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Abstract—Hypergraph processing has emerged as an effec-
tive approach to analyze complex multilateral relationships in
real-world scenarios. Existing hypergraph processing solutions
based on conventional architectures are severely bottlenecked
by off-chip memory accesses. In this article, we propose
the first processing-in-memory (PIM)-featured ReRAM-based
hypergraph accelerator, dubbed PhGraph, which facilitates
performance- and energy-efficient hypergraph processing. On
the hardware level, PhGraph integrates analog memristor-
based PIM (with high-matrix-grained parallelism) and digital
memristor-based PIM (for high-bipartite-edge-grained efficiency)
into one standalone solution. On the software level, an overlap-
aware hypergraph partitioning mechanism is proposed to
polarize hypergraph workloads into matrix-formatted dense
and bipartite-edge-formatted sparse partitions for performance
acceleration using analog memristor-based PIM and digital
ones, respectively. In addition, PhGraph is equipped with load-
balanced partition scheduling and algorithm mapping co-designs
to boost hardware utilization and efficiency. Experimental results
show that PhGraph outperforms the state-of-the-art CPU-,
FPGA-, and ASIC-based solutions by up to 4,309.81×, 547.13×,
and 166.76× in terms of performance, and 36,416.11×, 924.12×,
and 41.44× in terms of energy-savings, respectively.

Index Terms—Heterogeneous accelerator, hypergraph process-
ing, processing-in-memory (PIM).

I. INTRODUCTION

THE CONVENTIONAL graph is restricted to capturing
the pairwise relations of objects. However, real-world

scenarios are often much more complex with multilateral
relationships [1], [2]. For example, a paper may be published
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Fig. 1. Example hypergraph G, its incidence matrix M, and bipartite repre-
sentation. (a) Hypergraph. (b) Incidence matrix. (c) Bipartite representation.

by more than two authors. Decomposing these polyadic
relationships into pairwise ones may result in the loss of
critical information [3]. Hence, hypergraph has emerged to
naturally represent such multilateral relationships, where each
hyperedge [e.g., h0 in Fig. 1(a)] is able to connect any number
of vertices [e.g., v0, v1, v2, and v3 in Fig. 1(a)]. Hypergraph
processing can give rise to an expressive and efficient analysis
of such relational data. Nowadays, hypergraph processing has
been widely used in a large variety of domains, such as
machine learning [4], drug discovery [5], and VLSI design [6].

Hypergraph processing typically relies on an iterative pro-
cess with two basic kennels: 1) hyperedge computation and
2) vertex computation. The former uses active vertices to
update the state of their incident hyperedges via an algorithm-
specific hyperedge update function. Similarly, the latter utilizes
the newly activated hyperedges to update vertices using a
vertex update function. Previous studies [7], [8] have shown
that hypergraph processing is typically memory-bound. Recent
solutions, based on CPUs [1] and ASICs [7], [8], improve
the locality of hypergraph processing by exploiting the
intrinsic hypergraph structure overlap. However, they remain
inadequate in addressing the memory bottleneck arising in
hypergraph processing. Taking the state-of-the-art hypergraph
processing accelerator XuLin [8] as a reference, especially for
large hypergraphs, off-chip memory accesses can still be up to
80.19% of the total running time (as discussed in Section II-C).

Compared to the conventional von Neumann architecture,
which relies on a separate computation-storage hierarchy,
processing-in-memory (PIM) is a promising technology to
improve memory-bound applications by integrating the pro-
cessing elements within the memory. Past research [9],
[10], [11], [12], [13] has demonstrated that resistive ran-
dom access memory (ReRAM) can be effective in boosting
ordinary graph processing. In consideration of the fact that
an ordinary graph is a special case of a hypergraph where
each hyperedge connects only two vertices, one feasible
intuition for accelerating hypergraph processing is to directly

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7903-2061
https://orcid.org/0000-0003-0260-6690
https://orcid.org/0000-0002-3927-1102
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0002-3934-7605


ZHENG et al.: PHGRAPH: A HIGH-PERFORMANCE ReRAM-BASED ACCELERATOR 1319

reuse existing ReRAM-based graph accelerators to support
the hyperedge computation and vertex computation kernels
alternately. However, hypergraph processing exhibits unique
interkernel difference and overlap-induced irregularity such
that simply applying existing graph processing solutions to
hypergraph applications cannot boost performance effectively
and efficiently.

On the one hand, conventional graph applications only need
to update the states of vertices with the same update operations
in each iteration. In contrast, for hypergraph applications, the
states of hyperedges and vertices are updated separately in
two alternately executing kernels during an iteration. To sup-
port hypergraph processing, the existing ReRAM-based graph
accelerator family has to handle the hyperedge computation
and vertex computation kernels alternately in each iteration.
However, the update logic of the two kernels is completely
different, such that we have to remap kernel-specific data into
crossbars once the executing kernel switches. Thus, this may
incur significant extra resistance writing overhead, which can
be up to 2× against the kernel execution time [14]. Even
worse, this overhead can increase substantially as the number
of iterations increases.

On the other hand, the existing ReRAM-based graph process-
ing accelerator family, in order to harness the massive parallelism
provided by the matrix-structured crossbar architecture, has to
hold an assumption that crossbar cells are fully utilized [9], [10].
However, real-world hypergraph structure is often overlapped
in the sense that the majority of vertices are associated with
at least two hyperedges, and vice versa [7]. Thus, hypergraph
processing exhibits overlap-induced workload irregularity. That
is, heavy (light) overlapped topology substructure yields dense
(sparse) regions in the hypergraph-induced incidence matrix
[e.g., Fig. 1(b)]. Mapping these sparse submatrices into ReRAM
crossbars leads to most of the cells being unused, incurring
superfluous resistance writes and analog-signal conversion with
limited performance and energy improvements. There have been
some research efforts [10], [13], [15] for mitigating sparsity-
induced performance degradation arising in the ReRAM-based
architectures. However, few of them consider the unique
overlapped feature of the hypergraph, leading to suboptimal
improvements.

We observe that there is an opportunity to overcome the
interkernel difference from the perspective of matrix-vector
multiplication (MVM), in the sense that the hyperedge com-
putation and vertex computation kernels can be uniformly
formalized as a set of MVM operations, where only the input
matrices are transposed to each other. Taking the PageRank
algorithm as an example, its vertex and hyperedge update
functions utilize the hypergraph-induced incidence matrix M
[Fig. 1(b)] and its transposed one MT for computation, respec-
tively. Further, it is observed that there is no absolute winner
for the row-grained digital memristor-based PIM (DPIM) and
the matrix-grained analog memristor-based PIM (APIM) for
processing all hypergraph workloads efficiently. By partition-
ing hypergraphs into dense and sparse workloads based on the
overlap feature, APIM and DPIM can be leveraged to acceler-
ate different (dense or sparse) workloads to maximize overall
efficiency, further alleviating the overlap-induced irregularity

issue. Thus, we are motivated to design a hybrid architecture
that integrates APIM and DPIM technologies, which is capable
of performing MVM-featured hypergraph processing with
impressive performance and energy gains.

However, materializing the aforementioned idea remains
challenging. First, the input matrix arising in the hyperedge
computation kernel is transposed to the one arising in the
vertex computation kernel. Alternately mapping the incidence
matrix and its transposed one into ReRAM crossbars may
incur superfluous resistance writes, thereby limiting gains that
can be achieved. Second, to maximize the performance poten-
tial of the hybrid architecture, the most important imperative is
to polarize the hypergraph-induced incidence matrix into either
dense or sparse submatrices. Unfortunately, it is extremely
difficult, if not impossible, to devise a fast yet efficient
partitioning policy due to the complex intertwined connections
between vertices and hyperedges. Third, after hypergraph
partitioning, different tasks associated with the same vertex
or hyperedge may be executed in distinct processing engines.
This may produce a large number of intermediate results,
incurring prohibitive reduction overhead.

In this article, we architect the first ReRAM-based hyper-
graph processing accelerator, dubbed PhGraph, which exploits
a hybrid architecture with analog and digital memristor-
based PIM technologies to boost overall efficiency. PhGraph
features three novel designs. First, PhGraph is equipped with
a transposed APIM crossbar architecture to support MVM and
MTVM operations directly without data remapping, thereby
avoiding unnecessary analog-signal conversion and resistance
writes. Second, we propose an overlap-aware HP strategy,
which polarizes the hypergraph-induced incidence matrix into
either sparse or dense submatrices to fully exploit the hardware
potential of APIM- and DPIM-based processing engines.
PhGraph also contains a hybrid partition scheduling scheme,
which takes hyperedges and vertices into account equally. This
enables maximizing data reuse for each processing engine
and improves the load balance among all processing engines.
Third, we also orchestrate a hierarchical reduction scheme
to maximize the reduction efficiency of intermediate results
through intratile local reduction and intertile global reduction.

This article makes the following contributions.
1) We develop the first ReRAM-based hypergraph acceler-

ator, which is composed of a hybrid analog and digital
PIM architecture to support hypergraph processing.

2) We propose the software-level hypergraph partition and
scheduling co-designs to maximize the hardware effi-
ciency of the underlying architecture.

3) PhGraph outperforms state-of-the-art hypergraph solu-
tions by up to 4,309.81× (CPU), 547.13× (FPGA),
and 166.76× (ASIC) in terms of performance, and
36 416.11× (CPU), 924.12× (FPGA), and 41.44×
(ASIC) in terms of energy-savings, respectively.

The remainder of this article is organized as follows.
Section II introduces the background and motivation.
Section III describes the PhGraph architecture and the
detailed designs. Section IV discusses the experimental results.
Section V reviews the related works, and finally, Section VI
concludes this article.
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II. BACKGROUND AND MOTIVATION

In this section, we first review the background for hyper-
graph processing and ReRAM basics. We then analyze the
limitations of existing hypergraph processing solutions, finally
motivating our approach.

A. Hypergraph Processing

Hypergraph: A hypergraph is composed of a set of vertices
V and hyperedges H, denoted as G =< V, H >. A hyperedge
can connect an arbitrary number of vertices. The number
of vertices (hyperedges) in hypergraph G is donated as |V|
(|H|). We use N(h) to indicate a set of vertices connected
to the hyperedge h, and the degree of h is the size of N(h).
Two hyperedges hi and hj can be called overlap when they
share some common vertices (i.e., N(hi) ∩ N(hj) �= φ).
Fig. 1(a) shows a hypergraph G with seven vertices and four
hyperedges. The hyperedge h0 connects v0, v1, v2, and v3,
meaning N(h0) = {v0, v1, v2, v3}. The hyperedges h0 and h2
is overlapped since N(h0) ∩ N(h2) = {v0, v1, v2}.

A hypergraph is typically represented in the bipartite repre-
sentation format [2], [7], [8], which represents each hyperedge
as a distinct vertex and connects the vertex with its incident
vertices. Thus, as shown in Fig. 1(c), a hypergraph can be
represented as a bipartite graph and stored with an extended
CSR format [7]. In addition, a hypergraph can also be
represented as an incidence matrix, as shown in Fig. 1(b),
where rows and columns represent vertices and hyperedges,
respectively. The (i, j)th nonzero element in matrix M means
that the vertex i is associated with the hyperedge j.

Hypergraph Processing: Algorithm 1 shows the hypergraph
processing procedure of the PageRank algorithm, perform-
ing hyperedge computation kernel and vertex computation
kernel alternately in each iteration [2]. First, two algorithm-
specific update functions V_update_H and H_update_V
are defined (lines 1–4) for hyperedge computation and
vertex computation, respectively. An apply_V function is
also defined (lines 5 and 6) for an apply operation on
each vertex after vertex computation. Similarly, there is an
apply_H function for applying on hyperedges. The pro-
cedure first initializes the data value (v_value and h_value)
and the active vertices and hyperedges (FrontierV and
FrontierH) (lines 7–10). Then, the iterative computation starts
(lines 10–23). For the hyperedge computation kernel, all
bipartite edges associated with FrontierV are processed with
V_update_H (lines 12 and 13). Once a hyperedge value
is changed, this hyperedge will be activated and added into
FrontierH (lines 14 and 15). Symmetric to the hyperedge
computation, the vertex computation iterates all bipartite edges
in FrontierH to perform the H_update_V operation and
further generate a new FrontierV (lines 16–19). Finally, the
apply_V function is applied on each active vertex. The
hypergraph processing ends with no active data left or a
maximum iteration count MAX_ITER reached.

B. Crossbar-Based PIM Architectures

With in-situ processing, high parallelism, and low-
energy consumption, ReRAM-based PIM architecture has
been widely used to accelerate memory-bound applications.
Typically, ReRAM cells are often organized as a crossbar

Algorithm 1 PR Algorithm for Hypergraph
Input: Hypergraph G =< V, H >

Output: v_value and h_value
1: function V_UPDATE_H(v, h) � updating hyperedge

2: h_value[h]←h_value[h]+ v_value[v]

v.getOutDeg()

3: function H_UPDATE_V(h, v) � updating vertex

4: v_value[v]←v_value[v]+ h_value[h]

h.getOutDeg()

5: function APPLY_V(v) � apply vertex

6: v_value[v]← α×v_value[v]+ 1− α

|V|
7: VertexInit(v_value)
8: HyperedgeInit(h_value)
9: FrontierV.init()

10: FrontierH.init()

11: for iter← 0, MAX_ITER do
� Hyperedge Computation

12: for each (v, h) ∈ G where v ∈ FrontierV do
13: V_UPDATE_H(v, h)
14: if h is updated then
15: FrontierH.push(h)

� Vertex Computation
16: for each (h, v) ∈ G where h ∈ FrontierH do
17: H_UPDATE_V(h, v)
18: if v is updated then
19: FrontierV.push(v)

20: for each v ∈ FrontierV do
21: APPLY_V(v)
22: if FrontierV and FrontierH are Empty then
23: break

architecture, which can be built in two forms: 1) analog
crossbar-based PIM (APIM) and 2) digital crossbar-based PIM
(DPIM). Fig. 2 shows their crossbar basics, respectively.

APIM Crossbar: Fig. 2(a) shows an example APIM cross-
bar. First, matrix data is mapped into the ReRAM crossbar in
the form of conductance G, which is the reciprocal quantity
of resistance. With digital-to-analog converters (DACs), the
input vector is converted to voltage signals V , which will be
further applied on word lines. According to Kirchhoff’s law,
current signals on bit lines can be calculated as I = V × G. By
converting currents into digital numbers via analog-to-digital
converters (ADCs), the output vector stores the multiplication
result of the preloaded matrix and the input vector. APIM
crossbar can natively perform MVM operations in the O(1)

time complexity, assuming that the matrix can fit into the
crossbar. In contrast, traditional architectures, such as CPUs,
which leverage arithmetic or bit operations as basic operators,
perform MVM in the O(n2) complexity with a large amount
of data movement between memory and processing units. For
applications based on MVM operations, such as hypergraph
processing, the crossbar-based APIM architecture can dramat-
ically improve the overall performance.

DPIM Crossbar: Different from APIM, which only uti-
lizes the read feature of ReRAM cells, DPIM further takes
advantage of the write feature of ReRAM cells, whose
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(a) (b)

Fig. 2. ReRAM-based crossbar structures. (a) APIM crossbar. (b) DPIM
crossbar.

resistance can be modified by applying electrical current.
In theory, when the current flowing into the ReRAM cell
reaches a certain threshold, the resistance increases. When
the current flowing out of the ReRAM cell reaches the
threshold, the resistance decreases [17]. Following the above
principles, DPIM can perform parallel bitwise NOR operations
in practice [18].

Fig. 2(b) depicts the DPIM crossbar with the PIM capability
of performing bitwise NOR operations. Two input data A
and B are written into ReRAM cells with a single bit per
cell pattern, where a high resistance (10 M�) represents
the bit “0” while a low resistance (10 K�) denotes the bit
“1,” in the first and second columns, respectively. In the
third column, the output result is initialized as 1 (i.e., low
resistance). Then, the isolation voltage VISO is applied to
unused rows and columns to isolate these cells. Meanwhile,
the specific voltages VG and GND are applied to the bit lines
corresponding to the input and output columns, and Vs is used
to select active word lines for computations. If an input cell in
the activated word line is programmed to be a low-resistance
state (i.e., 1), the high-current flows into the output cell whose
resistance thus increases from the low to the high state (i.e., 1
→ 0), based on Ohm’s law. Similarly, if both input cells in
the activated word line are programmed to be in the high-
resistance state (i.e., 0), the current will be limited, and the
resistance of the output cell remains unchanged (i.e., 1). As a
result, the output data can be viewed as the formula A NOR B.
Previous studies [19], [20] have demonstrated that almost all
arithmetic operations, such as addition and multiplication, can
be realized as a series of NOR operations. Consequently, the
DPIM crossbar can support a wide range of applications and
achieve impressive performance with fine-grained parallelism.

APIM Versus DPIM: Both APIM and DPIM organize
ReRAM cells in a crossbar architecture. However, they would
realize two categories of base operators with distinct paral-
lelism by architecting different peripheral circuits and applying
different voltages. APIM is endowed with coarse-grained
array-level parallelism, while DPIM is endowed with fine-
grained row-level parallelism. Thus, APIM may achieve better
performance than DPIM if crossbar cells can be fully utilized.
Otherwise, DPIM would be superior since its fine-grained
parallelism can avoid matrix-grained ineffectual computations.

C. Existing Efforts

1) Inefficiencies of Existing Hypergraph Solutions:
Recently, many hypergraph processing frameworks developed

Fig. 3. Off-chip memory access time of XuLin normalized to total execution
time for algorithms PR and BC.

Fig. 4. Normalized algebraic connectivity of largest connected component
of s-line graph for network com-DBLP [16] with various s values.

on CPUs and ASICs have been proposed to improve paral-
lelism [2], data locality [7], programming productivity [8], and
communication overheads [1]. However, these earlier solutions
are still inadequate in addressing the memory bottleneck
arising in hypergraph processing. To demonstrate this, we
conduct a set of experiments to count the normalized execution
time of off-chip memory accesses for hypergraph processing
over the state-of-the-art hypergraph accelerator XuLin [8].

Fig. 3 shows the normalized execution time arising from
off-chip memory accesses by benchmarking PageRank (PR)
and betweenness centrality (BC) on six real-world hyper-
graphs (i.e., com-Orkut (OK), Friendster (FS), LiveJournal
(LJ), Orkut-Group (OG), Gottron-Trec (TR), and Web-trackers
(WEB)). The benchmark and dataset details can be found in
Section IV-A. We can see that off-chip memory accesses take
about half of the total running time on average. For PR on
the large hypergraph OG, this ratio can be as high as 80.19%,
demonstrating that off-chip memory accesses still bottleneck
hypergraph processing. The reason behind this is apparent.
Although XuLin [8] has minimized the redundant off-chip
memory accesses, there still exists a substantial amount of
necessary data movement between processing elements and
the memory under the traditional von Neumann architecture.

2) Limitations of ReRAM-Based Graph Accelerators:
Previous studies [9], [21] have demonstrated that PIM is
promising in tackling the memory bottleneck arising in the
traditional von Neumann architecture. The recent breakthrough
achieved by ReRAM-based graph processing accelera-
tion [9], [10] further motivates us to accelerate hypergraph
processing using ReRAM-based architecture. Considering a
graph is a special case of a hypergraph, an intuition for
realizing ReRAM-based hypergraph processing acceleration is
to directly reuse existing ReRAM-based graph accelerator to
support the hyperedge computation and vertex computation
kernels alternatively. However, existing accelerators are not
well suited to hypergraph processing due to the following two
reasons.



1322 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

1) Interkernel Difference: Conventional graph process-
ing updates the vertex state using the same update
function. In contrast, the hyperedge computation and
vertex computation kernels perform different update
logic to alternatively update the states of hyperedges
and vertices in each iteration. Consequently, in order
to handle hypergraph processing, existing accelerators
have to remap kernel-specific data into the crossbar
to implement kernel switching. It is clear that this
will incur superfluous resistance writes with significant
performance degradation. Taking the k-core algorithm
running on OG as an example, it performs up to 2923
iterations, resulting in 5846 (2923×2) kernel switches.
The resistance writing overhead arising from kernel
switching is 13.89 times more than the kernel execution
time, occupying 93.28% of the overall time. Even worse,
frequent kernel switching will increase cell wear and
reduce the lifetime of ReRAM cells.

2) Overlap-Induced Irregularity: Existing ReRAM-based
graph accelerators enjoy the massive parallelism of the
matrix-structured crossbar architecture, with an assump-
tion that the crossbar cells can be fully utilized. However,
real-world hypergraphs have a unique overlap structure,
where many vertices (hyperedges) can be shared by at least
two hyperedges (vertices), which induces an extremely
sparse distribution of crossbar. Thus, using existing
ReRAM-based graph accelerators to handle hypergraph
applications will suffer significant performance degrada-
tion arising from ineffectual zero-valued data mapping.
Although graph reordering [10], [15] techniques can be
used to improve the sparsity-induced inefficiencies, these
graph-oriented solutions are inadequate for hypergraph
processing due to the intertwined relationships between
hyperedges and vertices.

D. Overcoming Inefficiencies

In this work, we have the following two observations arising
in hypergraph processing.

Observation 1: The hyperedge and vertex computation ker-
nels in hypergraph processing exhibit an operational similarity,
indicating that these two kernels can be uniformly formalized
as a set of MVM operations, where only the input matrices
are transposed to each other.

Algorithm 1 performs hypergraph processing from the per-
spective of hypergraph topology. In fact, this procedure can
be expressed as the MVM-formatted computing paradigm in
theory. Taking the PR algorithm as an example, the hyperedge
computation and vertex computation kernels can be formalized
into an MVM form as follows:

Hi = MT × (Vi/V.degrees) (1)

Vi+1 = α × (M × (Hi/H.degrees))+ (1− α)/nv (2)

where M, V , and H denote the hypergraph-induced incidence
matrix, the vertex property vector, and the hyperedge property
vector, respectively. MT indicates the transposed matrix of M.
α is a damping factor, which is an algorithm-specific param-
eter. We can see that these two symmetric kernels perform

(a) (b)

Fig. 5. Performance of APIM and DPIM for PR and BC algorithms on
hypergraphs with various density. (a) PR. (b) BC.

similar MVM operations, except that their input matrices are
transposed with each other (i.e., MT and M). This observation
provides an opportunity for us to use a uniform MVM kernel
to eliminate the interkernel difference and further avoid costly
repeated data mapping. We would like to note that almost all
hypergraph algorithms can also be equivalently expressed as
a set of MVM operations.

Observation 2: The hypergraph-induced incidence matrix
exhibits global sparsity and local denseness, which is closely
related to the hypergraph overlap structure.

The hypergraph-induced incidence matrix is sparse in a
global view since [|B|/(|V| × |H|)] 	 1, where |B|, |V|, and
|H| denote the number of bipartite edges, vertices, and hyper-
edges, respectively. However, the incidence matrix can still
contain dense parts. Let us consider the example hypergraph
in Fig. 1(a). Its incidence matrix is sparse ([15/(7× 4)]	 1)

[see Fig. 1(b)], but the 3×3 submatrix in the upper-left corner
of this incidence matrix can be dense ([9/(3× 3)] = 1).
This phenomenon is caused by the hypergraph overlap feature,
where some vertices tend to be shared by multiple hyperedges.
In Fig. 1(a), we observe that h0, h1, and h2 share the common
vertices v0, v1, and v2, resulting in the 3× 3 dense submatrix
in Fig. 1(b). This phenomenon will be particularly true for
real-world hypergraphs.

To further demonstrate Observation 2, we construct the s-
line graph [22] of a hypergraph by abstracting hyperedges
as new vertices and creating new edges for representing
specified overlap relationships where the common vertex count
is greater than or equal to s. The s-line graph retains the critical
topological structure features of the original hypergraph while
removing unimportant overlap relationships. Fig. 4 illustrates
the normalized algebraic connectivity of the s-line graph with
different s over a real-world hypergraph com-DBLP [16]. The
initial descent of the curve indicates that the hypergraph is sparse
in a global view. The subsequent ascent evidences the presence
of local denseness, while the final descent indicates that the
scale of local denseness is limited. This observation inspires
us to overcome the overlap-induced irregularity through a split
and conquer hypergraph partitioning strategy, which polarizes
the incidence matrix into either dense or sparse submatrices
according to the hypergraph overlap structure, yielding two
types of workloads with enhanced regularity.

Nevertheless, on the hardware level, we observe that there
is no absolute winner between APIM and DPIM technologies
for hypergraph processing. To demonstrate this, we evaluate
the execution time of APIM- and DPIM-based hypergraph
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Fig. 6. Example for hybrid hypergraph mapping with example hypergraph
and its incidence matrix, polarizing hypergraph into dense and sparse parti-
tions, and mapping into APIM and DPIM respectively.

processing for an all-active algorithm PR and a non-all-active
algorithm BC using the generation hypergraph with varying
density. Fig. 5 shows the results, indicating that APIM runs
faster than DPIM when the hypergraph density is larger than
a threshold (i.e., 0.18% for PR and 0.4% for BC). In contrast,
when the density is less than this threshold, DPIM outperforms
APIM. Consequently, we are motivated to reap the best of
both worlds of APIM and DPIM with workload polarization
to support efficient hypergraph processing.

Fig. 6 illustrates how the example hypergraph is mapped
onto a hybrid APIM-DPIM architecture for computation. First,
we polarize the hypergraph and further divide it into dense and
sparse partitions, in which the dense ones are represented in
matrix format, and the sparse ones are stored as the bipartite
edge list. Second, dense submatrices are written into the APIM
crossbar for computation, while each bipartite edge is mapped
into a row of the DPIM crossbar for computation. Finally,
the intermediate results from both APIM and DPIM will be
reduced to obtain the final results.

However, materializing a hybrid APIM-DPIM accelerator
for efficient hypergraph processing remains challenging. First,
the APIM crossbar cannot be used directly to support both
MVM and MTVM operations without matrix remapping phys-
ically. Second, the aforementioned density thresholds vary
from algorithm to algorithm, making hypergraph polarization
complex. Third, substantial intermediate results arising from
two isolated PIMs incur expensive reduction overheads.

III. PHGRAPH

This section first introduces the overall architecture of
PhGraph and its workflow and then elaborates on the
hardware- and software-level design in detail.

A. Architecture

Fig. 7 depicts the overall architecture of PhGraph. At a high
level, PhGraph adopts a hierarchical architecture. A PhGraph
chip consists of several Tiles, which are connected through
an on-chip mesh interconnect network. Each tile comprises
two types of processing engines: 1) dense processing engines
(DPEs) and 2) sparse processing engines (SPEs). The former

Fig. 7. PhGraph architecture.

incorporates APIM arrays to process dense matrix-granularity
workloads. To prevent the repeated loading of the incidence
matrix and its transposed matrix into the crossbar, each APIM
crossbar features a transposed crossbar design (discussed in
Section III-C). The latter is responsible for processing sparse
bipartite-edge-granularity workloads using DPIM arrays. The
input bipartite edges are temporarily stored in the memory
ReRAM to overlap data fetching and processing partially,
thereby reducing the latency of data mapping to DPIM arrays.
Since different bipartite edges executing in parallel may have
common hyperedges or vertices, the output results of DPIM
arrays need to be passed to the parallel reducing network
(PRN), where several intermediate values of the same vertex
or hyperedge are finally reduced into a final result. The Buffer
is responsible for caching the final results. The vertex and
hyperedge property values are initially stored in the Attribute
Memory. At runtime, these property values are distributed to
different tiles and cached in the Scratchpad Memory. They are
then sent to the respective crossbars for computation. At the
end of each iteration, the global reducer (GR) reduces and syn-
chronizes property values among different tiles. The Controller
is responsible for managing data interactions, including data
fetching and communication among different components.

B. Workflow

The workflow of running a hypergraph application with
PhGraph consists of several steps. Initially, a hypergraph needs
to be polarized into dense and sparse partitions. The dense
partitions are stored in a dense matrix format, which can be
mapped into the APIM crossbars offline in advance (❶). The
sparse partitions are stored in the Memory ReRAM in a bipar-
tite edge list format (❷). Meanwhile, vertex and hyperedge
property values are initialized and loaded into the Attribute
Memory (❸). Then, PhGraph starts to perform hyperedge and
vertex computation kernels alternately in each iteration. Taking
the hyperedge computation kernel as an example, where active
vertices update their incident hyperedges using an algorithm-
specific update function, the property values are distributed to
all tiles and stored in the Scratchpad Memory (❹). Afterward,
both DPEs and SPEs start working simultaneously. In SPEs,
bipartite edges with active vertices are mapped to each row
of DPIM crossbars to perform algorithm-specific operations



1324 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

(a) (b)

Fig. 8. (a) Transposed memory crossbar. (b) Single bit implementation

in parallel with a series of bitwise NOR operations (❺). The
computation results are passed to PRN to reduce intermediate
values into the final results, which will be temporarily stored
in the Buffer. In DPEs, APIM crossbars are driven to perform
MVM operations (❻). The output results are reduced by
peripheral simple algorithmic and logic units (sALUs), and
reduced results are stored in the output registers (OR). Finally,
these newly computed results in the local buffer of different
tiles are synchronized through the GR (❼).

C. Hardware Designs

Transposed Crossbar Architecture: As depicted in Fig. 2(a),
performing an MVM operation with a conventional APIM
crossbar involves rowwise input and columnwise output.
However, hypergraph processing requires iterative hyperedge
and vertex computation kernels, and their input matrices
are transposed with each other. In the conventional crossbar
context, the incidence matrix and its transposed one have
to be loaded into the crossbar alternately and iteratively,
along with two computation kernels. This inevitably introduces
superfluous resistance writes and analog-signal conversions,
leading to additional performance and energy overheads.

By attaching simple peripheral circuits to the conventional
APIM crossbar as shown in Fig. 8(a), a lightweight transposed
memory crossbar architecture can be built to cope with the
aforementioned issue [23]. This architecture enables voltages
to be applied on both vertical and horizontal directions,
and the input voltages are coupled with the corresponding
output currents in the orthogonal direction. Only a single set
of orthogonal directions can be utilized during processing.
The transposed crossbar can perform the MVM and MTVM
operation alternately by applying the input vector as voltages
on the rows and columns of the crossbar, respectively.

In hypergraph processing, the incidence matrix can be
mapped into the crossbar in advance, and the hyperedge
computation kernel can be performed by inputting vertex values
to row DACs and driving the crossbar in a row-input-column-
output pattern. Intermediate hyperedge results can be obtained
from column ADCs. Conversely, the vertex computation kernel
can be performed in a column-input-row-output pattern without
modifying the data stored in the crossbar. By this means, it
circumvents the need for repeatedly loading both the matrix
and its transposed one into the crossbar. The transposed
crossbar architecture can introduce extra peripheral circuits
(i.e., double number of DACs and ADCs), leading to power
and area overheads. Fortunately, the row ADCs and column
ADCs are never utilized simultaneously in practice, so that the

ADCs are enabled to be shared between rows and columns
of the transposed crossbar in a time-division manner using a
simple multiplexer. This approach eliminates the need for extra
ADCs, which typically occupy significant area and power in
APIM designs, reducing the peripheral circuits overhead of
the transposed crossbar architecture.

Hierarchical Reduction Design (HRD): As discussed in
Section III-B, a significant number of intermediate results
may be generated and stored in various buffers located in
DPEs, SPEs, and tiles during hypergraph processing. At the
end of each iteration, these intermediate results need to be
reduced to obtain the final results, leading to costly reduction
overhead and significant performance degradation. To address
this issue, we present a two-level HRD, which contains both
local and global reduction components, performing intratile
and intertile reduction, respectively. Furthermore, this enables
two-stage pipeline parallelism, allowing intermediate value
reduction effectively and efficiently.

Considering distinct characteristics of intermediate results in
various components, we exploit different specialized hardware
designs to maximize the reduction efficiency. For DPEs, each
row (column) of APIM crossbars produces intermediate results
for a fixed vertex (hyperedge). Thus, the reduction can be
directly performed by sALUs due to the regular and serial
output format. In contrast, the output data distribution of DPIM
crossbars in SPEs is more complex. DPIM performs rowwise
parallel computation, and each row can process any bipartite
edges, producing intermediate results with the 〈id, value〉
format, where multiple values with the same id need to be
reduced. Fortunately, by assigning bipartite edge tasks in the
vertex (hyperedge) index order, we can ensure that ids in the
output sequence are ordered. Therefore, we can use a prefix
sum network [24] as PRN to achieve parallel reduction. For
tiles, intermediate results mix both features of DPEs and SPEs,
leading to complex data distribution within each tile. However,
benefiting from the coarse-grained task distribution among
tiles, employing a binary reduction network as GR is sufficient
to reduce intermediate results from tiles.

D. Software Designs

We propose three software co-designs to exploit the under-
lying hardware fully. In particular, PhGraph employs an
overlap-aware hypergraph partitioning technique to polarize
hypergraph tasks into dense and sparse workloads. In addition,
PhGraph also customizes the partition scheduling strategy
to keep the load balance between DPEs and SPEs. Finally,
PhGraph improves the overall utilization of APIM crossbars
with the single-bit fine-grained algorithm mapping.

Overlap-Aware Hypergraph Partitioning: As discussed in
Section II-D, hypergraphs exhibit complex topology, where
vertices and hyperedges are intertwined with each other,
making it difficult and time-consuming to perform hypergraph
polarization. Existing partitioning strategy [25], [26], [27]
designed for graphs is less efficient for hypergraphs, due to the
complex hypergraph topology, where vertices and hyperedges
are intertwined with each other. Fortunately, the distribution
of dense and sparse partitions in a hypergraph is closely
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Algorithm 2 Overlap-Aware Hypergraph Partitioning
Input: Hypergraph G = (V, H)

Input: Overlap argument s and Threshold D
Output: Dense partition DP and Sparse partition SP

1: procedure HYPERGRAPH_PARTITION

2: s_line_graph_h← GEN_S_LINE_GRAPH(G, s)
3: s_line_graph_v← GEN_S_LINE_GRAPH(GT, s)
4: pre_DP← CONSTRUCT_HYPERGRAPH(

hyperedges: vertices in s_line_graph_h,
vertices: vertices in s_line_graph_v)

� specify left bipartite edges as sparse
5: SP.insert(G− pre_DP)

6: for each p ∈ GRID_PARTITION(pre_DP, 8× 8) do
7: if Density(p) > D then
8: DP.insert(p) � p is dense
9: else

10: SP.insert(p) � p is sparse

11: return DP and SP

related to the overlap feature, and the s-line graph of a
hypergraph can reflect the most critical overlap relationships
in the hypergraph. Taking advantage of this fact, we propose
an overlap-aware partitioning technique, which follows a split
and conquer ideology, to make a tradeoff between partition
quality and efficiency, as depicted in Algorithm 2. First, we
construct s-line graphs of the hypergraph for hyperedges and
vertices, respectively (lines 2 and 3). These s-line graphs
record the heaviest overlapped hyperedges (vertices), which
share at least s common vertices (hyperedges) with each other.
By selecting an appropriate value s, we can obtain a suitable
number of hyperedges and vertices to build a preliminary
dense subhypergraph (line 4). The remaining hyperedges and
vertices are classified as sparse workloads (line 5). For the
preliminary dense partition, we further employ a grid partition
strategy [25] to divide the subhypergraph-induced incidence
matrix into multiple submatrix blocks. If the density of a
submatrix block is higher than a specified threshold D, it can
be regarded as a dense workload. Otherwise, it is a sparse
workload (lines 6–10).

The arguments s and D can jointly affect the efficiency
and effectiveness of partitioning and further influence the
overall performance of PhGraph. We first discuss the impact
of the value s. On the one hand, selecting an appropriate s is
critical for partitioning efficiency. For a specific hypergraph,
constructing an s-line graph with a small s value can be more
time-consuming than a larger s value. On the other hand, the
number of dense partitions is determined by the value of s
along with the hypergraph scale. A small s indicates producing
a large s-line graph, which further generates many dense
partitions. Making a tradeoff between these factors allows for
a heuristic estimation of s, as follows:

s = 2log10(|V|×|H|)/64 (3)

where |V| and |H| are the number of vertices and hyperedges,
respectively. We take a multiplication between them to reflect
the hypergraph scale.

We determine the value of D based on the global density
of the hypergraph, with a larger threshold chosen for denser
hypergraphs to achieve load balance between DPEs and SPEs.
Additionally, the hypergraph algorithm characteristic can also
affect the choice of D, as discussed in Section II-D. In practice,
we obtain the value of D as follows:

D = α ×√GD (4)

where GD represents the global density of a hypergraph. α

indicates whether the hypergraph algorithm is all-active (non-
all-active), represented by the empirical number 1 (10).

Load Balanced Partition Scheduling: After the hypergraph
is partitioned, all the partitions will be dispatched to tiles, and
further to APIM and DPIM crossbars, for computations. One
intuition solution is to apply a vertex-major scheduling strat-
egy, which distributes all associated hyperedges to a specific
crossbar according to the vertex. However, this can lead to
load imbalance between crossbars due to the uneven vertex
degrees of polarized dense or sparse workloads. Different
parallelism of DPEs and SPEs can further exacerbate the load
imbalance issue. Further, the vertex-major scheduling can lead
to the under-utilization of data locality, especially for DPEs
that preload all data from APIM crossbars. Symmetrically, a
hyperedge-major scheduling strategy can raise similar issues
in the orthogonal direction.

To address this issue, we propose a hybrid partition
scheduling strategy, ensuring that each APIM (DPIM) crossbar
contains a similar number of partitions (bipartite edges) and
the numbers of vertices and hyperedges are similar for each
crossbar. This strategy takes the limited local buffer size into
account, ensuring load balance and maximizing data reuse.

Algorithm Mapping: The algorithm mapping on DPIM is
straightforward due to the fine-grained parallelism. After parti-
tioning the hypergraph into sparse and dense partitions, sparse
partitions are organized as a bipartite edge list. Each bipartite
edge will be mapped to a row of DPIM crossbars for parallel
processing. Considering the hardware design requirements
discussed in Section III-C, we map sparse bipartite edges
to DPIM rows in the order of hyperedge (vertex) indices in
the hyperedge (vertex) computation kernel, enabling SPEs to
process sparse partitions efficiently.

In contrast, the algorithm mapping of dense partitions on
APIM crossbars requires careful considerations, including data
construction and mapping granularity. First, mapping which
data into the crossbar is essential for algorithm mapping.
Equation (1) as an example, the matrix MT/V.degrees is
mapped into the crossbar in conventional designs, and V is
used as input signals for computation. However, this approach
is unsuitable for hypergraph processing due to the different
coefficients of matrices for the hyperedge and vertex computa-
tion kernels. To resolve this issue, we only map the hypergraph
topology to APIM crossbars with a single-bit pattern, as shown
in Fig. 8(b). The bit 1 (0) indicates the (non-)existence of the
connection between the hyperedge and vertex, and different
coefficients are applied through peripheral circuits.

The mapping granularity is another crucial factor in AM
on APIM crossbars. For the fine-grained mapping, if the
crossbar is divided with small blocks (such as 2×2), the high
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TABLE I
PHGRAPH CONFIGURATIONS

TABLE II
READ-WORLD HYPERGRAPH DATASETS

parallelism of APIM can hardly be exploited fully, resulting in
low performance. In contrast, if the mapping is coarse-grained,
many cells in the crossbar will have a value of 0, resulting
in useless computation with limited efficiency. To be specific
to hypergraph processing under the PhGraph architecture,
since most overlapping occurs only on a few hyperedges and
vertices, hypergraph partitions usually correspond to small-
sized dense submatrix blocks, e.g., 8×8. However, APIM
crossbars are typically sized of more than 128×128 with fewer
peripheral circuits that can be shared to reduce overall area
overhead [14]. To address this mismatch, we restrict the dense
submatrix size to 8×8 and flatten multiple dense submatrices
to fill a crossbar sized of 128×128 or more. This yields a
nice sweet spot in three dimensions: 1) crossbar utilization;
2) execution efficiency; and 3) hardware cost.

IV. EVALUATION

A. Experimental Setup

PhGraph Settings: We integrate a modified NeuroSim [29]
with the cycle-accurate simulator ZSIM [30] to simulate the
functionalities of PhGraph. We use the VTEAM [31] mem-
ristor model for DPIM design and refer to the APIM design
as in [10]. Table I summarizes the PhGraph configurations.

PhGraph is set with 16 tiles, each containing 8 DPEs and 8
SPEs. Each DPE consists of 8 crossbars sized 128×128 and
configured as APIM arrays with the read and write latencies
being 29.31ns and 50.88ns, respectively. Their read and write
energy consumptions are 1.08pJ and 3.91nJ. Each SPE has 8
DPIM crossbars sized 1024×1024. As for the specific parame-
ters of the DPIMs, we refer to the latest works [18], [32], [33]
and set the state transition latency as 1ns. Furthermore, we
widely research related works [20], [34] to determine the
number of cycles required for various operators. The Attribute
Memory is sized of 1GB, and the size of each Memory ReRAM
is configured as 32 MB. Each Buffer has a size of 64 KB. We
use CACTI 6.5 [35] to model the memories and buffers and
estimate their area, power, and latency.

Datasets and Algorithms: Table II gives the six most
widely used real-world hypergraphs from various domains,
which exhibit varying scales and overall sparsity distribution.
PhGraph is evaluated with five representative hypergraph
algorithms, including betweenness centrality (BC), breadth
first search (BFS), connected components (CC), k-core
Decomposition (k-core), and PageRank (PR).

Baselines: We compare PhGraph with two state-of-the-art
CPU-based hypergraph systems Hygra [2] and NWHy [36],
an FPGA-based hypergraph accelerator XuLin-F [8], and
two ASIC-based hypergraph accelerators ChGraph [7] and
XuLin [8]. Both Hygra and NWHy run on a machine config-
ured with two Intel Xeon Gold 6338 CPUs equipped with 1TB
DDR4 memory, and XuLin-F is evaluated on a Xilinx Alveo
U250 FPGA accelerator card running at 280 MHz. Since the
open-source system NWHy only implements BFS and CC
algorithms, and XuLin does not support the BFS algorithm,
we only compare PhGraph against these baselines on their
supported algorithms. Note that all performance and energy
results are obtained by accounting for both computations and
communications.

B. Overall Results

We compare PhGraph with baselines in terms of
performance and energy savings, and analyze its power and
area.

Performance: Fig. 9 depicts the total running time of
PhGraph against state-of-the-art solutions, including Hygra
(CPU-based), NWHy (CPU-based), XuLin-F (FPGA-based),
ChGraph (ASIC-based), and XuLin (ASIC-based).

PhGraph Versus Hygra and NWHy: Overall, PhGraph
outperforms Hygra and NWHy by 211.70× and 352.44×
on average, respectively. The reasons are twofold. First, the
highly parallel in-situ processing pattern adopted in PhGraph
eliminates the massive off-chip memory accesses. Second,
PhGraph employs specialized hardware designs, improving
pipeline efficiency and avoiding instruction control overheads
for CPUs.

Specifically, TR exhibits minimal performance improve-
ment with 61.04× on average. This is because TR has
the smallest scale among all six datasets, with 0.55M ver-
tices and 1.17M hyperedges. Assuming that each vertex and
hyperedge contains a 4-byte attribute value, the total size
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Fig. 9. Running time of PhGraph against Hygra, NWHy, XuLin-F, ChGraph, and XuLin (normalized to PhGraph).

of attribute values is much smaller than the LLC size of
CPUs (i.e., (0.55M+1.17M) × 4 B 	 1.5 MB × 32 ×
2). Thus, all attribute values can be cached in LLC until
the algorithm execution is complete, implying fewer off-chip
memory accesses that can be optimized by PhGraph.

PhGraph Versus ChGraph: PhGraph outperforms ChGraph
by 54.07× on average. Despite the fact that ChGraph proposes
chain-driven scheduling to improve the intrachain data locality,
the existence of unexploited interchain locality and data
conflicts still limits the efficiency. In contrast, PhGraph tackles
these issues by eliminating memory access and employing
highly efficient hierarchical reduction to avoid data races.

PhGraph Versus XuLin-F and XuLin: XuLin-F and XuLin
are inferior to PhGraph by 37.72× and 12.44× on average,
respectively. XuLin-F and XuLin are implemented on FPGA
and ASIC platforms, employing the same data-centric execu-
tion model and hardware architecture. The major difference
between them is that XuLin equips larger on-chip scratchpad
memory and achieves higher frequency. Thus, XuLin performs
better against XuLin-F. Taking XuLin as an example, there
are two reasons for the performance improvement of PhGraph.
First, although XuLin significantly optimizes the data locality
by employing chunk merging and adaptive loading strategies
to eliminate unnecessary data loads, it still suffers from data
transfers between on-chip and off-chip memories, which does
not exist in PhGraph. Second, the parallelism of XuLin suffers
from the limited off-chip memory bandwidth, which prevents
XuLin from scaling with the number of processing elements.
In contrast, both APIM and DPIM crossbars in PhGraph can
achieve high parallelism. Particularly, PR exhibits the most
significant improvement compared to other algorithms, with a
speedup of 38.97× against XuLin on average. The reasons are
twofold. First, the processing logic of PR can perfectly match
the APIM architecture. Second, all hyperedges and vertices for
PR are active, and they can make full use of ReRAM crossbars
with high-compute parallelism.

Energy Savings: Fig. 10 shows the energy consumption
results. Since the BFS algorithm is supported only in existing
Hygra, NWHy, and ChGraph, all of which integrate with
high-power CPUs, we ignore BFS and select Hygra as a
representative of CPU-based solutions for demonstrating better
the energy superiority of PhGraph. Compared with Hygra,
complex pipeline and ISA designs make CPUs consume over
22× power than PhGraph. The actual power of PhGraph is
only 17.677 watts, while the actual power of two Intel Xeon
Gold 6338 CPUs exceeds 400 watts.

Additionally, thanks to in-situ processing capability and
customized hardware designs for hypergraph processing,

Fig. 10. Normalized energy consumption over PhGraph.

PhGraph consumes 2 247.83× less energy than Hygra on
average. ChGraph designs a hardware prefetcher integrated
with CPUs. Therefore, the energy consumption of ChGraph
is still constrained by the high power of CPUs. Although
ChGraph improves data locality and overall performance than
Hygra, PhGraph saves 1 342.47× energy on average against
ChGraph. XuLin-F and XuLin can make full use of cached
data to reduce the off-chip memory accesses, but PhGraph still
offers 83.15× less energy consumption against XuLin-F and
3.89× less against XuLin. The reasons are twofold. First, a
substantial amount of data movement is eliminated by the in-
situ processing. Second, the ReRAM crossbars can be utilized
fully via sophisticated workload polarization.

Power and Area Breakdown: Table I shows that the total
power and area of PhGraph are 17.677 watts and 30.3 mm2,
respectively. The APIM and DPIM crossbar arrays and their
peripheral circuits in DPEs and SPEs take up 64.6% and 16.3%
of chip power and area, respectively. Within DPEs and SPEs,
the peripheral circuits, such as ADCs and DACs, consume
most of the power (95.24%) and area (99.00%) in DPEs, while
the crossbars occupy most of the power and area in SPEs at
75.00% (power) and 97.18% (area). Memory and buffers take
up 30.3% and 42.1% of chip power and area. The hierarchy
reducers occupy 5.1% of power and 41.6% of area.

C. Effectiveness

The high performance of PhGraph can be attributed to the
high-parallel in-situ processing of ReRAM-based architecture.
However, the effectiveness of the hardware and software
designs is also critical to the performance benefits.

1) Hardware Effectiveness: There are two aspects for the
consideration of hardware effectiveness: 1) the hybrid archi-
tecture design and 2) the HRD. As depicted in Fig. 11(a), we
evaluate the performance of the APIM-only and DPIM-only
architectures with all our software designs to demonstrate the
effectiveness of the APIM-DPIM hybrid architecture design.
The execution time for APIM-only and DPIM-only is broken
down into dense and sparse partition execution time. Since
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Fig. 11. Effectiveness of both hardware and software designs of PhGraph. (a) Hardware Effectiveness: Performance of APIM-only, DPIM-only, and APIM-
DPIM hybrid PhGraph, breaking down by processing dense and sparse partitions. (b) Hardware Effectiveness: On-chip traffic of PhGraph with and without
the HRD. All results are normalized to PhGraph w/HRD. (c) Hardware Effectiveness: Performance of PhGraph with and without PRN, GR, and controller
(CR). (d) Software Effectiveness: Performance of PhGraph with and without HP, partitions scheduling (PS), and AM.

the hybrid architecture in PhGraph leverages the potential
of both APIM and DPIM architectures, we can see that the
performance of both APIM-only and DPIM-only is much
lower than hybrid architecture in PhGraph. Processing sparse
(dense) partitions dominates for APIM-only (DPIM-only)
architecture, which confirms our analysis that APIM and
DPIM are expected to accelerate workloads with different
sparsity, as discussed in Section II-D.

As for the effectiveness of the HRD, we first evaluate the
traffic reduction introduced by HRD, as shown in Fig. 11(b).
The experimental results indicate that on-chip communication
traffic is reduced by 7.54× on average by applying HRD,
which can bring significant overall performance improve-
ment. Furthermore, we investigate the benefits breakdown
for PRN, GR, and Controller (CR), evaluating the effec-
tiveness of these components, as shown in Fig. 11(c). PRN
contributes an average of 5.98× performance improvement
over the baseline, while GR further improves performance
by 1.39×, primarily due to the highly efficient reduc-
tion networks from local to global. CR is responsible for
managing data interactions and has negligible impact on
performance.

2) Software Effectiveness: Fig. 11(d) investigates the ben-
efit breakdown for three software designs of PhGraph:
1) hypergraph partitioning (HP); 2) partition scheduling (PS);
and 3) algorithm mapping (AM). The baseline represents the
hardware implementation of PhGraph without any software
designs.

HP: By polarizing hypergraph processing into sparse and
dense workloads, the performance potential of DPIMs and
APIMs can be fully utilized. Thus, we can see that HP
contributes a speedup of 2.62× on average over the baseline,
occupying 67.50% of overall performance.

PS: Based on the baseline with HP, PS further improves the
overall performance by 1.43× on average, demonstrating the
effectiveness of PS in improving load balance.

AM: Benefiting from the sophisticated AM, the crossbar
utilization and efficiency can be improved. Therefore, AM

Fig. 12. End-to-end running time (including execution and preprocessing
time) of PhGraph against XuLin, normalized to the execution time of XuLin.

Fig. 13. Normalized area and power of APIM with various crossbar size.

further improves the total execution time by 3.18× on average,
taking 19.97% of the overall benefit.

D. Preprocessing

Both XuLin and PhGraph require extra preprocessing,
such as hypergraph partitioning. We conduct an end-to-end
performance evaluation of PhGraph against XuLin, as shown
in Fig. 12, demonstrating that PhGraph still outperforms
XuLin by 8.11× on average. We strike a balance between
partitioning efficiency and effectiveness by using heuristics
to select appropriate parameters, keeping the partitioning
time acceptable. Furthermore, the most time-consuming pro-
cedure, line graph generation, is independent of hypergraph
algorithms, which can be amortized by executing various
algorithms on the same hypergraph.

E. Selection of Crossbar Size

The choice of crossbar size can significantly impact various
aspects of the architecture, including utilization, power, and



ZHENG et al.: PHGRAPH: A HIGH-PERFORMANCE ReRAM-BASED ACCELERATOR 1329

(a) (b) (c)

Fig. 14. Performance comparation between PhGraph and existing graph accelerators enhanced for hypergraphs. (a) Performance comparison of PhGraph with
the variant of Spara (Spara-H) and the variant of PhGraph (PhGraph-S). (b) Performance comparison of PhGraph with the variant of ReGNN (ReGNN-H).
(c) Performance of GraphX-H, ScalaGraph-H, and HATS-H, against PhGraph.

Fig. 15. Performance of PhGraph against GridGraph and GaaS-X for graph
processing.

area. To choose a better crossbar size, we evaluate the nor-
malized area and power of APIMs with various crossbar sizes
from 8×8 to 256×256, as shown in Fig. 13. When the crossbar
size exceeds 128, further increasing the crossbar size yields
diminishing benefits. Conversely, due to the fixed computation
granularity, this can lead to a reduction in overall parallelism.
As a result, we extensively refer to existing works [18], [33],
[37] and determine the crossbar size as 128×128.

F. Comparation With Graph Accelerators

Existing graph solutions based on CPUs [38], FPGAs [39],
ASICs [40], and PIMs [15], [18] are not able to directly
process hypergraphs. Even with some modifications to make
them support hypergraphs, only suboptimal performance can
be achieved. We enhance Spara [15] to enable hyper-
graph processing, denoted as Spara-H, and introduce the
reordering method proposed by Spara to replace our parti-
tioning algorithm, denoted as PhGraph-S. Fig. 14(a) shows
the performance comparison between PhGraph and these
two variants. PhGraph-S outperforms Spara-H by 3.58× on
average, indicating the advanced architecture capabilities of
PhGraph. PhGraph-S is inferior to PhGraph by 1.62× on
average, further demonstrating the software design efficiency
of PhGraph.

We also enhance the aggregation engine of ReGNN [18]
to support hypergraph processing, denoted as ReGNN-H,
and compare its performance with PhGraph, as depicted in
Fig. 14(b). PhGraph outperforms ReGNN-H by 1.91× on
average, which is attributed to not only the overlap-aware
partitioning algorithm but also the delicate hardware design
simultaneously supporting two-stage computation.

Furthermore, we make modifications to CPU-based
GraphX [38], FPGA-based ScalaGraph [39], and ASIC-based
HATS [40] to support hypergraph applications, donated as
GraphX-H, ScalaGraph-H, and HATS-H, respectively, and
compare the performance of PhGraph with these variants, as
shown in Fig. 14(c). The experimental results demonstrate

that PhGraph achieves performance improvements of 348.16×,
53.68×, and 147.73× compared to GraphX-H, ScalaGraph-
H, and HATS-H, respectively. The speedup is attributed to
reduced memory access and high-computation efficiency since
the variants lack specialized optimizations for hypergraphs.
ScalaGraph-H achieves efficient on-chip interconnection but
considers the off-chip traffic less. HATS-H implements an effi-
cient prefetcher, but the complexity of hypergraph structures
leads to limited prefetching effectiveness.

G. Generality

PhGraph is capable of processing conventional graphs,
although it is specifically designed for hypergraph applica-
tions. We implement graph algorithms BFS and PageRank
on PhGraph and compare the performance against CPU-
based graph system, GridGraph [25], and PIM-based graph
accelerator, GaaS-X [13], on graph datasets Amazon (AZ)
and Orkut (OR) [16], as shown in Fig. 15. Overall, PhGraph
achieves similar performance over GaaS-X (0.92×∼1.05×)
and 432.41× speedup over GridGraph on average.

H. Endurance Management

The wear-leveling policy is critical for the ReRAM
endurance management due to the limited write endurance
of ReRAM cells. For APIM, it is not necessary to consider
wear-leveling because of the offline mapping strategy. For
DPIM, PhGraph adopts a simple dynamic column address
remapping strategy [20] to achieve wear leveling, improving
the endurance by 9.92×.

V. RELATED WORKS

We would like to simplify this Section V Related Works to
the following texts in LaTeX format.

Conventional Graph Processing: There have been several
efforts for conventional graph processing in improving paral-
lelism [41], mitigating data conflicts [43], reducing memory
access overhead [45], [46], and optimizing for data spar-
sity [10], [12], [13], [15]. Graph reordering methods [10],
[15] and heterogeneous architecture designs [12], [13] are
most relevant to our software and hardware designs. However,
all these solutions are designed for conventional graphs and
not well-suited for hypergraph processing due to the unique
hypergraph characteristics in both computation kernels and
topology structure.
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Hypergraph Processing Systems and Accelerators: There
are serveral efforts for hypergraph processing in general-
purpose systems for both in-memory [2] and distributed
environments [1], [3]. Further, ChGraph [7] and XuLin [8]
explores potential data locality in scheduling order and exe-
cution model, and propose dedicated accelerator designs.
However, off-chip memory access remains massive and bottle-
necks the performance. PhGraph is the first work to introduce
PIM architecture into hypergraph, reducing data movement
and achieving substantial benefits.

VI. CONCLUSION

In this article, we present PhGraph, the first PIM-featured
hypergraph accelerator, incorporating two representative ana-
log and digital PIM technologies for performance- and
energy-efficient hypergraph processing. To boost hardware
efficiency, PhGraph is equipped with three software-level co-
designs. First, PhGraph employs an overlap-aware hypergraph
partitioning mechanism to generate two levels of workload
for ease of acceleration. Second, a partition scheduling
strategy is adopted to improve hardware utilization. Third,
PhGraph designs the algorithm mapping scheme elaborately to
maximize execution efficiency. Experimental results show that
PhGraph outperforms the state-of-the-art CPU-, FPGA-, and
ASIC-based solutions significantly in terms of performance
and energy savings.
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