
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 2, FEBRUARY 2024 431

Secure Run-Time Hardware Trojan Detection
Using Lightweight Analytical Models

Burin Amornpaisannon , Student Member, IEEE, Andreas Diavastos , Member, IEEE,
Li-Shiuan Peh , Fellow, IEEE, and Trevor E. Carlson , Senior Member, IEEE

Abstract—Hardware Trojans, malicious components that
attempt to prevent a chip from operating as expected, are care-
fully crafted to circumvent detection during the predeployment
silicon design and verification stages. They are an emerging
threat being investigated by academia, the military, and indus-
try. Therefore, run-time hardware Trojan detection is critically
needed as the final layer of defense during chip deployment,
and in this work, we focus on hardware Trojans that target
the processor’s performance. Current state-of-the-art detectors
watch hardware counters for anomalies using complex machine-
learning models, which require a dedicated off-chip processor
and must be trained extensively for each target processor. In this
work, we propose a lightweight solution that uses data from a
single reference run to accurately determine whether a Trojan
is slowing processor performance, across CPU configurations,
without the need for new profiles. To accomplish this, we use an
analytical model based on the application’s inherent microarchi-
tecturally independent characteristics. Such models determine
the expected microarchitectural events across different proces-
sor configurations without requiring reference values for each
application-hardware configuration pair. By comparing predicted
values to actual hardware events, one can quickly check for unex-
pected application slowdowns that are the key signatures of many
hardware Trojans. The proposed methodology achieves a higher
true positive rate (TPR) compared to prior works while hav-
ing no false positives. The proposed detector incurs no run-time
performance penalty and only adds a negligible power overhead
of 0.005%.

Index Terms—Analytical modeling, embedded security,
hardware Trojan detection.

I. INTRODUCTION

THE INTERNET of Things (IoT) era has intensified the
competition in the semiconductor industry to design and

produce smart computing systems that can handle diverse and
demanding applications, such as self-driving cars, smart cities,
and wearable devices. These applications require smart com-
puting systems to perform complex computation with high
performance and power efficiency, which increases the chip
complexity. Chip design companies are required to meet tight

Manuscript received 25 April 2023; revised 19 July 2023; accepted 23
August 2023. Date of publication 15 September 2023; date of current ver-
sion 22 January 2024. This work Supported by Singapore NRF under Grant
NRF2018NCR-NCR002. This article was recommended by Associate Editor
R. S. Chakraborty. (Corresponding author: Andreas Diavastos.)

Burin Amornpaisannon is with the School of Computing, National
University of Singapore, Singapore.

Andreas Diavastos, Li-Shiuan Peh, and Trevor E. Carlson are with
the Department of Computer Science, National University of Singapore,
Singapore (e-mail: diavastos@gmail.com).

Digital Object Identifier 10.1109/TCAD.2023.3316113

time-to-market timelines to stay competitive, forcing them to
rely on external suppliers to overcome these challenges. One of
the challenges of developing modern hardware is to ensure that
they are secure and reliable. However, this current design flow
exposes new security risks that have to be addressed. For exam-
ple, malicious actors could exploit vulnerabilities in different
components of the chip. Therefore, it is essential to apply rig-
orous testing and verification methods to identify and mitigate
these risks before deploying the system to the end users.

Due to the tight time-to-market timeline and chip complex-
ity challenges mentioned, chip designers provide their designs
to and use products from various parties, such as leveraging
third-party intellectual property (IP) blocks, using sophisti-
cated CAD software built by other companies, and transferring
their designs to foundries for fabrication. The problem is
that these third-party companies can be untrusted and poten-
tially inject hardware Trojans into the target design. Hardware
Trojans are malicious components that attempt to prevent a
chip from operating as expected and can be inserted in a chip
at any phase of the design flow, from early register transfer
level (RTL) design stage to tape-out [1]. They are an emerging
threat being investigated by academia, military, and indus-
try [1], [2], [3] and can cause catastrophic changes in chip
functionality, leading to performance degradation, denial of
service (DoS), and information leakage [4].

Countermeasures [5], [6] have been developed against hard-
ware Trojans targeting various components, such as network-
on-chip [7], [8], processors [9], as well as accelerators [10].
These countermeasures have also been developed for different
phases of the chip development flow from presilicon vali-
dation to post-silicon testing and run-time verification. For
example, functional verification ensures that the output of
the design under test is as expected. Side-channel analysis
observes side-channel characteristics of a circuit such as power
and delay [11] in search of anomalies caused by Trojans.
However, hardware Trojans are designed to be stealthy, embed-
ded as tiny components in the chip, and rarely activated to
circumvent these predeployment techniques. Run-time hard-
ware Trojan detection is thus critically needed to serve as the
final layer of defense that protects the chip during deployment.

State-of-the-art processor-based run-time hardware Trojan
detection methodologies [9], [12] tend to observe microarchi-
tectural events, such as the number of branch misses on a
processor, to detect anomalous behavior. Unlike side-channel
information (e.g., power), which can be disturbed by physi-
cal phenomena such as process variation and chip aging that

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1511-345X
https://orcid.org/0000-0002-7139-4444
https://orcid.org/0000-0001-9010-6519
https://orcid.org/0000-0001-8742-134X

432 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 2, FEBRUARY 2024

can decrease its detectability, microarchitectural events tend
to be consistent across chips with the same design. However,
these prior works require time-consuming training of complex
machine-learning detection algorithms that assume a trusted
baseline with no Trojans during training. In some cases, like
when the design is provided as a third-party IP block, a
trusted baseline may not be available. More importantly, cur-
rent state-of-the-art detection models are configuration-specific
and cannot be reused across different processor configurations.
Furthermore, they often require an additional off-chip secure
processor to monitor the target processor during execution.

This work employs, for the first time, mechanistic mod-
els based on analytical modeling to address these challenges.
Mechanistic models aim to predict key microarchitectural
events of a given hardware–software pair. This data can be
used to detect abnormal behavior due to the effects of hardware
Trojans [12]. The key benefits of mechanistic models are that
they can capture the fingerprint of an application regardless of
the underlying microarchitecture while flexibly and accurately
predicting microarchitecture-specific events using only high-
level hardware configuration information. In addition, they do
not require costly offline training or model updates when the
processor configuration changes.

In this work, we introduce a lightweight hardware Trojan
detector. The detector is connected to the target processor and
implements analytical models that capture fundamental soft-
ware characteristics to predict key microarchitectural events
periodically without a trusted baseline. The predicted values
are then compared with actual values from the target processor
to identify anomalies in processor behavior and detect hard-
ware Trojans that target the processor’s performance. To the
best of our knowledge, this work is the first that uses analytical
modeling to detect hardware Trojans. The proposed solution
achieves the highest true positive detection rate compared to
prior work, with no false positives, even for hard-to-detect,
stealthy hardware Trojans. The proposed detection unit is off
the critical path, works in parallel with the processor, and only
increases the power consumption by a negligible 0.005%.

II. RELATED WORK

Prior run-time hardware Trojan detection methodologies
observe key system attributes that capture the behavior of
the processor, for example, from side-channel information
or microarchitectural events, to detect anomalies. We clas-
sify prior works into those based on hardware performance
counters and those that rely on chip information.

Hardware Trojan Detection in Processors Based on
Microarchitectural Events: State-of-the-art run-time hardware
Trojan detection techniques for processors rely on observing
logical or side-channel information and use machine-learning
or deep-learning algorithms to detect anomalies in the data.
Vijayan et al. [9] observed representative flip-flops in a pro-
cessor. The experiment shows that observing 12 flip-flops in
the Leon3 processor is sufficient to achieve 90.9% accuracy
and 0.40% power overhead accounting only for the monitor-
ing module. Elnaggar et al. [12] proposed an approach that
detects changepoints and classifies them from performance

counter data. Elnaggar et al. [13] relied on half-space trees to
detect anomalies in data streams from performance counters.
The works [12], [13] heavily suffer from the limited subset of
observable performance counters which hurts detectability and
can lead to a high false positive rate (FPR) or low true positive
rate (TPR) when observing an unsuitable microarchitectural
event.

Hardware Trojan Detection in Processors Based on Chip
Information: Other previous works also observe and detect
anomalies from side-channel information using, for exam-
ple, power, current, electromagnetic radiation, and temper-
ature [14], [15], [16], [17]. However, even chips with the
same design can have different observations due to process
variations, different physical environments, and chip aging,
complicating detection processes. Also, tiny hardware Trojans
may be able to circumvent this approach as they do not gen-
erate observable anomalies in side channel information even
if the Trojans are catastrophic. These techniques also require
sensors of sufficient precision to be inserted on-chip.

FinalFilter [18] is a reconfigurable property checker
that aims to protect security-critical properties instead of
performance-related properties. This work is orthogonal to
ours, and the two can be combined to provide broader pro-
tection. Processor protection unit (PPU) [19] observes the
instruction’s opcode, the number of clock cycles to exe-
cute an instruction, and specific internal signals to detect
hardware Trojans. Nevertheless, its implementation highly
depends on simple processor designs with limited scalabil-
ity. Its complexity grows when a processor becomes more
complicated.

III. BACKGROUND

Microarchitectural events, such as a count of branch and
cache events that occur, have been shown to accurately capture
the characteristics of an application [20] and can be viewed as
the fingerprint of a program from which hardware Trojans can
be detected when they disturb the program signature reflected
by these events. This section describes the microarchitecture-
independent analytical models used in this work to capture the
fingerprint of an application based on the application itself. In
the rest of this section, we describe the two main analytical
modeling techniques used in this work: 1) branch predictor
modeling and 2) cache modeling.

A. Branch Predictor Modeling

An analytical model that captures the branch behavior of
an application using linear branch entropy [21] is used in this
work. This model provides a way to predict the branch mis-
prediction miss rate of an application running on a specific
hardware platform in a lightweight and flexible way while
maintaining accuracy. The model has also been used as a com-
ponent of a more complex processor analytical model [22]
that can estimate the performance of out-of-order processors.
Building and using the branch predictor model consists of
two phases: 1) the preparation phase and 2) the miss rate
estimation phase. The preparation phase also consists of two
subphases: 1) application profiling and 2) model training.

AMORNPAISANNON et al.: SECURE RUN-TIME HARDWARE TROJAN DETECTION 433

Fig. 1. Branch predictor modeling flow begins with (1) an up-front analysis phase to build an analytical model that can be used for predicting branch miss
rates. The up-front analysis is composed of a (1a) model training and (1b) application profiling step. The model training step is used to generate linear branch
entropy values and miss rates of the applications and train the linear regression model. During (1b) application profiling, the target application is profiled and
a linear branch entropy profile is generated. During model deployment (2), the resulting linear regression model is used to predict branch miss rates based on
the profile of the target application. This model is deployed and represents a lightweight model using two linear parameters of the specific branch predictor
to accurately predict a branch prediction rate [21].

Fig. 1 demonstrates the entire flow of this framework

EL(p(i, H)) = 2 · min(p(i, H), 1 − p(i, H)). (1)

In the application profiling phase, where the application is
run to collect microarchitectural event statistics, linear branch
entropy EL(p(i, H)) can be derived from a taken rate of a his-
tory pattern shown in (1). A taken rate of a specific local/global
history pattern H, p(i, H), is defined as a probability of a static
branch i to be taken when the value of branch history equals H.
The value of a linear branch entropy ranges from 0 to 1, where
0 is a predictable conditional branch, leading to a low miss
rate, and 1 is the least predictable, leading to a high miss rate

E = 1

N

∑

i

∑

H

n(i, H) · EL(p(i, H)). (2)

The average linear branch entropy, E, is then calculated
using (2), using the weighted arithmetic mean, where n(i, H)

is the number of times the static branch i is executed and N
is the total number of dynamic branches executed

M(E) = α + β · E. (3)

The model training phase trains a linear regression model
to predict branch miss rates. The branch miss rate of an appli-
cation for a given branch predictor can be derived using (3).
To construct this linear model, a training dataset for a particu-
lar branch predictor is needed, which contains the relationship
between branch miss rate and linear branch entropy, which can
be obtained from a high-level computer architecture simula-
tor [23] or dynamic binary translation tool like Intel Pin [24].
α and β are then generated using a least-squares fit based on
the training dataset.

During the miss rate estimation phase, the average linear
branch entropy data from the target application is retrieved.
The specific average linear branch entropy value is then chosen
based on the type and size of the specific branch predictor
to predict the miss rate. The predicted number of misses in
a specific period can then be calculated by multiplying the
predicted miss rate by the total number of branches during
that period.

This branch predictor model provides a microarchitecture-
independent branch profiling methodology that allows one to
predict a branch miss rate without the need for a full processor

design implementation or golden reference. The profile is also
independent of a specific processor architecture as the branch
statistics are only calculated solely based on the behavior of
the program. Only the linear regression model is specific to a
branch predictor, which can be trained using, for example, a
high-level branch predictor simulator [25] without the need for
its actual hardware implementation like RTL code or gate-level
netlist.

B. Cache Modeling

To build an analytical model for caches, the least-recently
used (LRU) stack processing algorithm [26] is used and was
chosen as it can quickly predict the number of cache hits
and misses analytically based on the LRU replacement pol-
icy as well as flexibly as it does not require reprofiling the
same application for different processor configurations. The
algorithm has been widely used in other works in different
applications [27].

The LRU stack processing algorithm uses a stack to keep
track of cache-line addresses accessing memory. The LRU
stack distance of a cache-line address is the number of
addresses between that cache-line address and the top of the
stack. When a cache-line address is accessed, the counter for
its particular LRU stack distance value is counted, and the
cache-line address is moved up to the top of the stack to emu-
late the LRU replacement policy. By doing so, a histogram can
be constructed from which one can calculate the number of
cache hits and misses based on the size of a cache. This algo-
rithm can be applied to instruction and data caches as they
both work similarly on different types of data. This step is
called the preparation phase.

Figs. 2 and 3 demonstrate how the LRU stack distance is
computed and how to keep track of cache statistics. In this
implementation, the buckets are associated to sizes 64, 128,
256, . . . , 2n B. The infinity bucket is used to count the number
of addresses that have been first accessed and, thus, result in
cold misses. In Fig. 2, when an address that has never been
seen before is accessed, in this example address D, the address
is placed on the top of the stack, and the infinity bucket is
incremented by one. Similarly, in Fig. 3, when the address D
is later accessed again, the address is moved to the top of the
stack, and the distance between the last location and the top

434 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 2, FEBRUARY 2024

Fig. 2. Example of an LRU stack distance when an address D is accessed
for the first time in the application run. The address D is put at the top of the
stack, and as D has not been seen before, the counter in the infinity bucket is
increased by one to count toward the number of cold misses. The values of
the counters are then used to predict the number of cache hits and misses.

Fig. 3. Example of an LRU stack distance when an address D is accessed a
second time. The address D is moved to the top of the stack, and the distance
between the last location of D and the top of the stack is calculated. In this
case, the counter in the 256 B bucket is increased by one as the total distance
is 192 B, which is below 256 B but higher than 128 B. The total distance can
be calculated by multiplying the number of entries away from the previous
use of D by the cache line size. The values of the counters are then used to
predict the number of cache hits and misses.

of the stack is calculated. The counter in the smallest bucket
that is larger than the distance is incremented by one. In this
case, the 256 B bucket is incremented as 192 B is bigger than
128 B and smaller than 256 B. The total LRU stack distance
can be calculated by multiplying the number of entries away
from the previous use of D by the cache line size.

To compute the number of cache hits and misses for a par-
ticular cache size, the number of accesses at the bucket sizes
higher than the actual processor cache size is summed to deter-
mine the number of cache misses. Similarly, to find the actual
number of cache hits for a particular cache size, the number
of cache accesses at the sizes equal to and smaller than the
processor cache size is summed. We call this step the cache
event prediction phase.

Fig. 4 presents the process of cache miss event prediction.
The histogram shows the number of accesses that occur in each
bucket size. Each bucket represents the cache size needed for
those accesses to result in a cache hit. In this case, the target
processor has a 2-KiB data cache. The number of accesses that
is in the buckets smaller or equal to 2 KiB will be summed
up to get the number of cache hits. Similarly, the rest of the
buckets are used to calculate the number of cache misses, as
those accesses would require a cache that is larger than the
cache used on the evaluated system at run time. Note that this
histogram can be flexibly reused across different cache size

Fig. 4. Part of the dijkstra benchmark’s data cache histogram from the LRU
stack processing algorithm. Assuming that the target processor has a 2-KiB
data cache, the bucket sizes that fall into the left area are the groups that
contribute to the number of cache hits, and the bucket sizes in the right area
are the groups that contribute to the number of cache misses.

configurations using this methodology without rerunning the
preparation phase.

IV. THREAT MODEL

Fig. 5 shows the threat model used in this work. In this
threat model, hardware Trojans are assumed to be inserted
into the processor during the RTL design stage by a malicious
third-party design company. This company then gives an IP
block of the Trojan-infected processor to a trusted chip design
company. The proposed countermeasure is implemented and
integrated with the chip design at this stage. The chip design
company then integrates the Trojan-infected IP block with
other Trojan-free components and runs a variety of tools to
generate the final chip design for tape-out. These tools are
assumed to be from well-known, certified EDA companies
and are trusted. The final design is then fabricated at a trusted
foundry.

Hardware Trojans are designed to be stealthy. Thus, they are
assumed to be able to remain inactive during normal execution,
which allows them to circumvent prelayout and post-layout
verification. It is also assumed that they can avoid detection
during chip testing. In addition, the developers who build
and maintain software for the Trojan-infected processor are
assumed to be trusted.

After fabrication, a user deploys the hardware-Trojan
infected chip to execute their workloads, which could be crit-
ical applications [28]. During execution, the hardware Trojan
is activated at a critical moment, like when the application
is run in a nuclear or power facility, to attack the processor.
Several types of attacks exist with their respective counter-
measures. In this work, we focus on DoS and performance
degradation attacks. Detecting application performance differ-
ences that are within normal operating ranges is outside the
scope of this work.

This threat model is similar to the threat models used in
state-of-the-art related works [9] and similar to the untrusted
third-party vendor scenario, which is one of the five most com-
mon chip-level threat models [29]. The model ensures that the
hardware components of the proposed methodology remain
unmodified during the chip design process and allows for this
work to focus on hardware Trojan issues.

AMORNPAISANNON et al.: SECURE RUN-TIME HARDWARE TROJAN DETECTION 435

Fig. 5. Overview of the hardware Trojan threat model consisting of a variety of phases from specification to RTL design and integration to fabrication and
packaging to customers. Hardware Trojans are assumed to be added by a third-party company at the RTL design stage inside an IP block. The IP block is
then integrated to a bigger system by a trusted chip design company.

V. METHODOLOGY

Figs. 6 and 7 present an overview of both the software and
hardware aspects of the proposed methodology, with the num-
bers in the figures corresponding to each of the steps of the
methodology described below.

A. Software Flow

To ensure that the application will not be modified to bypass
the hardware Trojan detector, and as an example methodology,
the trusted software developers must first follow these steps.

1) The trusted chip developing company generates a pri-
vate key that is only shared, through a secure channel,
for example, based on a public-key cryptography algo-
rithm, with trusted software companies that develop the
applications.

2) The trusted software developers build their applications
and generate binaries that must be profiled to capture the
fingerprint of the application for use in branch and cache
analytical models. The result is an application-specific
but microarchitecture-independent profile that can be
reused across different architectures and configurations.
Thus, profiling is only done once for an application.
The profile generated is the crucial information that
will be used to predict microarchitectural events by
the proposed hardware Trojan detector. Unlike prior
work [9] that requires low-level knowledge of the tar-
get processor (e.g., RTL code and gate-level netlist), our
proposed methodology only requires high-level configu-
ration information of the processor design, such as data
cache and instruction cache sizes, which is known by
the hardware and software vendors.

3) The generated profile is sent to the message authenti-
cation code (MAC) algorithm to generate a profile tag
using the private key provided by the chip company.
The MAC algorithm ensures that the untrusted proces-
sor does not modify the application profile sent to the
proposed Trojan detector.

4) Finally, the application binary, the profile, and the profile
tag are sent to the user to run the application.

B. Hardware Flow

To ensure that the binary and profile are not tampered with
and hardware Trojans are detected when they are activated,
the hardware follows these steps.

Fig. 6. Overview of the proposed methodology consisting of two sides:
developer side and hardware side. The developer side is where the software
developer prepares their application for distribution to users. The hardware
side receives an application binary with its profile and profile tag to run the
application and checks for hardware Trojans.

1) The profile and profile tag are first given to the secure
detector through the untrusted processor to verify their
correctness. The secure detector also holds the same
secret key as the software developers. The secure
detector regenerates the profile tag using its private key

436 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 2, FEBRUARY 2024

and compares it with the tag sent from the software
developers. Note that the MAC algorithm used is pro-
vided as an example to demonstrate this methodology.
One algorithm can be used if they are deemed more
secure for their use cases.

a) If the tags differ, meaning that either the tag or
profile has been tampered with, the untrusted pro-
cessor is stopped and not allowed to execute the
binary.

b) If the tags are the same, the processor is allowed
to execute the binary.

2) The Trojan detector uses the profile to generate data
for detecting Trojans when the target application is
loaded into the processor. The processor then exe-
cutes the binary with the detector, periodically checking
for hardware Trojans by predicting microarchitectural
events based on the given profile for every N instruction
(instruction window).

a) If the number of microarchitectural events is out-
side the upper-bound and lower-bound values of
the predicted microarchitectural events, a hardware
Trojan is detected.

b) If the difference in performance is lower than the
threshold, execution continues.

3) When a hardware Trojan is detected, the secure detector
can trigger a countermeasure, for example, disconnect-
ing the processor from other IP blocks or turning the
processor off.

C. Performance Counter Interception Attack Prevention

The MAC algorithm is used in our proposed methodology
(see Fig. 6) to generate a verifiable tag for each application.
The MAC is then used to verify that the untrusted processor is
sharing a correctly generated (and trusted) application profile
from the original software developer and that it has not been
tampered with. The trusted processor can validate this profile
during run time to allow the untrusted processor to operate.

If the processor contains a hardware Trojan that can inter-
cept performance counter values sent to the detector, it can
modify the profile to match the fake performance counter val-
ues to bypass this detection methodology. This type of Trojan
is similar to the one proposed in a recent work [9]. Instead,
through the use of a verification tag MAC, the correctness of
the profile can be verified, and this type of hardware Trojan
will be blocked in this methodology. It can no longer continue
to run as both the correct performance counter values for the
entire application run, as well as a matching profile needs
to be presented. This is not possible when hardware Trojans
are operating as they do not have knowledge of the applica-
tion and the software developer who originally generated the
application profile is trusted.

D. Hardware Design

Fig. 7 shows the overview of the proposed hardware design.
A lightweight Trojan detector is integrated into the chip to
predict the number of microarchitectural events in the pro-
cessor pipeline based on the application profile to detect

Fig. 7. Overview of the proposed hardware design. The untrusted processor
IP is connected to the trusted hardware Trojan detector via an interface. The
processor may also be connected to other IP blocks through a controller which
is controlled by the detector.

anomalies. In modern processors, the number of microarchi-
tectural events can be found in the performance counters that
keep track of important events (e.g., branch misses and cache
misses). Therefore, the Trojan detector is directly connected
to the performance counter module through the IP interface.
The untrusted processor may also connect to other IP blocks
via an interface that contains a controller that enables the
secure detector to control the processor. Connecting the detec-
tor directly to the processor at the hardware level is beneficial
as the interface used to transfer performance counter data is
not as limited as reading the data at the software level.

The untrusted processor normally comes in the form of an
IP block from a third-party company. IP blocks generally do
not allow hardware developers to have access to the implemen-
tation of the design, i.e., RTL code, to ensure that proprietary
components and designs are not exposed to people outside the
company. However, common interfaces are typically exposed
to the hardware developers to allow them to integrate them
with other components or IP blocks. The methodology is suit-
able for this setting as it does not require any information
from the RTL code and only requires the secure detector to
have access to the performance counters of the processor to
be validated.

The Trojan detector consists of three key components:
1) verification module; 2) register file module; and 3) compute
unit. The verification module implements the MAC algorithm
to check the correctness of the profile and contains the private
key. The register file module and the compute unit implement
the linear branch model and cache event prediction.

The register file module stores the α and β parameters
for the linear branch model and data and instruction cache
size parameters for the LRU cache model. These parameters
can be hard-coded by trusted hardware developers as they
are fixed in each processor. As the performance counters do
not reset their values after each read request, the register file
module is also required to store performance counter values
read for the previous detection period. These previous val-
ues will then be used with the current performance counter
values that are read in the current detection period to calculate

AMORNPAISANNON et al.: SECURE RUN-TIME HARDWARE TROJAN DETECTION 437

the number of events that occur in the current instruction
window by subtracting the current performance counter values
from the previous ones. The register file module also stores
the acceptable ranges of microarchitectural events generated
before running the application.

The compute unit calculates the branch model’s miss rate
estimation, the cache model’s cache event prediction, and the
range calculation. For the range calculation, it first generates a
pair of upper- and lower-bound values for each predicted value
based on the threshold and confidence interval. These values
are then stored in the register file module to compare the actual
value from the performance counter with this pair at run-time.
The range calculation phase is done during the programming
phase of the processor before running an application.

During the detection phase when an application is being
run, the secure detector periodically observes hardware
performance counters in each instruction window. This
presents an opportunity for the secure detector to be in an
idle state to save power when it is not the time to make an
observation. The observed data is then compared with the pre-
dicted data. If the error between the observed and predicted
data is higher than the specified threshold, meaning that an
anomaly was found, the secure detector can send a signal that
a hardware Trojan has been detected, for example, to trigger
a countermeasure.

Due to the high accuracy of modern branch predictors and
the high data reuse of applications, the number of branch and
cache misses is generally relatively small. Therefore, track-
ing misses can lead to a higher number of false positives, as
a slight difference between the analytical models and actual
hardware can create a significant error value. For this reason,
we use the number of branch and cache hits in this work.

For example, assuming that there is an application that has
100 K memory accesses and has 1% and 2% cache miss rates
from actual hardware and analytical model, respectively, the
difference in the cache miss rates may seem small, but, in fact,
the actual misses are 1000 and 2000 misses, respectively, lead-
ing to 50% error (as seen by measuring the miss rate) in total.
In contrast, by considering a number of hits instead, the same
application has 99% and 98% cache hit rates, respectively,
meaning that it has 99K and 98K actual cache hits which lead
to only 1% error.

E. Upper- and Lower-Bound Calculation

We use confidence intervals to calculate acceptable microar-
chitectural event ranges based on the analytical models’
predicted values. However, since an application consists of dif-
ferent phases that may have largely different microarchitectural
event characteristics, our methodology will need to determine
when applications switch between phases. There are a number
of different methods to determine application phases, from the
use of basic block vectors [30], to LRU stack distance [31] or
even both of them at the same time [20]. Instead, in this work,
we first apply a changepoint detection algorithm [12] to detect
phase changes in the LRU stack distance [31] information
during application profiling as this information is readily avail-
able. Next, a confidence interval is calculated for each phase

TABLE I
ROCKET CHIP [33] CONFIGURATION USED IN THIS WORK.

THE NUMBER OF PERFORMANCE COUNTERS INCLUDES

ONLY THE CONFIGURABLE ONES

and type of microarchitectural event to determine upper- and
lower bounds. A threshold value is then applied to ensure that
the range handles errors that can be introduced by inaccuracies
in the analytical models. The secure detector approximates the
standard deviation by applying the Range Rule of Thumb [32],
which simplifies the hardware implementation.

VI. EVALUATION

A. Experimental Setup

We evaluate the proposed methodology on Rocket Chip [33]
a 5-stage, in-order RISC-V processor (see Table I for configu-
ration details). The secure detector reads the control and status
register (CSR) module, which contains configurable hardware
performance counters. The core is synthesized using Synopsys
Design Compiler version P-2019.03 targeting a 22-nm technol-
ogy node and runs at 250 MHz. Note that the secure detector
connected to the processor is off the critical path and does
not affect the maximum frequency. Power analysis is per-
formed with Synopsys PrimePower version P-2019.03. We
use the Firesim FPGA platform [34], an open-source cycle-
accurate FPGA-accelerated full-system hardware simulation
platform, to conduct the experiments in this work. We test
a selection of MiBench embedded benchmarks [35] using
99.5% confidence intervals with 4% thresholds, respectively.
The instruction window size is 1 million instructions.

The gem5 simulator [36] is used as an ISA frontend for
the branch predictor and cache analytical models. As the
gem5 simulator models branch predictor effects on the instruc-
tion cache, instructions that are loaded and flushed later in the
pipeline due to branch misprediction can add noise to the data
trace and are ignored in this work. Only committed instructions
are analyzed to avoid noise. No additional information from
a detailed simulator is used. The gem5 simulator is used as a
faster methodology for profile data collection and is shown to
have relatively high accuracy. One can increase the accuracy
of the profiling data by using cycle-level models but at the
cost of a significantly longer run time.

We use a linear branch model with parameters α (–0.189)
and β (52.322) obtained from [21] based on the 2011
Championship Branch Predictor (CBP) competition training
dataset [25] based on the x86 ISA. One can train a linear model
as described in Section III to generate the model parameters
for a specific branch predictor. A cache access is modeled to
happen at every fetched instruction and data value instead of

438 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 2, FEBRUARY 2024

(a)

(b)

Fig. 8. Effects of the Trojans. The green area indicates the period that the
Trojans are inactive. The red area indicates the period that the Trojans are
active. (a) NOP-insertion Trojan inserts NOP instructions into the processor
pipeline reducing processor activities including memory requests, thus sig-
nificantly decreasing data cache hits. (b) Cache-disabling Trojan disables the
instruction cache and the number of cache hits slumps. Note that the number
of instruction cache misses also goes up significantly.

every fetched memory and data block to imitate the behavior
of Rocket Chip. The same methodology can also be applied
to processors that fetch block-level data.

We evaluate three hardware Trojans, two of which are built
based on Trust-Hub [4], with each Trojan triggered in the
middle of the benchmark run (Fig. 8).

1) NOP-insertion Trojan inserts NOP instructions at the
front-end to launch a DoS attack [12]. This is similar
to PIC16F84-T200 from Trust-Hub.

2) Cache-disabling Trojan forces every cache access to
miss in order to disable the instruction cache [12]. This
is similar to s35932-T300 from Trust-Hub.

3) NOP delay Trojan is a Trojan that is built to evaluate
the effectiveness of our solution in a milder interference
scenario by periodically inserting NOP instructions 40%
of the time when active to slow down the core.

B. Methodology Demonstration

Fig. 9 demonstrates how the proposed technique works,
using the analytical cache model shown in Fig. 9(a) and ana-
lytical branch predictor model illustrated in Fig. 9(b), to define
the detection boundaries, as well as how the analytical branch
prediction model is able to detect an NOP-insertion Trojan
shown in Fig. 9(c).

Fig. 9(a) shows the number of L1 data cache hits over time.
The L1 data cache histograms are used with the changepoint
detection algorithm to detect phases, which are then used to

(a)

(b)

(c)

Fig. 9. Predicted bounds for cache and branch events and an example of how
the proposed methodology detects a Trojan in the basicmath benchmark with
99.5% confidence intervals and 4% threshold. (a) Data cache hits during a
Trojan-free run with the transition of execution phases, represented as a change
in color, detected by the changepoint detection algorithm. Each phase has the
same upper and lower bounds. (b) Branch prediction hits for a Trojan-free
execution. (c) Detection of a hardware Trojan-infected execution by observing
the number of branch prediction hits. As the NOP-insertion Trojan affects the
number of branch prediction hits significantly, the proposed methodology can
detect the Trojan in this workload with 100% accuracy.

calculate acceptable ranges for all models. As illustrated, phase
detection helps the methodology to adjust the width of the
acceptable ranges in a fine-grained way to maintain appropri-
ate ranges for each phase of the program, ensuring that the
ranges are not too wide to overlook anomalies from hardware
Trojans and not too narrow to suffer from a high FPR.

The model only requires the branch prediction algorithm
(gshare in this work) and its size as input. Combined with

AMORNPAISANNON et al.: SECURE RUN-TIME HARDWARE TROJAN DETECTION 439

TABLE II
TPR, FPR, AND THE PERFORMANCE IMPACT EACH TROJAN HAS ON THE

APPLICATION. DOS STANDS FOR DENIAL OF SERVICE, MEANING THAT

THE WORKLOAD DOES NOT COMPLETE

TABLE III
VARIATION OF DATA CACHE (D$) AND BRANCH HITS (BR.) IN THE

TWO LARGEST PHASES IN EACH APPLICATION, SHOWN AS MAXIMUM

DEVIATION PERCENTAGE (THE DIFFERENCE BETWEEN THE MAXIMUM

AND AVERAGE VALUES IN THAT PHASE). Size IS THE PORTION OF

INSTRUCTIONS FOR EACH PHASE RELATIVE TO THE TOTAL

NUMBER OF INSTRUCTIONS OF THE APPLICATION.
NOTE THAT qsort ONLY HAS ONE PHASE

appropriate branch information from the application, the model
predicts branch miss rates periodically throughout the run that
are used to calculate the number of acceptable branch hits in
the entire run shown as a gray area in Fig. 9(b). Any value
outside this area is considered anomalous due to interference
from a hardware Trojan.

In Fig. 9(c), the red line shows the number of branch hits
after the NOP-insertion hardware Trojan is activated. Our
methodology can detect this with 100% accuracy for this
workload, as the number of branch hits falls out of the gray
zone. In contrast, this Trojan can entirely circumvent a state-
of-the-art changepoint detection algorithm [12], as it does
not generate a change in the data stream observable by the
detection algorithm.

C. Evaluation Results

Table II shows that the proposed methodology, for the work-
loads evaluated, can detect all of the anomalous data points
while having no false positives due to the significant deviation
of the predicted and the monitored microarchitectural events.
This is also evident from the significant performance impact
each Trojan has on the application, as shown in the table.

1) Sensitivity Study: The sensitivity of the proposed Trojan
detector depends on how wide the boundaries of the monitored
microarchitectural events are. These boundaries are defined
by the workload variability during execution, which depends
on the inherent characteristics of each application. Table III
shows the variations within the normal operating ranges of

Fig. 10. TPRs with different delay frequencies to observe the detector’s
sensitivity. 10% delay frequency means the Trojan periodically delays the
core by an additional 10% of the time (when the Trojan is active, not the
total time).

TABLE IV
ERROR RATE INDUCED BY TROJAN 3 FOR DIFFERENT DELAY

FREQUENCIES. THE NUMBERS ON THE LEFT AND RIGHT OF

EACH PAIR INDICATE THE ERRORS IN DATA CACHE HITS

AND BRANCH HITS, RESPECTIVELY. INSTRUCTION

CACHE HITS ARE NOT AFFECTED

the applications. A variation is defined as the difference in
percentage between the maximum and average values in a spe-
cific phase. qsort has only one phase and has a large variation
in data cache and branch hits, 11.55% and 9.79%, respectively.
This means that the data cache boundaries in that phase must
cover at least 11.55% above and below the average value to
have zero false positives, which is the reason why the TPRs
increase at the slowest rate in Fig. 10.

From Fig. 10, the delay frequency of the NOP delay Trojan
is changed to measure the accuracy when the effect of this
Trojan becomes milder. 10% delay frequency means the Trojan
periodically delays the core by an additional 10% of the time
when the Trojan is active. The proposed methodology achieves
at least 84% TPR when the delay frequency is at 15% in
basicmath, dijkstra, and fft, which leads to the total errors
ranging from 1.69% to 9.03% in data cache hits and 1.64%
to 10.90% in branch hits as shown in Table IV. For qsort, the
proposed methodology requires at least 20% delay frequency,
leading to around 9% errors in both types of events, to achieve
more than 80% TPR. This shows that our methodology can
detect even a stealthy Trojan that periodically attacks the core.

One may argue that a hardware Trojan that causes, say,
1% performance impact on the application run can circumvent
this proposed methodology as the Trojan does not significantly
affect the number of microarchitectural events. However, 1%
performance impact is within the expected variance of the
analytical models and is out of the scope of this work.

2) Power Overhead: The Rocket Chip CPU consumes
257 mW while the detector and MAC unit consume 0.0044

440 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 2, FEBRUARY 2024

TABLE V
DETECTION DELAY AS REPORTED BY PRIOR WORKS [9], [12], [13]

COMPARED TO THE PROPOSED METHODOLOGY

TABLE VI
BEST TPR AND FPR AS REPORTED BY PRIOR WORKS [9], [12], [13]

COMPARED TO THE PROPOSED METHODOLOGY

and 0.0079 mW, respectively, leading to 0.005% power over-
head. The low power is due to clock gating, as the detector
is mostly idle in between detections. Also, complex compu-
tations during the preparation phases of the analytical models
are done at the software flow, prior to running the application.
This work provides significantly lower power overhead as the
design is built specifically for the methodology and integrated
into the chip while the prior works [9], [12], [13] rely on an
off-chip desktop processor to execute their detection algorithm.

3) Detection Delay: The proposed methodology provides
significantly lower detection delay at 0.2 μs compared to prior
works as shown in Table V. This is due to the fact that the
proposed methodology integrates the secure detector inside
the chip, and the secure detector does not need to execute a
complex machine-learning algorithm like the previous works.
Having a lower detection delay allows a preventive mechanism
to have a faster response to the effects of hardware Trojans.

4) Comparison With the State of the Art: Table VI com-
pares this work with the state-of-the-art run-time hardware
Trojan detection methodologies based on their published
results on Trojans 1 and 2. The methodology from
Elnaggar et al. [12] is unable to detect Trojan 1 as it
does not generate a significant change in the observed CPU
performance counters. Nevertheless, they were able to achieve
99.9% TPR and 0% FPR on Trojan 2. Note that it achieves
99.9% TPR only when the appropriate performance counter
is picked, as the work has a limited performance counter
interface that allows the detection system to collect only two
performance counter data values at a time. The methodology
from Elnaggar et al. [13] achieves 94.0% and 100.0% TPRs
while having 4.0% and 1.0% FPRs in Trojans 1 and 2, respec-
tively. Similarly, the methodology from Elnaggar et al. [13]
suffers from the same performance counter limitation as
Elnaggar et al. [12]. Vijayan et al. [9] achieved 95% and 85%
TPR on the Trojans 1 and 2, respectively, while maintaining

a 0% FPR. Our proposed methodology achieves a high true
positive detection rate with no false positives while having
negligible power overhead, unlike these prior works which
require an additional secure off-chip co-processor to run their
detection algorithms.

VII. CONCLUSION

This work proposes a hardware Trojan detection method-
ology based on analytical modeling that can predict several
microarchitectural events using only high-level processor con-
figuration information without a golden reference. The pre-
dicted values are then compared to the actual values from
performance counters to detect hardware Trojans. The method-
ology achieves a high true positive detection rate compared
to prior works, with no false positives and negligible power
overhead of 0.005%.

REFERENCES

[1] M. Xue, C. Gu, W. Liu, S. Yu, and M. O’Neill, “Ten years of hardware
Trojans: A survey from the attacker’s perspective,” IET Comput. Digit.
Technol., vol. 14, no. 6, pp. 231–246, Sep. 2020.

[2] J. Francq and F. Frick, “Introduction to hardware Trojan detection meth-
ods,” in Proc. Design, Autom. Test Europe Conf. Exhibit. (DATE), 2015,
pp. 770–775.

[3] S. Ray, W. Chen, and R. Cammarota, “Invited: Protecting the supply
chain for automotives and IoTs,” in Proc. 55th ACM/ESDA/IEEE Design
Autom. Conf. (DAC), 2018, pp. 1–4.

[4] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in Proc. IEEE 31st Int.
Conf. Comput. Design (ICCD), 2013, pp. 471–474.

[5] H. Li, Q. Liu, and J. Zhang, “A survey of hardware Trojan threat and
defense,” Integration, vol. 55, pp. 426–437, Dec. 2016.

[6] S. Charles and P. Mishra, “A survey of network-on-chip security attacks
and countermeasures,” ACM Comput. Surveys, vol. 54, no. 5, p. 101,
May 2021.

[7] K. Wang, H. Zheng, and A. Louri, “TSA-NoC: Learning-based threat
detection and mitigation for secure network-on-chip architecture,” IEEE
Micro, vol. 40, no. 5, pp. 56–63, Sep./Oct. 2020.

[8] S. Charles and P. Mishra, “Reconfigurable network-on-chip security
architecture,” ACM Trans. Design Autom. Electron. Syst., vol. 25, no. 6,
p. 53, Aug. 2020.

[9] A. Vijayan, M. B. Tahoori, and K. Chakrabarty, “Runtime identifica-
tion of hardware Trojans by feature analysis on gate-level unstructured
data and anomaly detection,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 25, no. 4, p. 33, May 2020.

[10] S. Bhunia and M. Tehranipoor, The Hardware Trojan War: Attacks,
Myths, and Defenses. Cham, Switzerland: Springer, Dec. 2018.

[11] M. Tehranipoor and F. Koushanfar, “A survey of hardware Trojan tax-
onomy and detection,” IEEE Design Test Comput., vol. 27, no. 1,
pp. 10–25, Jan./Feb. 2010.

[12] R. Elnaggar, K. Chakrabarty, and M. B. Tahoori, “Hardware Trojan
detection using changepoint-based anomaly detection techniques,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 12,
pp. 2706–2719, Dec. 2019.

[13] R. Elnaggar, K. Chakrabarty, and M. B. Tahoori, “Run-time hardware
Trojan detection using performance counters,” in Proc. IEEE Int. Test
Conf. (ITC), 2017, pp. 1–10.

[14] F. K. Lodhi, S. R. Hasan, O. Hasan, and F. Awwadl, “Power profiling of
microcontroller’s instruction set for runtime hardware Trojans detection
without golden circuit models,” in Proc. Design, Autom. Test Europe
Conf. Exhibit. (DATE), 2017, pp. 294–297.

[15] S. Narasimhan, W. Yueh, X. Wang, S. Mukhopadhyay, and S. Bhunia,
“Improving IC security against Trojan attacks through integration
of security monitors,” IEEE Design Test Comput., vol. 29, no. 5,
pp. 37–46, Oct. 2012.

[16] J. He, X. Guo, H. Ma, Y. Liu, Y. Zhao, and Y. Jin, “Runtime trust
evaluation and hardware Trojan detection using on-chip EM sensors,” in
Proc. 57th ACM/IEEE Design Autom. Conf. (DAC), 2020, pp. 1–6.

AMORNPAISANNON et al.: SECURE RUN-TIME HARDWARE TROJAN DETECTION 441

[17] C. Bao, D. Forte, and A. Srivastava, “Temperature tracking: Toward
robust run-time detection of hardware Trojans,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 34, no. 10, pp. 1577–1585,
Oct. 2015.

[18] C. Sturton, M. Hicks, S. T. King, and J. M. Smith, “FinalFilter: Asserting
security properties of a processor at runtime,” IEEE Micro, vol. 39, no. 4,
pp. 35–42, Jul./Aug. 2019.

[19] J. Dubeuf, D. Hély, and R. Karri, “Run-time detection of hardware tro-
jans: The processor protection unit,” in Proc. 18th IEEE Eur. Test Symp.
(ETS), 2013, pp. 1–6.

[20] T. E. Carlson, W. Heirman, K. Van Craeynest, and L. Eeckhout,
“BarrierPoint: Sampled simulation of multi-threaded applications,” in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), 2014,
pp. 2–12.

[21] S. De Pestel, S. Eyerman, and L. Eeckhout, “Linear branch entropy:
Characterizing and optimizing branch behavior in a micro-architecture
independent way,” IEEE Trans. Comput., vol. 66, no. 3, pp. 458–472,
Mar. 2017.

[22] S. Van den Steen et al., “Analytical processor performance and power
modeling using micro-architecture independent characteristics,” IEEE
Trans. Comput., vol. 65, no. 12, pp. 3537–3551, Dec. 2016.

[23] N. Binkert et al., “The Gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[24] C.-K. Luk et al., “Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proc. ACM-SIGPLAN Symp. Program.
Lang. Design Implement. (PLDI), 2005, pp. 190–200.

[25] “Championship branch prediction,” presented at 2nd JILP
Workshop Computer Archit. Competitions (JWAC-2), 2011. [Online].
Available: https://jilp.org/jwac-2/

[26] R. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation tech-
niques for storage hierarchies,” IBM Syst. J., vol. 9, no. 2, pp. 78–117,
Jun. 1970.

[27] D. Eklov and E. Hagersten, “StatStack: Efficient modeling of LRU
caches,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS),
2010, pp. 55–65.

[28] S. Adee, “The hunt for the kill switch,” IEEE Spectr., vol. 45, no. 5,
pp. 34–39, May 2008.

[29] Z. Huang, Q. Wang, Y. Chen, and X. Jiang, “A survey on machine
learning against hardware Trojan attacks: Recent advances and chal-
lenges,” IEEE Access, vol. 8, pp. 10796–10826, 2020.

[30] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proc. ACM Conf. Archit.
Support Program. Lang. Oper. Syst. (ASPLOS), 2002, pp. 45–57.

[31] X. Shen, Y. Zhong, and C. Ding, “Predicting locality phases for dynamic
memory optimization,” J. Parallel Distrib. Comput., vol. 67, no. 7,
pp. 783–796, Jul. 2007.

[32] X. Wan, W. Wang, J. Liu, and T. Tong, “Estimating the sample mean
and standard deviation from the sample size, median, range and/or
interquartile range,” BMC Med. Res. Methodol., vol. 14, pp. 1–13,
Dec. 2014.

[33] K. Asanović et al., “The rocket chip generator,” Electr. Eng. Comput.
Sci., Univ. California, Berkeley, CA, USA, Rep. UCB/EECS-2016-17,
2016.

[34] S. Karandikar et al., “FireSim: FPGA-accelerated cycle-exact scale-out
system simulation in the public cloud,” in Proc. ACM/IEEE 45th Annu.
Int. Symp. Comput. Archit. (ISCA), 2018, pp. 29–42.

[35] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “MiBench: A free, commercially representative embed-
ded benchmark suite,” in Proc. IEEE Int. Workshop Workload
Characterization (WWC-4), 2001, pp. 3–14.

[36] J. Lowe-Power et al., “The gem5 simulator: Version 20.0+,” 2020,
arXiv:2007.03152.

Burin Amornpaisannon (Student Member, IEEE)
is currently pursuing the Ph.D. degree with
the National University of Singapore, Singapore,
under the supervision of Dr. T. E. Carlson and
Dr. L.-S. Peh.

His research interests include understanding
physical attack vectors, efficient neuromorphic
computing, and computer architecture in general.

Andreas Diavastos (Member, IEEE) received the
Ph.D. degree in computer architecture from the
University of Cyprus, Nicosia, Cyprus, in 2018.

He did his Postdoctoral Fellowship with the
Computer Architecture Group, National University
of Singapore, Singapore, and then joined the
Universitat Politècnica de Catalunya, Barcelona,
Spain, as a Distinguished Researcher. His research
interests include processor and accelerator archi-
tectures, hardware–software co-design, parallel pro-
gramming and execution models, automatic paral-

lelization, and high-performance computing. He developed the SWITCHES
parallel runtime system that includes the first auto-tuning system for static
schedules for task data-flow applications on multi- and many-core systems.

Li-Shiuan Peh (Fellow, IEEE) received the B.S.
degree in computer science from the National
University of Singapore (NUS), Singapore, in
1995, and the Ph.D. degree in computer science
from Stanford University, Stanford, CA, USA, in
2001.

She joined NUS as a Provost’s Chair Professor
with the Department of Computer Science, with
a courtesy appointment in the Department of
Electrical and Computer Engineering in September
2016. Previously, she was a Professor of Electrical

Engineering and Computer Science with the Massachusetts Institute of
Technology (MIT), Cambridge, MA, USA, and was on the faculty of
MIT since 2009. She was also the Associate Director for Outreach of the
Singapore–MIT Alliance of Research and Technology from 2015 to 2016.
Prior to MIT, she was on the faculty of Princeton University, Princeton, NJ,
USA, since 2002. Her research focuses on networked computing, in many-
core chips as well as mobile wireless systems.

Dr. Peh received the NRF Returning Singaporean Scientist Award in 2016,
the ACM Distinguished Scientist Award in 2011, the MICRO Hall of Fame in
2011, the CRA Anita Borg Early Career Award in 2007, the Sloan Research
Fellowship in 2006, and the NSF CAREER Award in 2003.

Trevor E. Carlson (Senior Member, IEEE) received
the bachelor’s and master’s degrees from Carnegie
Mellon University, Pittsburgh, PA, USA, in 2002 and
2003, respectively, and the Ph.D. degree from Ghent
University, Ghent, Belgium, in June 2014,

He was a Postdoctoral Fellow with Uppsala
University, Uppsala, Sweden, in 2017, He is an
Assistant Professor with the National University of
Singapore, Singapore. He has over 16 years of com-
puter systems and architecture experience in both
industry and academia. His research interests include

efficient general-purpose processing, secure systems, AI acceleration, and
simulation methodologies. He co-develops the Sniper Multi-Core Simulator,
which is being used by hundreds of researchers in academia and industry, to
evaluate the performance and power efficiency of next-generation systems.

Dr. Carlson’s work has received six best paper or best paper nominations
in conferences, such as the International Symposium on Microarchitecture
(MICRO) and the International Symposium on Performance Analysis of
Systems and Software.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

