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Abstract—Graph convolutional networks (GCNs) hold great
promise in facilitating machine learning on graph-structured
data. However, the sparsity of graphs often results in a significant
number of irregular memory accesses, leading to inefficient data
movement for existing GCNs accelerators. With the advancement
of 3D-stacked technology, the processing-in-memory (PIM) archi-
tecture has emerged as a promising solution for graph processing.
Nevertheless, existing PIM accelerators are confronted with the
challenges of irregular remote access in the aggregation phase
of GCNs and dynamic workload variations between phases. In
this article, we present GCNim, a PIM accelerator based on 3D-
stacked memory, which features two key innovations in terms of
the computation model and hardware designs. First, we present a
PIM-based hybrid computation model, which employs a remote
merging strategy to achieve the outer product in aggregation and
the row-wise product in combination. Second, GCNim builds a
three-stage aggregation and combination pipeline and integrates
unified processing elements (PEs) supporting these three stages
at the bank level, achieving load balance among PEs through a
lightweight data placement algorithm. Compared with the state-
of-the-art software frameworks running on CPUs and GPUs,
GCNim achieves an average speedup of 3,736.06× and 76.56×,
respectively. Moreover, GCNim outperforms the state-of-the-art
GCN hardware accelerators, I-GCN, PEDAL, FlowGNN, and
GCIM, with average speedups of 3.35×, 8.97×, 2.24×, and 5.58×,
respectively.

Index Terms—3D-stacked memory, accelerators, graph convo-
lutional networks (GCNs), processing-in-memory (PIM).
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I. INTRODUCTION

BENEFITING from deep neural networks, machine learn-
ing has shown remarkable achievements in various

domains, including computer vision [1], [2] and natural
language processing [3]. However, they are restricted to
representing and analyzing Euclidean data, including images,
text, and audio [4], [5]. Relational data like social networks [6]
and knowledge graphs [7] arising in many applications is
also ubiquitous, which is naturally represented by graphs.
Hence, graph convolution networks (GCNs) have emerged
as an effective model for extracting and analyzing valuable
information from relational data. GCNs have exhibited supe-
rior performance in a wide range of applications, such as
node classification [8], [9], [10], link prediction [11], [12], and
graph recommendation [13].

The primary strength of GCNs lies in the two key phases
of the convolution layer: 1) aggregation and 2) combination,
which jointly dominate the GCN inference time. Each vertex
gathers feature vectors from its neighboring vertices during the
aggregation phase, which operates on the graph structure. The
combination phase resembles traditional neural networks [14],
as it involves performing computation operations on features of
vertices using a multilayer perceptron (MLP). This process is
often represented by a matrix–vector multiplication (MVM) [5].

In response to the ever-increasing demands for enhanced
GCNs inference performance, several dedicated GCNs accel-
erators have emerged in recent years. These accelerators
generally adhere to one of two design philosophies. The
first follows a divide-and-conquer design philosophy that
utilizes two distinct engines to enhance the efficiency of each
phase individually. An example of such an architecture is
HyGCN [15]. The second category maps the two phases
into a uniform model of sparse–dense matrix multiplications
(SpMM) operating upon a unified hardware architecture.
For instance, GCNAX [16] adopts an outer product with
the two-stage multiply and merge pipeline. This architecture
overcomes the accelerator resource underutilization caused by
dynamic workload variations in the separate architecture [17].
However, this procedure generates many partial matrices,
leading to repetitive off-chip memory access. Through caching
reusable data in the on-chip memory, it can provide some
relief by reducing off-chip accesses. However, the cache size
required for large graphs can grow exponentially, resulting
in substantial area and energy consumption. As a result,
GCNs accelerators on conventional architectures often remain
bottlenecked by off-chip memory accesses [15], [16], [18].

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0260-6690
https://orcid.org/0000-0001-7903-2061
https://orcid.org/0000-0003-3319-254X
https://orcid.org/0000-0001-6302-813X
https://orcid.org/0000-0002-3934-7605


WANG et al.: EFFICIENT GCNs ACCELERATOR USING 3D-STACKED PIM ARCHITECTURES 1361

The processing-in-memory (PIM) architecture presents a
promising solution to resolving the memory bottleneck by
integrating computational logic directly into memory. In
advanced 3D-stacked memory, multiple DRAM dies are
stacked on top of a base die, resulting in a cube structure. This
cube is partitioned into multiple vaults. The digital logic can
be integrated either at the base die or near the memory bank of
the DRAM layers [19], [20], [21]. Compared to integrating the
digital logic at the base die with sufficient computing ability,
the integration of digital logic near the memory banks can
provide lower local data access latency [22].

GCIM, a state-of-the-art PIM-based GCNs accelerator [23],
integrates computing units at both the DRAM layer and base
die for executing the aggregation and combination phases,
respectively. Although GCIM effectively exploits both the
computation capability of the base die layer level and the
access latency advantage of the bank level, it achieves subop-
timal performance for the following reasons. First, there are
a large number of time-consuming neighbor data accesses. In
3D-stacked memory, data, such as graph vertices and their
feature vectors, are stored in different banks of different
DRAM layers. When each processing element (PE) of the
DRAM layer performs aggregation operations, the information
of adjacent vertices they require may be irregularly distributed
across different banks. This leads to dynamic remote random
access. Compared to data access from the local bank next to
PE, this will cause a significant delay in accessing data from
other banks. Second, dynamic load variations may result in
an uneven workload distribution among computational units.
Specifically, in GCIM, the divide-and-conquer design fits well
with the scenario where the execution times for aggregation
and combination can be overlapped fully. However, due to
the dynamic variation of workloads, fast engines always have
to wait for slow engines. Even worse, data transfers between
different engines also lead to delays.

Fortunately, we observe that the output features in the
preceding layer of GCNs serve as input features for the
subsequent layer. Meanwhile, with the outer product method
in the aggregation phase, the partially generated matrices in
the multiply stage are composed of multiple partial feature
vectors from different vertices. As a result, the partial feature
vectors generated by local vertices can be directly transmitted
to the PEs next to the banks of their corresponding remote
neighbors for accumulation and obtaining the final output
feature vectors. Direct transmission of partial vectors between
PEs avoids frequent data transfer between banks and PEs
during the multiply and merge stages. Further, it is also
observed that the row-wise product in the combination phase
enables the construction of a unified PE that alternates between
executing the combination and aggregation operations. This
eliminates uneven workload issues between different phases,
and also, the delay in feature vector transmission can be
hidden behind the computation, avoiding computation stalling
caused by obtaining remote data during the vertex aggregation
process. Therefore, we are motivated to design a bank-level
PIM-based 3D-stacked memory architecture, which is capable
of alternately performing two kernels of GCNs by a hybrid
matrix computation model with impressive performance and
energy gains.

In this article, we present GCNim, a GCNs accelerator that
situates PEs near the banks of the 3D-stacked memory and
incorporates three significant design aspects. First, GCNim
is equipped with a new GCNs computational model, which
adopts the execution order of aggregation after combination.
The model leverages the row-wise multiplication method in
combination and utilizes the outer product in aggregation.
The intermediate matrix generated in the multiply stage of
the outer product is subdivided into multiple partial vectors,
which are then sent to the corresponding PEs for merging.
This approach transforms irregular data access in aggregation
into directed data transmission, significantly reducing nonlocal
DRAM access. Second, GCNim adopts a three-stage pipeline
for parallel computations, where each stage is abstracted as
an operation of dense vectors. We integrate the identical
execution unit (EU), prefetcher, and buffers alongside each
memory bank. This allows GCNim to eliminate any potential
latency and energy overhead arising from data movement
between different engines and avoid the problem of uneven
workloads caused by different engines. Finally, we analyze
the sources of load on each PE at each stage and propose a
lightweight data placement algorithm to improve load balance
between PEs.

The contributions of this article are summarized below.
1) We present a hybrid GCNs computation model tailored

for 3D-stacked memory, which employs the outer prod-
uct for the aggregation phase and utilizes the row-wise
product for the combination phase.

2) We propose a novel GCNs accelerator, GCNim, inte-
grating well-designed uniform PEs near the memory
bank. It enables efficient pipelined execution of both the
combination and aggregation kernels, avoiding underuti-
lization of computational units caused by dynamic load
imbalance across the kernels.

3) We introduce a lightweight data allocation strategy
to attain task distribution equilibrium and support the
designed architecture efficiently.

4) We evaluate GCNim with various graph datasets.
GCNim demonstrates superior performance compared
to the state-of-the-art CPU system, GPU system, GCN
accelerators I-GCN, PEDAL, FlowGNN, and GCIM.
GCNim achieves a speedup of 3736.06×, 76.56×,
3.35×, 8.97×, 2.24×, and 5.58× while achieving energy
savings of 8292.46×, 81.45×, 1.83×, 5.53×, 1.32×,
and 2.83× on average.

The remainder of this article is as follows. Section II intro-
duces the background and motivation of this work. Section III
presents the novel hybrid execution model. Section IV
describes the details of GCNim architecture. Section V intro-
duces the tailored data placement method. GCNim is evaluated
in Section VI. Section VII reviews the related works, and
finally, Section VIII concludes this article.

II. BACKGROUND AND MOTIVATION

In this section, we first present the fundamental tenets of the
underlying GCNs. Subsequently, we comprehensively analyze
existing GCNs accelerator architectures and implementation
techniques. Afterward, we introduce the PIM approach in
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Fig. 1. Illustrative instance showcasing GCN inference, encompassing
(a) graph, (b) aggregation kernel, and (c) combination kernel.

3D-stacked memory and expound on our approach of integrat-
ing GCNs with 3D-stacked PIM architectures.

A. Graph Convolutional Networks

GCNs are structured as a sequence of graph convolutional
layers, where each layer is mainly composed of the aggre-
gation and combination phases, as depicted in Fig. 1. From
a linear algebra perspective, the inference procedure can be
represented as follows:

X(l+1) = σ
(

AX(l)W(l)
)

(1)

where A represents the adjacency matrix of the graph. X(l)

denotes the input feature matrix of the lth layer. Each row
of X(l) represents a feature vector of a vertex. W(l) denotes
the weight matrix of the lth layer, and σ denotes a nonlinear
activation function, such as ReLU [5]. A is usually normalized
to avoid scale changes. The normalization process involves
computing Ã = D−(1/2) × (A + I) × D−(1/2), where I is
the identity matrix, and D is a diagonal matrix. Note that
Ã remains constant during the GCNs training and inference.
Furthermore, as A could be performed offline from Ã, it is
used to represent Ã throughout the rest of this article.

Many variant GCNs models have been devised from the
GCN model, such as GraphSage [24] and graph isomorphism
network (GIN) [25]. As shown in GCNAX [16], the forward
propagation of the majority of GCNs can be generalized
and represented by (1). In this context, the efficiency of
GCNs’ inference predominantly hinges on the performance
of aggregation and combination kernels, which constitute the
primary focus of this article.

B. Accelerator Design Exploration

Several GCNs-specific architectures [15], [16], [26], [27]
have been proposed to accelerate GCNs inference in
recent years. These accelerators have implemented specific
computation models and are tightly co-designed with microar-
chitecture. We next introduce the execution order of GCNs and
scrutinize the characteristics and issues of diverse approaches
used for GCNs inference.

Execution Order: Previous studies have summarized two
possible execution orders for graph convolution layers:
1) combination-first (i.e., A × (X(l) × W)) and 2) aggregation-
first (i.e., (A × X(l)) × W). The execution order does
not impact the correctness but influences the computation

Fig. 2. Comparison of (a) row-wise product and (b) outer product approach
in the aggregation. The row-wise product generates a computed row vector
in the resulting matrix, while the outer product obtains a partial matrix.

required [28]. Assuming that A ∈ R
N×N , X(l) ∈ R

N×D, W
∈ R

D×F , and X(l+1) ∈ N
N×F . The computation amount of

the aggregation-first method is (N × N) × (N × D) in the
aggregation phase and (N × D) × (D × F) in the combi-
nation phase. In comparison, the computation amount of the
combination-first method is (N × N) × (N × F) and (N × D)

× (D × F), respectively. This suggests that the computation
amount depends on the input feature vector dimensional-
ity D and the output feature vector dimensionality F. For
most datasets, D is larger than that of F. Consequently, the
combination-first method generally has superior performance
than the aggregation-first one.

Matrix-Multiplication-Based GCNs Inference: The com-
putation pattern of a GCNs layer is the multilayer matrix
multiplication. For the three matrices involved in the GCN
inference, A and X are sparse, while W is dense. Therefore,
changes in the execution order will correspondingly lead to
changes in the calculation kernel. For the aggregation-first
method, the aggregation kernel corresponds to sparse–sparse
matrix multiplication (SpGEMM), while the combination
kernel is a regular dense-dense GEMM operation. For the
combination-first method, both aggregation and combination
kernels correspond to SpMM. The sparse matrix multiplication
techniques used in past accelerators can be categorized into
three main types [29]: 1) row-wise product; 2) column-wise
product; and 3) outer product.

1) Row-Wise Product: It comprises two main steps, as
shown in Fig. 2(a). First, the algorithm multiplies each
nonzero element in a given row of A with all elements
in the corresponding row of X. The rows in X depend on
the column index of the nonzero elements in the given
row of A. Second, the partial results are accumulated
to obtain a row of the final product matrix. Each
row of A is computed in parallel, resulting in the
corresponding row in the output matrix. The early GCNs
accelerator, HyGCN [15], uses this method based on the
aggregation-first sequence, which processes SpGEMM
and GEMM operations in aggregation and combination
through two independent engines. However, the row-
wise product is not friendly for the aggregation phase.
On the one hand, X cannot be entirely stored on-chip,
which may lead to additional off-chip accesses to X that
may occur for the feature aggregation of each vertex.
On the other hand, the sparsity of features leads to
a significant reduction in arithmetic intensity during
aggregation.
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Fig. 3. Partial matrices generated during the multiply stage are often moved
frequently between processing units and DRAM.

2) Column-Wise Product: In this method, the nonzero
elements in a single column of X are multiplied with
the corresponding columns of matrix A. The resulting
values are accumulated to form a column in the output
matrix. This method exhibits similarities to the row-wise
product. The AWB-GCN [26] leverages this method to
construct an accelerator that performs the two phases
alternately. However, it encounters similar issues as the
row-wise product method, requiring redundant off-chip
access to A and suffering from insufficient utilization of
computational resources due to graph sparsity.

3) Outer Product: This method involves multiplying a
column of A with a row of X, resulting in a partial
matrix of the output matrix. The final result is obtained
by merging all the partial matrices. Fig. 2(b) illustrates
the outer product approach and its parallel process.
GCNAX [16] proposes an optimized dataflow using a
unified architecture based on the outer product, which
allows reusing input matrices efficiently and avoiding
zero-valued operations by processing W first. However,
the outer product gives rise to a multitude of partial
matrices during the process, leading to a significant
reduction in output reuse. As these matrices cannot be
entirely stored on-chip, merging them creates redundant
off-chip accesses. This results in partial matrices under-
going repeated movement between processing units and
DRAM, as illustrated in Fig. 3.

In summary, previous works on accelerating GCNs have
utilized different matrix multiplication methods to handle
GCNs inference. However, due to the large graph scale and
the high-dimensional feature vector, A and X cannot be
entirely stored on-chip. Also, the sparsity of the graph and
feature vectors results in frequent and irregular data movement
between DRAM and the processors. All these factors jointly
lead to the fact that conventional memory architectures are of
great necessity to be innovated for efficient GCNs inference.

C. 3D-Stacked Processing-in-Memory

The 3-D memory architecture [30], [31] is innovative to
enable the vertical stacking of memory layers, enhancing
memory density and reducing the footprint of the memory
module. Through-silicon vias (TSVs) are employed in 3D-
stacked memory to establish interconnections between the
different layers. Typically, 3-D memory comprises a base logic
layer and multiple DRAM layers stacked on it. Each DRAM
layer is divided into multiple partitions, separating the entire
3-D stack into several vertical vaults. These vaults possess
memory controllers located on the base logic layer, which can

Fig. 4. Effect of remote random access on (a) execution time ratio with a
naive setting and (b) hit rate with the buffer and mapping algorithm.

Fig. 5. Percentage distributions of the operations in the combination and
aggregation kernels by benchmarking a 2-layer GCN model.

simultaneously access multiple partitions on the DRAM layer.
This provides highly parallel memory access.

The concept of PIM takes advantage of the proximity
between processors and memory cells to accelerate data pro-
cessing and reduce energy consumption. Situating processing
units near the memory subsystem facilitates direct and high-
bandwidth communication between these components. This
minimizes the data transfers between processors and memory,
leading to significant improvements in performance, reduced
latency, and increased energy efficiency.

The 3-D memory architecture offers two PIM solutions,
with the processor on the logic or DRAM layers. GCIM [23] is
the first accelerator that employs the PIM-based 3-D memory
architecture to handle GCNs inference. It accommodates the
unique characteristics of the two phases of GCN by placing
the aggregation engine next to the bank and integrating the
combination engine in the logic layer. The aggregation engine
uses the traditional pull-based approach of graph process-
ing. In contrast, the combination engine utilizes the systolic
array, similar to HyGCN, which follows the aggregation-first
computational order. However, this design poses challenges
in implementing data locality and load balancing. On the
one hand, GCN kernels with random access suffer signifi-
cantly long latency when accessing data from other vaults or
even other cubes during local vertex aggregation. Fig. 4(a)
illustrates that under the naive configuration, the computing
unit’s real-time execution spans no more than 20%. Fig. 4(b)
demonstrates that remote random access remains prevalent
and substantial despite employing buffer and mapping strate-
gies to optimize locality. Additionally, due to stringent area
constraints and the high dimensionality of features, storing
replicas results in unacceptable wastage of storage resources.

On the other hand, this separate two-phase design cannot
easily handle dynamic workload changes between phases,
leading to insufficient utilization of computational resources.
Fig. 5 depicts the percentage distributions of these two types
of operations by benchmarking a 2-layer GCN model on
the five real-world datasets. The results indicate significant
variations in the workload distribution between aggregation
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and combination phases across different datasets. Particularly
for the large-scale Reddit dataset, the number of operations in
aggregation is significantly higher than in combination.

D. Combining GCNs With 3D-Stacked PIM

To address the challenges mentioned above, we introduce
GCNim, which has several innovative features.

First, GCNim employs a new GCN-specific computational
model to maximize performance gains on a 3D-stacked
memory PIM architecture. Our insight is to use an outer
product multiplication method during the aggregation phase,
which splits the partial matrix obtained from the multiply stage
into vectors sent to other PEs for merging. This converts the
irregular remote data access during the aggregation phase into
regular data transfers, thus, avoiding the performance impact
arising from inactive states by collecting feature information
from other vertices.

Second, GCNim exploits the 3D-stacked bank-level PIM
to build the unified hardware that supports combination and
aggregation. With a specialized model that performs the row-
wise product for the combination phase and the outer product
for the aggregation phase, the entire inference process can be
abstracted into three dense vector operations supported by a set
of unified computation units. The unified PE integrated near
the DRAM bank allows alternating execution of combination
and aggregation, with intermediate results residing in the regis-
ters of the computation unit. The GCNs architecture eliminates
data transfer overhead between phases and avoids uneven
workloads caused by dynamic workload changes between
phases.

Third, since aggregation and combination are executed on a
unified architecture, GCNim does not require load balancing
between phases. Instead, we only need to design a lightweight
data placement algorithm for analyzing the workload of each
vertex in GCNs, simplifying designs.

III. GCNIM COMPUTATION MODEL

As elucidated in Section II-B, the aggregation and com-
bination phases of the GCNs convolutional layer can be
represented as a sequence of successive SpMM computations.
However, the two phases exhibit distinct and unique proper-
ties. This provides two opportunities for designing a GCNs
inference computation model. The first lies within each phase,
where the design needs to account for the specific character-
istics of both phases to accommodate the varying demands of
computational and memory resources. Notably, the execution
of the aggregation exhibits significant differences compared to
the combination, with the highly sparse kernel normally the
bottleneck in GCNs processing. Therefore, GCNim prioritizes
the method of aggregation. The second opportunity arises in
the interaction design between phases. GCNs allow any phase
to precede another phase. Although each phase can adopt
any matrix multiplication method, the choice of one phase
may impact the next one. This is because the chosen method
affects memory access to transfer data to the next phase.
Therefore, careful consideration should be given to selecting

an appropriate matrix multiplication approach for each phase,
considering its impact on the overall pipelining and data reuse.

A. Remote Merging in Aggregation

Compared to storage-and-compute decoupled architectures
and designs with PEs located in the logic layer, the most
significant advantage of architecture with PEs near banks in
the DRAM layer is its proximity to data storage. As a result,
PEs can read and write data from local banks with lower
latency. However, the graph’s vertices and feature vectors are
distributed across different banks. In the aggregation phase, if
the neighboring information required by a vertex is not stored
locally, it results in random remote data access, which leads to
the loss of the advantage of processing data close to memory.

To address this issue, we devise a method in the aggregation
phase that utilizes the outer product to achieve local multiplica-
tion and remote merging. The aggregation phase is subdivided
into multiply and merge stages based on the explicit phase
change of the outer product.

The multiply stage is carried out thoroughly in parallel
within local PEs. Each PE computes a column of A and
the corresponding rows of X or (XW) to generate a partial
matrix. Instead of immediately merging the partial matrices
or storing them in their respective banks, we divide the
partial matrix into multiple row vectors. These row vectors
correspond to the partial output features. In multilayer GCNs
models, the output features of the preceding layer serve as
the input for the subsequent layer. Therefore, we eliminate
all zero-valued row vectors and send the remaining vectors
to the corresponding PE with a matching row index for
merging, called remote merging. The complete output feature
vector is obtained through iterative accumulating during the
merge stage and is stored in nearby banks. In other words,
we transformed instruction-driven data retrieval into data-
driven data transmission, shifting from sending instructions
and waiting for data to directly transmitting data. This change
has significantly reduced access latency and saved costs.

B. Combined Execution Model

In order to support the remote merging and enable data
reuse across stages while ensuring the overall efficiency of
GCNs, we shall contemplate two aspects: 1) the execution
order between phases and 2) the matrix multiplication method
in the combination phase.

Execution Order: GCNim employs a combination-first exe-
cution order. This is because parallel tasks involved in the
multiply stage do not produce complete matrices, leading to
the combination having to wait until the entire multiply and
merge stages are completed before they can start. If partial
results are directly sent to the combination, it could result
in redundant computations. Furthermore, the combination first
results in lower computational overhead for most datasets.

Combination Phase: We propose employing the row-wise
product during the combination phase instead of utilizing
either the outer or inner products. The fundamental idea
behind our choice is that row-wise products can load the
corresponding rows of matrix W based on the nonzero element
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Fig. 6. Computation model of GCNim follows the combination-first order.
The GCNs inference process is redefined as a three-stage process, where
the combination stage utilizes the row-wise product method. The aggregation
phase is split into a multiply and merge stage using the outer product method.
(a) Combination stage. (b) Multiply stage. (c) Merge stage.

indices within each row of matrix X. Thus, there is no need
to access the entirety of W. Moreover, the complete row
of XW obtained through row-wise product computations can
immediately engage in computations during the aggregation
phase, ensuring the comprehensive spatial reuse of the XW
matrix.

On the one hand, the outer product method fails to yield
a complete matrix, necessitating the aggregation phase to
await the completion of the entire combination phase before
commencing. Directing partial results to the aggregation would
lead to redundant computations. On the other hand, employing
the inner product method would require computing each row
of X with every column of W, causing X to access the entirety
of W during each row computation. However, due to the
sparsity in the feature matrix X, a portion of the data within
each loaded column of W is unnecessary for computation.
Furthermore, the inner product method involves element-wise
calculations, which, to be implemented, demand additional
reduction operations. Introducing dedicated hardware for these
reduction operations would result in significant area overhead.
Neither the outer product nor the row-wise product methods
impose such requirements.

The overview computational model of GCNim is depicted
in Fig. 6, which embodies the critical processes of GCNs
inference through a sequence of matrix operations. The model
adheres to the combination-first execution order and comprises
three consecutive stages: 1) combination; 2) multiply; and
3) merge. Specifically, during the combination, the rows of
X are multiplied with matrix W in parallel, employing the
row-wise product method, to obtain rows of XW. This ensures
that each nonzero element of X, typically sparse, is accessed
only once. In the multiply stage, the multiplication of rows of
XW and columns of A yields several partial matrices, further
divided into partial vectors. These vectors are dispatched to
different PEs, where all partial vectors with the same row
indices are accumulated during the merge stage, and the final
complete output features are obtained.

IV. GCNIM ARCHITECTURE

This section presents the GCNim architecture to support
the proposed computation model. It aims to facilitate GCNs

Fig. 7. Architecture overview of the GCNim.

Fig. 8. Detailed hardware architecture of GCNim: (a) PE of the DRAM
layer and (b) vault controller in the base logic layer.

inference by executing three phases in a data-parallel manner.
The section first presents a comprehensive exposition of the
overarching architecture of GCNim, succeeding by exploring
the design of its DRAM layers and base logic layers. Finally,
this section provides a detailed description of the complete
workflow for GCNs inference on GCNim.

A. Accelerator Overview

We observe that by redividing the inference of each GCNs
layer into three stages: 1) the combination stage involves dense
vector multiply–accumulate (MAC) operations; 2) the multiply
stage involves scalar multiplication of dense vectors; and 3) the
merge stage is dense vector accumulation operations. All three
operations can be seen as dense vector operations, allowing us
to use a set of MAC units to support these three operations,
thus, enabling the design of a unified PE architecture.

Fig. 7 provides an overview of the GCNim architecture,
comprising a base logic layer and several DRAM layers.
The entire memory cube is partitioned into multiple vaults.
Within each vault, the memory cells in the DRAM lay-
ers are partitioned into bank groups that share a common
TSV, allowing for communication between the vault lay-
ers. GCNim incorporates a PE alongside each bank and a
vault controller in the logic layer. The PEs are primarily
responsible for the execution of GCNs inference computations,
while the vault controller manages communication and data
forwarding between various DRAM layers across different
vaults.

B. DRAM Layer PE Design

As illustrated in Fig. 8(a), the architecture of the PE in the
DRAM layer consists of five main components, namely, the
EUs, the controller, the MatW memory (MWM), the MatX
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Fig. 9. Microarchitecture of (a) MWM and (b) EU.

fetcher (MXF), and the VecX buffer. In the subsequent, we
will present a comprehensive description of each component
of a PE.

1) Execution Unit: Each EU comprises a dual set of 16
FP32 multipliers and adders, as depicted in Fig. 9(b). These
enable the execution of three fundamental operations: 1) MAC;
2) MUL; and 3) ADD. Data is directed from different
memory hierarchies to the EU, which the controller organizes.
Moreover, the EU is equipped with several registers that are
employed for instruction decoding and data staging.

2) Controller: The controller has two primary responsibil-
ities: first, it manages the transfer of data between the bank,
PE, and logic layer, and the internal data transfer within the
PE. Second, it orchestrates three computational stages. As the
merge stage involves handling data from remote PEs, arrival
time and sequence are uncertain. Hence, the controller needs
to coordinate when to start the merge stage.

3) MatW Memory: The MWM is mainly composed of a
content addressable memory (CAM), and it also supports
direct mapping, as illustrated in Fig. 9(a). Due to the sparsity
in feature vectors, the row-wise product approach in the
combination stage results in repetitive and random access to
weight parameters. These parameters may be shared among
all vertices. To improve data reusability and reduce access
to the logic layer, we implement a specialized CAM-based
scratchpad within the PE to store and buffer the weight
parameters. This serves to alleviate the bandwidth pressure on
the TSV.

4) MatX Fetcher: The MXF is a buffer for prefetching
and storing the feature vectors. Its primary objective is to
allow the PE to predict which weight parameters are needed
for matrix multiplication and preload them into the MWM
before computation begins based on the column indexes of
the nonzero elements of feature vectors. However, due to
the constrained area allocation resulting from the integration
of PE next to the bank, it may not be possible for the
MXF and MWM to store an entire feature vector and the
corresponding weight parameters. Consequently, the controller
iterates through the elements in the MXF to verify if the weight
parameters are present in the MWM.

5) VectorX Buffer: The VectorX buffer (VXB) serves to
receive partial feature vectors transmitted from other PEs and

arranges them in order according to their corresponding row
indices. When a certain number of these partial vectors are
received, and the other two stages have been completed, the
partial vectors are then sent to the EU for accumulation.

In addition, to maintain generality, a nonlinear function unit
(NFU) is also configured within each PE. Each layer’s final
complete output vectors will be activated through NFU and
written back to the banks.

C. Logic Layer Design

The composition of the logic layer in each vault is consistent
and includes a router, a memory controller, and a buffer,
as depicted in Fig. 8(b). Its primary function is to manage
requests and forward and deliver data to the relevant PE. The
matrix W is stored in the buffer. When W is small enough, it
can be entirely stored in each logic layer. In contrast, when W
is relatively large, GCNim distributes the weight parameters
evenly among different vaults.

The logic layer handles two primary types of data requests
and forwarding. The first is retrieving and forwarding the
weight parameters required during the combination stage. The
memory controller retrieves the necessary parameters from the
buffer and transmits them to the corresponding PE based on
the request. If each vault stores the entire W, there is no
need for intervault communication. However, if W needs to
be stored separately, the controller of each vault maintains
the distribution information of W. The controller is first based
on the index of the required weight parameters to ascertain
whether they are located in the local buffer or other vaults.
Then, it will either directly transmit the data or request them
from other vaults. The second type of data forwarding is
partial vectors generated in the multiply stage. This includes
sending vectors to and receiving vectors from other vaults
and forwarding them to different PEs of DRAM layers. Each
vault controller maintains the correspondence between the
feature vectors in the local vault and the banks and between
nonlocal feature vectors and the vault. This information is
assigned statically before the computation begins and remains
unchanged during execution.

D. Workflow

In this section, we explain how GCNim performs the infer-
ence task of GCNs comprehensively and systematically. The
three matrices are stored in different formats. The adjacency
matrix A is stored in a compressed sparse column (CSC)
format, and the feature matrix X is stored in a compressed
sparse row (CSR) format. Column and row vectors of A
and X(l), which share the same indices for the outer product
multiplication, are stored in the same memory bank. For the
row vectors of X(l+1), the merging and access occur within
the same bank with matching X(l) indices. The weight matrix
W is stored in a dense row-major format in the Buffer of the
logic layer. Smaller weight matrices are entirely stored in one
vault, while larger ones are evenly distributed across multiple
vaults.

In the first combination stage, matrix multiplication is
performed between X and W. Each PE involves taking all
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nonzero elements in a row of X and performing scalar
multiplication with multiple rows of the required W matrix,
followed by vector addition to obtain an intermediate result,
a row of XW. The nonzero elements of X are cached in
MXF, and the rows of W are stored in MWM. The lack of
caching of the corresponding rows of W in the MWM, when
nonzero elements of X are computed sequentially, can lead to
calculation pauses. Therefore, GCNim employs a nonblocking
method to handle this issue.

The controller of GCNim cyclically checks each element
in MXF and verifies whether the corresponding W row exists
in MWM based on its column index. If a match is found,
the element and the corresponding row of W are immediately
sent to the EU for MAC operations. Specifically, as shown
in Fig. 9(b), the nonzero element of X is broadcasted to
all MAC units, while the elements in the row vector of
W are sequentially forwarded to each MAC unit. Each EU
provisioned eight multipliers and adders. The dimensionality
of the weight parameters determines the length of the output
feature vector. The time required for each MAC operation also
depends on this length. If the length exceeds the number of
multipliers and adders, the entire operation will be iterated
for multiple rounds. If a match is not found in MWM, the
controller sends a command to the logic layer to retrieve the
corresponding W row while skipping the current element and
moving on to the next one. This design is supported by the
fact that the execution order of the elements in a feature
does not impact the correctness of the result using the row-
wise method. However, for sparse matrix X, the distribution
of nonzero elements is irregular. Some feature vectors may
have an unusually high number of nonzero elements (nnz)
that cannot fit entirely in MXF. Moreover, the poor locality
in X may result in frequent data requests, putting excessive
pressure on TSV. To address this issue, for feature vectors with
a large nnz, GCNim no longer traverses and searches MXF
but instead divides MXF and MWM into double buffers, with
half the data involved in the processing and the other half in
data preparation. In this case, multiple rows of W are loaded
into the buffer simultaneously, and the controller operates in
order directly without verifying the rows of W.

After processing all nonzero elements in a row of X, the
intermediate result XW row is temporarily stored in the register
of the EU. In the multiply stage, columns of A are fetched from
the banks to the EU, then multiplied by the XW to generate
partial matrices through the outer product. In other words,
the data generated in the combination stage remains stored in
the registers instead of entering the global buffer or DRAM
and is directly involved in the multiply stage calculation. This
can reduce the area overhead caused by caching intermediate
matrices or avoid expensive DRAM access, providing dual
benefits of energy and performance.

The partial matrices are fragmented into multiple partial
vectors, and the controller subsequently forwards these partial
vectors to the logical layer, which then assigns them to the
corresponding PE via row indexing. Upon receiving the partial
vectors, each PE accumulates them in the merge stage.

We employ a vector buffer VXB and a data reordering
technique to prevent potential conflicts. Partial output vectors

Fig. 10. Example of the allocation of workload for the second and third
stage PEs.

are temporarily stored in VXB instead of being immediately
merged. The merging process occurs after the combination
and multiply stages when the data in VXB reaches a specific
threshold. If there is limited data in VXB, the combination and
multiply stages proceed consecutively, bypassing the merge
stage. During merging, the EU retrieves the data from VXB,
matches them based on their indices, and accumulates them
with the old partial sums stored in the bank. Subsequently, the
new partial sums are written back to their original positions
in the banks. To minimize data movement within the bank,
we reorder the partial output vectors according to their indices
rather than relying on the order of vector arrivals. Once all
partial vectors have been merged, the resulting output vector
is activated by the NFU and stored back in the bank.

GCNim system does not stagnate in computation due to
data waiting, as the data either resides in the EU or is
prepared in the memory of the PE. The controller orchestrates
the computational pipeline and data movement across the
three stages. The combination and multiply stages are closely
coupled. Interstage pipelining is achieved by having the output
of the combination stage reside in the registers of the EU,
participating in the subsequent multiply stage. Merging does
not occur after every multiply stage; its execution depends on
the amount of data in VXB. Therefore, the combination or
merging stage can execute after the multiply stage, and the
EU is reused across these three stages. The combination and
multiply stages use computations performed in other stages
to hide the latency of data transfer in these stages. These
approaches improve the utilization of both PE and DRAM
bandwidths and minimize the number of incoming memory
accesses.

V. PREPROCESSING

In this section, we introduce a lightweight workload map-
ping method to distribute the nonzero elements of matrices
A and X into GCNim’s memory banks for EUs to process.
GCNim integrates a PE next to each memory bank, and
all PEs simultaneously handle nonzero elements. Therefore,
performance is bounded by the slowest PE, which needs
workload balance among the PEs.

In prior research, offline preprocessing tech-
niques [32], [33], [34] were employed to reconstruct the
graph and partition the vertices. This approach aimed to
enhance data locality and achieve a balanced workload
distribution. However, this approach introduced significant
latency overheads based on complex software reordering



1368 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

algorithms and was only feasible during offline processing.
Instead of relying on software algorithms, we harness data
locality by designing our hardware architecture. First, in
the combination stage, we utilize prefetchers, buffer for W
matrices, and hidden data transfers after calculations to provide
locality advantages. Second, in the multiply stage, all elements
of the adjacency matrix are parallel without data dependencies,
while in the merge stage, we achieve complete data locality
by sending partial vectors to the corresponding storage PE for
merging.

After static data allocation, A and X(0) do not move during
system runtime, and all PEs execute in parallel. Performance
depends on the slowest PE, so balancing the workload among
all PEs through preprocessing is necessary. By analyzing the
workload of each PE in the three stages, we propose an
efficient and lightweight processing method.

The workload of each PE in each stage depends on nnz
in X allocated in its bank, nnz in A, and the number of X
partial vectors received. Specifically, for the first stage, the
multiplication and addition operations time depends on nnz in
X and the length of the W vector. As the length of the dense
matrix W row is fixed, only X’s nnz needs to be considered.
For the second stage, the time for multiplication operations
is similar to the first stage and depends on nnz in A and the
length of the (XW) vector. For directed graphs, nnz in A’s
column represents the in-degree of a vertex, which determines
the workload of the second stage. Although partial vectors
are received from remote PEs for the third stage, the total
computation for the third stage can be preknown. This is
because the partial vectors are sent based on A and X’s row
indices. The number of generated partial vectors in the second
stage depends on the nnz in A’s row vectors, representing
the out-degree of a vertex in the directed graph. Therefore,
the total computation of the PE depends on the degree of
the assigned vertices and nnz in their feature vectors. Fig. 10
provides an example of workload allocation for PEs in the
second and third stages. Based on this, we propose a simple
heuristic data placement algorithm. Typically, the algorithm
employs a greedy strategy, and the pseudocode is demonstrated
in Algorithm 1.

First, we allocate an empty container for each bank. We
compute each vertex’s workload as the sum of its degree
and nnz in its feature vector. Then, we place the vertices
into different containers according to the capacity of each
container and use a minimum priority rule. Once all vertices
are assigned, we will renumber the vertex IDs of the entire
graph to ensure that vertices in the same container have
continuous indexes, making it easier for the logic layer’s vault
controller to store corresponding information.

VI. EVALUATION

In this section, we begin by introducing the experimen-
tal setup. Subsequently, we elaborate on the comprehensive
performance, power, and area results of GCNim against state-
of-the-art GCNs software and hardware solutions. Following
that, we discuss the scalability of GCNim and the sensitivity
studies of hardware configurations.

Algorithm 1 Matrices A and X Assignment to Banks
Input: The adjacency matrix A, feature matrixX, the number

of PEs #PEs

Output: The partitioned A and X
1: n ← the number of vertices of A
2: P ← MinFirstQueue(#PEs)

� Initialize each container
3: for i ← 0 to n do
4: Di ← the degree of vertex i
5: Ni ← nnz in i-th row of X
6: p ← P.extract_min() � Filling the container
7: p.vertex.idxset(i)
8: p.workload ← p.workload + Di + Ni

9: P.insert(p)

10: end for
11: count = 0
12: for each p ∈ P do � Renumber the vertices
13: for each v ∈ p.vertex do
14: v.index ← count
15: count ← count + 1
16: end for
17: end for

A. Experimental Methodology

Hardware Configuration: We follow the specification [35]
for 3-D stacking memory to implement our architecture design.
We use the configuration specified in the previous 3-D stacking
memory characterization study [36]. A memory cube consists
of a logic die, and eight DRAM dies. The cube is segregated
into 32 vaults, each graced with its controller positioned at
the logic die. These controllers establish connections with the
DRAM dies via 32 TSVs. Each DRAM layer contains two
banks per partition, each with a capacity of 16 MB. Hence,
the number of banks within each cube entity amounts to 512,
boasting a collective capacity of 8 GB. We set a PE next to
each bank; the FPU of each PE contains 16 pairs of multipliers
and adders, a 2-kB MXF, and the size of the VecX Buffer is
also 2 kB. The size of the DRAM layer MWM and logic layer
Buffer is 4 and 128 kB, respectively.

Simulation Configuration: We implement an in-house
cycle-accurate simulator to perform performance and power
simulations of our architecture. It also supports the prior
work [16], [23] for bank-level computing. We use CACTI-
3DD [37] to model 3D-stacked DRAM, interconnect
components (including TSVs and routers), and on-chip
memory elements (including MXF, VecX Buffer, PMatW
Memory, and logic layer MatW Buffer) and estimate its area,
power, and latency. To estimate the overhead of GCNim’s
logic parts, we implemented them using Verilog RTL and
synthesized them using the Synopsys toolchain with the TMSC
28-nm standard library. Furthermore, we estimate the power
consumption using Synopsys PrimeTime PX. GCNim runs at
a frequency of 312.5 MHz.

Datasets: The five datasets most widely used in GCNs
studies are shown in Table I. Among the datasets utilized,
we incorporate Cora (CR), Citeseer (CS), and Pubmed (PB).
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TABLE I
GRAPH DATASET

Fig. 11. Execution times of GCNim against the state-of-the-art GCNs
solutions. All results are normalized to GCNim.

They represent three widely recognized collections of paper
citation networks. Nell (NE) is a knowledge graph. Reddit
(RD) is a social network graph extracted from various Reddit
forums [38].

Baselines: We compared GCNim and the state-of-the-art
graph neural network framework PyG [39] on CPU and GPU
platforms. PyG is a library built on top of PyTorch for writing
and training graph neural networks easily and powerfully. We
evaluated PyG-CPU and PyG-GPU using a Linux workstation
with two Intel Xeon CPUs E5-2680 v4 and one Nvidia Tesla
V100 GPU.

Furthermore, we compared GCNim with four other
advanced solutions: 1) a novel hardware accelerator I-
GCN [18]; 2) a generic dataflow architecture FlowGNN [40];
3) a power-efficient accelerator PEDAL [41]; and 4) a PIM-
based accelerator GCIM [23]. To ensure fairness, we integrated
the I-GCN and PEDAL solution into 3D-stacked PIM archi-
tecture, establishing them as the baseline scheme.

B. Overall Performance

We begin by assessing the performance of GCNim.
Fig. 11 illustrates the comprehensive performance outcomes
of GCNim compared to PyG-CPU, PyG-GPU, I-GCN,
FlowGNN, PEDAL, and GCIM.

1) GCNim Versus PyG-CPU: In contrast to PyG-CPU,
GCNim demonstrates a significantly faster performance, rang-
ing from 976.36× to 6862.84× (3736.06× on average) due
to the hybrid execution model and the near-data processing
method adopted by GCNim architecture. The speedup obtained
by GCNim is closely associated with the shape of the graph.
Notably, NE shows the highest speedup ratio (6862.84×) due
to the sparsity of its graph and input features. This means that
most of the aggregation and first layer combination phases will
show irregular memory access, resulting in poor performance
for PyG-CPU. GCNim mitigates irregular memory access by

splitting the aggregation into two stages, where data from
the previous stage is directly transmitted to other PEs for the
subsequent computation in the next stage. In the combination
phase, we hide memory access latency by designing two-layer
buffers and pipelines in three stages.

2) GCNim Versus PyG-GPU: GCNim outperforms PyG-
GPU by a factor of 11.02×–121.82× (76.56× on average).
Despite the GPU’s vast number of cores, the sparsity of
the graph during GCNs inference causes the GPU to gen-
erate strided memory access, resulting in multiple memory
transactions during a single computation step. This makes it
challenging for PyG-GPU to leverage the available parallelism
fully. For GCNim, through the static mapping before execution
and the outer product method adopted in the aggregation
phase, FPU only needs to multiply or accumulate data stored
in the local bank and buffers to avoid irregular memory access
and achieve a reasonably high execution efficiency. Similarly,
GCNim performs best on the NE graph, where the large graph
size prevents complete on-chip memory storage in the GPU,
thus incurring off-chip communication overhead. GCNim’s
near-data processing architecture can effectively solve this
problem.

3) GCNim Versus I-GCN: I-GCN suggests a dynamic
reordering scheme called Islandization based on a breadth-
first search. In addition, it reuses the overlapping computations
within the aggregation phase to reduce the computational
complexity. In comparison, GCNim outperforms I-GCN by
1.73×–5.61× (3.35× on average). GCNim performs best on
the NE graph but less well on the RD graph. This is due to
the sparsity of the feature vectors in the first layer of NE. In
contrast, the overall sparsity of it in RD is between 50% and
60%, resulting in the calculation in the combination phase of
the RD not being memory-bound. This provides no advantage
for the 3D-stacked memory with fewer processing units.

4) GCNim Versus GCIM: GCIM integrates MAC arrays in
the logic and DRAM layers to support the two phases. In com-
parison, GCNim achieves a better speedup of 1.52×–9.08×
(5.58× on average) compared to GCIM. Although GCIM
employs a bank-level approach for aggregation, accessing
vertices and their feature vectors can result in severe cross-
vault communication between different vaults. Despite the use
of replicas to reduce remote communication, this approach
is ineffective for GCNs as long vertex feature vectors can
lead to unaffordable storage overhead. GCNim performs better
on the NE graph with sparse feature vectors, with the most
extended feature vector length. GCIM follows an aggregation-
combination execution order, whereas GCNim employs a
combination-aggregation sequence. In most datasets, initiating
with combination reduces computations due to the smaller
output feature dimension than the input feature dimension.
However, there is an exception: in the NE dataset’s second
layer, output features are longer than input features. Despite
this, GCNim performs better on the NE dataset. This indi-
cates that our performance enhancement is not solely due to
reducing operations by changing the execution order.

5) GCNim Versus FlowGNN: FlowGNN is a novel
and scalable dataflow architecture with a configurable
dataflow optimized for GNN models with a message-passing
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Fig. 12. Energy consumption of GCNim against the state-of-the-art GCN
solutions. All results are normalized to GCNim.

mechanism. In comparison, GCNim outperforms FlowGNN by
1.43×–3.66× (2.24× on average). FlowGNN targets real-time
applications with zero preprocessing and partitioning. GCNim
is tailored for GCNs and achieves load balancing through a
lightweight preprocessing strategy. Our design significantly
reduces latency during the aggregation phase, particularly for
large graphs like NE.

6) GCNim Versus PEDAL: PEDAL is a power-efficient
accelerator supporting multiple dataflows. PEDAL chooses the
best-fit dataflow and phase ordering based on input graph
characteristics and GCNs algorithm, achieving both efficiency
and flexibility. We compare the best-performing dataflows
and phase order of PEDAL in GCN. In comparison, GCNim
outperforms PEDAL by 3.10×–23.06× (8.97× on average).
The architecture of PEDAL with separate engines and a
design that supports multiple dataflows makes the execution
of GCN less efficient. But in terms of generality, PEDAL
can also support the GCN that employs nonlinear aggregation
functions.

C. Energy Consumption and Area

We estimate energy consumption mainly from four main
factors: 1) EU; 2) DRAM bank access; 3) on-chip SRAM
access; and 4) I/O link in the network. Fig. 12 depicts the
energy results. Thanks to GCNim’s near-data processing capa-
bility significantly reduces the cost of data movement, GCNim
consumes 2704.27×–14445.72× (8292.46× on average) less
than PyG-CPU. GCNim saves 13.43×–124.17× (81.45× on
average) more energy than PyG-GPU. GCNim exhibits a
notable energy advantage over PEDAL, consuming 2.46× to
8.86× (with an average of 5.53×) less energy. Similarly, com-
pared to I-GCN, FlowGNN, and GCIM, GCNim showcases
superior energy efficiency, averaging 1.83×, 1.32×, and 2.83×
less energy consumption. Compared with GCIM, GCNim
adopts different multiplication methods to eliminate data
movement overhead between the two phases while avoiding
high energy consumption caused by irregular and redundant
cross-partition communication through remote merging.

Area: Table II shows the area of the hardware components
in each bank. The PE area cost of GCNim in each bank of
the DRAM layer is only 0.1843 mm2, accounting for just
7.58% of the bank area. The total area of all components in
the logic layer is only 11.4048 mm2, representing 11.88% of
the logic layer area. The base logic die in the 3-D memory has

TABLE II
AREA AND POWER OF COMPONENTS IN A BANK OR A VAULT

Fig. 13. Breakdown of (a) execution time for the aggregation and
combination and (b) energy breakdown for GCNim.

a 10%–30% area budget [42]. Therefore, our design is within
the acceptable range of the 3D-stacked memory area budget.

D. Execution Time and Energy Breakdown

To gain a deeper understanding of the effectiveness of
our design, we conducted an evaluation that included the
decomposition of execution time and energy consumption at
different phases.

Latency Breakdown: Fig. 13(a) illustrates the decomposi-
tion of the execution time ratio for the two phases of GCN. The
findings indicate that GCNim’s main performance advantage
comes from significantly reducing latency in aggregation.
Except for the RD graph, the combination phase exhibits a
higher proportion in the remaining datasets.

Energy Breakdown: Fig. 13(b) depicts the detailed decom-
position of energy consumption for GCNim. We estimate
energy consumption mainly from five main factors: 1) static;
2) MAC dynamic; 3) DRAM dynamic; 4) SRAM dynamic;
and 5) interconnect dynamic. For small graphs, the energy
consumption of static and SRAM dynamics is relatively
high. With the graph size expanding, the overhead from
interconnections grows, leading to a decrease in the proportion
of energy consumption of the computing units.

E. Scalability

Previous works [43], [44], [45] have also studied the
architecture of multiple 3D-stacked memory interconnects.
The cubes can be connected to other devices or each other,
with external bandwidth between cubes reaching 320 GB/s.
We measured the scalability of GCNim as the number of cubes
increased, as shown in Fig. 14. When the number of cubes
is small, all graphs show good scalability with near-linear
expansion. However, when the number of cubes increases to
more than 8, the performance growth of small graphs slows
down while large graphs continue to perform well. When the
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Fig. 14. Scalability of GCNim with the increase of the number of cubes.

Fig. 15. Sensitivity of performance to (a) TSV transfer latency and (b)number
of MAC.

number of cubes increases to 16, our architecture still shows
a nearly 14× speedup compared to a single cube.

Our design exhibits good scalability on large graphs because
we avoid remote random access during execution. In the
combination phase, the weight matrix required for PE is
obtained mainly from the local cube and read from the local
vault. During the aggregation phase, the latency of sending
remote feature vectors can be hidden through computation,
avoiding computational stagnation caused by vertex aggrega-
tion randomly accessing remote data.

F. Sensitivity to Hardware Parameters

We conducted a sensitivity study to examine the impact of
a subset of architectural parameters on inference latency.

The vast majority of data requests and accesses occur in
local vaults, making the transfer latency of TSVs crucial. We
study the sensitivity of TSV delay in 3D-stacked memory by
setting the data transmission delay in the simulator. Fig. 15(a)
shows the trend of increasing execution time for different
datasets as TSV latency increases. When the transmission
delay of TSV increases from 4 to 8, the actual execution
time increases by only about 6%. When the delay increases
to 12, the execution time increases by about 18%. When the
delay increases to 24, the execution time increases by an
average of 40%, with a maximum rise of 60% in some graphs.
This indicates that when the TSV transmission capacity is
strong, the data transmission can overlap with calculation,
and when the delay increases, the time spent waiting for data
will increase. However, due to our three-stage pipelining, our
architecture design remains resistant to high latency.

On the other hand, different datasets have different lengths
of feature vectors, and changes in the number of EUs can
have different impacts. Fig. 15(b) showcases the performance
outcomes obtained by augmenting the number of multipliers
and adders. The results showed that when the number of
logical components increased from 8 to 16, the average

acceleration ratio was 1.784×. When the number continued
to expand to 32, it only increased by an average of 1.523×
compared to 16. This is because a multiplier and an adder
process one feature element at a time. In the case of small
graphs, the length of the output feature vector is usually less
than or equal to 16. Therefore, the acceleration is insignificant
when the number of computing components increases to 32.
However, for large graphs, the output feature vector expands to
a point where augmenting the number of logical components
becomes advantageous.

VII. RELATED WORK

GCNs Accelerators: In recent years, numerous efficient
architectures have been proposed to accelerate GCNs. Among
them, HyGCN [15] proposes a hybrid engine accelerator. It
elucidates the necessity of GCNs accelerators and discusses
the distinctive critical features of the two phases of GCNs
inference. AWB-GCN [26] relies on the column-wise prod-
uct execution method and explores the impact of execution
order. It transforms GCNs inference into SpMM and employs
various dynamic load-balancing strategies. I-GCN [18] adopts
a novel online graph reordering algorithm, Islandization,
to improve data locality and minimize repetitive calcula-
tions. GCNAX [16] proposes a flexible GCNs dataflow to
maximize the utilization of computing engines and mini-
mize data movement. Additionally, GCoD [46] introduces
a co-design framework that requires retraining GCNs to
obtain dense and sparse regions amenable to acceleration.
FlowGNN [40] is the first generic and flexible accelerator
framework for a wide range of GNNs. PEADL [41] is a power-
efficient accelerator for GCNs inference supporting multiple
dataflows.

PIM Accelerators Related to Graph Processing: Many PIM-
based 3D-stacked memory graph processing accelerators have
typically integrated digital logic units into the logic layer.
Tesseract [42] represents the first graph accelerator based
on 3D-stacked memory, a scalable PIM accelerator used for
extensive graph computation. GraphPIM [47] demonstrates
that PIM’s key performance advantage in graph processing
is reducing atomic overheads by offloading expensive atomic
operations into 3-D memory with an extended minor archi-
tecture. GraphP [45] is a software and hardware co-design
accelerator that proposes a graph partition method and further
optimizes communication between cubes. GraphQ [44] is
an enhanced PIM-based graph processing architecture that
achieves static and structured communication through batched
communication orders and simplified processing models, fun-
damentally eliminating irregular data movements. Another
exploration is integrating processing units near the bank
of the DRAM layer. GCIM [23] is the first accelerator to
utilize bank-level processing of GCNs. It leverages the unique
characteristics of the aggregation and combination phase to
perform at both the logic and DRAM layers. SpaceA [22] is
a customized accelerator for SpMV that integrates PEs near
the banks to utilize bank-level bandwidth. In a vertex-centric
paradigm, the graph algorithm can be represented in numerous
rounds of SpMV.
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VIII. CONCLUSION

In this article, we propose GCNim, an accelerator designed
for GCNs on the 3D-stacked memory PIM architecture.
GCNim adopts a novel GCNs computational model based on
the PIM architecture, which employs different multiplication
methods in the aggregation and combination phases of GCNs,
enabling remote merging and pipelined interphase fusion.
This approach significantly reduces data movement within
and between stages. Additionally, GCNim integrates unified
PEs at the bank level, concurrently supporting alternating
computations of aggregation and combination kernels, thereby
obliterating load imbalances caused by dynamic workload
variations between phases. Our experiments demonstrate that
GCNim exhibits superior performance and energy efficiency
compared to state-of-the-art CPU, GPU, and accelerator
solutions.
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