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Abstract—The pursuit of accurate diagnosis with good reso-
lution is driven by yield learning during both early bring-up
and production excursions. Unfortunately, fault callouts from
diagnosis tools often render poor resolution that hinders the
follow-up failure analysis. In this work, we propose a method
that significantly improves diagnosis. By modeling the logic
circuits under test as graphs, the method employs graph neural
networks to determine each fault candidate from the diagnosis
callout as either the true fault or the false candidate. This
novel deep learning method mainly makes full use of circuitry
topology with underlying structural information, which was
largely ignored or insufficiently analyzed by previous approaches.
Other contributions include the finding of the dependency among
candidates that can be leveraged to improve diagnoses. Extensive
experiments on various benchmark circuits including industrial
designs demonstrate that the diagnostic resolution can be im-
proved by 4.51× compared with a fault simulator-based diagnosis
tool, and increased by 5.98× compared with one state-of-the-art
commercial diagnosis tool. Moreover, experiments also reveal that
our method can successfully identify 62.96% of true candidates
that were originally not given high priority by the commercial
tool (non top-scoring candidates). This means our method can
rectify the existing commercial diagnosis for better characterizing
failure Pareto, in addition to boost diagnostic resolution.

Index Terms—diagnosis, resolution, candidate dependency,
graph neural networks, machine learning, transfer learning

I. INTRODUCTION

Chipmakers are always concerned about yield, especially
when faced with surging demand during this worldwide short-
age of semiconductors. Yield refers to the fraction of chips
passing the tests out of the entire batch of fabricated chips.
Failing chips from any test stage decrease the yield. Defect
identification with characterization of failure mechanisms is
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therefore highly demanded towards achieving profitable yield
levels, during both early ramping and volume production. For
this aim, design houses, along with semiconductor foundries,
usually perform logic diagnosis on the failing chips prior
to the more expensive and time-consuming physical failure
analysis (PFA). As a software-based analytics, diagnosis uses
the applied test patterns, the circuitry description, and the
fail data. A typical commercial diagnosis tool returns one or
more defects inside failing ICs, with possible failure behaviors
(described by fault models) and netlist locations. Effective
diagnosis increases the chance of success for performing PFA
on the selected failing ICs, especially those fabricated through
modern manufacturing process nodes.

An ideal diagnosis has two important facets, i.e., remarkable
accuracy and good resolution. Accuracy means the actual
faulty sites are indeed included in the callouts. Good reso-
lution, a key metric for evaluating diagnosis quality, means
the number of reported defect candidates is small. A perfect
resolution is one correct candidate per defect. This best-case
scenario is termed as a 100% precise call or a home run [1].

The definitions of resolution vary among literature. Gen-
erally, they can be put into two categories. In this work,
resolution is defined as the number of candidates in the fault
callouts reported for each defect, which is consistent with
[2–5]. The range is ≥ 1, the smaller the better. Conversely,
resolution can be defined as the inverse form, which is the ratio
of each defect to the number of reported candidates [1][6].
The range is (0, 1], meaning the larger the better. For both
definitions, 1 is the perfect resolution.

Yield learning requires good diagnostic resolution for post-
silicon simulation and debug. First, good resolution helps
guide a successful PFA. Due to the limited and expensive
nature of PFA, only a handful of failing chips per week from
a production lot can eventually go through PFA. Besides,
PFA is destructive to a chip, which suggests that there is
no second chance if the targeted defect is not verified or
caught by PFA. Prior to allocating PFA resources appropri-
ately, failing chips should be adequately diagnosed to reveal
possible silicon sites regarding manufacturing defects. Second,
good diagnostic resolution is beneficial for the follow-up
failure analysis, especially during volume diagnosis [7–9] to
uncover the root causes for plotting a failure Pareto. Third,
diagnosis can be leveraged to measure the effectiveness of test
generation [10][11], preventing potential failures (functional
bugs or manufacturing defects) from escaping into the released
integrated silicon system.

Poor diagnostic resolution may happen due to various
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reasons, such as aliasing risk [9][12]. The effectiveness of
production test is also among the reasons. Because chip testing
is expensive, the amount of applied tests and test-response
data-volume are usually limited to save cost, although they
should be sufficient to allow a quality diagnosis [13]. In
addition, using EDA tools to perform physical design as
well as post-silicon simulation of modern chips are becoming
increasingly challenging nowadays. Expertise and tool costs
can become the barrier [14][15]. On the other hand, the tools
and their fault models may be immature due to the fast
development of semiconductor technology.

Previous methods improve diagnostic resolution by opti-
mizing the quality and ordering of test patterns [11][16][17],
the collected amount of test-response data [18] and failure
logs [19]. Commercial tools have been developed to gather
more relevant details in addition to logic netlist for better
resolution, such as cell-aware information and layouts. More
recently, machine learning (ML)-based approaches have been
proposed for improving diagnostic resolution (IDR) [1–
5, 7, 8, 13, 18]. One big advantage of these ML approaches
is that ML is good at fast modeling and building statistical
models to reason correlations among observed symptoms,
physical defects, fault models, etc. They can be hard for
reasoning from first principles.

In this work, we propose a framework called GRAND
(GRAph Neural networks for Diagnosis) that significantly
boosts both diagnostic resolution and accuracy. GRAND
mainly makes full use of circuitry topology with underly-
ing structural information, which was either ignored or in-
sufficiently analyzed by previous approaches. Graph neural
networks (GNNs) are employed and properly configured to
determine each fault candidate from the diagnosis callout as
either the true fault or the false candidates. False candidates
are then discarded to improve diagnostic resolution. Extensive
experiments demonstrate that the diagnostic resolution can be
improved by 4.51× compared with an in-house diagnosis tool,
and increased by 5.98× compared with one state-of-the-art
commercial diagnosis tool. Moreover, experiments also reveal
that GRAND can successfully identify a significant portion of
candidates that were originally not given high priority by the
commercial tool (contained in the fault callouts but marked
with low match scores).

GRAND is the first GNN-based methodology for IDR. GNN
combines the advantages of graph analytics and deep learning.
Graph contains geometric and topological information. With
circuit modeled as graphs, deep learning can have complete
and direct access to the nets inside chips, allowing a closer
examination to each candidate. Previously, the granularity of
deep learning in test and diagnosis is at die or device level [20]
[21]. Deep learning effectively automates most part of feature
extraction to learn more rich features (called embeddings),
which are more expressive towards candidate classification.
Other main technical contributions are:
• The finding that there exists dependency among candi-

dates. It is quantified to derive initial node features that
is later used by GNNs to identify true candidates.

• A comprehensive exploration of GNN architectures. We
analyze and compare major GNN algorithms, configured

with directed/ undirected/ bidirected graphs, and with
different layer numbers to find out the best suitable one
for improving diagnosis.

• In addition to boost diagnostic resolution, GNN modeling
in GRAND creates more opportunities for improved
diagnosis. For example, GNN-enabled transfer learning
is explored to demonstrate that failure information from
other chips or defects can be shared for better diagnoses.
Moreover, GRAND can rectify the imprecise candidate
scoring rendered by existing commercial diagnosis.

The rest of this paper is organized as follows. In Section II,
preliminary material about graph neural networks is intro-
duced. Section III describes how to use GRAND to analyze
the candidates produced by diagnostic tools and determine
their true/ false property. Section IV describes the ability of
GRAND to handle some real-world cases. Section V presents
the experiment results. Section VI concludes the paper.

II. BACKGROUND

For a failing chip, software-based logic diagnosis produces
a list of net locations that are assumed to be suspect of
defected site(s). These nets, oftentimes listed with additional
description such as fault models and match scores, are called
candidates. A match score is a ratio based fraction (≤ 1),
calculated as a function of the following counts: test pass
simulation fail (TPSF), test fail simulation pass (TFSP), and
test fail simulation fail (TFSF) [4, 5, 9, 22]. Intuitively, the
score reflects how well fault model-based simulation results
match the actual tester responses.

The problem of IDR is to reduce the number of top-scoring
candidates produced by logic diagnosis, while retaining the
ones that do give clues to actual defects. This task can be
modeled as a binary classification problem in ML. The object
is to classify each candidate as either true or false. The true
label means the candidate net is indeed where the defect
locates; a false label means the corresponding candidate points
to somewhere else. Eliminating false candidates from the fault
callout improves resolution, and saves efforts from failure
analysis in the downstream flow (such as PFA).

To shorten the time-to-market during the early bring-up
stage, volume diagnosis is expected to identify the root causes
that explain the majority of the yield losses. Post-silicon debug
is sometimes more concerned with particular types of defects
than others. Previous examples include cell defects [23] and
bridges [24], though they are design and process dependent
and should be decided on a case by case basis. In addition,
resolving systematic issues from manufacturing or design also
accelerate yield ramping.

Existing methods extract neighborhood information of a
candidate for IDR [4, 6, 25, 26]. The neighbors of a candidate
refer to the nets that are close or relevant to this candidate.
Specifically, nets that are in proximity to the candidate are
termed as physical neighbors. In practice, they are the nets
within the radius of a predetermined distance (such as 45 nm)
centered at the candidate site from the same metal or silicon
layer. Comparatively, logical neighbors are the side inputs
and drivers of a candidates. Neighborhood information can
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Fig. 1. Work flow diagram. GRAND starts with the fault callouts produced
by a diagnosis tool. If the resultant resolution is above a certain threshold,
GRAND is invoked. It transforms circuit netlists to graph representations.
Next, candidate dependency and initial node features are derived. Customized
GNN is then trained to compute the true/ false labels of candidates for IDR.

be leveraged to identify false candidates. A defect often has
an impact on both the logical netlist and the physical layout.
In most cases such impact does not limit to one single net
(i.e., the true candidate). Neighbors of a true candidate may
exhibit particular behaviors if stimulated by certain input test
patterns. Therefore, neighborhood can help verify the existence
of a defect at a candidate site.

Graphs are natural representations of many real-world enti-
ties. In EDA field, previous works have attempted to model ob-
jects as graphs in order to find design and test solutions, such
as hypergraph partitioning in VLSI design [27][28], Boolean
circuit manipulation [29], hardware reverse engineering [30],
and test-point insertion [31].

Graph neural networks (GNNs) have emerged as a new
and hot research topic in ML for the past couple of years.
Previously, most data utilized in ML has to be in the Euclidean
domain [32]. Graphs are typical non-Euclidean[33], calling
for new and adapted deep learning paradigms. GNN algo-
rithms adopt techniques from both deep learning and graph
theory, and quickly attract much attention. They have been
applied to optimize design and test solutions from frontend
to backend flow [34], including tier partitioning [35], timing
model selection [36], testability analysis [37][38], placement
and routing[39, 40], and power estimation [41].

To the best of our knowledge, GRAND is the first GNN-
based EDA technique proposed for diagnosis. GRAND is
entirely different from all the existing works using GNNs,
including the adjacent research area on test [34][37][38]. We
name a few among the many differences. For example, unlike
the method in [37] uses directed graphs to classify a netlist
node as difficult-to-observe or easy-to-observe, GRAND uses
undirected graphs to determine whether a candidate is true
or false. In addition, GRAND is powered up by advanced
ML strategy (transfer learning) for more potential tasks. The
method in [38] builds pre-trained models for downstream
tasks. Such interest of pre-trained models is similar from do-
mains like natural language processing. However, pre-training
does not fit into diagnosis. Controllability and observability
are rather static for testability analysis. A fault (defect) may
change the netlist (layout) of a circuit drastically into an
entirely different one with hard-to-predict output behavior,
making pre-training effort vanish into thin air. Section III has
more details on GRAND’s methodology.

III. GNN MODELING AND LEARNING

This section describes GRAND. As depicted in Fig. 1,
GRAND functions as an adds-on toolkit, rather than being
orthogonal to the established approaches based on diagnosis
tools. GRAND improves diagnoses by analyzing the input
fault callouts produced by a diagnosis tool, hence can be easily
incorporated into industrial post-silicon debug flow.

A. Circuits to Graphs

A circuit can be represented as a directed or an undirected
graph by GRAND, as illustrated by Fig. 2. Nets correspond to
the edges in a graph. Primary inputs (PIs) and logic gates are
represented by nodes. Aside from this, for branch structures,
GRAND creates an extra virtual node on each branching net
to distinguish between them and the stem. Fig. 2 (a) shows a
circuit and Fig. 2 (b) shows how to model the circuit into a
directed graph. If the arrows are ignored, the graph becomes
an undirected one. Gate G3 has two branches connected to
G6 and G7. Hence two virtual node are added as G3 → G6
and G3→ G7, respectively.

I1

I2

I3
I4

I5

O1

O2

G1 G2 G3

G4

G6

G7

G8G5

(a) Circuit

I1 G1

I2

G2 G3 G7

G6I3

I4

I5

G4

G5 G8

G3-G7

I3-G3 G3-G6

I3-G4

(b) Graph

Fig. 2. Example of representing a logic circuit as a graph.

Unlike [38] and [37] where circuits are put into directed
graphs only, GRAND also considers undirected graphs. This
is intuitively because for test-point insertion or automatic test
patter generation (ATPG) problems, signals are propagated
forwards from primary inputs towards outputs. For diagnosis,
however, neighborhood nets are considered meaning informa-
tion from backward direction is also required. Hence, both
directed and undirected graphs are examined in GRAND.

In effect, creating virtual nodes for branch structures as the
above is the same as a diagnostic tool does [22]. Based on the
produced diagnosis reports, it treats branches separately as if
they were logic gates by themselves. Some fault simulators and
ATPG tools also have similar treatments. Except for the branch
structures, everything else in the logic circuitry is remained un-
altered in GRAND. The work in [38] modifies a reconvergence
structure in a circuit by adding a skip connection. GRAND
does not adopt such design because it is apt for testability
analytics but not for diagnosis1.

B. Node Features and Candidate Dependency

After converting logic circuits into graphs, GRAND con-
structs the initial features based on circuit structure, fault
simulation results, and diagnosis reports for each node in a

1Otherwise an added skip connection itself can become a candidate in the
fault callout.
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TABLE I
INITIAL NODE FEATURES SPECIFICATION

No. Feature Description
1 depth_input Maximum No. of gates passed by from the inputs of the circuit to this gate
2 depth_output Minimum No. of gates passed by from this gate to the outputs of the circuit
3 candidate_flag Indication of whether the node is a candidate or not
4 consistent_num Sum of the number of consistent states of a candidate in the diagnosis report
5 inconsistent_num Sum of the number of inconsistent states of a candidate in the diagnosis report
6 candidates_num No. of candidates included in a diagnosis report
7 dependency_level No. of candidates in the longest dependency chain starting from this candidate
8 dependency_num No. of dependency chains starting from this candidate

TABLE II
EXAMPLE OF INITIAL NODE-FEATURE GENERATION FOR CANDIDATES

Candidate locations Logic neighbors Failing states #Failings Passing states #Passings Initial node features

G1 I1, I2
0 1 2 0 1 3

1 3 1 6 5 4 4 2
0 0 1 1 0 5

G2 I2, I3→G3, G1, G4 0 0 1 1 5 1 0 0 1 6 2 2 1 11 0 4 3 2
G3 I3→G3, G2, G4 0 0 0 10 1 1 1 1 3 1 1 11 0 4 0 0
G4 I3→G3, I3→G4, I4, G2 0 1 0 7 1 0 1 4 1 2 1 11 0 4 3 2

graph. Altogether eight features are designed to form an eight-
dimensional vector. Table I describes the features. Table II
gives an example of the initial node features calculated based
on the circuit in Fig. 2. In this example, the initial fault
diagnosis reports four suspects {G1, G2, G3, G4} as the
candidates, produced by a set of 11 tests.
depth_input and depth_output describe the logic

levels of a gate, represented by a node according to Sec-
tion III-A. The depth_input of a gate is the same as level or
level number defined in [12], which is the maximum number of
gates of its multiple inputs, starting from the circuit PIs to this
gate. For example, the depth_input of G1 is 1, whereas the
depth_input of G2 is 2 (the longer one of the two paths
starting from I1 and I2). Similarly, depth_output of a gate
is the minimum number of gates from its output the primary
outputs of the circuit. Because virtual nodes are created for
branches, their depth_input and depth_output are the
same as their stem.
candidate_flag provides an indication of whether the

node is a candidate or not. If yes, this feature bit is set to 1.
Otherwise, it is 0. candidates_num is the total number of
candidates included in a diagnosis report.
consistent_num and inconsistent_num specify

the stats for logical neighborhood states [4, 5, 25, 26]. The
logical neighborhood of a candidate are its drivers and side
inputs. The candidates and their corresponding logical neigh-
bors are listed in the first two columns in Table II. For a
candidate, a neighborhood state is a set of logic values on
its neighborhood gates, given an input test pattern. If a test
passes (fails), the state on the candidate’s logical neighborhood
is a passing (failing) state. If a state appears in both the
passing states and failing states, the state is inconsistent. On
the contrary, if a state only appears in either failing states or
passing states, the state is consistent. consistent_num and
inconsistent_num thus record the numbers of consistent
and inconsistent states occurring at each candidate, respec-
tively.

Previous works show that, in most cases, the same neighbor-
hood state should not exist for both passing and failing states
[4, 6, 25, 26]. While consistent neighborhood states do not
guarantee a candidate to be true, inconsistent states provide
a strong indication of the existence of false candidate. Hence
GRAND leverages them for IDR.

GRAND establishes the concept of candidate dependency
for the first time. If a candidate x exists in the logical
neighborhood of another candidate y, there is a dependency
chain defined as x → y. GRAND also quantifies such
dependency so that it can be used for GNN-based IDR.
The dependency_level of a candidate is the number of
candidates in the longest dependency chain starting from it.
The dependency_num of a candidate is the number of
dependency chains. For example, there are two dependency
chains that start from candidate G2, which are G2 → G4 →
G3 and G2 → G3. The former is the longer one con-
taining three candidates, hence dependency_level = 3,
dependency_num = 2.

For nodes that are non-candidates, depth_input and
depth_output remain the same as the first two rules in
Table I. candidate_flag is set to 0. Although the rest
five features are originally defined for candidate nodes, they
still need to be assigned values so as to allow node-information
propagation and aggregation over a graph. Here they are gener-
ated via a random sampling from an uniform distribution with
range 0 to 0.1 (∼ U(0, 0.1)). Other configured distribution that
generates small and random numbers, such a random Gaussian
G(0.05, 0, 1), will also do.

In practice, missing values or incomplete logs may happen
due to various reasons, from inadequate file manipulation
to fail data collection exceeding ATE buffer size. To treat
incomplete data or fault callouts that are fragmented, one may
resort to general-purpose feature engineering methods, such
as label imputation and feature-selection-based techniques
described in [42], to reconstruct the feature matrix for handling
the missing-value problems.
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C. Candidate Classification via Graph Neural Networks

Two most commonly used GNN algorithms are presented in
this section relating to candidate classification for IDR. Some
frequently used notations are provided in Table III.

TABLE III
FREQUENTLY USED NOTATIONS RELATED TO GNNS

x
(l)
i The l-th layer embedding of node i.

X(l) Layer-l embeddings of N nodes in a graph, X(l) ={
x
(l)
1 ,x

(l)
2 , · · · ,x(l)

N

}
.

A The adjacency matrix of the graph.
D A diagonal matrix D = Dii =

∑
j Aij .

IN An N ×N identity matrix.
W A weight matrix to be learned through GNN training.
N (i) A set consists of neighbors of node i.
L A Laplacian matrix, L = IN −D− 1

2AD− 1
2 .

Λ A diagonal matrix whose diagonal elements are
eigenvalues of Laplacian matrix L.

(1) Graph Convolutional Network (GCN)
Graph Convolutional Network (GCN) [43] makes use of

convolution operation. The idea is motivated by convolutional
neural networks, which excels at building multiple network
layers to extract useful information from data. The convolution
operation on graph is defined as:

Fθ ∗ x = UFθU>x (1)

where Fθ is a filter function with θ as the parameter, and ∗ de-
notes the convolution operation. x represents the feature values
of a node in the graph. U is the eigendecomposition matrix
of the normalized graph Laplacian L = IN −D−

1
2AD−

1
2 =

UΛU>, UT is the transpose matrix of U .
Performing Laplacian matrix decomposition on large graphs

can be expensive. To ease the computation burden, the filter
function Fθ can be approximated by Chebyshev polynomial
Tk(x) [44]. The polynomial approximation allows Eq. (1) to
be reformulated as Fθ′ ∗ x ≈ θ′0T0(L̃)x + θ′1T1(L̃)x, where
T0(x) = 1, T1(x) = x, L̃ = 2

λmax
L − IN . λmax means the

maximum in all eigenvalues of L. Further reduction of com-
putation can be done by setting λmax = 2 and θ′0 = −θ′1 = θ,
which leads to a more concise formulation as

Fθ ∗ x ≈ θ
(
IN +D−

1
2AD−

1
2

)
x (2)

By replacing (IN +D−
1
2AD−

1
2 ) in Eq. (2) with D̃−

1
2 ÃD̃−

1
2

(Ã = A+ IN , D̃ii =
∑
j Ãij), the output of a graph with N

nodes of dimensionality d can be collectively represented in
an iterative form,

X(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2X(l)W(l)

)
(3)

where W(l) ∈ Rd×S is a matrix of filter parameters θ’s; l
denotes the lth layer; σ(·) is a ReLU activation function. The
features of a node after layer-by-layer convolution is a vector
of length S, called a node embedding. The output X(l+1)

consists of a set of vectors in embedding space of N × S,

which are the deep features learned by the network model
through training.

In GRAND, GCN is configured with two convolutional
layers to handle undirected graphs, by setting l = {0, 1}.
l = 0 means the initial feature vector of node i. Nodes within
a two-hop logical neighborhood are considered. In this way,
the neighborhood scope is extended in a controlled way. We
set d = 8 for the initial eight-dimension feature according to
Section III-B, and S = 32 for node embedding length. The
obtained node embedding X(l+1) are fed into a fully connected
layer for binary classification task to determine the true/ false
label of a candidate node.

For a binary classification problem, the loss function of
GCN (and GraphSAGE) is the cross-entropy given as,

Loss = −
∑N
i=1
{yi ln(Pi) + (1− yi) ln(1− Pi)} (4)

where N is the number of nodes in graph, yi is the true/ false
label of node i, and Pi is the probability GCN predicts node
i to be 1. Pi is calculated as,

Pi =
exp(Wfcxlasti + bi)1

exp(Wfcxlasti + bi)0 + exp(Wfcxlasti + bi)1
(5)

Wfc are the weights for the fully connected layer with a size
of 2× 32. xlasti is the last layer embedding of node i of size
32×1. bi is a bias of size 2×1. The subscript 1/0 denotes the
output from the fully connected layer is 1 or 0, respectively.

(2) Graph SAmple and aggreGatE (GraphSAGE)
The second GNN algorithm on our menu is Graph SAm-

ple and aggreGatE (GraphSAGE) [45]. Unlike GCN, which
requires the computation of a huge Laplacian matrix L de-
rived from the entire graph, GraphSAGE examines the local
topology with node attributes during training. GraphSAGE is
thereby more efficient for handling large graphs. Besides, it is
able to analyze both directed and undirected graphs.

GraphSAGE considers the dynamic process of node-
information propagation and aggregation on a graph. Given
a circuitry represented by a graph following the modeling in
Section III-A, the feature information of a node i can be propa-
gated through its edge connections so that other adjacent nodes
will not only possess their own information but also receive
the information from node i. As the propagation progresses,
a wider range of nodes will receive the information from
node i. During one iteration of propagation (called one hop in
GNN), a node aggregates the information, which is either the
initial features (d dimension) or the aggregated values from
the previous iteration(s). Such process is repeated until the
accumulated iteration numbers exceeds a pre-determined limit
or the node feature values are convergent. The final result is
the node embeddings that can be fed into a fully connected
layer for classification.

The output of GraphSAGE can be defined as

x
(l+1)
i = Wx

(l)
i + WN ·meanxj∈N (i) x

(l)
j (6)

where xi is the feature vector of the node i; xj are the
neighbors of node i; W and WN are two weight matrices.
mean is an aggregation operator, which sums up the values
of nodes in the neighborhood N (i) of node i, and computes
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an averaged value. Similar to GCN, we found a two-layer
GraphSAGE model (l = {0, 1}) best suitable for the candidate
classification task here.

D. Design Exploration of GNNs for Diagnosis

GNNs enable deep learning to play a full part in studying
geometric data that describes non-Euclidean domains, such
as graphs [32]. The success of GNNs in many applications
has two significant implications towards IDR tasks. (1) We
can train powerful deep learning models for prediction tasks
using citcuit-to-graph data. (2) Useful features containing
topological information can be extracted in a more automatic
and effective fashion.

Previously, designing features manually based on statistics
or heuristics takes a significant portion of the workflow in
ML-based diagnostic enhancement [2–5, 18]. This is non-
ideal since in an efficient EDA flow, "no human in the loop”,
"self-driving tools and flows” , and "24-hour turnaround time”
are desirable [15]. Aside from human involvement, manually
created features encode much belief from the designers or
engineers. As a result, they can be biased or incomplete,
especially when most of these features are countings [4][18].

GNN algorithms start with a few initial features as described
in Section III-B, and subsequently obtain more features (i.e.,
the node embeddings) based on topological structures and deep
learning operation. The feature extraction part demands much
less manual effort and is comparatively more objective.

Fig. 3 illustrates two GNN algorithms, using the example
from Fig. 2. Suppose node G3 is a candidate, which is treated
as a target node marked in red. One-hop and two-hope nodes
from the target node are colored in blue and yellow, respec-
tively. Untouched nodes are denoted by gray. GraphSAGE in
Fig. 3 (b) shows its sampling functionality by choosing two
out of the five neighbors. GCN is originally developed for
undirected graphs. On the other hand, GraphSAGE can work
on both directed and undirected graphs. For directed graphs,
the collection of neighbors only contains the predecessors of
the target node G3 while its fan-outs are excluded.

candidates1-hop neighbors 2-hop neighbors

I1 G1

I2

G2 G3 G7

G6I3

I4

I5

G4

G5 G8

G3-G7

I3-G3 G3-G6

I3-G4

(a) GCN

I1 G1

I2

G2 G3 G7

G6I3

I4

I5

G4

G5 G8

G3-G7

I3-G3 G3-G6

I3-G4

(b) GraphSAGE

Fig. 3. GCN uses undirected graphs. GraphSAGE can work on both directed
and undirected graphs. Hops extend the neighborhood scope of a candidate,
from logical neighbors to including topological neighbors.

In addition to both undirected and directed versions of
GraphSAGE (where undirected GraphSAGE is better from
experiments), we also examine the bidirectional GraphSAGE.
The experiments indicate that undirected graphs are the most
efficient models that consider messages from both directions.

Also, they focus on connectivity and topology information
instead of directional information. GCN and GraphSAGE
are explored because they represent two typical examples
of GNNs. GCN emphasizes local topology since each node
receives messages from all its neighbors. On the other hand,
GraphSAGE takes a sampling approach and therefore the
features are more global.

Topological neighbors in GNN algorithms are different
from logic neighbors, in terms of node adjacency and propa-
gation scope. Based on Table II, logic neighbors of G3 include
G2, G4, and I3 (the I3−G3 branch). GCN visits all of G3’s
adjacent nodes. These five nodes are one-hop away colored
by blue in Fig. 3 (a). GraphSAGE samples two of them as
illustrated in Fig. 3 (b). Besides, nodes are two-hops away
are also considered. Their feature values affect the target node
through message passing, and are affected by the target node
as well. GNN extends the neighborhood scope of a candidate
by hopping to encompass all the relevant nets that may help
identify whether the candidate is true or false.

GRAND choose to use two layers in the GNN architectures.
A larger search hop does not help in the diagnosis problem.
Large hops jump out of the scope of neighborhood, but only
nearby neighborhood information of a suspect can really help
verify the existence of a defect at a candidate site or not.
Please refer to [4–6, 25, 26] for the explanations and reasoning
regarding neighborhood sites and scopes in failure diagnosis.
Such fact is also evidenced by experiments in Table V. One
more advantage of our two-layer GNN architectures is related
to the over-smoothing issue. Smoothing is the nature of GNNs
as long as they follow the message-passing regime. In partic-
ular, even in directed or bidirected graphs, the propagation
of messages will dilute the effective information contained
in each node feature [46][47]. In any case, our GNNs do not
suffer from over-smoothing since two-layer GNN architectures
are employed rather than multi-layers.

IV. FAILURE INFORMATION SHARING

Up to this point, all previous discussion is based on the
assumption that there is a sufficient amount of labeled data
samples for training GNN models. However, labeled samples
are not always available, especially in test and diagnosis. Ver-
ifying the true/ false label of each candidate can be expensive
or simply unfeasible. Even without considering the resources
and development time, PFA may result in a failure, providing
little information to label candidates. Hence, it is desirable to
empower GRAND with the ability to draw inferences from
other definite failure knowledge, where candidates and their
true/ false labels are available and correct.

For this aim, transfer learning is introduced to expand the
capability of GRAND. In a generic setting of transfer learning,
data samples come from two domains. The one has original
labels for samples is the source domain. The one lacking of
labels is the target domain. The purpose is to train a ML model
that predicts the labels for the target-domain samples. The
task is difficult because typically supervised learning requires
the presence of labels for training. Directly obtaining labels
for the target domain is costly or impossible. Therefore, the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2023.3336212

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



WANG et al.: GRAND: A GRAPH NEURAL NETWORK FRAMEWORK FOR IMPROVED DIAGNOSIS 7

Feature Extractor
Two GraphSAGE Layers

Chip B

Candidate Classifier
Fully Connected Layer

GRL From A or B

Chip A

Domain Classifier
Fully Connected Layer

True or False

𝑊1

𝑊2

Fig. 4. Work flow of training G-DANN for failure knowledge sharing. Data inputs from the source domain include the adjacency matrices of the graphs, the
initial feature vectors, the labels of the source domain (true/ false of all candidates), and the created labels denoting that they are from the source domain.
Data inputs from the target domain have the same categories except that they possess no candidate labels. Two classifiers are trained. The training objective
for Candidate Classifier is to accurately determine the true or false labels of candidates. Domain Classifier is trained to find similarities in Chip A and B so
as not to distinguish between them.

motivation of transfer learning is to share the labeled samples
from the source domain. Knowledge from the source domain
is shared to allow training in the target domain. One basic
assumption for transfer learning is that the two domains share
similar distributions. Learning knowledge in one domain with
sufficient training data (sample-label pairs) is useful towards
training models for the other domain where sample labels are
insufficient or unavailable.

Two cases are considered in this work that require transfer
learning. (1) The candidate labels for one chip (Chip A) are
available, but not for the other (Chip B). (2) For the same chip,
candidate labels for a particular defect type (such as bridge)
are available, but not for the other defects. For (1), Chip A
and B do not have to be different designs. They may refer to
different lots of dies belonging to one chip design as well.

GRAND employs Domain-Adversarial Neural Network
(DANN)[48] as the algorithmic framework to tackle the above
problems. DANN is built upon convolutional neural networks
(CNNs), first proposed for transfer learning using data in
Euclidean space. We leverage the framework and adapt it
into non-Euclidean space to handle graph data, by substituting
CNNs for GNNs. In the following of this paper, we use G-
DANN to refer to our GNN adapted DANN model that works
on graph data using GraphSAGE-based architecture, not the
original one built upon CNNs [48].

Fig. 4 depicts the high-level flow of G-DANN during the
training stage. G-DANN consists of four parts: the Feature
Extractor for constructing embeddings, the Candidate Classi-
fier for predicting required labels, the Domain Classifier for
determining the data sources, and the gradient reversal layer
(GRL). Among the four modules, the function formed by
Feature Extractor and Candidate Classifier is essentially the
same as the GraphSAGE in Section III-C (2), determining the
true or false labels of candidates.

G-DANN assigns additional domain labels according to
sample sources. For the example in Fig. 4, two class labels
(0’s and 1’s) are assigned to Chip A and B, respectively,
to distinguish their domains (source or target). The Domain
Classifier module learns to classify these candidate samples
based on their appended domain labels, as either A or B.

The Feature Extractor starts with the initial node features
to obtain vectors in the high-dimensional feature space, which
are the extracted embeddings. The Candidate Classifier and
Domain Classifier are both configured with fully connected

layers, predicting the node labels and data domains, respec-
tively. The Candidate Classifier takes as input the embeddings,
and outputs a set of predicted labels indicating whether a node
(meaning a candidate) is a true fault or not. The Domain Clas-
sifier takes the same inputs, and outputs the labels that indicate
which domain the corresponding inputs of the embeddings are
derived from.

The optimization function integrating the training goals of
the two classifiers is shown by Equation (7):

argmin
W

F (EsW1,Y)− λF (EsW2,0)− λF (EtW2,1)

(7)
where Es and Et are embeddings from source domain and
target domain, respectively. Y is a vector of true/ false labels
for candidates in source domain. W1 and W2 are weight
matrices (both of size 32 × 2) for candidate classifier and
domain classifier, respectively. λ is a parameter between 0 and
1. F (·) denotes the loss function. We choose cross-entropy
loss here, but any reasonable cost function (such as the mean
square error) is eligible as well. The first F measures the loss
of the candidate label classification. The second and third
F computes the loss from source and target domain-label
classification, respectively.

The gradient reversal layer (GRL) functions as a pivot in
transfer learning. During the forward propagation, GRL serves
as an identity transformation. There is no change in the flow
as if it does not exist. However, during the backpropagation,
GRL multiplies the gradients by the coefficient −λ and passes
the processed gradients to Feature Extractor. Such operation
reverses the gradient direction with scaling effect ( 0 < λ ≤ 1
), producing domain-invariant features that capture two distri-
bution’s commonality. The idea is when Domain Classifier
cannot judge whether the input graph is from the source
domain or the target domain, the knowledge learned from the
source domain can be used to help label the data samples in
the target domain.

Once the training stage is complete, the G-DANN can be
deployed for IDR. Two of the four modules as shown in Fig. 4,
the Feature Extractor and the Candidate Classifier, are selected
to determine each fault candidate from the diagnosis callout
as either the true fault or the false candidate. Their usages are
the same as the GraphSAGE in Section III-C (2). The rest two
modules, the GRL and the Domain Classifier, are not involved
during the prediction stage.
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V. EXPERIMENTS

A. Setup and Evaluation Metrics

Experiments are performed on a Linux workstation,
equipped with three 16GB GPUs, two eight-core 3.30GHz
CPUs, and 128GB RAM. GRAND is programmed in Python
using PyTorch library v1.9.0 [49], PyTorch Geometric library
v2.0.2 [50], and sklearn library v1.0.1 [51].

Thirty-two benchmark circuits from ISCAS’85, ISCAS’89,
ITC’99, IWLS’05, LGSynth’91 [52], EPFL [53], and
openSPARC [54] are used to demonstrate the viability of
GRAND for various designs. The injected fault types include
single stuck-at line fault (SSL), multiple stuck-at line fault
(MSL), bridges (including AND, OR, and dominant types),
and front end faults. Altogether, a total number of 155,717
failing chips with 290,957 randomly injected faults are created
to form the failing population. Failing chips of each bench-
mark are randomly divided into three parts by 8:1:1, namely
training, validation, and test set. Models are trained and tuned
by training and validation sets, respectively. Ten-fold cross
validation is performed on the test set for evaluation.

Two diagnosis tools are used to produce the fault callouts,
as the starting point of GRAND. The first tool (denoted as
Tool A) is a fault simulator-based diagnosis tool that supports
arbitrary failing behaviors and fault modeling. The second tool
(Tool B) is a widely adopted, state-of-the-art commercial one.
In addition to produce candidates that explain (part of) the
failings, Tool B also provides match scores.

To systematically gauge the performance of GRAND, we
devise an evaluation checklist (EC), on which the metrics are
listed in a descending order based on their priority. Model
performances are evaluated and compared following this EC:
(1) Count; (2) Diagnostic resolution; (3) F2 Score; (4) AUC.

While diagnostic resolution is defined in Section I, the
Count value for a failing chip is defined as,

Count =

{
1, at least one true fault is found;
0, none of the true fault(s) is found. (8)

Count indicates whether a diagnosis run is successful or not.
Because the majority of candidates are false, if a ML-based
prediction model assigns label 0 to nearly all of its candidates
in an arbitrary fashion, the resolution is good but makes little
effort of catching the true faults.

F2 Score takes into account both recall and precision
in evaluating prediction models. The metric can be better
explained by using a confusion matrix shown in Fig. 5. The

Confusion matrix
Predicted labels

1 0

Actual
labels

1 TP FN

0 FP TN

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Fig. 5. The confusion matrix presents four combinatory cases in the binary
classification problem, considering the actual candidate labels with the model
prediction results. The four categories include true positive (TP), false positive
(FP), false negative (FN), and true negative (TN).

problem of IDR can be formulated as a binary classification
task mentioned in Section II. Fβ Score is defined as,

Fβ Score =

(
1 + β2

)
∗ Precision ∗Recall

β2 ∗ Precision+Recall
(9)

where β is a coefficient reflecting that the weight of recall
is β times the weight of precision. In the problem of IDR,
because of the imbalanced data (number of false candidates
is far more than that of true ones), it is important not to miss
the true faults. The β is set to 2 in Equation (9) for F2 Score.
Unlike F1 score that treats recall and precision equally, F2
score penalizes the false negative term in recall more heavily,
avoiding leaving out true faults.

Area Under Curve (AUC) is more robust to imbalanced
data-class distribution, compared with prediction accuracy
(= TP+TN

TP+FN+FP+TN ). We give two examples to illustrate EC.
(1) Suppose there is only one true fault in 100 candidates,
and a model predicts three potential faults where the true
fault is among one of them. Precision=0.3333, Recall=1.0000,
F2 Score=0.7143, accuracy=0.9800, AUC=0.9899, diagnos-
tic resolution=3 and Count=1. (2) Suppose there is only
one true fault in 100 candidates. A model predicts one
candidate, but is not the true fault. Precision=0, Recall=0,
F2 Score=0, accuracy=0.98, AUC=0.4949, diagnostic resolu-
tion=1 and Count=0.

The IDR task itself is a Pareto optimization problem.
GRAND seeks to find both accurate diagnosis and good
resolution on Pareto optimal fronts. EC is more comprehensive
and effective for the evaluation than a single statistic can be.

B. Diagnostic Resolution Improvement

We first determine which GNN algorithm works best for
IDR. The two GNN algorithms share the same architecture
frame and hyperparameters, as shown in Table IV.

TABLE IV
GNN HYPERPARAMETER DESCRIPTION

Parameters Value
# epochs 800
learning rate 0.01
batch size 128
optimizer Adam
activation function ReLU
# initial node features (input dimensionality) 8
node embedding size (hidden dimensionality) 32
output dimensionality 2
loss weight 1:10
sample ratio 1:20

For GNN, eight features are initialized for each node as
the input. GNN thus extracts 32 deep features as the node
embeddings. They are fed into the fully connected layer to
produce two output probability for true and false, respectively.
Each algorithm implements two GNN layers with one fully
connected layer. The algorithmic difference is the operation
and configuration in the GNN convolutional layers, as formu-
lated by Eq. (3) and (6).

Table V compares multiple methods. A benchmark circuit
is chosen from each suite as the representative. We choose
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random forest (RF) and support vector machine (SVM) as
baselines to be compared. Both RF and SVM are classic ML
methods with huge popularity in EDA applications, including
the test field [1–5, 13, 18, 24, 37, 55]. In particular, RF and
SVM have been used to improve the efficiency and resolution
of diagnosis [1–5, 24, 55]. In our experiments, the inputs to
the two algorithms are eight initial features rather than the
32 node embeddings extracted by GNNs. We set the number
of decision trees in the RF to 100, the number of features
sampled and considered at each split is three, and the minimum
leafnode size is one. A Gaussian kernel is used with SVM,
with two parameters configured as C=1 and γ=scale.

Recall that two of the eight initial node features
(dependency_level and dependency_num in Table I)
are calculated by examining the dependency among fault
candidates. They are expected to be informative towards GNN
modeling and prediction. We also conduct ablation study to
validate the efficacy of such dependency, by setting these two
features to 0’s. The rest procedure is exactly the same as
GraphSAGE with undirected graphs. The results are given by
w/o_dependency in Table V.

The fourth and fifth columns in Table V give the diagnostic
resolution (DR) by GRAND (including RF) and Tool A,
respectively. Unlike GCN, which is applied to undirected
graphs only, GraphSAGE are applicable to both directed and
undirected graphs. We append dir and undir to differentiate
between them. To further evaluate the effects of directional
information [56] [57], we follow the bidirectional GraphSAGE
setting in [57] for an ablation test. The results are reported by
Bidirectional in each group. Another set of ablation tests are
performed to implement larger number of layers in order to
examine if a larger search hop helps the IDR task. They are
listed by -3 layers, -4 layers, and -5 layers in Table V, meaning
GraphSAGE configured with 3 to 5 layers, respectively.

GraphSAGE-undir with two layers is the best in Table V.
RF is significantly worse than GNN methods for the first
metric Count. Both SVM and RF lack accuracy in identifying
true candidates, classifying too many candidates as false ones,
which are also evidenced by their poor F2 Scores. Such false
negative error is overkill, ruling out a substantial amount
of true faults. Thus, the two baseline algorithms (RF and
SVM) cannot compete with GNNs. Among the GNN methods,
GraphSAGE with undirected graphs outperforms the others,
considering all four metrics on EC. It has the highest Count
(except frg2 ) and the F2 Score. For AUC, GraphSAGE-undir
is the best on two circuits, and second best on the rest
three. For the ablation tests on bidirectional information and
hop scopes reflected by layer numbers, the results cannot
compete with GraphSAGE-undir with two layers either. It
is not surprising that an increased number of layers hinders
the performance, because of the over-smoothing phenomenon
of GNNs [46][47]. We also observed from experiments that
runtime, from both training and prediction, increases linearly
with the number of layers. For the ablation study on can-
didate dependency, the results are significantly worse than
the three GNN methods, especially the GraphSAGE-undir,
demonstrating the effectiveness of the two derived dependency
features. Therefore, in the following experiments GRAND

TABLE V
ALGORITHM COMPARISON

Circuits Algorithms Count DR† DR_Tool A‡ F2 Score AUC

cavlc

GCN 0.9355 1.7782

5.2702

0.8111 0.9208
GraphSAGE-dir 0.9301 2.6694 0.6997 0.8532

GraphSAGE-undir 0.9382 1.8065 0.8196 0.9136
-3 layers 0.9217 2.6609 0.6985 0.8761
-4 layers 0.9391 2.6304 0.7187 0.9028
-5 layers 0.9298 1.9649 0.7664 0.9315

Bidirectional 0.8596 3.8070 0.5531 0.7610
RF 0.6102 1.4193 0.5201 0.7804

SVM 1.0000 9.2730 0.5546 0.3983
w/o_dependency 0.8900 2.3700 0.7094 0.8840

s1488

GCN 0.9125 2.8906

12.0906

0.6958 0.9301
GraphSAGE-dir 0.9125 2.5719 0.7178 0.9300

GraphSAGE-undir 0.9438 2.6344 0.7375 0.9389
-3 layers 0.9335 2.8478 0.6956 0.9036
-4 layers 0.9284 2.9987 0.6718 0.8991
-5 layers 0.9258 2.9412 0.6914 0.9022

Bidirectional 0.8418 2.9566 0.5848 0.8525
RF 0.5125 1.1625 0.4583 0.8849

SVM 0.8200 6.4500 0.4710 0.8440
w/o_dependency 0.9300 3.3750 0.6407 0.8897

frg2

GCN 0.9767 1.7636

5.3372

0.8676 0.9597
GraphSAGE-dir 0.9767 1.7907 0.8557 0.9749

GraphSAGE-undir 0.9690 1.3953 0.9120 0.9690
-3 layers 0.9335 1.5081 0.8515 0.9670
-4 layers 0.9520 1.4760 0.8675 0.9541
-5 layers 0.9355 1.4113 0.8613 0.9638

Bidirectional 0.9516 2.5927 0.7398 0.8887
RF 0.8604 1.1400 0.8235 0.9626

SVM 0.2778 2.3056 0.1705 0.6356
w/o_dependency 0.6757 2.0541 0.5793 0.8354

b12

GCN 0.9000 2.2469

12.0344

0.7385 0.8810
GraphSAGE-dir 0.8750 2.0375 0.7207 0.8604

GraphSAGE-undir 0.9063 2.0031 0.7580 0.9047
-3 layers 0.9000 2.4250 0.6585 0.8794
-4 layers 0.8800 2.2400 0.6752 0.8961
-5 layers 0.8700 1.6500 0.6751 0.8873

Bidirectional 0.8527 3.1094 0.5444 0.7647
RF 0.5875 0.9750 0.5398 0.8512

SVM 0.8650 8.4800 0.5223 0.7603
w/o_dependency 0.8900 2.1900 0.6546 0.8517

DMA

GCN 0.9500 1.6250

5.4750

0.7879 0.8654
GraphSAGE-dir 0.9750 1.8750 0.8051 0.8910

GraphSAGE-undir 0.9500 1.3125 0.8253 0.9229
-3 layers 0.9500 1.3625 0.8039 0.9235
-4 layers 0.9500 1.3500 0.7913 0.9130
-5 layers 0.9750 1.4500 0.8147 0.9335

Bidirectional 0.9250 2.4750 0.7002 0.7225
RF 0.8500 1.5750 0.6876 0.9280

SVM 1.0000 9.3000 0.6636 0.6565
w/o_dependency 0.9500 1.8625 0.7892 0.9185

l2b

GCN 0.9135 2.2035

5.9091

0.7222 0.8522
GraphSAGE-dir 0.8235 2.4412 0.6598 0.8060

GraphSAGE-undir 0.9545 2.4318 0.7232 0.8253
-3 layers 0.9535 3.5349 0.6559 0.7301
-4 layers 0.9048 3.1071 0.6389 0.7840
-5 layers 0.8372 2.8605 0.6029 0.7124

Bidirectional 0.8140 2.6977 0.5542 0.6304
RF 0.5909 1.7045 0.4090 0.7518

SVM 1.0000 7.6429 0.5219 0.5670
w/o_dependency 0.8387 2.1344 0.7271 0.8242

†DR = Diagnostic resolution by GRAND. ‡Diagnostic resolution by Tool A.

uses GraphSAGE as the representative of GNNs for IDR.
Table VI shows GRAND’s performance on benchmarks.

Starting from the second column to the seventh column, the
metric values are given following the EC order. Results of
diagnostic resolution are further divided into three columns:
DR for the resolution obtained by GRAND, DR_Tool A for
the resolution calculated using the diagnosis report produced
by Tool A, and Ipv showing the diagnostic resolution improve-
ment comparing GRAND over the tool.

To mimic production diagnosis, if the resolution in the
diagnoses produced by Tool A is already below a threshold and
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TABLE VI
RESULTS OF GRAND ON BENCHMARKS, USING GRAPHSAGE WITH CIRCUITS MODELED AS UNDIRECTED GRAPHS

Circuits #Failings #Defects #Tests Coverage Count Count_Tool A DR DR_Tool A Ipv F2 AUC Tool A? Trng† Pred‡

ctrl 1370 2330 29 91.598% 0.9545 0.8220 1.5341 7.3977 4.82× 0.8561 0.9514 0.06 1.28 0.76
int2float 833 1435 82 100.000% 0.9815 0.8098 1.5185 5.7037 3.76× 0.8590 0.9481 0.06 2.74 0.79

dec 1721 5087 256 100.000% 0.9000 0.9678 2.6850 5.8400 2.18× 0.6718 0.8428 0.19 3.12 1.14
cavlc 2995 4577 153 100.000% 0.9382 0.8672 1.8065 5.2702 2.92× 0.8196 0.9136 0.45 13.74 0.83

priority 2182 2726 279 86.332% 0.9881 0.8102 2.5119 19.9464 7.94× 0.8666 0.9724 24.84 6.18 0.64
adder 3578 5821 249 100.000% 0.9875 0.9783 1.3906 5.6219 4.04× 0.9262 0.9841 1.70 5.34 0.70
i2c 6482 9292 603 99.859% 0.9500 0.9817 1.9500 8.4600 4.34× 0.8117 0.9549 3.33 14.79 0.81
bar 3748 5350 908 100.000% 0.9900 0.8939 1.4250 8.8650 6.22× 0.9212 0.9835 25.68 7.10 0.90

square 505 755 89 99.988% 1.0000 0.9957 1.0238 6.9048 6.74× 0.9960 0.9980 57.69 11.55 1.40
sin 1567 2058 167 93.678% 0.9114 0.9677 1.6709 15.6203 9.35× 0.8120 0.9489 20.29 6.10 1.07

c499 2408 4402 78 99.700% 0.9342 0.8571 4.3158 50.0625 11.60× 0.6422 0.9116 0.25 4.01 0.60
s1488 4487 6836 116 100.000% 0.9438 0.9704 2.6344 12.0906 4.59× 0.7375 0.9389 0.30 11.13 0.78
s4863 2758 3431 70 100.000% 0.9700 1.0000 1.1650 5.1000 4.38× 0.9177 0.9682 2.18 4.49 1.06
s5378 6205 8485 640 99.121% 0.9600 0.9732 2.9100 6.7250 2.31× 0.6994 0.8509 12.62 14.16 0.79
s6669 5818 7177 56 100.000% 0.9400 0.9968 2.3600 6.0900 2.58× 0.7549 0.8940 10.38 2.32 1.09
s9234 8880 12696 951 93.460% 0.8600 0.9826 2.6850 5.4550 2.03× 0.6439 0.7483 7.97 3.12 1.12
s13207 8447 10347 1651 98.462% 0.9119 0.9880 3.4843 8.5031 2.44× 0.6110 0.8210 38.57 16.47 0.92
s15850 9528 11279 1622 96.682% 0.9563 0.9909 2.4281 6.6094 2.72× 0.7354 0.8456 60.07 6.10 0.89
s35932 8997 14123 29 91.600% 1.0000 1.0000 1.2273 7.2121 5.88× 0.9476 0.9914 33.45 3.42 0.34

x1 5049 10501 413 98.859% 0.8500 0.9697 2.4400 18.2950 7.50× 0.6688 0.8455 6.56 2.27 1.00
pair 4768 5875 476 95.050% 0.9800 0.9869 2.2675 7.3975 3.26× 0.7827 0.9226 1.75 16.09 0.68
frg2 1297 2011 779 92.935% 0.9690 0.9787 1.3953 5.3372 3.83× 0.9120 0.9690 1.06 9.40 0.90
i10 978 1372 989 88.963% 0.9796 0.9847 2.2296 14.5510 6.53× 0.8177 0.9489 4.67 4.04 0.85
des 7078 11475 1822 95.078% 0.8800 0.9951 2.7275 11.2500 4.12× 0.6457 0.8929 24.30 17.68 1.06
b12 13311 18184 115 100.000% 0.9063 0.9648 2.0031 12.0344 6.01× 0.7580 0.9047 2.51 10.0 0.80
b14 3020 3555 2254 99.250% 0.9773 0.9722 1.9205 6.0795 3.17× 0.8049 0.8776 37.98 11.94 1.01
b15 3543 3856 2294 96.303% 0.9559 0.9861 2.5000 6.4706 2.59× 0.7440 0.8871 56.40 4.44 1.05
b17 3664 42340 563 97.960% 0.9355 1.0000 3.0968 9.6613 3.12× 0.6177 0.8371 42.73 6.35 0.39
b22 3658 40930 505 98.550% 1.0000 1.0000 3.0625 10.7917 3.52× 0.6389 0.8569 53.67 4.64 0.25

DMA 9574 11547 318 92.820% 0.9500 1.0000 1.3125 5.4750 4.17× 0.8253 0.9229 32.87 7.71 0.57
DSP 10444 12436 517 99.510% 0.9630 1.0000 1.5000 5.0000 3.33× 0.7529 0.8800 74.89 10.06 0.38
l2b 6824 8668 3006 99.706% 0.9545 0.8948 2.4318 5.9091 2.43× 0.7232 0.8253 18.61 4.03 1.10

?Runtime of this tool is measured by hours. †Training time is measured by minutes. ‡Prediction time is measured by milliseconds.

TABLE VII
IMPROVEMENTS OVER A COMMERCIAL DIAGNOSIS TOOL

Circuits Count Count_Tool B DR DR_Tool B Ipv F2 AUC Tool B? Trng Pred #Chips #Identified Ratio
ctrl 0.9474 0.9922 1.4737 8.8947 6.04× 0.8860 0.9633 1.02 0.71 0.81 16 10 0.6250

int2float 0.9231 1.0000 1.0000 8.6923 8.69× 0.9231 0.9538 1.80 0.60 0.82 4 2 0.5000
dec 1.0000 1.0000 1.8485 7.3758 3.99× 0.8904 0.9469 1.43 0.80 0.25 1 1 1.0000

cavlc 0.9787 0.9996 1.0426 8.0638 7.73× 0.9681 0.9981 6.49 1.48 0.75 6 3 0.5000
priority 0.9310 0.9869 1.3103 23.2414 17.74× 0.8770 0.9903 31.64 4.02 0.66 120 49 0.4083
adder 0.9833 0.9800 1.1167 15.3833 13.78× 0.9619 0.9970 4.77 1.34 0.97 759 509 0.6706
i2c 0.9867 0.9993 2.5800 10.9500 4.24× 0.7774 0.9786 15.12 7.49 0.73 7 6 0.8571
bar 0.9100 0.9999 2.3200 14.0900 6.07× 0.7476 0.9438 25.61 4.17 0.90 19 19 1.0000

square 1.0000 0.9788 1.2308 6.8846 5.59× 0.9663 0.9945 10.52 6.92 1.43 109 46 0.4220
sin 0.9362 1.0000 1.1915 11.3262 9.51× 0.9024 0.9380 160.88 14.67 1.94 33 15 0.4545

c499 0.9467 0.8739 2.9893 7.6000 2.54× 0.6859 0.8136 2.81 1.65 0.70 47 22 0.4681
s1488 0.9412 0.8437 1.8824 8.4706 4.50× 0.8109 0.9745 9.72 0.44 0.16 95 63 0.6632
s4863 0.8667 0.8550 3.5333 16.8000 4.75× 0.6151 0.8809 14.25 0.30 0.18 624 490 0.7853
s5378 0.8167 0.8477 3.4500 37.3667 10.83× 0.5584 0.9069 21.72 1.25 0.60 688 343 0.4985
s6669 0.8833 0.8666 2.6667 26.1417 9.80× 0.6959 0.9395 21.33 1.46 0.64 861 668 0.7758
s9234 0.8833 0.9059 2.7083 20.0833 7.42× 0.6821 0.9028 34.04 2.88 0.73 336 202 0.6012
s13207 0.8800 0.8708 1.4800 9.2000 6.22× 0.8088 0.9725 30.97 1.09 0.29 118 68 0.5763
s15850 0.9167 0.8632 2.1333 14.2917 6.70× 0.7875 0.9425 33.35 3.04 0.74 230 107 0.4652
s35932 0.8667 0.8570 3.0083 17.1208 5.69× 0.6274 0.8667 13.50 6.68 0.89 198 167 0.8483

x1 0.8833 0.9903 3.5500 13.7000 3.86× 0.6291 0.7812 214.58 2.63 0.63 61 34 0.5574
pair 0.9023 0.9998 2.8305 12.3276 4.36× 0.6781 0.8993 13.51 11.77 0.68 6 3 0.5000
frg2 0.9459 0.9947 3.8108 11.4865 3.01× 0.6746 0.8411 12.11 3.56 0.75 8 1 0.1250
i10 0.9098 0.9972 3.2669 13.1241 4.02× 0.6453 0.8996 16.85 15.81 0.71 18 14 0.7778
des 0.9706 0.9999 2.9265 11.2574 3.85× 0.7799 0.8413 46.01 12.86 0.89 23 11 0.4783
b12 0.9500 0.9946 2.5917 5.8750 2.27× 0.7264 0.6579 13.31 0.74 0.59 43 29 0.6744
b14 0.9000 0.9987 2.7000 7.1333 2.64× 0.6695 0.7416 19.63 4.28 0.99 37 28 0.7568
b15 0.9167 0.9993 3.0000 5.9750 1.99× 0.6694 0.6545 31.30 3.91 0.83 31 21 0.6774
b17 0.9167 0.8961 1.2417 6.3417 5.11× 0.8771 0.9748 197.25 11.22 0.88 215 210 0.9767
b22 0.9000 0.9248 2.4333 12.5500 5.16× 0.7266 0.9124 77.43 6.89 0.86 1434 882 0.6151

DMA 0.8667 0.9586 4.0583 13.5833 3.35× 0.5779 0.8013 38.30 11.68 0.88 68 59 0.8676
DSP 0.8667 0.9534 3.8167 22.4083 5.87× 0.5761 0.8655 175.81 21.73 0.87 75 26 0.3467
l2b 0.9262 0.9991 2.8065 10.9677 3.91× 0.6834 0.8916 63.69 6.12 0.93 146 99 0.6781

?Runtime of this tool is measured by minutes.
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deemed acceptable, there is no more need to invoke GRAND
for further analysis, as shown in Fig. 1. Here the threshold
is five, the same as previous work. Tool A is able to identify
at least one true fault from 95.58% of the failing chips, with
an averaged diagnostic resolution of 9.87. Comparatively, on
average, GRAND attains accurate diagnoses on 94.93% of the
chips (reflected by Count) with a resolution of 2.18. GRAND
improves diagnostic resolution by 4.51×.

The last three columns in Table VI give the execution time
of Tool A and runtime overhead by applying GRAND. On
average, it takes 10.88% additional time to train GRAND
models after Tool A finishes the diagnosis. For a failing chip,
GRAND takes no more than 1.40 milliseconds on average to
complete the task of IDR. It is thereby feasible to incorporate
GRAND into a post-silicon debug flow. GRAND will not incur
computation burden that affects time-to-market duration.

Table VII presents GRAND’s performance compared with
Tool B. All circuits, including the sequential ones, are syn-
thesized using OSU035 (compatible with TSMC 180 nm
process)[58]. Similar to Table VI, GRAND improves resolu-
tion for all circuits. On average, the commercial Tool B has a
diagnostic resolution of 13.08, while GRAND achieves 2.44.
GRAND improves diagnostic resolution by 5.98×.

The runtime overhead in Table VII again reveals that
GRAND executes the task of IDR efficiently, as shown in
Fig. 6. Similar to the results in Table VI, while both the
training and prediction time are positively associated with the
circuit sizes, the training time also depends on the amount of
data samples used, which are the simulated failing chips in
the experiment. The longest training time is < 22 minutes
for the circuit DSP. Scaling issue does not exist during
prediction stage, considering the fact that except for two
circuits, GRAND takes no more than 1 millisecond to finish
the IDR task. The longest prediction time GRAND takes is
1.94 milliseconds. It takes 26.82% additional training time
after Tool B finishes the diagnosis. We analyze the memory
consumption of GNN models. GRAND for above experiments
has the same model size, which is 16.95KB. According to
Eq (6), the dimension of input x(0)

i and x
(0)
j are both 8 × 1,

and the dimension of output x(1)
i is 32× 1. The GraphSAGE

parameters W and WN are matrices with dimension 32× 8,
suggesting that the sizes of trained models are independent of
the input scale.
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Fig. 6. Plots of training and prediction time using GRAND. The x-label gives
the numbers of gates in each circuit under diagnosis.

F2 Score is primarily used for algorithm comparison and
model parameterization as in Table V. It functions on a macro
level weighing precision and recall, while imposing heavier

penalty to combat false negatives (true faults determined as
false candidates). On average, the F2 Score is 0.7789 and
0.7466 for Table VI and Table VII, respectively. AUC is robust
to imbalanced data distribution, a better choice than the generic
accuracy given that the number of true faults are much less
than that of false candidates. The AUC is 0.9074 and 0.8901
for Table VI and Table VII, respectively. The fact that GRAND
is able to determine the true or false nature of a candidate
accurately proves the validity of hyperparameter setting (such
as loss weight and sample ratio).

Fig. 7 further characterizes the diagnoses produced by Tool
B. In addition to report suspects, Tool B also provide match
scores to the candidates. In most cases considered, true faults
exist in the top-scoring candidates. However, for 6.67% of the
the total number of 152,308 failing chips from 32 benchmark
circuits, true faults exist in non top-scoring candidates. Specif-
ically, the bars in Fig. 7 indicate the accumulated numbers of
failing chips that have true faults actually found in the 1st, 2nd,
3rd, ... ,etc, rank of match scores. This exception suggests that,
if only selecting the top-scoring candidates from the diagnoses,
true faults can hardly be found for these 10,157 failing chips
in later failure analysis. Even worse, using these top-scoring
but incorrect candidates to guide PFA is very likely to fail,
wasting resources and time.
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Fig. 7. Altogether, 10,157 chips (sum of all bar counts except the first 142,151
ones) have true faults not given top mach scores in the commercial diagnoses.
True faults may slip through the net and go undetected, due to the imperfection
in match scores.

The fourth part in Table VII presents the results of using
GRAND to handle the problem caused by imperfect scoring.
Column #chips gives the numbers of chips whose true faults
exist in non top-scoring candidates. The last two columns,
#Identified and Ratio, give the number of chips and their cor-
responding ratio, which are correctly identified by GRAND for
their true faults. GRAND achieves a correction ratio ≥0.5 on
20 of the 32 circuits, successfully catches 62.96% of the true
faults hiding within the non top-scoring candidates. GRAND
can effectively rectify the existing, commercial diagnoses.
Please note the last columns in Table VII are collected from
existing experiment results, focusing on recording the faults
with non top scores. No extra training or test is required.

C. Failure Information Sharing

Fig. 8 presents the results on two cases considered, mea-
sured by AUC values. (1) The candidates labels for one circuit
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Fig. 8. GRAND’s performance on failure information sharing. An AUC value in the (i,j) entry of a matrix is obtained from a prediction model trained on
the ith circuit, and tested (evaluated) on the jth circuit. Those diagonal matrix cells filled by the blue color are the results using GraphSAGE for training and
test on the same circuit or fault type, without using transfer learning. They are the baseline and reference for comparison. A red cell in the (i,j) entry (i 6= j)
denotes that a model trained by G-DANN has similar performance (∼−3% of AUC) compared with the blue (j, j) entry of the matrix on the left (holding
AUC results of models by GraphSAGE). The yellow cell means the exception, where GRAND by GraphSAGE outperforms the transfer learning-based option.

type are available, but not for the other. Fig. 8 (a) and (b)
show the results on circuits from LGSynth’91 and EPFL suites,
respectively, for this case. (2) For the same circuit, candidate
labels for a particular defect type are available, but not for the
other defects. Fig. 8 (c) is for such scenario, using SSL and
bridges as two fault types.

In Fig. 8 (a), the left (right) matrix shows the results using
GraphSAGE (G-DANN). The left matrix (GraphSAGE) is the
baseline for comparison, while the right matrix (G-DANN)
employs transfer learning to improve GraphSAGE. An AUC
value in the (i,j) entry of a matrix is obtained from a prediction
model trained on the ith circuit, and tested (evaluated) on
the jth circuit. For example, the AUC value is 0.8703 for
the (3,2)th entry in the right G-DANN matrix, referring to
a prediction model trained by G-DANN on labeled samples
from circuit pair and evaluated on i10.

Three colors, blue, red, and yellow, are used to differentiate
the results from comparison, as the Fig. 8 caption explains.
For example, consider the (2,4)th entry in the G-DANN matrix
in Fig. 8 (b). The AUC value 0.9252 is obtained by training
on cavlc and tested on int2float via G-DANN. The cell is
highlighted by red because it is close to the (4,4)th entry
0.9481 (highlighted by blue as the baseline) in the GraphSAGE
matrix on the left, whose training and test are both performed

on int2float. The (2,4)th entry in the GraphSAGE matrix is
highlighted by yellow, showing the only exception in our
experiment where GraphSAGE outperforms G-DANN.

Experiments validate two facts. First, transfer learning has
played its part. In all experiments reported in Fig. 8, the AUC
values of the diagonal entries from the left GraphSAGE matrix
are better than those from the right G-DANN matrix. Compar-
atively, for the off-diagonal entries, G-DANN is significantly
superior to GraphSAGE, with only one exception highlighted
by yellow. This means that, powered by transfer learning, G-
DANN outperforms GraphSAGE for tasks requiring labels.
Note that G-DANN can largely mitigate the loss of lacking
labels, but cannot compete in scenarios where labels do
exist. Second, failure information from other designs or fault
types can be borrowed to help identify true/ false candidates
when actual labels are lacking towards building ML models.
GRAND succeeds in six cases for sharing failure information
across different types of chips, demonstrated by the red entires
in Fig. 8 (a) and (b). For sharing failure information across
different fault types, GRAND performs well on seven out of
10 cases shown by Fig. 8 (c).
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VI. CONCLUSION

Post-silicon debug calls for good diagnostic resolution to
guide PFA and speed up yield learning. In this work, we
present GRAND (GRAph Neural networks for Diagnosis) for
improving diagnostic resolution (IDR). Unlike previous works
using GNNs for design- [35][36] and test- [37][38] related
purposes, GRAND is the first work leveraging GNNs for fault
diagnosis, expanding the role of GNN as a novel ML paradigm
in diagnostic analytics.

GRAND begins by modeling the circuits as graphs, and
computes initial node features with information from logical
neighborhood, circuitry topology, and candidate dependency.
Rich features represented by node embeddings are then ex-
tracted via deep learning using graphs. Graph neural networks
are then geared towards identifying the true/ false candidates.
Experiments demonstrate that the diagnostic resolution can
be improved by 4.51× to 5.98× compared with existing
diagnosis tools. Besides IDR, GRAND can adjust existing
commercial diagnoses by successfully identify 62.96% of true
faults that are likely to be ignored because they were originally
not ranked in the first place among all candidates. Finally,
GRAND can make use of failure information from other
designs or failures to better understand failure mechanisms
where labeled true/ false candidates are lacking.
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