
1650 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

FPAX: A Fast Prior Knowledge-Based Framework
for DSE in Approximate Configurations

Yuqin Dou , Chenghua Wang, Haroon Waris, Roger Woods , Fellow, IEEE,
and Weiqiang Liu , Senior Member, IEEE

Abstract—Current artificial intelligence and data science appli-
cations typically require complex computations and massive
amounts of data handling, presenting unprecedented challenges
for embedded platforms. Approximate computing has emerged
as the most promising design technique to address this issue,
by providing a potential performance increase, while sacrificing
accuracy within an acceptable range. Approximate arithmetic
units require the creation of design space exploration tech-
niques that can swiftly and automatically form an approximate
configuration in fault-tolerant systems. Existing methods, how-
ever, use iterative design space sampling, resulting in a large
amount of redundant computation. In this work, we propose
the efficient FPAX automatic search framework which can learn
from prior knowledge regarding the exploration process of
known applications and use it to guide design exploration. This
avoids excessive redundant computation and quickly provides an
impressive approximate configuration. Compared with the jump
search algorithm known for its efficiency, FPAX can also achieve
faster convergence speed and better exploration quality. Even
compared to our previous ENAP framework, it exhibits an 18×
faster performance while achieving almost identical exploration
quality for several commonly used fault-tolerant applications.

Index Terms—Approximate computing (AC), approximate con-
figuration, design space exploration (DSE), prior knowledge.

I. INTRODUCTION

DATA handling aspects of evolving AI applications
present huge computational issues for current hardware

platforms. With the demise of Moore’s law and Dennard
scaling [1], technology advancement has slowed down and
the aim of reducing computational power in recent high-
density chips remains an unrivaled challenge. Approximate
computing (AC) is a promising approach which has received
attention [2], [3], [4], [5], [6], [7] as it improves hardware

Manuscript received 9 June 2023; revised 23 October 2023; accepted 17
December 2023. Date of publication 25 December 2023; date of current
version 21 May 2024. This work was supported in part by the National
Natural Science Foundation of China (NSFC) under Grant 92364201 and
Grant 62022041. This article was recommended by Associate Editor X. Jiao.
(Corresponding author: Weiqiang Liu.)

Yuqin Dou, Chenghua Wang, and Weiqiang Liu are with the College of
Electronic and Information Engineering, Nanjing University of Aeronautics
and Astronautics, Nanjing 211106, China (e-mail: douyuqin@nuaa.edu.cn;
chwang@nuaa.edu.cn; liuweiqiang@nuaa.edu.cn).

Haroon Waris is with the Electrical Engineering Department, National
University of Computer and Emerging Sciences, Islamabad 44000, Pakistan
(e-mail: haroon.waris.v@nu.edu.pk).

Roger Woods is with the School of Electronics, Electrical Engineering
and Computer Science, Queen’s University Belfast, BT9 5AH Belfast, U.K.
(e-mail: r.woods@qub.ac.uk).

Digital Object Identifier 10.1109/TCAD.2023.3346289

performance by relaxing accuracy metrics. It has been used
in Google’s tensor processing units (TPUs) to reduce power
consumption and by IBM to accelerate AI in their chips [8].

Recent research has focused on the design of AC adders
and multipliers, as these are commonly used in many appli-
cations which exhibit error-tolerant behavior [2], [3], [4], [5].
Their effective deployment depends on effective design space
exploration (DSE) to produce higher quality configurations of
AC units when replacing precise operations. The approximate
configuration needs to satisfy user error constraints while
minimizing metrics such as area and energy consumption. This
can be cast as an optimization problem, ferr, such that

ferr
(
G, Appcon

) ≤ Errtar (1)

min.target
(
G, Appcon

)
(2)

where G represents the application, Appcon represents an
approximate configuration, and Errtar, the user error constraint.
This optimization requires the replacement of exact operations
with approximate units, at the various locations in the applica-
tion and gives a large number of configurations with different
properties, creating a huge search space. Therefore, a high-
performance and automated search methodology is required.

Existing frameworks are mostly based on heuristic search
methods, which sample the design space iteratively and then
generate approximate configurations in each iteration. The
approximate configuration with the smallest target metric
is selected as the best. Although the random-based space
sampling approach can obtain improved approximate config-
urations over multiple iterations, it leads to a large amount of
redundant computation. Moreover, the exploration quality is
ultimately limited by the parameter settings of the framework.
Therefore, the improvement in the efficiency of DSE in
approximate configurations is an open research problem.

In this work, we have traversed the similarities in the
design exploration process for different, well-known applica-
tions, and created the FPAX framework (https://github.com/
douyuqin/FPAX) to use these similarities to guide the design
exploration process for new applications. It allows quick
exploration of approximate configurations and does not rely
on the existing general heuristic search methods. Utilizing
learned knowledge, it avoids the redundant calculations used
in previous DSE approaches, allowing rapid identification of
high-quality approximate configurations with only minimal
DSE effort. We show that it outperforms our recent heuris-
tic search methodology (ENAP) [9], avoiding the multiple

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0008-5408-7056
https://orcid.org/0000-0001-6201-4270
https://orcid.org/0000-0001-8398-8648

DOU et al.: FPAX: A FAST PRIOR KNOWLEDGE-BASED FRAMEWORK 1651

iterations to obtain approximate configurations of similar
quality. The major contributions of this article are summarized
as follows.

1) To the best of our knowledge, FPAX is the first
framework to utilize prior knowledge to guide DSE in
approximate configurations, thereby greatly improving
efficiency.

2) We propose the “Converter” methodology to transform
the knowledge of FPAX into high-quality approximation
configurations.

3) Compared with the jump search (JS) algorithm known
for its efficiency, FPAX can obtain better results in less
time. FPAX achieves an 18× speed improvement over
our previous ENAP approach while having the same
approximation configurations at the output.

This article is organized as follows. In Section II, we
introduce AC and review existing DSE techniques used to
implement it. The parameter definitions used in this work
are presented in Section III. The motivating case study is
then described in Section IV, and the FPAX framework is
introduced in Section V. Section V gives details of the
experiments undertaken using FPAX and compares the results
with the latest work. Section VII provides the conclusions.

II. BACKGROUND

AC is an emerging design technique that uses errors as
a design dimension to permit a tradeoff between design
accuracy and hardware resources. Two main methods are
typically used: 1) voltage overscaling (VOS) and 2) design
complexity reduction (DCR) [10], [11]. While VOS achieves
energy savings through lower voltage, the errors introduced
are nondeterministic due to the violation of timing constraints.
Therefore, most research tends to focus on the DCR technique
where the exact circuit is modified to obtain an approximate
circuit, by adding/removing design elements. The Boolean
logical expression of the exact circuit is modified, within the
specified error limit, and as a result, an approximate circuit
with less complexity is achieved.

In recent years, approximate arithmetic units have been
extensively studied, focusing on approximate adders and
multipliers. Lu [12] proposed the LUA approximate adder
which is used to speed up the processor. Zhu et al. [13]
proposed an error-tolerant adder, which uses exact calculations
for the MSB bits and an XOR gate for LSB bits. An array
multiplier design uses several different approximate compres-
sion units which are then used to create a digital FIR filter [14].
An open-source approximate unit library containing multiple
approximate adders and multipliers with varying approximate
levels, is presented in [15].

While approximate units have also been proposed for other
functions, such as dividers [16], only approximate adders and
approximate multipliers have been considered here. This is
because as in other research [9], [17], [18], [19], they are
the commonly used operations in a wide range of applica-
tions [20]. The mature development of these approximate
arithmetic units presents both opportunities and challenges
for exploring the design space of approximate circuits. The

opportunity lies in the efficient automatic synthesis of fault-
tolerant application systems, whereas the challenge is the
ability to quickly obtain excellent approximate configurations
within defined error constraints.

Mrazek et al. [21] have proposed a modified version of
the stochastic hill climbing algorithm to select appropriate
approximate units from the library to obtain the appropriate
configuration. The method’s search quality, though, is limited
by the number of iterations. In [17], they use a random
method to divide the design space into several promising
regions and apply greedy methods to optimize the approximate
configuration of each area. This method, however, mainly
relies on the initial randomly distinguished regions which can
affect the quality of the final result. Witschen et al. [22] used
the JS algorithm to accelerate the exploration of design space,
but this method easily falls into a local optimal solution.
Due to the large design space of approximate configurations,
researchers in [18] proposed to use error constraints to exclude
high level approximate units, improving the exploration quality
by pruning the search space.

In [9], we proposed the ENAP framework which utilizes
the close relationship between the number of approximate
units and error constraints to design a number-aware pruning
technology. This paradigm further compresses the search
space, using an improved genetic algorithm to complete the
DSE. The method also randomly samples the design space
after each iteration to improve the approximate configurations.
Unfortunately, it requires a large computational budget to
establish sufficient statistical data to provide a reasonable and
good design. This article presents the FPAX framework to
address this limitation, by utilizing prior knowledge to guide
the design exploration of the approximate configuration.

Recent studies have shown how prior knowledge can
be used to accelerate the DSE process. For example,
Zhang et al. [23] proposed a DSE framework that com-
bines prior knowledge with Bayesian optimization and can
quickly find high-quality exploration results. Ferretti et al. [24]
used initially learned knowledge from well-known Pareto
dominance relationships among direct configurations. This
knowledge is later applied to the new target, resulting in high-
quality results with minimal synthesis runs. Machine learning
can be used for evaluating the quality of HLS, but it requires a
large number of samples for training. Kwon and Carloni [25]
used transfer learning technology to obtain knowledge from
the previously explored design space. Later, when exploring
the new target design space, this method only required a small
number of samples to obtain good evaluation quality.

III. PARAMETERS DESCRIPTION

In this work, a significant number of different approximate
level and error parameters, as defined in Table I, is used.
In Fig. 1, the adder tree example requires approximation units
from the library to create the approximate configuration. The
units have already been arranged according to the ALau,
denoted by the numbers 1, 2, and 3, where higher levels
indicate a greater amount of error and energy savings. In
the approximate configuration shown in Fig. 1, nodes a1 and

1652 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

TABLE I
PARAMETERS DESCRIPTION

Fig. 1. Illustrative example to explain different approximate levels.

a2 are replaced by approximate adders with ALau = 1 and
3, giving an ALac of 4 for the layer. Since there are three
configurable nodes in total, the ALmax is 9. NALac is the
normalized ALac of the approximate configuration. Hence, in
this example, NALac = ALac/ALmax = 4/9.

IV. MOTIVATING CASE STUDY

This section aims to analyze the relationship between
NALac, the normalized approximation level of ALac, and
NErrac, the normalized value of Errac, both for a given approx-
imate configuration. This provides the initial motivation of this
research with the various definitions provided in Table I. Fig. 2
depicts the exploration process of the approximate configura-
tions for three applications, Sobel, Laplace, and 2×2 matrix
multiplication, using the ENAP framework [9]. It presents
the relationship between NErrac and NALac where each point
represents an approximate configuration.

ENAP can search for optimal approximate configurations
by generating an approximate configuration on each iteration
that is better than the previous version. From Fig. 2, we
can observe a clear, proportional pattern between NALac and
NErrac when exploring optimal approximate configurations for
different applications. As NALac increases with NErrac, this
implies greater energy savings.

Based on this observation, we propose the FPAX method-
ology to exploit this similarity in DSE process for the target
application. For this, a preknown exploration process is defined
as Fpri(x), while the exploration process can be defined as
Ftar(x), which is unknown. Assuming an error constraint
of Errtar, Ftar(NErrtar) is quickly obtained as Fpri(x) and
can be used to solve this problem due to the similarity of
the exploration process. The similarity implies that while
Fpri(NErrtar) may not be equal to Ftar(NErrtar), it may be
very similar.1 Hence, the relationship between Ftar(NErrtar)

and Fpri(NErrtar) is described as

Ftar(NErrtar) ≥
∣∣Ftar(NErrtar)− Fpri(NErrtar)

∣∣ (3)

where NErrtar is the normalized value of Errtar. We note that
a small error (NErrac) infers a small Fpri(x) (NALac) during
the exploration process. In order to get closer to Ftar(NErrtar),
we can select a small error and combine Fpri(x) with the
previous Fpri(NErrtar). In this way, we can utilize the similarity
between Fpri(x) and Ftar(x) to approach the target in a guided
manner. This negates the need for random sampling of the
search space through multiple iterations as required in ENAP.
We have successfully incorporated these benefits into the DSE
to get approximate configurations. The proposed preliminary
framework is illustrated in Fig. 3.

First, Errtar needs to be normalized, and then fed into the
function Fpri(x), to provide a corresponding result, NALac.
Clearly, NALac will not be equal to Ftar(NErrtar), but will be
similar. After obtaining NALac, we convert it into an approx-
imate configuration using the Converter function, allowing
Errac to be obtained. Finally, we analyze if Errac meets the
termination condition. If fulfilled, the program will exit and
output the approximate configuration, otherwise it will update
Errexp and provide input to Fpri(NErrexp) again, which can
set a new NALac. This NALac value will then be combined
with the previous approximate configuration and utilized by
the Converter to form a new approximate configuration,
corresponding to a new Errac, which will be analyzed again.
The iterations will be carried out until we get obtain an error
Errac that satisfies the termination condition.

In the preliminary proposed framework, Fpri(x) represents
prior knowledge that is formed before DSE and is used to

1Fpri(NErrtar) may be slightly bigger than or less than Ftar(NErrtar), but
it will be closer to Ftar(NErrtar) than initial value. The initial value refers to
the Fpri(0), which is equal to 0.

DOU et al.: FPAX: A FAST PRIOR KNOWLEDGE-BASED FRAMEWORK 1653

Fig. 2. Relationship between NALac and NErrac in the exploration process for the (a) Sobel, (b) Laplace, and (c) 2 × 2 matrix multiplication operations.

Fig. 3. Key FPAX optimization step.

guide the exploration of the target application, because of its
similarity to Ftar(x). We expect that this will speed up the
exploration process and will allow results close to Fpri(Errtar)

to be quickly obtained. Fig. 3 indicates that the formation of
Fpri(x) and the Converter are the key components and are thus
detailed in the following sections, allowing the concept to be
extended into a framework named FPAX.

V. PROPOSED FPAX FRAMEWORK

The flow for the FPAX framework (Fig. 4) comprises:
1) prior knowledge acquisition and 2) DSE. Prior knowledge
acquisition transforms a preknown exploration process into the
function, Fpri(x), using a previously designed neural network
(NN) model. Initially, ENAP is utilized to locate excellent
approximate designs for a target application, and these are
used to train the NN (as a predictor) which will be used for
DSE.

In DSE, FPAX initially translates the high-level language
of a target application into a data flow graph (DFG), and
initializes the fundamental parameters. Errmax refers to the
error obtained when all nodes of the target application are
replaced by the approximate units with the highest value of
ALau. Errmax is used to calculate the normalized value of
Errexp, and is an one-time calculation effort.

NErrexp can be subsequently obtained and fed into the
predictor, providing an NALac budget which is used by the
Converter to determine a promising approximate configura-
tion. Afterward, this approximate configuration is analyzed
with respect to the termination condition which if satisfied,

terminates the process. Otherwise, Errexp is updated and fed
into the predictor for further iteration.

A. Prior Knowledge Acquisition

The prior knowledge acquisition is conducted offline2 and
does not affect the efficacy of the DSE. Its objective is to
transform an exploration process into an NN model, which
can take the normalized value for expected improvement error
(NErrexp) as input and generate a suggested NALac budget as
defined in

NALac = Fpri
(
NErrexp

)
. (4)

The prior knowledge acquisition mainly consists of the fol-
lowing three parts.

1) Sample Generation: While the samples refer to the
known approximate configurations, they are too large to use
as training data, and our goal is to learn the exploration
process. Therefore, there is no need to generate all possi-
ble approximate configurations. Instead, we employ ENAP
to generate approximate configurations under different error
constraints. Without loss of generality, the error constraints are
set to 3, 5, 7, . . . , Errmax/2 where this latter constraint has been
determined sufficient to generate enough samples. During the
DSE in ENAP, all approximate configurations are saved.

2) Sample Selection: The approximate configurations
obtained from Sample Generation are filtered and classified
to enable the predictor Fpri(NErrexp) to easily converge.
Identical approximate configurations are removed, and
then the total ALac and Errac values are determined for
each approximate configuration. Fig. 5 illustrates how all
approximate configurations are classified according to their
ALac. The first column represents the ALac and the second
column displays all the Errac corresponding to it (Please
note that all of the Errac values here are hypothetical). In
order to ensure that the predictor Fpri(NErrexp) has a stable
convergence (based on the reduction of errors), it is necessary
to remove unsuitable approximate configurations. In Fig. 5,

2Offline refers to work that can be completed before DSE, it only needs
to be run once. Hence, offline work does not impact the resource and time
overhead of DSE. Online refers to the technology that runs during DSE, so
online technology can affect the efficiency of DSE.

1654 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

Fig. 4. Flow of FPAX.

there are two approximate configurations when ALac = 1, and
the Errac are 1 and 2. However, when ALac = 2, the Errac

of approximate configurations are 2 and 3. Therefore, we
need to remove the approximate configuration with Errac = 2.
Similarly, for ALac = 3, the approximate configuration with
Errac = 2 needs to be removed. In other words, for each
ALac, its corresponding Errac must be bigger than that of
any smaller ALac. The filtered data ensures that the predicted
values of Fpri(NErrexp) converge as the error decreases. Fig. 5
also provides an example for displaying the data format of
the input label and the output label. The last set of data
after selection is treated as the example object, and from the
example, we can know that both ALac and Errac need to be
normalized. This is done by dividing the data by Errmax and
ALmax, respectively, and then use it for the input label and
output label of the NN model, respectively.

3) Prediction Models: The input data and the output labels
obtained from above work are passed to train the NN model.
The universal approximation theorem states that any continu-
ous function defined on a compact set can be approximated
by a fully connected NN [25]. Therefore, we have proposed
a fully connected NN model as shown in Fig. 6. It consists of
an input layer, four hidden layers, and an output layer where
each small square represents a neuron, which is connected
to a weight. These weights keep on changing until the NN
model finishes the training on a provided input dataset. The
input layer of the neural network takes the NErrexp as input,
and the layers of the network are connected by rectified linear
unit (ReLU) functions. The proposed predictive function is
shown in

Fpri
(
NErrexp

) = f i
5

(
f i
4

(
f i
3

(
f i
2

(
f i
1

(
NErrexp

)))))
(5)

where function f i
j (NErrexp) is defined as follows:

f i
j

(
NErrexp

) = ReLU
(

NErrexp ∗Wi
j + bi

j

)
(6)

where Wi
j is a weight matrix, and bi

j is a bias vector. The
learning objective is to minimize the difference between the
actual NALac and the predicted NALac. The mean-squared

Fig. 5. Example for sample selection.

error (MSE) is used to quantify the difference between the
actual NALac and the predicted NALac, while the adaptive
moment estimation (Adam) optimizer is used to improve the
computational efficiency.

B. Converter

The output of Section V-A, i.e., the predictor, is a
recommended NALac budget, rather than an approximate
configuration. The Converter creates an approximate configu-
ration output, based on the cost-performance metric, defined
as follows:

Costeff = Savetar/Errac (7)

where Savetar represents the target savings and Errac represents
the error of the given configuration, respectively. Clearly, to

DOU et al.: FPAX: A FAST PRIOR KNOWLEDGE-BASED FRAMEWORK 1655

Fig. 6. NN model for learning prior knowledge.

Fig. 7. Unified form for approximate configuration.

achieve an excellent approximate configuration, a large Costeff
value is desired. The concept of cost-effectiveness is used for
the selection of approximate configurations in the Converter.
Moreover, we have used the unified form of approximate
configuration in DSE. The Converter requires approximate
configurations in a uniform format, which should include
information about adjacent nodes, approximation level and
“Depth,” an example of which is presented in Fig. 7.

In the six nodes in this example, M represents a multiplica-
tion, A, an addition and ALau is the approximate level of each
node. Each approximate configuration data form also requires
“Depth,” which refers to the location of the last changed
node (for a given approximate configuration). As can be seen
in Fig. 7, the sixth node is the last one to be changed for
this approximation configuration. When a new approximate
configuration is formed, FPAX begins to change nodes from
the Depth node. The Depth parameter follows these guidelines.

1) Depth is equal to the location of the last changed node
in the approximate configuration.

2) If Depth equals the location of the last node, it needs
to be switched to the location of the node with the
smallest ALau (for the given approximate configuration).
In Fig. 7, for example, Depth equals 6, which is the
location of the last node. Therefore, to form a new
approximate configuration, the FPAX starts improving
from the first node and moves on to find the best
candidate.

The purpose of the Converter is to convert NALac into the
best approximate configuration. It consists of the following
steps.

Algorithm 1: Selection of the Approximate Unit
Input: DFG(G); Approximate Library (adder (A),

multiplier (M)); Depth;
Output: The appropriate approximation units (Costac);

1 Parameter initialization:
Costac = [], flaga = 0, flagm = 0

2 for i in range(depth,length(G)) do
3 (G[i], ALac) = Analysis(G(depth));
4 if G[i] ∈ ‘adder’& flaga==0 then
5 for j in range(ALac,length(A)) do
6 G[i]← A[j];
7 (Errac,Savetar) ← Com.factors(G[i]);
8 Costac = Savetar/Errac;
9 Costac.append(A[j], Costeff);

10 end
11 flaga = 1;
12 end
13 if G[i] ∈ ‘mul’& flagm==0 then
14 for j in range(ALac,length(M)) do
15 G[i]← M[j];
16 (Errac,Savetar) ← Com.factors(G[i]);
17 Costac = Savetar/Errac;
18 Costac.append(M[j], Costeff);
19 end
20 flagm = 1;
21 end
22 end
23 Costac = Rank(Costac);
24 Return (Costac)

1) Selection of the Approximate Units: Appropriate
approximate units are selected for the Converter, based on
cost-effectiveness, as shown in Algorithm 1. In Algorithm 1,
Com.factors is the calculation function used to obtain
parameters for approximate configuration (Errac, Savetar),
flaga is used to indicate that all approximate adders have been
explored, and flagm is used to indicate that all approximate
multipliers have been explored. The inputs are the DFG,
Approximate Library (approximate adders and approximate
multipliers), and the Depth. It reads the DFG, then starts the
analysis from Depth node. The analysis includes the type of
current node and the ALac (lines 2 and 3 in Algorithm 1) of the
current node. Algorithm 1 then replaces the current node with
an approximate unit with a bigger ALac value, calculates the
cost-effectiveness of the replaced approximate configuration,
and saves the approximate unit and the cost-effectiveness
details. The process continues by replacing the current node
with an approximate unit with a bigger ALac value and saving
the approximate unit and its corresponding cost-effectiveness
until all configurable approximation units have been replaced
(steps 5–9 and 14–19 in Algorithm 1).

Once the cost-effectiveness of all configurable approximate
units is acquired, these approximate units are arranged in
descending order (with reference to the cost-effectiveness
parameter). The first two approximate units with the highest
cost-effectiveness are retained and used for further processing.

1656 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

Fig. 8. Example for replication of approximate configurations.

2) Generation of Approximate Configurations: The appro-
priate approximate units obtained from Selection of the
approximate unit are combined with the ALac (provided by the
predictor) to form an approximate configuration. This method-
ology (Algorithm 2) requires a DFG, appropriate approximate
units (Costac), NALac, and Depth as inputs. Initially, it
analyzes the Depth node of DFG to determine whether it
can be replaced by Costac[0], which needs to have the same
operation type and a smaller ALau. If the condition is fulfilled
the node is replaced with Costac[0]; otherwise, the next node of
the target application is determined that satisfies the condition.

It is evident that replacing the node with Costac[0] increases
ALac. Therefore, it is important to determine if the increased
ALac exceeds the NALac by normalizing it and then comparing
with NALac. If ALac is under the range, then replacement
is carried out; if it exceeds or equals the NALac, then
Algorithm 2 is stopped. During the node replacement process,
if the accumulated ALac has not reached NALac, then Costac[1]
will continue to complete this task until both approximate units
are replaced or NALac is satisfied. To effectively handle the
node replacement process, Algorithm 2 is run twice. The first
preferred replacement approximation unit is Costac[0], and the
second is Costac[1]. The two approximate configurations are
formed after two runs, which are used for processing in the
subsequent steps.

Please note that Generation of Approximate Configurations
is distinct from the classical graph traverse+ greedy. Classical
graph traverse + greedy entails a one-time traversal of all
nodes with a fixed starting point. In contrast, our method does
not restrict itself to a single node traversal; if the error con-
straint is not exceeded, our method continues to traverse nodes.
Furthermore, the starting point for our method’s traversal is
determined by both the Depth and the node with the lowest
level approximation unit.

3) Replication and Selection of Approximate
Configurations: This step realizes more approximate config-
urations from those received from Generation of Approximate
Configurations. Moreover, a systematic selection procedure
is adopted to finalize the most cost-effective approximate
configuration among those available. Fig. 8 is used as an
example to describe the replication method.

In this example, the initial input configuration is an exact
configuration, and the two suitable approximate units are

Algorithm 2: Generation of Approximate Configurations
Input: DFG(G); NALac; Costac; Depth;
Output: The optimal approximation configurations

(Apprcon[]);
1 Parameter initialization: flag = 0;
2 ALexp = NALac ∗ ALmax;
3 for q in range(0,2) do
4 for i in range(Depth,length(G)) do
5 if jungle(G(i), Costac[0]/[1]) == 1 then
6 G[i]← Costac[0]/[1];
7 flag← flag+ ALau;
8 Depth = i;
9 if flag ≥ ALexp then

10 Apprcon.append(G);
11 break
12 end
13 end
14 end
15 for i in range(Depth,length(G)) do
16 if jungle(G(i), Costac[1]/[0]) == 1 then
17 G[i]← Costac[1]/[0];
18 flag← flag+ ALau;
19 Depth = i;
20 if flag ≥ ALexp then
21 Apprcon.append(G);
22 break
23 end
24 end
25 end
26 end
27 Return (Apprcon); Depth

determined by the Selection of Approximation Units (which
are approximate multiplication and approximate adder with
ALau = 1). After that, two approximate configurations
(Apprcon[0] and Apprcon[1]) are formed according to the
budget of NALac = 3.

During replication, the first approximated node in
Apprcon[1] is replicated onto the corresponding node in
Apprcon[0]. In each replication, only approximate nodes
changed by this iteration are considered, e.g., relative to the

DOU et al.: FPAX: A FAST PRIOR KNOWLEDGE-BASED FRAMEWORK 1657

Fig. 9. Example for selection of approximate configurations.

initial configuration, the first approximated node in Apprcon[1]
is node 3. Therefore, the configuration information of node 3 in
Apprcon[1] is replicated onto node 3 in Apprcon[0]), and finally
to meet the NALac = 3 budget, the last approximated node
of Apprcon[0] is reverted to an exact node, which conforms to
Apprcon[2]. The first two approximated nodes of Apprcon[1],
are required to be replicated onto the corresponding nodes
in Apprcon[0] (the configuration information of node 3 and
node 4 in Apprcon[1] are replicated onto the node 3 and node 4
in Apprcon[0]).

To fulfill the range of NALac = 3, the last two approximated
nodes in Apprcon[0] are reverted to exact nodes, so that the
Apprcon[3] is constructed. Similarly, we consider the first three
approximate nodes in Apprcon[1], followed by the first four,
and so on, until all the approximate nodes in Apprcon[1] are
replicated (in this example, there are only three approximate
nodes in Apprcon[1]). The final step of this replication process
selects the top approximate configuration based on the cost-
effectiveness characteristic.

C. Termination Conditions

The proposed FPAX needs to determine the termination
conditions before starting DSE. It searches for the best approx-
imate configurations through multiple iterations, with each
iteration producing a configuration with a bigger Errac than
the previous iteration. When FPAX obtains an approximate
configuration that exceeds the Errtar, it produces the final
output. Fig. 9 demonstrates how the Errac of the approximate
configuration is assumed to exceed the Errtar, and the approx-
imate nodes in the yellow box are assumed to be approximate
nodes that are changed in the last iteration. Therefore, if
ALau of approximate nodes in the yellow box are all equal
to 0, then the Errac of the approximate configuration is
smaller than Errtar. Moreover, the ALac of the best approximate
configuration must be between the approximate configuration
of the previous and current iteration.

In order to achieve the best approximation configuration,
therefore, ALau in the yellow box is sequentially reduced,
only reducing one approximation node at a time with ALau

by 1. Simultaneously, Errac is calculated until the Errtar
condition is satisfied, after which the reduction is stopped.

For example, in Fig. 9, initially, the ALau of node 6 is
reduced followed by the calculation of Errac. If Errac satisfies
the Errtar, then the reduction of ALau of node 5 is under-
taken until the Errtar condition is fulfilled. Eventually, the
approximate configuration obtained is regarded as the final
output.

D. Design Space Exploration

Before introducing DSE, we also need to introduce a new
variable, thr which is a threshold used by FPAX to achieve a
better approximate configuration. NALac is a normalized value
that needs to be multiplied by ALmax and then rounded to
obtain ALexp. However, when the NALac is relatively small,
ALexp could be equal to 1 as the replicated approximation
configuration might be the same as the original configuration,
and it will not generate a new configuration. In that particular
scenario, FPAX can only use very few approximate units, and
the replication of the approximation configuration becomes
invalid, limiting the diversity of approximation configurations.
Therefore, we define a new parameter thr to ensure that the
ALexp is at least equal to 2 for each iteration, as this is equal
to Errau of the second approximated unit in the list sorted by
errors in descending order.

It is pertinent to mention that the second smallest error
is selected as the value of thr once the Errau is sorted in
ascending order. This is mainly used to help FPAX achieve a
better approximate configuration. NALac is a normalized value
that needs to be multiplied by ALmax and then rounded to
obtain ALexp. However, when the NALac is relatively small
and the ALexp could be equal to 1, FPAX can only use very few
approximate units, and the replication of the approximation
configuration will become invalid. This is because ALexp also
needs to be considered during replication; When ALexp = 1,
i.e., the replicated approximation configuration is the same as
the original one, then it will not generate a new configuration.
We believe that it will affect the diversity of approximation
configurations, so we have defined a threshold to ensure that
the ALexp is at least equal to 2 for each iteration. The value of
thr is defined as equal to Errau of the second approximated unit
in the list sorted by errors in descending order - by applying
each approximated unit one at a time and sorting the resulting
Errau in ascending order, the second smallest error is selected
as the value of thr.

The proposed DSE, presented in Algorithm 3, takes the
DFG, target error Errtar, and thr as inputs. The DSE first
transforms Errtar into Errexp and then compares Errexp with
thr. If Errexp <= thr, then it sets ALexp = 2. If Errexp > thr,
it is necessary to feed Errexp to the predictor, and then the
Converter will use the results of the predictor and the current
approximate configuration to realize an improved approximate
configuration. Subsequently, the Errac of the approximate
configuration is calculated and compared with the Errtar. If the
result is less than the Errtar, the approximate configuration is
saved and the next iteration is started. However, if the Errac

exceeds the Errtar, then the termination process is performed
and the approximate configuration obtained is considered as
the final output.

1658 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

Algorithm 3: DSE
Input: DFG(G); Errtar; thr;
Output: The excellent approximation configuration;

1 Parameter initialization: flag = 0; Errexp = 0;
Errac = 0;Errmax;ALmax

2 current.Apprcon = G for i in range(0, 100) do
3 Errexp = Errcon − Errac;
4 if Errexp <= thr then
5 ALexp = 2
6 else
7 NErrac = Errexp/Errmax;
8 NALac = Fpri(NErrac);
9 ALexp = NALac × ALmax;

10 end
11 Appcon = Converter(ALexp, current.Apprcon);
12 Errac = f (Appcon);
13 if Errac > Errcon then
14 Final.Apprcon =

Termin.process(Curr.Appcontextreplacement);
15 break
16 else
17 current.Apprcon = Appcon

18 end
19 end
20 Return (Final.Apprcon);

TABLE II
APPLICATIONS AND THEIR CHARACTERISTICS

VI. EXPERIMENT

Four well-known fault-tolerant applications (Table II) from
signal and image processing, are selected to evaluate the
FPAX. Table II contains the number of nodes, operation
types, area, and energy consumption for each application. All
applications are encoded in C and parsed into DFG using
GAUT [26]. The approximate units are extracted from [15]
and have their corresponding areas and energy consumption
mentioned in Table III. It is worth noting that FPAX can
be applied to any approximate unit with area and energy
consumption values. mean error distance (MED) and peak
signal-to-noise ratio (PSNR) are used to evaluate the fault
tolerance of approximate circuits, which are defined in [9].
MED and PSNR are selected as accuracy metrics for this
experiment. FPAX employs error estimation methods like
both [9] and [22], all of which rely on simulation-based
approaches, thus, FPAX provides the quality of the approxi-
mate configuration and supports any accuracy metric. 100 000
random samples are used to calculate the Errac of approximate
circuits.

TABLE III
AREA AND POWER CONSUMPTION FIGURES FOR

APPROXIMATE LIBRARY UNITS

Due to different test benchmarks or different optimization
targets, it is not appropriate to compare our approach with
all frameworks. Therefore, for a fair comparison, the ENAP
in [9] and the JS algorithm suggested in [22], which are
consistent with our optimization targets, are used to compare
with FPAX. ENAP is the latest exploration framework for
approximate configuration and the JS algorithm is a highly
efficient heuristic search algorithm renowned for its ability to
rapidly accomplish DSE.

FPAX and the proposed algorithms were implemented
in Python and experiments were performed on a computer
with a 3.10-GHz Intel Core I5-10500 CPU with 6 cores
and 16-GB RAM. FPAX is evaluated against the recently
published ENAP in terms of quality and efficiency using the
same approximation units given in Table III. We set up the
model, Fpri(NErrexp) in Fig. 6, with four hidden layers, each
corresponding to nodes 8, 8, 16, and 4. The exploration process
of 2 × 2 matrix multiplication under ENAP is used to train
it. In this experiment, given the adoption of two accuracy
metrics, it necessitates the use of two prediction models,
corresponding to two sets of samples. One set is derived from
approximate configurations based on MED, while the other set
is derived from approximate configurations based on PSNR,
both originating from ENAP. ENAP generated a total of 2000
approximate configurations for each metric. After applying our
selection method, the dataset for MED retained 932 samples,
while the dataset for PSNR retained 873 samples. Consistent
with ENAP, FPAX uses its method [19] to calculate energy
consumption and area.

A. Exploration Quality

The search ability of heuristic algorithms is closely related
to parameter settings. In this experiment, the setting of ENAP
parameters is consistent with [9], and the design of JS
algorithm in [22]. Figs. 10 and 11 detail the results of the three
methods for the minimum energy and area under different
error constraints, respectively. The y-axis gives the normalized
area and power consumption and the x-axis presents error
constraints. It is important to note that the smaller the nor-
malized value is, then the better the quality of exploration.
The figures show that as the error constraints increase, the
area and energy consumption for both decrease. In most cases,
FPAX exhibits the lowest normalized area/energy, while ENAP
and JS exhibit comparable performance in different scenarios.
This suggests that FPAX demonstrates superior exploration
quality.

DOU et al.: FPAX: A FAST PRIOR KNOWLEDGE-BASED FRAMEWORK 1659

Fig. 10. Energy saving results for different benchmarks against various error bounds.

Fig. 11. Area saving results for different benchmarks against various error bounds.

In some scenarios, ENAP also generates better results
compared to FPAX. For example, when the error constraints of
Laplace are small, ENAP exhibits a slightly better exploration
quality than FPAX as it has a reduced search space of Laplace
under small error constraints, allowing it to approach the
optimal approximation configuration with fewer iterations.
However, in general, FPAX shows better exploration quality
because FPAX features prior knowledge to approach the best
approximation configurations. From Fig. 12, the exploration
quality of JS is shown to be better than ENAP in some cases,
such as for FIR filter for the MED = 15 error bound. This is
mainly because according to [9], the number of iterations of
ENAP is set to 3. We release the iteration limit of ENAP in
the next section for more in-depth analysis.

B. Time Overhead

As FPAX, ENAP, and JS are different approaches, the
number of iterations cannot be used to compare the efficiency,
so the time consumed is used as shown in Fig. 12. It reflects
the change in the exploratory quality of approximate config-
urations as reflected in normalized energy consumption, over
time. ENAP uses a genetic algorithm-based search framework,
whose search quality converges to an optimal approximation
configuration as the number of iterations increases.

To allow comparison, the ENAP termination condition is
modified to an infinite number of iterations until the same
result occurs three consecutive times. The termination condi-
tion of JS is consistent with [22], that is, when an approximate
configuration that satisfies the error constraint first occurs,
the result is output. In Fig. 12, the red line, purple line, and

blue line correspond to the exploration processes of FPAX,
JS, and ENAP, respectively, where each symbol represents an
iteration. The exploration quality and time overhead at the
end of iteration for these three methods are presented. Clearly,
from the perspective of exploration quality, in most cases,
FPAX can achieve the best exploration quality, followed by
ENAP and JS. From the perspective of time efficiency, FPAX
also requires the least time, followed by JS, and ENAP requires
the longest time. From Fig. 12, it can be observed that FPAX
terminates the first iteration of ENAP when the error bounds
are MED = 5 and MED = 8. This means that FPAX gives
the results before the end of the first iteration of ENAP. In
addition, the quality of FPAX exploration is much better than
that of the first iteration of ENAP.

In the most obvious example, when the error bound applied
to 3 × 3 convolution is MED = 5, the quality of exploration
at the end of ENAP iteration is worse than that at the end
of FPAX iteration. Meanwhile, the time consumption at the
end of ENAP iteration is 595.411 s, and that at the end
of FPAX iteration is only 32.467 s. This means that FPAX
achieves the best approximation configuration 18× faster
than ENAP.

For some cases, ENAP exhibits a slightly better quality of
exploration than FPAX before the end of iteration, such as
when the error bound of 3 × 3 convolution is MED=15.
However, this is achieved at the cost of large time overhead.
ENAP requires 638.134 s to obtain similar results to FPAX,
which is about 6× more than 99.912 s of FPAX. In summary,
FPAX uses the least time cost among the three methods, and
achieves better or identical quality exploration results when
compared with ENAP.

1660 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

Fig. 12. Comparison of exploration efficiency between ENAP, JS, and FPAX. (a) Sobel. (b) Laplace filter. (c) 3×3 convolution. (d) FIR filter.

TABLE IV
COMPARISON OF TIME OVERHEAD USING ENAP

AND FPAX IN DIFFERENT APPLICATIONS

Table IV shows the average single iteration time and num-
ber of iterations required for FPAX and ENAP. From Table IV,
it can be found that the average single iteration time of FPAX

is smaller than that of ENAP, especially in applications with
larger search space (such as FIR filter). This is mainly because
these applications with large search space contain multiple
operations, and estimating the error quality of an approximate
configuration requires more time. FPAX can avoid a large
number of redundant calculations, that is, evaluating approx-
imate configurations less frequently than ENAP, thus saving
time and resources. Table IV also shows that the number of
iterations of FPAX is always smaller than that of ENAP, which
once again proves that the convergence speed of FPAX is faster
than that of ENAP.

VII. CONCLUSION

A new framework, called FPAX, has been proposed to
create AC designs for fault-tolerant applications, giving faster
performance and almost identical exploration quality than
previous work. FPAX first learns knowledge from well-known

DOU et al.: FPAX: A FAST PRIOR KNOWLEDGE-BASED FRAMEWORK 1661

explorations offline, and then applies the learned knowl-
edge to DSE in approximate configuration, to avoid a large
amount of redundant calculations. As learned knowledge is
not directly approximate configurations, we also propose a
method called Converter that can transform this knowledge
into high-quality approximate configurations. Compared with
the JS algorithm known for its efficiency, FPAX can also
achieve faster convergence speed and better exploration qual-
ity. When compared with the latest search framework ENAP,
FPAX can achieve similar exploration quality 18 times faster
than ENAP.

REFERENCES

[1] M. Foster and N. Forbes, “Guest editors introduction: The end
of Moore’s law?” Comput. Sci. Eng., vol. 5, no. 1, pp. 18–19,
Jan. 2003.

[2] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 32, no. 1, pp. 124–137,
Jan. 2013.

[3] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic
accuracy configurable adder,” in Proc. 52nd ACM/EDAC/IEEE Design
Autom. Conf., 2015, pp. 1–6.

[4] H. Waris, C. Wang, W. Liu, and F. Lombardi, “AxBMs: Approximate
radix-8 booth multipliers for high-performance FPGA-based acceler-
ators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 5,
pp. 1566–1570, May 2021.

[5] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and
M. Pedram, “RoBA multiplier: A rounding-based approximate multiplier
for high-speed yet energy-efficient digital signal processing,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2, pp. 393–401,
Feb. 2017.

[6] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. 18th IEEE Eur. Test
Symp., 2013, pp. 1–6.

[7] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel,
“Invited: Cross-layer approximate computing: From logic to architec-
tures,” in Proc. 53rd ACM/EDAC/IEEE Design Autom. Conf., 2016,
pp. 1–6.

[8] W. Liu, F. Lombardi, and M. Shulte, “A retrospective and prospec-
tive view of approximate computing,” Proc. IEEE, vol. 108, no. 3,
pp. 394–399, Mar. 2020.

[9] Y. Dou, C. Wang, R. Woods, and W. Liu, “ENAP: An efficient number-
aware pruning framework for design space exploration of approximate
configurations,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 70, no. 5,
pp. 2062–2073, May 2023.

[10] Y. Dou, C. Gu, C. Wang, W. Liu, and F. Lombardi, “Security and approx-
imation: Vulnerabilities in approximation-aware testing,” IEEE Trans.
Emerg. Topics Comput., vol. 11, no. 1, pp. 265–271, Jan.–Mar. 2023.

[11] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, p. 62, Mar. 2016. [Online]. Available:
https://doi.org/10.1145/2893356

[12] S.-L. Lu, “Speeding up processing with approximation
circuits,” Computer, vol. 37, no. 3, pp. 67–73, Mar. 2004.

[13] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong, “Design of
low-power high-speed truncation-error-tolerant adder and its application
in digital signal processing,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 18, no. 8, pp. 1225–1229, Aug. 2010.

[14] L.-D. Van, S.-S. Wang, and W.-S. Feng, “Design of the lower error
fixed-width multiplier and its application,” IEEE Trans. Circuits Syst.
II, Analog Digit. Signal Process., vol. 47, no. 10, pp. 1112–1118,
Oct. 2000.

[15] V. Mrázek, R. Hrbáček, Z. Vašíček, and L. Sekanina, “EvoApprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Proc. Design, Autom. Test
Europe Conf. Exhibit., 2017, pp. 258–261. [Online]. Available: https:
//www.fit.vut.cz/research/publication/11262

[16] S. Hashemi, R. I. Bahar, and S. Reda, “A low-power dynamic divider
for approximate applications,” in Proc. 53rd Annu. Design Autom. Conf.,
2016, pp. 1–6.

[17] M. Vaeztourshizi, M. Kamal, and M. Pedram, “EGAN: A framework
for exploring the accuracy vs. energy efficiency trade-off in hardware
implementation of error resilient applications,” in Proc. Int. Symp. Qual.
Electron. Design, 2020, pp. 438–443.

[18] D. Ma, R. Thapa, X. Wang, X. Jiao, and C. Hao, “Workload-aware
approximate computing configuration,” in Proc. Design, Autom. Test
Europe Conf. Exhibit., 2021, pp. 920–925.

[19] J. Castro-Godínez, J. Mateus-Vargas, M. Shafique, and J. Henkel,
“AxHLS: Design space exploration and high-level synthesis of approx-
imate accelerators using approximate functional units and analytical
models,” in Proc. IEEE/ACM Int. Conf. Comput. Aided Design, 2020,
pp. 1–9.

[20] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative
addition: A new paradigm for arithmetic circuit design,” in Proc. Conf.
Design, Autom. Test Europe, 2008, pp. 1250–1255.

[21] V. Mrazek, M. A. Hanif, Z. Vasicek, L. Sekanina, and M. Shafique,
“AutoAx: An automatic design space exploration and circuit building
methodology utilizing libraries of approximate components,” in Proc.
56th Annu. Design Autom. Conf., 2019, pp. 1–6.

[22] L. Witschen, H. G. Mohammadi, M. Artmann, and M. Platzner, “Jump
search: A fast technique for the synthesis of approximate circuits,” in
Proc. Great Lakes Symp. VLSI, 2019, pp. 153–158.

[23] Z. Zhang, T. Chen, J. Huang, and M. Zhang, “A fast parameter
tuning framework via transfer learning and multi-objective Bayesian
optimization,” in Proc. 59th ACM/IEEE Design Autom. Conf., 2022,
pp. 133–138.

[24] L. Ferretti, J. Kwon, G. Ansaloni, G. Di Guglielmo, L. P. Carloni,
and L. Pozzi, “Leveraging prior knowledge for effective design-space
exploration in high-level synthesis,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 39, no. 11, pp. 3736–3747, Nov. 2020.

[25] J. Kwon and L. P. Carloni, “Transfer learning for design-space explo-
ration with high-level synthesis,” in Proc. ACM/IEEE Workshop Mach.
Learn., 2020, pp. 163–168.

[26] E. Martin, O. Sentieys, H. Dubois, and J. L. Philippe, “GAUT: An
architectural synthesis tool for dedicated signal processors,” in Proc.
Eur. Design Autom. Conf., 1993, pp. 14–19.

Yuqin Dou received the B.S. degree in electri-
cal engineering and automation from the Xi’an
University of Technological Information, Xi’an,
China, in 2016, and the M.S. degree in information
engineering from Xi’an Technological University,
Xi’an, in 2019. He is currently pursuing the Ph.D.
degree in electrical and information engineering
with the Nanjing University of Aeronautics and
Astronautics, Nanjing, China.

His research interests mainly include hardware
security and electronic design automation.

Chenghua Wang received the B.Sc. and M.Sc.
degrees from Southeast University, Nanjing, China,
in 1984 and 1987, respectively.

In 1987, he joined the College of Electronic
and Information Engineering, Nanjing University of
Aeronautics and Astronautics, Nanjing, where he
became a Full Professor in 2001. He has published
six books and over 100 technical papers in journals
and conference proceedings. His current research
interests include testing of integrated circuits and
systems for communications.

Mr. Wang is the recipient of more than ten teaching and research awards
at the provincial and ministerial level.

1662 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 6, JUNE 2024

Haroon Waris received the Ph.D. degree in com-
munication and information engineering from the
Nanjing University of Aeronautics and Astronautics,
Nanjing, China, in March 2022.

His Ph.D. research work was accepted in Ph.D.
forums of DAC 2021, ASP-DAC 2021, ETS 2021,
and ISVLSI 2022. He was invited to CASS
Mentoring Program@ISCAS2021 (only ten mentees
have been selected). He has published one book
chapter by Springer House, two patents, and over 15
journal and conference papers. His research interest

mainly focuses on approximate computing, hardware security, VLSI design
for DSP, and analog/digital IC design and verification.

Dr. Waris serves as an External Reviewer for IEEE TRANSACTIONS

ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART I: REGULAR PAPERS,
IEEE TRANSACTIONS ON EMERGING TOPIC IN COMPUTING, IEEE
TRANSACTIONS ON COMPUTERS, and IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—PART II: EXPRESS BRIEFS. He is the PC member of
IEEE Asian Hardware Oriented Security and Trust Symposium (AsianHOST
2022/23).

Roger Woods (Fellow, IEEE) received the B.Sc.
and Ph.D. degrees from Queen’s University Belfast,
Belfast, U.K., in 1985 and 1990, respectively.

He is a Professor of Digital Systems and the Dean
of Research with the Faculty of Engineering and
Physical Sciences, Queen’s University Belfast. He
co-founded the spin-off company, Analytics Engines
Ltd., Belfast, where he acts as the Chief Scientist.
His research interests are in heterogeneous pro-
grammable systems for data analytics and embedded
systems for medical and smart city applications.

Prof. Woods was elected as a Royal Academy of Engineering Fellow in
acknowledgment of his contributions to entrepreneurship and innovation. He
is the Industry and Exhibition Chair of ISCAS2025 and is a member of the
Industrial Electronics and Signal Processing societies.

Weiqiang Liu (Senior Member, IEEE) received the
B.Sc. degree in information engineering from the
Nanjing University of Aeronautics and Astronautics
(NUAA), Nanjing, China, in 2006, and the Ph.D.
degree in electronic engineering from the Queen’s
University Belfast, Belfast, U.K., in 2012.

He is currently a Professor and the Vice Dean
of the College of Electronic and Information
Engineering and the College of Integrated Circuits,
NUAA. He has published two research books and
over 200 leading journal and conference papers (over

90 IEEE and ACM journals, including nine invited papers). His research
interest focuses on energy efficient and secure computing integrated circuits
and systems.

Prof. Liu has been awarded the prestigious Excellent Young Scholar
Award by National Natural Science Foundation of China in 2020 and the
Young Scientist Award by Fok Ying Tung Education Foundation, Ministry
of Education, China, 2022. He has been listed in the Stanford University’s
2020 list of the top 2% scientists in the world. He is the Vice President for
Technical Activities of the IEEE Nanotechnology Council (NTC). He serves
as the Steering Committee Chair for IEEE TRANSACTIONS ON VERY LARGE

SCALE INTEGRATION (VLSI) SYSTEMS, an Associate Editor for IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART I: REGULAR PAPERS,
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, and IEEE
TRANSACTIONS ON COMPUTERS, and a Guest Editor for PROCEEDINGS OF

THE IEEE. He is the Program Co-Chair of IEEE ARITH 2020, ACM/IEEE
NANOARCH 2022, and IEEE AsianHOST 2023. He is a Tutorial Organizer
and a Speaker in DAC 2022, DATE 2022, IEEE ISCAS 2021, and COINS
2021. He is a member of IEEE NTC AdCom and CASCOM/VSA Technical
Committee of IEEE CAS Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

