
read and write callbacks are used. For them, two lambda
functions are supplied that print a string with information
about the transaction. The other callbacks are disabled by
supplying them with zeros instead of functions.

1 (defun monitor-apb [g setup wait read write]
2 (in-group
3 g
4 (whenever (&& (rising #pclk) (= #presetn 1))
5 (case (list #psel #penable #pready)
6 [(1 0 0) (when setup (setup))]
7 [(1 1 0) (when wait (wait))]
8 [(1 1 1) (if #pwrite
9 (when write

10 (write #paddr #pwdata))
11 (when read
12 (read #paddr #prdata)))]))))

Listing 15: Generic APB monitoring function.

APB Slave Memory Restoration: Often, memories are not
dumped into waveforms due to space and efficiency reasons.
Therefore, the memory module acts as a black box since the
waveform never has its full state. However, by monitoring the
transaction on a bus it is possible to reconstruct the memory
from a certain initial state. Line 8-12 in Listing 16 show a
function that, if passed the group to an APB bus, restores the
memory content based on observed write transactions. This is
done via the array defined on Line 9. This array keeps track
of the current value of every address and is updated in the
write callback on Line 11.

APB Transaction Delay: Lines 14-25 in Listing 16 present
a function which, similar to the earlier example, calculates the
average delay on a given APB bus. This is implemented using
the setup, write, and read callbacks. The logic behind this
code is that the current timestamp (TS) is stored in the start

variable whenever the APB bus enters the setup phase (see
on-setup function on Line 17). When, either a read transaction
or a write transaction is detected the time that passed since the
last setup phase is calculated (Lines 18-19) and appended to
a list. Finally, the average of the list is computed and returned
as the result of the apb-avg-delay function. Note, that by
providing the on-enable function to only the read or write

callbacks the delay analysis can be performed for only one
transaction type if required.

D. SELECT: An Exemplary DSL Built On Macros

The ease of defining new embedded DSLs using macros
is one of the key benefits of using Lisp-like languages. They
allow lifting a problem to a much higher abstraction which
can help solving the problem in a simple and efficient way.
Further, DSLs created using macros are not to be used only
in a standalone fashion but can be naturally embedded in host
language programs.

In this section, we present a case study for SELECT, a
DSL written as a WAL macro. This DSL presents a new,
much more concise and declarative syntax for reading the
values of multiple signals at specified timestamps. In particular
SELECT, is highly inspired by the syntax and clauses of SQL
languages. The main idea behind this DSL is, that declarative
queries such as SELECT s1 s2 FROM tb.dut.core1 can be
used to get signal values from a waveform, without having
to write the WAL code that performs the required operations.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 13

1 (defmacro apb-print [g]
2 `(monitor-apb ,g 0 0
3 (lambda [addr data]
4 (printf "%4d: R(%s)=%s\n" TS addr data))
5 (lambda [addr data]
6 (printf "%4d: W(%s)=%s\n" TS addr data))))

7
8 (defun apb-restore [g]
9 (define mem (array))

10 (monitor-apb g 0 0 0
11 (lambda [addr data] (seta mem addr data)))
12 mem)
13
14 (defun apb-avg-delay [g]
15 (define start TS)
16 (define delays '())
17 (defun on-setup [] (set [start TS]))
18 (defun on-enable [addr data]
19 (set [delays (append delays (- TS start))]))

20 (monitor-apb g
21 on-setup
22 0
23 on-enable
24 on-enable)
25 (average delays))

Listing 16: APB callback functions.

Select queries support the clauses WHERE, ON, and LIMIT.
These clauses are parsed by the SELECT macro and get
expanded into the required WAL code, thus hiding the com-
plexity of writing the underlying WAL program to the user.

The code of the SELECT macro is shown in Listing 17.
First, after the select clause, the macro reads the signals
which should be contained in the result until another clause is
detected (Lines 4-6). All clauses except the SELECT clause are
optional and are initialized with sensible default values (e.g.,
when the LIMIT clause is omitted the number of rows returned
is not limited) on Lines 8-11. The resolve-signals function
is a helper function that takes a WAL expression and rewrites
it such that all selected signals are resolved in the specified
group. Then, signaltuples, a list of tuples containing the
name and the value of all selected signals, is constructed.
Afterward, the rest of the query is parsed and the remaining
default clause are overwritten if they are specified (Lines 26-
34). Finally, the code that implements the selection query is
assembled (Lines 36-44) using the clause values parsed before.

Listing 18 demonstrates how the SELECT macro can be
used to quickly get the values of some signals. In particular,
the macro allows collecting quite complex data with very little
code. In addition, the SELECT expression is much less deeply
nested than the code produced by the macro and therefore
much easier to write, especially in an interactive context like
the WAL shell. SHOW is an utility function defined in the
SELECT library which prints the result of a query as an ASCII
table.

In general, the SELECT macro is only one example for a
WAL DSL. Other examples could include a DSL that encodes
processor instructions or one that encodes network packets.
Depending on and utilizing the development context, custom
DSLs can simplify expressing problems significantly.

1 (defmacro SELECT args
2 (define signals '())
3 (while (&& args
4 (! (in args[0] '(FROM WHERE ON LIMIT))))
5 (set [signals (append signals args[0])])
6 (set [args (rest args)]))
7
8 (define group "")
9 (define condition #t)

10 (define sampling #t)
11 (define limit #t)
12
13 (defun resolve-signals [e]
14 (cond [(&& (list? e) (> (length e) 1))
15 `(,e[0] ,@(map resolve-signals (rest e)))]
16 [(&& (symbol? e)
17 (in e signals)
18 (! (in e '(TS INDEX SIGNALS CS CG))))
19 `(resolve-group ,e)]
20 [else e]))
21
22 (define signaltuples
23 (map (lambda [x] `(',x ,(resolve-signals x)))
24 signals))
25
26 (while args
27 (case args[0]
28 [FROM (set [group args[1]])]
29 [WHERE (set [condition (resolve-signals args[1])])]
30 [ON (set [sampling (resolve-signals args[1])])]
31 [LIMIT (set [limit
32 (resolve-signals
33 `(< (length result) ,args[1]))])])
34 (set [args (rest (rest args))]))
35
36 `(let ([result '()]
37 [default-sampling (find #t)])
38 (in-group ',group
39 (sample-at (find ,sampling))
40 (whenever (&& ,condition ,limit)
41 (set [result
42 (append result (array ,@signaltuples))]))
43 (sample-at default-sampling))
44 result))

Listing 17: Macro for the query language.

1 >-> (SHOW (SELECT INDEX counter
2 FROM tb.dut.
3 WHERE (> counter 3)
4 ON #clk
5 LIMIT 5))
6 +-----+-------+---------+
7 | Row | INDEX | counter |
8 +-----+-------+---------+
9 | 0 | 17 | 4 |

10 | 1 | 18 | 4 |
11 | 2 | 19 | 5 |
12 | 3 | 20 | 5 |
13 | 4 | 21 | 6 |
14 +-----+-------+---------+

Listing 18: Using the SELECT macro inside the WAL shell
(>-> is the WAL shell prompt).

VII. LIMITATIONS AND FUTURE WORK

Currently, WAL is not well integrated with established
verification and analysis frameworks such as UVM. Utilizing
WAL thus requires learning a significantly different new lan-
guage to either SystemVerilog or VHDL. However, in future
work we plan to develop a SystemVerilog bridge which will
allow verification engineers to integrate WAL into existing or
new verification setups.

Further, the current WAL reference implementation is not
targeted at production size workloads. Developing an efficient
interpreter targeted at waveform analysis opens up a range

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., ACCEPTED MARCH 2024 14

of interesting research questions, including optimizations and
data structures, which we will address in future work.

VIII. CONCLUSION

We proposed WAL, a novel domain specific language for
non-trivial automated waveform analysis. WAL is specifically
designed for waveform analysis, featuring a wide set of func-
tionalities that allow solving waveform analysis problems in a
natural and expressive way. With a macro system, a standard
library of commonly used functions, and the flexibility of the
S-expression syntax, it is straightforward to adapt WAL to
many use cases. We have demonstrated the capabilities of
WAL for design understanding and debugging in four case
studies: First, we analyzed performance metrics of several
RISC-V processors. Next, we profiled a RISC-V binary on
a waveform. Then, we presented how APB bus interfaces can
be analyzed using a flexible and reusable monitoring function.
Finally, we presented how WAL can be extended with an
embedded DSL by presenting an SQL inspired query language.

ACKNOWLEDGMENTS

This work has partially been supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper Austria.

REFERENCES

[1] X. Lai, A. Balakrishnan, T. Lange, M. Jenihhin, T. Ghasempouri, J. Raik,
and D. Alexandrescu, “Understanding multidimensional verification:
Where functional meets non-functional,” Microprocessors and Microsys-
tems, vol. 71, p. 102867, 2019.

[2] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang, “Challenges
and trends in modern soc design verification,” IEEE Design & Test,
vol. 34, no. 5, pp. 7–22, 2017.

[3] H. D. Foster, “Trends in functional verification: a 2014 industry study,”
in Design Automation Conf., 2015, pp. 48:1–48:6.

[4] B. Bailey, “Can debug be tamed?” https://semiengineering.com/
bigger-debug-challenges-ahead, 2019.

[5] J. Bergeron, Writing Testbenches Using SystemVerilog. Springer, 2006.
[6] H. D. Foster, A. C. Krolnik, and D. J. Lacey, Assertion-based design.

Springer Science & Business Media, 2004.
[7] A. B. Mehta, SystemVerilog Assertions and Functional Coverage.

Springer, 2019.
[8] M. Fowler, Domain Specific Languages. Addison-Wesley Professional,

2010.
[9] J. McCarthy, “Recursive functions of symbolic expressions and their

computation by machine, Part I,” Commun. ACM, vol. 3, no. 4, p.
184–195, Apr. 1960.

[10] L. Klemmer and D. Große, “WAL: a novel waveform analysis language
for advanced design understanding and debugging,” in ASP Design
Automation Conf., 2022, pp. 358–364.

[11] ——, “Waveform-based performance analysis of RISC-V processors:
late breaking results,” in Design Automation Conf., 2022, pp. 1404–
1405.

[12] L. Klemmer, E. Jentzsch, and D. Große, “Programmable analysis of
RISC-V processor simulations using WAL,” in Design and Verification
Conference and Exhibition Europe, 2022.

[13] S. Ray, I. G. Harris, G. Fey, and M. Soeken, “Multilevel design
understanding: from specification to logic,” in International Conference
on Computer-Aided Design, 2016.

[14] J. Zhao and I. G. Harris, “Automatic assertion generation from natural
language specifications using subtree analysis,” in Design, Automation
and Test in Europe, 2019, pp. 598–601.

[15] M. Michael, D. Große, and R. Drechsler, “Localizing features of ESL
models for design understanding,” in Forum on Specification and Design
Languages, 2012, pp. 120–125.

[16] J. Malburg, A. Finder, and G. Fey, “A simulation-based approach for
automated feature localization,” IEEE Transactions on Computer Aided
Design of Circuits and Systems, vol. 33, no. 12, pp. 1886–1899, 2014.

[17] S. Vasudevan, D. Sheridan, S. J. Patel, D. Tcheng, W. Tuohy, and D. R.
Johnson, “Goldmine: Automatic assertion generation using data mining
and static analysis,” in Design, Automation and Test in Europe, 2010,
pp. 626–629.

[18] L. Schammer, J. Runge, P. Klimach, and G. Fey, “Design understanding:
Identifying instruction pipelines in hardware designs,” in International
Conference on Modern Circuits and Systems Technologies, 2022, pp.
1–6.

[19] A. Gascón, P. Subramanyan, B. Dutertre, A. Tiwari, D. Jovanović,
and S. Malik, “Template-based circuit understanding,” in Int’l Conf. on
Formal Methods in CAD, 2014, pp. 83–90.

[20] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA: Using reverse
engineering to bring light into backward rewriting for big and dirty
multipliers,” in Design Automation Conf., 2019, pp. 185:1–185:6.

[21] M. Soeken, B. Sterin, R. Drechsler, and R. K. Brayton, “Reverse
engineering with simulation graphs,” in Int’l Conf. on Formal Methods
in CAD, 2015, pp. 152–159.

[22] IEEE Standard for Universal Verification Methodology Language Ref-
erence Manual, IEEE Std. 1800.2-2020, 2020.

[23] IEEE Standard Verilog Hardware Description Language, IEEE Std.
1364-2001, 2001.

[24] “Racket language extensions,” https://docs.racket-lang.org/guide/
hash-languages.html, Accessed: 2023-07-03.

[25] “Common lisp hyperspec,” http://www.lispworks.com/documentation/
lw50/CLHS/Front/Contents.htm, Accessed: 2023-07-03.

[26] “R7rs scheme,” https://small.r7rs.org/, Accessed: 2023-07-03.
[27] A. Bybell, “Implementation of an efficient method for digital wave-

form compression,” https://gtkwave.sourceforge.net/gtkwave.pdf, Ac-
cessed: 2023-03-27.

[28] Dörflinger et al., “A comparative survey of open-source application-class
RISC-V processor implementations,” 2021, p. 12–20.

[29] E. Sperling, “Which processor is best?” https://semiengineering.com/
which-processor-is-best, 2022.

[30] D. Patterson, J. Bennett, C. G. P. Dabbelt, G. Madhusudan, and
T. Mudge, “Embench™: A modern embedded benchmark suite,” 2020.

[31] EEMBC, “Coremark,” https://www.eembc.org/coremark/, 2022.
[32] “SERV,” https://github.com/olofk/serv, Accessed: 2023-07-03.
[33] “IBEX,” https://github.com/lowRISC/ibex, Accessed: 2023-07-03.
[34] “VexRiscv: A FPGA friendly 32 bit RISC-V CPU implementation,”

https://github.com/SpinalHDL/VexRiscv, Accessed: 2023-07-03.
[35] “Minres - The Good Core,” https://www.minres.com/products/

the-good-folk-series/, Accessed: 2023-07-03.

Lucas Klemmer (Studen Member, IEEE) is a PhD
student at the Institute for Complex Systems at
the Johannes Kepler University in Linz, Austria.
His interests include (formal) hardware verification,
computer architecture, open-source EDA tools, and
novel applications of SMT solvers.

Daniel Große (Senior Member, IEEE) is a full
professor at the Johannes Kepler University Linz,
Austria, since 2020, where he is the head of the Insti-
tute for Complex Systems (ICS) as well as the head
of the “LIT Secure and Correct Systems Lab”. His
current research interests include verification, virtual
prototyping, debugging, synthesis and RISC-V. He
published over 170 papers in peer-reviewed journals
and conferences. He served in program commit-
tees of numerous conferences, including ASP-DAC,
DAC, DATE, ICCAD, CODES+ISSS, GLSVLSI,

FDL, and MEMOCODE. He received best paper awards (FDL 2007, DVCon
Europe 2018, ICCAD 2018, FDL 2020 and FDL 2022) as well as business-
related awards (IKT Innovativ Award 2013, Weconomy Award 2013, and
Embedded Award 2014).

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3387312

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

