
352 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024

ILPGRC: ILP-Based Global Routing
Optimization With Cell Movements

Tiago Augusto Fontana , Erfan Aghaeekiasaraee , Renan Netto , Sheiny Fabre Almeida , Upma Gandhi ,
Laleh Behjat , Senior Member, IEEE, and José Luís Güntzel , Senior Member, IEEE

Abstract—The placement and routing steps directly impact the
circuit performance, area, power consumption, and reliability. To
handle the high complexity of modern circuits, these steps are
tackled separately by applying a divide-and-conquer approach.
Unfortunately, due to the continuous increase of design rules
complexity, the convergence of solutions can suffer from mis-
alignment, and the effects of an unsatisfactory placement will
be noticed only during routing when the placement is consid-
ered fixed. In this work, we propose the ILPGRC, an integer
linear programming (ILP)-based technique that simultaneously
moves cells and routes nets to optimize Global Routing. ILPGRC
enables the relocation of cells that can lead to routing issues with-
out compromising the quality concerning the number of VIAs,
wirelength, and design rule violations (DRVs). We also propose a
partitioning strategy named Checkered paneling, which reduces
the input size of the ILP model, making this approach scal-
able. The Checkered paneling strategy enables the execution of
multiple ILP models in parallel, providing a speedup for large
circuits. Additionally, we propose a GCell cluster-based approach
to legalize the solution with minimum disturbance and displace-
ment. We evaluated our technique for the ISPD 2018 and ISPD
2019 Contests circuits within a physical synthesis flow composed
of state-of-the-art place and route academic tools. The results
after the detailed routing show that ILPGRC can reduce, on aver-
age, the number of VIAs by 4.69% with less than 1% impact on
wirelength. Additionally, ILPGRC reduces the number of DRVs
in most cases with no open nets left.

Index Terms—Integer linear programming (ILP), physical
design, placement, routing, routing with cell movement.

I. INTRODUCTION

W ITH the advancement of technology, the wire delay
became more prominent than the circuit components

delay [1], [2], [3]. Thereby, routing along with placement

Manuscript received 9 November 2022; revised 9 May 2023 and 24 July
2023; accepted 2 August 2023. Date of publication 15 August 2023; date
of current version 26 December 2023. This work was supported in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES),
Brazil (Finance Code 001); in part by the Brazilian Council for Scientific and
Technological Development (CNPq) through PQ under Grant 316984/2021-
3; and in part by the Natural Sciences and Engineering Council of Canada
under Grant 10015685. This article was recommended by Associate Editor
D. Z. Pan. (Corresponding author: Tiago Augusto Fontana.)

Tiago Augusto Fontana, Renan Netto, Sheiny Fabre Almeida, and
José Luís Güntzel are with the Department of Computer Science and Statistics,
Universidade Federal de Santa Catarina, Florianopólis 88040-900, Brazil
(e-mail: tiagoaugustofontana@gmail.com).

Erfan Aghaeekiasaraee, Upma Gandhi, and Laleh Behjat are with the
Department of Electrical and Software Engineering, University of Calgary,
Calgary, AB T2N 1N4, Canada (e-mail: erfan.aghaeekiasarae@ucalgary.ca;
upma.gandhi@ucalgary.ca; laleh@ucalgary.ca).

Digital Object Identifier 10.1109/TCAD.2023.3305579

became the two most important steps determining a cir-
cuit’s performance. Most of the recent routing works focus
on wirelength reduction while ignoring the number of
vertical interconnect accesses (VIAs) [4], [5], [6], [7], [8].
This increases the mismatch between global and detailed
routing (DR).

Yield, reliability, product performance, and cost are the cor-
nerstones of a successful IC manufacturing technology. In such
a context, a large number of VIAs can significantly reduce the
reliability of the circuit [1]. Additionally, the delay is propor-
tional to wire resistance. Hence, reducing the number of VIAs
can result in less wire resistance.

Placement and routing are usually treated as two sepa-
rate problems. Therefore, the effects of a bad placement
solution can be amplified during routing to the extent
that the circuit placement is deemed unroutable and the
placement needs to be redone. To mitigate such problems,
some recent works have enabled changes in cells’ place-
ments during the routing [9], [10], [11], [12]. Such a proce-
dure is currently referred to as routing with cell movement
problem.

In this article, we propose an integer linear programming
(ILP) model, named ILPGRC, that simultaneously moves cells
and reroutes the nets. In order to reach scalability concerning
routing using ILP models, a dynamic region-based parti-
tioning, named Checkered Paneling, is proposed. The main
contributions of this article are as follows.

1) Developing an ILP formulation that simultaneously
moves cells and reroutes nets targeting routing
optimization and DRVs reduction.

2) Designing a dynamic and hierarchical region-based
partitioning strategy, named Checkered Paneling that
reduces the input size of the ILP model and enables par-
allelization. The parallel execution using eight threads
performs up to 6.4 times faster than the sequential
version.

3) Designing a cluster-based approach to legalize the solu-
tion with minimum disturbance and displacement.

4) Evaluating the effectiveness of the proposed technique
after the DR step in an academic design flow using
state-of-the-art routers. We used on the benchmark cir-
cuits from ISPD 2018 [13] and ISPD 2019 [14] contests
benchmarks. These circuits include DR data, thus allow-
ing the evaluation of a number of metrics, such as
off-track VIAs and wires, wrong way wires, metal
shorts, min-areas, spacing rules, and open nets. This is
in contrast to most of the related work, which limits

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-8314-5990
https://orcid.org/0000-0002-8478-7335
https://orcid.org/0000-0002-2268-3389
https://orcid.org/0000-0002-7469-0548
https://orcid.org/0000-0002-9023-1392
https://orcid.org/0000-0002-8122-0990
https://orcid.org/0000-0002-7712-869X

FONTANA et al.: ILPGRC: ILP-BASED GLOBAL ROUTING OPTIMIZATION WITH CELL MOVEMENTS 353

the improvement evaluation to the global routing (GR)
step.

The proposed technique was able to reduce the number of
VIAs by up to 11.74% while moving 6.44% of the cells.
On average, ILPGRC reduces the number of VIAs by 4.69%,
moving only 1.98% of the cells and degrading the wirelength
by less than 1% as compared to the baseline flow.

The remaining of this article is organized as follows. In
Section II, a brief background on placement and routing tech-
niques is presented. In Section III, details of the GR problem
formulation are given. In Section IV, the proposed mathe-
matical formulation for the target problem and the proposed
technique flow are presented. In Section V, the experimen-
tal evaluation is discussed. Finally, in Section VI, the main
conclusion is drawn.

II. RELATED WORK

Traditionally, the routing engines assumed that the cells are
fixed. As a result of the two recent ICCAD 2020 [15] and
2021 [16] computed-aided design (CAD) Contests, a number
of academic works started to perform cell movements dur-
ing the routing stage, such as Starfish [10], Zou et al. [12],
Huang et al. [17], Zhu et al. [18], ATLAS [19], and
CR&P [11], [20]. These two contests proposed “routing with
cell movement” to point out that new routing engines need to
be able to move some cells and reroute some nets to optimize
the routing solution.

For the purpose of fusing routing with cell movement,
Starfish [10] developed a partial rerouting technique. They
created a multisource single-target AStar method that con-
nects relocated cells to the topology trunk. The authors of
Starfish use the ICCAD 2020 Contest benchmarks [15] to vali-
date their technique. Huang et al. [17] used breadth-first search
(BFS)-based approximation to reduce the optimal region for
cell movement. The BFS search considers routing constraints
such as layer direction, minimum layer, and overflow as the
search heuristic. This work also uses AStar for partial rerouting
after cell movement and ICCAD 2020 Contest benchmarks.
The technique proposed by Zou et al. [12] first alleviates the
congestion by rerouting the circuit using a congestion-aware
3-D GR. Then, it tries to move cells using a modified version
of SRP [21]. In the end, it applies an edge-adjusting algo-
rithm to reduce the wirelength. As in the two previous works,
Zou et al. evaluated their technique using the ICCAD 2020
Contest benchmarks.

Zhu et al. [18] proposed a cell movement approach based
on a lookup table considering routing directions and layer-
based power consumption. The lookup table of wirelength is
used to generate a gain map for each movable cell. Then,
based on the gain map, alternately perform several rounds of
cell movement and partial rip-up and rerouting. After each
movement, they need to re-estimate and generate a new gain
map for the subsequent cells, since this estimation probably
becomes inaccurate. In the end, they moved some cells to
their original positions to legalize the maximum number of
moved cells imposed by the ICCAD Contest. Zang et al. [19]
proposed a two-level layer-aware scheme named ATLAS. It
first performs an Incremental 3-D GR to improve only the

routing. Then performs a VIA-sharing cluster to group the
cells. After this, iteratively move cells to the median and
reroute the nets using an A*-based partial rerouting until no
gain in routing is observed. Finally, a single-cell movement is
performed to their original positions to satisfy the movement
constraint. Both Zhu et al. and ATLAS were evaluated using
the ICCAD 2020 and 2021 Contest benchmarks and slightly
outperformed the first-place team of the ICCAD 2021 contest.

These five works have similar drawbacks that they only
support the ICCAD 2020 and 2021 Contest benchmarks.
Unfortunately, these benchmark suites are oversimplified since
they rely only on GCells information to specify the locations
of cells and net connectivity. There is no information about
technology nodes, cell geometries, circuit rows, circuit sites,
and routing tracks. It is impossible to say if a movement could
be legalized and/or if the optimization in the GR step will
result in some optimization after the DR. Therefore, by using
this set of benchmarks, we cannot measure the real impact of
movements in the physical design flow.

In [11] and its extension [20], CR&P and CRP 2.0 are
proposed which use a cost function to identify critical areas
and reduce the congestion by moving some cells. Then, an
ILP-based legalizer is used to generate new legal locations for
the candidate cells. CRP 2.0 also introduces caching technique
to speedup the technique. Both CR&P and CRP 2.0 techniques
were evaluated after the DR solution using the ISPD 2018 and
2019 Contest benchmarks. CR&P reduced the number of VIAs
by 2.06% and the wirelength by 0.14% on average. CRP 2.0
reduced the number of VIAs by 3.59% and the wirelength by
0.09% on average. CR&P and CRP 2.0 first move a set of cells,
leaving the rerouting of affected nets to the end. Consequently,
the rerouting process may not be possible for some (or all) of
those new cell locations, demanding more work to revert these
changes.

To overcome the aforementioned issues, the present work
moves the cells and reroutes the nets simultaneously. Also, the
initial solution is always considered as a candidate. Therefore,
the proposed technique never leads to results worse than the
initial ones. The evaluation was conducted after the DR step
for the ISPD 2018 and ISPD 2019 Contests circuits using the
official contest evaluator binary. The biggest circuit of ISPD
2019 benchmarks has 900K cells and 895K nets using a 32-nm
technology node.

III. PROBLEM FORMULATION

This section presents a mathematical formulation for the
routing with cell movement problem. For convenience, Table I
presents the description of all symbols used in this work.
Given an initial solution where cells have been placed, and
the GR is done, the routing with cell movement problem con-
sists of moving a set of cells to minimize some routing metrics,
such as the number of VIAs and/or wirelength, by finding the
regions that connect all net pins. In the GR problem, the area
of the circuit is partitioned into regions called GCells (G),
where the 3-D routing space can be modeled as a 3-D graph
of GCells. In this formulation, the length of a net is measured
based on the number of GCells it spans. A cell movement
consists of reassigning the location of a cell from one GCell

354 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024

TABLE I
SYMBOLS USED IN THIS WORK

(a) (b)

Fig. 1. (a) 3-D routing space. (b) Respective graph model.

to another. The features of each cell, including pin location
and blockages, are defined in the standard cell library.

Fig. 1 shows a representation of the 3-D routing space on
the left side (a) and the respective graph model on the right
side (b). Fig. 1(a) depicts how each metal layer (k) could be
subdivided into regions called GCells (gk

i ∈ G). The GCells
in Fig. 1(a) are demarcated with the solid rectangles. In the
graph, each GCell is represented by a node. The dashed lines
in Fig. 1(a) represent the tracks for each metal layer. The
number of tracks crossing each GCell defines the capacity
of each GCell. In this example, the capacity of each GCell is
2, and this value is associated with each graph node shown
in Fig. 1(b). The neighborhood of two GCells will be repre-
sented by an edge in the graph [Fig. 1(b)]. This neighborhood
could be: in the same metal layer (solid lines) or between
lower/upper adjacent metal layers (dashed lines). Note that,
for each metal layer, only the neighborhood in the preferred
routing direction is connected by edges. For example, only
horizontal connections are made within layers 1 and 3.

Fig. 2 illustrates an example of routing optimization through
cell movement for a 2-pin net. Fig. 2(a) presents an initial
solution for a single two-pin net. Assuming that for this net, the
minimum routing layer is metal 2,1 the initial routing solution
is composed of four VIAs and nine GCells. Fig. 2(b) presents
the same net after moving Cell B from the top right to the
top left GCell in Layer 1, thus making it possible to optimize
the routing. This final routing solution is composed of two
VIAs and five GCells. This simple example shows that moving
cells during the routing steps may further improve the solution
without compromising the design constraints.

1The minimum routing layer constraint, for a specific net, establishes the
layer that the routing must be on or above.

(a) (b)

Fig. 2. Example of routing optimization through cell movement. (a) Initial
cells position and routing. (b) Routing solution after moving call B to the top
left GCell.

It is necessary to keep track of placement constraints during
the routing to ensure that at the end of routing, the placement
will be legalized. Therefore, the routing with cell movement
problem can be defined as follows.

Input: A netlist with legalized placement and GR
solution.

Problem: Move a set of cells to optimize the number
of VIAs and wirelength, keeping a legalized
placement and all nets connected.

The objective of this problem could be expressed by (1),
while (2)–(7) are the placement constraints, and (8)–(11) are
the routing constraints

min
∑

ni∈N
|V(ni)| + |G(ni)| (1)

s.t.: Xleft ≤ x(ci) ≤ Xright − w(ci) ∀ ci ∈ C (2)

Ybottom ≤ y(ci) ≤ Ytop − h(ci) ∀ ci ∈ C (3)

x(ci) = n×Wsite, n ∈ N ∧ ∀ ci ∈ C (4)

y(ci) = m× Hrow, m ∈ N ∧ ∀ ci ∈ C (5)

(x(ci)+ w(ci) < x(cj)) ∨ (x(cj)+ w(cj) < x(ci))

∀ ci, cj ∈ C ∧ y(ci) = y(cj) ∧ ∀ i �= j (6)

(y(ci)+ h(ci) < y(cj)) ∨ (y(cj)+ h(cj) < y(ci))

∀ ci, cj ∈ C ∧ x(ci) = x(cj) ∧ ∀ i �= j (7)

∃ G(ni) ⊂ G ∀ ni ∈ N (ci) (8)

∃gj ∈ G(ni)| min(gj) ≤ loc(pi) ≤ max(gj),

∀ pi ∈ P(ni) ∧ ni ∈ N (ci) (9)

∃ gn ∈ G(ni) | �(gm, gn) = 1

∀ gn, gm ∈ G(ni) ∧ ni ∈ N (ci) (10)

FONTANA et al.: ILPGRC: ILP-BASED GLOBAL ROUTING OPTIMIZATION WITH CELL MOVEMENTS 355

D(gk
l) ≤ S(gk

l)∀ gk
j ∈ G(ni) ∧ ni ∈ N (ci). (11)

Equation (1) states that the objective of the problem is to
minimize, for all nets, the total number of VIAs (|V|) and
the total wirelength (|G|). As mentioned before, the length of
a net is measured based on the number of GCells it spans.
Equations (2) and (3) ensure that each Cell ci ∈ C is placed
within the circuit rows region while (4) and (5) state that each
Cell ci is aligned with circuit sites and rows, respectively. The
nonoverlap for each pair of cells ci, cj ∈ C is guaranteed by (6)
if ci and cj are placed in the same row or by (7) if ci and cj
are placed in different rows.

Equation (8) guarantees that for every net ni connected to
Cell ci, there is a subset of GCells allowing ni to be fully
routed, and thus, no open nets can exist. Equation (9) estab-
lishes that all pins pi of a given net ni can be assigned to a
GCell gj. Equation (10) states that for every GCell gn belong-
ing to G(ni) there will be an adjacent GCell gm. Equation (11)
ensures that the demand for each GCell gl located in layer
k will not exceed the maximum capacity of that GCell. This
takes into account the overflow concerns of each GCell.

With the aforementioned constraints, we can ensure that
all the cells are legalized and that the circuit is fully routed.
Therefore, no open nets are allowed.

IV. PROPOSED TECHNIQUE

This section presents the proposed technique for the tar-
get problem introduced in the previous section. The proposed
technique comprises four main steps: 1) guides preprocessing;
2) checkered panels construction; 3) ILP model construction
and solving; and 4) cluster-based panel legalization. Each of
these steps will be discussed in detail in Sections IV-A–IV-D.
The main contribution of this work is the ILP model that
simultaneously moves cells and reroutes all nets, which is
presented in Section IV-C.

The overall flow of the proposed technique is presented by
Algorithm 1. The inputs to the algorithm are the technology
file (.lef), the design file (.def), and the initial GR solution
file (.guide) of the given layout. Library Exchange Format
(LEF) and Design Exchange Format (DEF) are two industrial
files to describe a design. LEF file defines the elements of
an IC process technology and the associated library of cell
models. DEF file defines the elements of an IC design relevant
to physical layout, including the netlist and design constraints.

After loading the files that describe the circuit, the initial
GR solution is preprocessed in line 2. More details of this
preprocessing step will be presented in Section IV-A. Next,
in line 3, the checkered panels are created, and the number
of levels is stored in variable nlev. The motivation and details
of this partitioning technique are given in Section IV-B. Each
subpart of the problem is called a panel, and each panel is
associated with a level and one color.

Afterward, all panels with the same level and color are pro-
cessed in parallel (lines 9–15). For each of these panels, the
proposed ILP model for moving cells and rerouting nets is
created and solved in line 10. Section IV-C presents the details
about this step. Then, in line 11, the panel is legalized using
Abacus [22]. The details of the panel legalization process are
presented in Section IV-D. Later, if the panel is considered

Algorithm 1: RUN_ILPGRC(lef, def, guide)
Input: lef = Technology file,

def = Design placement,
guide = Global Routing solution

Output: def = Design with new placement,
guide = New Global Routing solution

1 load_circuit(lef, def, guide);
2 GUIDE_PREPROCESSING(); // subsection IV-A

3 nlev← CHECKERED_PANELING(); // subsection IV-B

4 foreach level ∈ nlev do
5 M← {}; // Map of movements
6 R← {}; // Map of routing guides
7 foreach color ∈ {black, white} do
8 panels← get_panels(color, level);

// run parallel
9 foreach panel ∈ panels do

10 RUN_ILP(panel); // subsection IV-C

11 l← LEGALIZE(panel); // subsection IV-D

12 if l = TRUE then
13 save_movements_and_routing(M, R);
14 end
15 end
16 end
17 update_database(M, R);
18 end
19 write_output_def();
20 write_output_guide();

legalized, all the movements and new routing solutions are
stored in variables M and R (line 13). Once all panels of
the same level and color were processed, all movements and
routing solutions are applied to the database (line 17). In the
end, the new DEF and Guide files are generated as output of
the algorithm (lines 19 and 20).

A. Guides Preprocessing

The first step of our proposed technique consists in prepro-
cessing the input GR solution, so as to map the original guide
rectangles to the adopted GCell structure. Fig. 3(a) presents an
example of an original routing guide for a three-pin net: white
squares represent GCells, gray rectangles represent cells, and
the colored rectangles represent the guide(s). In this example,
cells are placed in GCells A, G, and L. It also puts in evi-
dence that the original guides may be entirely within a single
row/column of GCells (red and green rectangles), or may span
multiple rows/columns of GCells (purple and yellow rectan-
gles). The latter case could cause cycles in the GCell graph,
degrading or making unfeasible the solution of a path search
algorithm. Therefore, mapping the original guides that span
more than one row/column of GCells is crucial since it avoids
those cycles.

The guide preprocessing step begins by mapping the orig-
inal guide to a graph [Fig. 3(b)] where the nodes represent
GCells intersected by a guide in a given metal layer, and
the edges represent the neighborhood of those GCells. GCell
neighborhood may be within the same metal layer (solid
edges) and, thus, must respect the preferred direction in that
metal layer, or may be the overlapping between GCells in two
different layers (dashed edges), therefore representing a VIA.
The graph nodes representing the GCells that contain the net

356 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024

(a) (b)

(c) (d)

Fig. 3. Guide preprocessing steps. (a) Original guide. (b) Guide mapped to
a graph. (c) Path search result. (d) Preprocessed guide.

cells are marked as terminal nodes and appear outlined in red
in Fig. 3(b). Once the graph has been built, the preprocess-
ing step performs a BFS, starting from any terminal node and
progressing toward all other terminal nodes. Such a procedure
determines the minimum path needed to keep this net con-
nected. Fig. 3(c) shows the result for this BFS search on the
example considered, where the minimum path is identified by
the sequence of the colored nodes. Hence, in this example, the
final guide structure has 13 GCells and 3 VIAs, as shown in
Fig. 3(d).

B. Checkered Panels

GR using math solvers can be time-consuming and very
slow, especially for circuits with a large number of nets and/or
containing nets that cross the whole circuit area. This may
be worsened when routing is combined with cell movements
because each cell movement generates a set of routing candi-
dates, and therefore, the number of variables inside the ILP
model is potentially huge. To circumvent these problems, we
propose the so-called Checkered Paneling strategy. Basically,
this strategy partitions the circuit area and, for each parti-
tion (panel), identifies all nets that are entirely inside the
partition. Then, the routing with cell movement problem is
solved separately for each panel considering only the identified
nets. The partitioning procedure is repeated, assuming pro-
gressively larger partitions, so as to take into account the nets
that span wider regions. In summary, the Checkered Paneling
strategy divides the problem into a number of subproblems of
smaller sizes that can be solved in parallel using an ILP solver
in acceptable runtimes. As an extra benefit, the Checkered
Paneling helps balance the workload between the threads since

Algorithm 2: CHECKERED_PANELING(gcw, gch)

Input: gcw = Number of GCells to panel width,
gch = Number of GCells to panel height

Output: Number of levels
1 proc_nets← ∅ ; // Set of processed nets
2 gcells← max(num_gcells_width, num_gcells_height);
3 nlevels← log2(gcells)� + 1;
4 for level← 1 to nlevels do
5 panel_w← gcw ∗ 2level−1;
6 panel_h← gch ∗ 2level−1;
7 panels← make_regions(panel_w, panel_h);
8 foreach p ∈ panels do
9 nets← search_inside(region(p))\proc_nets;

10 set_nets(p, nets);
11 proc_nets← proc_nets ∪ nets;
12 end
13 end
14 return nlevels;

(a) (b) (c) (d) (e)

Fig. 4. Example of checkered panels for a given layout. (a) Layout.
(b) Level 1. (c) Level 2. (d) Level 3. (e) Level 4.

the nets that are entirely within the panels of a given level
present similar wirelength.

Fig. 4 presents how the Checkered Paneling procedure hier-
archically partitions the circuit layout into panels. Two input
variables define the panel width (gcw) and height (gch),
expressed in the number of GCells, in the first level. The
panel size in every subsequent level is defined as being twice
the panel size in the preceding level. The levels end when the
whole layout is covered by a single panel [Fig. 4(e)]. Within a
given level, each panel is associated with a color (either black
or white). Panels belonging to the same level and color will
be executed in parallel. It is important to note that a panel
will not have right or left neighbors of the same color. Such
characteristic is to ensure that a cell that crosses the panel
edge will not be mapped simultaneously to two threads at the
same time. Consequently, our method is deterministic between
sequential and parallel executions, i.e., sequential and parallel
executions will produce the same result.

Algorithm 2 presents a pseudocode for creating the check-
ered panels and making the association between panels and
nets. The algorithm receives two variables as input: the
panel width (gcw) and height (gch), expressed in the num-
ber of GCells. The output is the number of levels. First, in
lines 1 and 2, the set of processed nets is initialized, and the
maximum number of GCells in both dimensions of the circuit
layout is calculated. Then, the number of levels is calculated
in line 3. As the panel size in a given level is at most twice
the size of the panel in the preceding level, the number of
levels will be 1 plus the ceiling of logarithmic in base 2 of
the maximum number of GCells. Next, for each level start-
ing in 1, the panel width (panel_w) and height (panel_h) are
calculated in lines 5 and 6, respectively. Note that, in level
1, the panel size will equal the input variables gcw and gch.
After this, function make_regions(panel_w, panel_h) in line 7

FONTANA et al.: ILPGRC: ILP-BASED GLOBAL ROUTING OPTIMIZATION WITH CELL MOVEMENTS 357

partitions the circuit layout creating all the panels for this
specific level. Subsequently, for each panel p ∈ panels, the
procedure will identify and associate to the panel all nets that
will be processed. To that purpose, the function search_inside
in line 9 returns all the nets whose bounding boxes are inside
the panel borders. Function region(p) determines the borders
for a given panel p. This search is implemented using the spa-
tial structure RTree [23]. Note that, in line 9, all nets that are
already associated with any lower-level panel (nets that are
in proc_nets set) are removed before making the association
with the current panel. Function set_nets(p, nets) in line 10
generates the mapping between all nets and panel p. After this,
proc_nets receives the nets for this panel in line 11. Finally,
line 14 returns the number of levels.

C. ILP Model

This section presents the ILP model to solve the routing with
cell movement problem presented in Section III. To solve this
problem, we need to model all nets and circuit resources. For
each net ni, we generate a set of possible routing candidates.
Each routing candidate j of net ni has its respective binary
variable rij to indicate which j, among all candidates of ni,
must be selected. Then, the ILP model aims to select the best
set of candidates that optimizes the circuit routing. In order
to do that, the objective function of the ILP formulation mini-
mizes the weighted sum of each variable in (12), where costi,j
denotes the cost of ni when it is routed using candidate j

min
n∑

i=1

m∑

j=1

costi,j × rij. (12)

Equation (13) presents the cost costi,j for a net i and can-
didate j that is a weighted sum of the wirelength wlij and
the number of VIAs viaij in each metal layer k. It is impor-
tant to note that, as this model is applied to the GR step, the
wirelength of a net is measured in the number of GCells the
net spans. In contrast, the number of VIAs is the number of
intersections between segments of the same net that are in
adjacent metal layers. αk and βk are constant values (weights)
for each metal layer k, which is used to penalize the lower
metal layers, thus distributing the net segments through the
upper layers so as to alleviate the congestion. Short nets are
less penalized because the sum of wirelength (wlij) and the
number of VIAs (viaij) are smaller. Therefore, short nets are
assigned to the lower layers. On the other hand, for the long
nets, the sum of wirelength and VIAs is bigger, and thus,
they are assigned to the upper layers. In this work, we use
βk = ω × (αk + αk+1), where ω represents the VIA factor
and is equal to 1 in all experiments. We experimentally tested
different values for ω, 0.001, 0.1, 1, 10, 100, and the best
average VIA reduction was with ω = 1. All constant values
used in this work are presented in Section V-A2 in Table II

costi,j =
n∑

k=1

αk × wlkij +
n−1∑

k=1

βk × viak
ij. (13)

Concerning cell movement, for each cell ci, we generate a
set of possible locations L(ci) = {l1(ci), l2(ci), . . . , ln(ci)}. For
each location, there is a binary variable mi,j that indicates if

Fig. 5. Illustration showing how the proposed technique determines a can-
didate location for cell C1 by calculating the Median GCell. Each hue in this
image represents the network associated to a cell (except the candidate cell),
each cell is represented by colored dots. The green star indicates the median
GCell.

cell ci should be placed on that location lj(ci). We also keep
track of each cell initial location by using variable l0(ci).

When a cell is moved, its nets must be rerouted. Therefore,
for each candidate location mi,j, we define a set of nets N(mi,j)

with their respective routing candidates R(mi,j). In addition,
for each net ni, we define the set of cells connected to this
net as C(ni). Given that, the objective function remains the
weighted sum of the net candidates, except that now we need
to consider the nets resulting from the cell movements.

Fig. 5 shows an example of how we generate the candidate
locations to move a cell C1 which is connected to seven other
cells through nets N1, N2, and N3. We calculate the bounding
box of each net (represented in the figure by the blue, yel-
low, and red rectangles) and select as the candidate location
the median GCell with respect to all the bounding box coor-
dinates. In the example of Fig. 5, the median GCell of C1 is
identified by the green star. This strategy was inspired by the
work presented in [24].

The decision to adopt the median GCell as the target posi-
tion for cell movement was taken after we evaluated nine
different movement candidates: the median point of the con-
nected nets, the four neighbors of the median point, and the
four neighbors of the initial location of the cell. According
to our experiments, among all candidate movements, moving
to the median point of each cell has the highest chance of
reducing the wirelength of nets connected to the cell. We also
performed an experiment with five movement candidates for
each cell at the same time: the median GCell, and the four
neighboring GCells of the median (N, S, W, and E). Such
experiment did not help to improve the quality of the results.
This is due to the fact that the median GCell is the optimum
point for a movement considering all nets connected to a cell.
Therefore, the ILP model will prefer to move the cells for this
median point instead of the neighboring GCells. By adding
four times more movement candidates the runtime increased
by only 2.03 times, on average.

Fig. 6 presents an example of the routing candidates gener-
ation for a two-pin net connecting Cell A (lower left corner)
and Cell B (upper right corner). For simplicity, in this example,
we consider that the design uses only three metal layers. For
a two-pin net, we generate all possible combinations of L-
shape patterns, i.e., the combination of all possible layers for

358 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024

(a) (b)

(d) (e)

(c)

Fig. 6. Routing candidates for a 2-pin net connecting Cell A and Cell B.
(a) Initial cell locations. (b) Lower L-shape in metal 1 and 2. (c) Lower L-
shape in metal 2 and 3. (d) Upper L-shape in metal 1 and 2. (e) Upper L-shape
in metal 2 and 3.

each of the L-pattern. Fig. 6(b) and (c) brings the two possible
candidates for the lower L-shape, and Fig. 6(d) and (e) shows
the two possible candidates for the upper L-shape. For a
multipin net, we first generate the Steiner tree using the Flute
algorithm [25]. Then, for each two-point segment, we use the
same approach of two-pin nets described above. In the ILP
model, we ensure that for a given net, one and only one routing
candidate is selected for each of the two-point segments.

To properly route the circuit, we need to add a few con-
straints to the ILP model. The first one states that each net must
be routed by a single routing candidate, which is captured by

∑
rij = 1 ∀j ∧ i = 1 · · · n. (14)

The second constraint ensures no overflow in the GCells.
Each GCell gk has a supply S(gk) representing the number of
available routing tracks in the GCell gk. The number of nets
routed through a GCell cannot exceed its supply. We define
R(gk) as the set of net candidates routed through GCell gk.
Then, the second constraint is modeled as in (15), which must
be defined for each GCell

∑

rij∈R(gk)

rij ≤ S(gk), k = 1 · · ·K. (15)

Next, we need to add a few constraints to ensure those
movements do not invalidate circuit routing. The third con-
straint ensures that each cell is assigned to one candidate
location, as expressed in

∑
mi,j = 1 ∀j ∧ i = 1 · · · n. (16)

The next constraint ties the cell candidate locations to their
respective nets. This constraint is specified in (17) and must
be defined for each candidate location mi,j and for each net in
N(mi,j) associated with this location. For each of those nets,
the sum of their candidate variables rkl must equal the value
of the candidate location mi,j. As a consequence, if the cell is
moved to location lj(ci), then mi,j = 1 and the net must use
one of the candidates associated with mi,j. Otherwise, mi,j = 0
and the net cannot use any of those candidates. Notice that we
do not need to establish this constraint for the initial location
l0(ci). This is because there are already constraints that ensure

that all nets are routed someway, so if the cell is not moved,
one of the initial routing candidates will automatically be used

m∑

l=1

rkl = mi,j, i = 1 · · · n, j = 1 · · ·m, nk ∈ N(mi,j). (17)

The next constraint certifies that we do not move two cells
from the same net (18). This constraint must be specified for
each net, and it is necessary to ensure we do not assign dif-
ferent routing candidates for the same net. For a given net,
this is done by ensuring that the sum of the moved location
variables of all cells connected to that net is one. Notice that
this constraint only considers the location variables that do not
correspond to the initial location (i ≥ 1), so that if one cell
in the net is moved, all the other ones should remain in their
initial locations

∑

ci∈C(nk)

m∑

j=1

mi,j = 1, k = 1 · · · n. (18)

Finally, we need to update the GCell supply constraints to
include cell blockages. Some cell pins impose blockages on
metal layers, so the ILP formulation must consider this to
avoid overflowing the GCells. In order to do that, we defined
Y(gk) as the set of cell locations inside GCell gk, and each
blockage reduces the GCell supply in bi. Then, (19) models
this constraint by considering not only the nets inside each
GCell but also the blockages

∑

rij∈R(gk)

rij +
∑

mi,j∈Y(gk)

bi × mi,j ≤ S(gk), k = 1 · · ·K. (19)

Algorithm 3 presents a pseudocode for creating and solving
the described ILP model. This Algorithm receives as input a
circuit panel. The first two lines will query from the database
the nets and cells that are associated with the such panel. Then,
function create_initial_variables, line 3, produces all the vari-
ables representing the initial state of placement and routing
for this panel. Therefore, the initial solution is also consid-
ered as a valid solution which allows taking into account the
situation when the technique is not able to find a better solu-
tion for a given net or cell. In other words, this ensures that
the ILP model is always feasible. It is interesting to observe
that in the worst-case scenario, the initial solution may be
kept for the entire panel or event for the entire circuit. The
function create_nets_candidates(nets), in line 4, creates dif-
ferent routing solutions for the initial placement. In this work,
we generate different pattern routing solutions using different
metal layers for each net.

Next, the loop between lines 5 and 13 generates differ-
ent candidate positions and routing solutions for each cell in
the current panel. First, the cell original location is stored
in optig_p in line 6, and its median position is calculated
by function median_position(cell) in line 7. The ILP variable
representing this cell in the median position is generated by
function create_variable(cell, median_p) in line 8. Then, the
cell is placed in the median position (line 9), its connected
nets are stored in variable nets_c in line 10, and the rout-
ing candidates for this position are generated by the function
create_nets_candidates(nets_c) in line 11. Finally, the cell is
restored to the initial location in line 12.

FONTANA et al.: ILPGRC: ILP-BASED GLOBAL ROUTING OPTIMIZATION WITH CELL MOVEMENTS 359

Algorithm 3: RUN_ILP(Panel)
Input: panel = Panel to create and solve the ILP

1 nets← get_nets(panel);
2 cells← get_cells(panel);
3 create_initial_variables(cells, nets);
4 create_nets_candidates(nets);
5 foreach cell ∈ cells do
6 orig_p← position(cell);
7 median_p← median_position(cell);
8 create_variable(cell, median_p);
9 place(cell, median_p);

10 nets_c← get_nets(cell);
11 create_nets_candidates(nets_c);
12 place(cell, orig_p);
13 end
14 add_constraints();
15 add_objective();
16 result← solve_model();
17 if result = Optimal then
18 apply_movements_and_routing();
19 end

After creating all these candidates for positions and routing,
the previous constraints presented in (14)–(19) are added into
the ILP model in line 14. Then, the ILP objective, (12), is
added in line 15. The ILP model is solved using CPlex [26],
and the result is stored in variable result (line 16). Finally, if
the result from ILP is Optimal, the movements and routing
solutions are applied to the design in line 18.

D. Panel Legalization

The ILP model does not consider legal positions when
moving cells. This simplification in choosing the positions is
fundamental to keeping a small number of variables inside the
ILP model. If the ILP model would consider legal positions
for each move, these positions should be seen as fixed for the
subsequent moves, which would reduce the solution space. In
addition, considering legalized positions, the number of vari-
ables would increase considerably. This is because each move
would have to be combined with all other moves, and for
each of those placement combinations, we would have new
solutions and candidates for routing. Therefore a legalization
step is required after solving the ILP model. This legalization
step is executed by function “LEGALIZE(panel)” presented
in line 11 of Algorithm 1.

This step should legalize the moved cells moving as few
already legalized cells as possible in order not to disturb the
solution. If we call a legalization algorithm for the whole panel
region, the number of affected cells could be higher. Therefore,
we propose a GCell clustered-base approach to legalize each
panel. Fig. 7 displays an example of a GCell cluster for a
panel. For each row of GCell, we cluster neighbor GCells
that are unlegalized. In this example, we have nine clusters
(C1–C9). A cluster is based on GCells that have unlegalized
cells inside. If a GCell has unlegalized cells and all neigh-
bors are legalized, this cluster will be only one GCell (case
of C1, C2, C3, C6, and C7). Otherwise, the neighbor unlegal-
ized GCells are merged (case of C4, C5, C8, and C9). Then,
picking cluster 5 (C5) as the target cluster (red bold rectangle),

Fig. 7. Example of a GCells clustered-base approach to legalize each panel.

we create a legalization window expanding one GCell on each
side of the cluster. The green rectangle presents the legaliza-
tion window in Fig. 7. Only the cells that are totally inside
the cluster area (colored in yellow) are considered movable
for the legalization process.

Observe that the GCells belonging to the expansion area
(left and right of the cluster) are always legalized because of
our previous cluster step. Another importance of this expan-
sion is that it enables us to legalize the cells using free spaces
available in the neighboring legalized GCell. This helps us to
reduce the displacement of legalized cells (cells that the ILP
model has not moved). The blue dashed rectangle marks these
free areas in Fig. 7. The next step is to call the Abacus [22]
algorithm to legalize each legalization window. Finally, if in
the legalization process, some pin access of any cell changes
between GCells, we reconnect this pin to the previous GCell
using the L-shape pattern route algorithm. In the end, the
whole panel will be considered legalized if, and only if, all
the clusters can be legalized. Otherwise, all the cells and nets
belonging to this panel are restored to the state before the ILP
call.

V. EXPERIMENTAL RESULTS

In order to assess the effectiveness of the proposed tech-
nique, a series of experiments were conducted. The obtained
results are reported and discussed in this section, which is
organized as follows. First, Section V-A presents the experi-
mental setup and software infrastructure. Then, Section V-B
explains the methodology adopted to investigate the efficacy
of the ILPGRC technique, as well as the chosen benchmarks
and tools. Finally, Sections V-C and V-D present the results
and discussions.

A. Experimental Setup

The developed algorithms were implemented in C++ using
the open-source library Ophidian [27]. The boost library [28]
was used for the data structure, including graphs, trees,
and geometric operations. We also used the CPLEX [26]
12.8 library to solve the ILP model. The experiments were

360 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024

TABLE II
CONSTANT VALUES USED IN THE ILP MODEL

executed on a Linux cluster with 48 cores, 2x Intel Xeon
Gold 6240R CPU @ 2.40 GHz (Cascade Lake, 2021) and
185-GB RAM.

In addition, this work uses GCells and Panels sizes, as well
as the constant values described in the sequel.

1) GCells and Panels Default Sizes: We conducted exper-
iments with different GCell sizes: 4k by 5k dbu (2 rows ×
50 sites), 4k by 10k dbu (2 rows × 100 sites), and 10k by
10k dbu (5 rows × 100 sites). These GCell sizes did not impact
the quality of the final results. We consider the GCells size of
10k by 10k dbu (5 rows and 50 sites) in this work to increase
the chances of legalizing the movements without impacting
the already placed cells in the same region. With a larger
GCell, there are more empty spaces in the GCells meaning
less displacement for the placed cells.

1) CUGR GCell size is 3K by 3K dbu.
2) ILPGRC GCell size is 10K by 10K dbu.
3) ILPGRC Checkered panels in level 1 are 5 by 5 GCells.

The only exceptions for these values are circuits ispd19_test4
and ispd19_test5, which use a 65-nm technology node. For
these two circuits:

1) CUGR GCell size is 2K by 2K dbu;
2) ILPGRC GCell size is 8K by 8K dbu;
3) ILPGRC Checkered panels in level 1 are 5 by 5 GCells.

The use of the above-mentioned values solves the follow-
ing issue: if the default values are used to route circuits
ispd19_test4 and ispd19_test5, TritonRoute incorrectly reports
that the guides are not connected (no pin access found), and
ends the execution.

2) Constant Values Used in the ILP Model: The constant
values used in (13) of the ILP model are presented in Table II.
These values penalize the lower metal layers and keep the net
nearest to the provided initial solution. Note that the values for
VIAs are greater than those used in routing wires. Therefore
the ILP model will prioritize solutions that use fewer VIAs,
which is the focus of this work. All these values were obtained
empirically through extensive experimentation.

B. Experimental Methodology

To assess the efficacy of ILPGRC and also to comprehend
the real impact of moving cells during the global routing
(GR) step we relied on the evaluation flow shown in Fig. 8,
which includes the detailed routing (DR) step. First, we
use CUGR [4] to generate the GR solution for the ISPD
Contest 2018 [13] and ISPD Contest 2019 [14] initial place-
ments. Then, the proposed technique (ILPGRC) is applied
to optimize the circuits by moving cells and rerouting nets.
Subsequently, TritonRoute [7] is used to perform the DR step.

Fig. 8. Evaluation flow using the ISPD Contest 2018 and ISPD Contest 2019
benchmarks.

Finally, the official ISPD Contest 2018 evaluator generates
the report that allows us to investigate the quality of the
solution. Section V-B2 details the evaluation process. We
also used the flow in Fig. 8 to generate baseline results, but
in this case, skipping the application of the proposed tech-
nique (ILPGRC). The reasons for choosing such benchmarks
suite are exposed in Section V-B1. The selection process of
CUGR and TritonRoute as the GR and DR tools is justified
in Section V-B3.

1) Benchmarks: We have chosen the ISPD Contest
2018 [13], and ISPD Contest 2019 [14] benchmarks because
they are the most recent benchmarks that include technol-
ogy files and advanced design constraints, thus allowing the
generation of DR solutions. We did not use the ICCAD
CAD Contest 2020 [15] or ICCAD CAD Contest 2021 [16]
benchmarks because they are overly simplified and do not
have technology information. For example, ICCAD 2020
and ICCAD 2021 benchmarks consider that the cells are
placed in the center of GCells. Since there is no row or site
information, it is not possible to produce DR solutions because
the placements cannot be legalized.

On the contrary, the ISPD Contest 2018 [13] and ISPD
Contest 2019 [14] benchmarks have LEF and DEF files, and
the circuits use one among three technology nodes: 65, 45,
and 32 nm. Additionally, these benchmark suites also pro-
vide technology information for the circuits, such as Standard
cells, Macros, and IO Cells, and the circuits are fully placed
and legalized. Finally, cells have complex pin shapes, such as
L, Z, and others. Nonetheless, there is no power and timing
information in these benchmarks. The main characteristics of
these circuits are presented in Table III. In this table, the first
column brings the circuit names. For simplicity, we shortened
the circuit names by removing the “ispd” and “test” words. For
example, circuit “ispd18_test1” has been renamed to “18_t1.”
Columns 2–8 in Table III display the technology node, number
of cells, number of nets, number of I/O pins, number of
macro blockages, placement density, and number of routing
layers.

Note that benchmark 18_t10 is the only circuit with 100%
of density. This is because in this circuit there are no empty
spaces due to the use of filler cells. Filler cells are cells with
no logical functionality but have the VDD/VSS metal lines
matching the rest of the standard cells, ensuring that all power
nets are connected. Due to the lack of empty spaces, the ILP
model produces a solution for circuit 18_t10 that is exactly the
same as the input placement. Therefore, we created a modified
version of circuit 18_t10, called 18_t10_nf, by removing the
filler cells. This way, the density of 18_t10_nf is 92%. Another
interesting point is that all the circuits have nine metal layers
for routing, except circuits 19_t4 and 19_t5, which have only
five metal layers.

2) ISPD Evaluator: The quality of the routing solution
result was measured using the official contest ISPD 2018
evaluator. This evaluator receives as input the DEF, Guide,

FONTANA et al.: ILPGRC: ILP-BASED GLOBAL ROUTING OPTIMIZATION WITH CELL MOVEMENTS 361

TABLE III
MAIN CHARACTERISTICS OF ISPD 18 AND ISPD 19 BENCHMARKS.
FROM THE LEFT TO RIGHT COLUMNS BRING THE CIRCUIT NAMES,

TECHNOLOGY NODE, NUMBER OF CELLS, NUMBER OF NETS, NUMBER

OF I/O PINS, NUMBER OF MACRO BLOCKAGES, PLACEMENT DENSITY,
AND NUMBER OF ROUTING LAYERS

and LEF files and executes the following tasks: 1) invokes
Cadence Innovus [29] to perform design rule and connectivity
checking; 2) generates DRV and connectivity reports; 3) starts
an evaluation program to perform guide and track obedience
checking and read the Innovus reports; and 4) generates the
report table as output.

The metrics used to evaluate the quality of results in this
work were obtained by using the official ISPD 2018 evaluator.
They are as follows.

1) Number of VIAs: The total number of VIAs after the
DR.

2) Wirelength: The total length of wires after the DR.
3) Off-Track VIAs: The number of VIAs whose center is

misaligned with the locations of the tracks.
4) Off-Track Wirelength: The length of wires placed out of

the track locations.
5) Wrong Way wirelength: The length of wires routed in

the nonpreferred direction of the layer.
6) Shorts: Either a VIA or wire metal overlaps with another

object like VIA, wire metal, blockages, or pin shapes.
7) Min Area: Specifies the minimum metal area required

for polygons on each layer.2

8) Spacing: Specifies the required spacing between two
objects. This metric encompasses the different types
of violations which are parallel-run length, end-of-line
(EOL), and cut spacing.

9) Open Nets: If any pin in a net is disconnected, then the
net will be considered as an open net.

3) Global and Detailed Routing Tools: It is hard to deter-
mine which combination of academic tools will lead to the best
results considering the physical flow. Although some academic
tools are well-known for being state-of-the-art, we cannot
guess how those tools will interact with each other. To investi-
gate such interaction, in our recent work [30] we evaluated 12
different flows built by combining three placements (original

2Min Area counts the number of occurrences in which a metal shape area
is less than the specified value for a layer. Therefore, it may occur multiple
times for a single net.

placement by contest, DreamPlace [31] and EhPlacer [32]),
two GR engines (CUGR [4] and FastRoute [33]), and two
DR tools (DRCU [5] and TritonRoute [7]). These flows were
evaluated by using the ISPD Contest 2018 [13] and ISPD
Contest 2019 [14] benchmarks. Among all these flows, the best
final results were obtained by the flow with Contest placement
+ CUGR + TritonRoute, whereas the second-best flow was
DreamPlace + CUGR + TritonRoute. Therefore, in this work,
we use the best flow to serve as our baseline. Additionally, we
also compare our results with the second-best flow.

C. Quality Evaluation of ILPGRC

This section presents the experimental results. Table IV
brings the results obtained by using the ILPGRC technique and
the baseline results (i.e., without using ILPGRC), employing
the evaluation flow depicted in Fig. 8. For each circuit listed in
the leftmost column, the table brings the technology node, the
number and the percentage of movements, the total number of
VIAs, the number of off-track VIAs, the total wirelength, the
off-track wirelength, the wrong way wirelength, the number
of metal short violations, the number of min area violations,
the number of metal spacing violations, and the number of
open nets. To make the comparison easy, the columns labeled
as Basel bring the absolute number of VIAs and wirelength
obtained by the baseline flow, whereas the columns labeled as
ILPGRC Imp % show the percentage of improvement achieved
when the ILPGRC technique is applied. Thus, a positive value
in any of these columns means that ILPGRC has improved the
given metric with respect to the baseline result.

The results in Table IV show that ILPGRC performed
the best in the total number of VIAs for all circuits. The
average reduction in the total number of VIAs is 4.69%,
which was reached by moving only 1.98% of cells. This
improvement comes from the path cost considered in (13)
and from the multiple routing candidates generated by func-
tion “create_nets_candidates” (lines 4 and 11 in Algorithm 3).
This function generates multiple routing paths for each net.
Each of these paths is routed through different metal layers,
and as a consequence, they have different costs. Therefore,
the ILP model tries to minimize the whole routing cost (12)
by selecting, whenever it is possible, the routing paths that
use the lower metal layers. It is worth noting that applying
ILPGRC has enabled TritonRoute to reduce the off-track VIAs
by 5.61% on average.

The ILPGRC technique achieves free DRV solutions in 17
out of 20 benchmarks, outperforming the reference flow by one
benchmark (19_t9). It eliminates open nets and min area viola-
tions, with only a few shorts and spacing violations remaining.
As a result, ILPGRC offers an improved solution after DR,
requiring minimal intervention from CAD engineers.

Moving our attention to the wirelength metric, we can
observe significant improvements in the off-track and wrong-
way wirelength when the ILPGRC was applied. This is highly
correlated with the fact that the ILPGRC technique does not
allow a net to be routed outside the tracks or in the non-
preferred direction. Finally, although the ILPGRC technique
was not able to lead TritonRoute to reduce wirelength, it
is important to note that the wirelength was increased by

362 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024

TABLE IV
EXPERIMENTAL RESULTS FOR ISPD 2018 AND ISPD 2019 BENCHMARKS EVALUATED AFTER THE DR SOLUTION

Fig. 9. VIAs and wirelength distribution after DR for circuits ispd18_test9, ispd18_test10_nf, ispd19_test9, and ispd19_test10.

only 0.83% on average, and in most cases (15 out of 20
benchmarks), the degradation in wirelength is less than 0.5%.

The counterpart of reducing the total number of VIAs can
be an increase in the wirelength in the lower layers. The VIA
and Wirelength distributions for the baseline and ILPGRC for
circuits 18_t9, 18_t10_nf, 19_t0, and 19_t10 are presented in
Fig. 9. We extract these values from the DEF file generated
by TritonRoute using a commercial tool. The bars shorter than
100% mean that the ILPGRC could improve this metric for
the specific circuit. In contrast, bars longer than 100% mean
that ILPGRC degrades this metric for the given circuit.

Considering the VIA distribution, we can observe that the
percentage of VIAs in Metal 1 is very similar for both ILPGRC
and baseline. On the other hand, the difference in the number
of VIAs comes from the upper layers. Considering the wire-
length distribution, we can observe that both approaches result
in the same length of metal in all layers. Therefore, we can
conclude that ILPGRC is able to reduce the number of VIAs
without impacting the circuit congestion.

We conducted an additional experiment in which the
(complete) ILPGRC technique was applied five times before
the DR step. This experiment aims to evaluate the impact
of multiple iterations since each net permits only one cell
movement in the ILP model. By running ILPGRC 5 times,
it is possible to slightly reduce the number of VIAs for some
circuits, but the average (3.97%) is worst than a single iteration

(4.69%). Running ILPGRC 5 times reduces the impact on the
wirelength (−0.19 on average). However, the total runtimes
of the five iterations are much longer (5.56 times on average)
than those of the single execution of the ILPGRC. Therefore,
we consider that the iterative version is not worth it. In future
work, we plan to make a convergence condition to determine
if another iteration should be executed.

To the best of our knowledge, CRP [11] and its respective
extension CRP 2.0 [20] are the only available works able to do
routing with cell movement using realistic benchmarks with
technology node information. We acquired the data of CRP 2.0
from their authors. This way, we could evaluate the quality of
DR solutions in CRP 2.0 and ILPGRC.

Table V presents how ILPGRC performs using the same
initial routing and baseline of CRP 2.0 technique [20]. The
values in this table are the percentages of improvement in
relation to the baseline. So, the higher values are better, and
the best value for each circuit and metric is highlighted in
bold.

We can see that, on average, ILPGRC is superior in reducing
VIAs but slightly degrades wirelength, which suggests that our
work is more aggressive in the VIA reduction. ILPGRC can
produce a valid solution for all benchmarks, whereas CRP 2.0
fails in the 19_t4 benchmark. Also, ILPGRC only generates a
few DRVs that can be easily solved by hand, while CRP 2.0
leaves 24k shorts in circuit 18_t10. It is worth noting that most

FONTANA et al.: ILPGRC: ILP-BASED GLOBAL ROUTING OPTIMIZATION WITH CELL MOVEMENTS 363

TABLE V
RESULTS COMPARING ILPGRC WITH CRP 2.0 [20]

TABLE VI
EXPERIMENTAL RESULTS FOR ISPD 2018 AND ISPD 2019 BENCHMARKS COMPARED WITH DREAMPLACE

(DRPL) + CUGR + TRITONROUTE. THE RESULTS WERE EVALUATED AFTER THE DR SOLUTION

of the gain from CRP 2.0 comes from the circuits 19_t5, 19_t6,
19_t7, 19_t8, 19_t9, and 19_t10, while for the other circuits,
CRP 2.0 only achieves slight gains. Furthermore, ILPGRC is
superior in off-track and Wrong Way Wirelengh.

We conducted another experiment to evaluate the efficacy
of the ILPGRC technique under a different scenario. This
experiment relied on the evaluation flow in Fig. 8, except that
we used DreamPlace [31] to generate new placement solu-
tions for the ISPD Contests 2018 and 2019 circuits. The flow
DreamPlace + CUGR + TritonRoute resulted in the second-
best placement to DR flow reported in [30]. Table VI presents
the results for this experiment. The columns labeled as DrPl
bring the absolute values for the new baseline (DreamPlace +
CUGR + TritonRoute) whilst the columns labeled as ILPGRC
Imp % show the percentage of improvement achieved when
the ILPGRC technique is applied. The rest of the table is
organized in a similar fashion as Table IV. The baseline
flow fails for three circuits: 18_t10_nf, 19_t3, and 19_t4. In
particular, 18_t10_nf was not legalized after the execution of
DreamPlace, whereas 19_t3 and 19_t4 resulted in a time-out
of 48 h when performing TritonRoute.

The results in Table VI show that applying ILPGRC resulted
in VIA reduction for all circuits, except 19_t2. The average
reduction is 5.53% and was achieved by moving on average
3.26% of cells. As in the previous experiment, applying

ILPGRC has enabled TritonRoute to reduce the off-track
VIAs, in this case, by 11.66% on average.

Regarding DRVs, the baseline flow generated violations for
nine circuits: 18_t2, 18_t3, 19_t2, 19_t5, 19_t6, 19_t7, 19_t8,
19_t9, and 19_10. On the other hand, ILPGRC flow produced
violations in only five circuits: 19_t2, 19_t5, 19_t6, and 19_10.
The baseline produced open nets in circuits 18_t2 and 18_t3;
no open nets are reported when ILPGRC was applied.

ILPGRC improves the wirelength in two circuits (19_t7
and 19_t5) while not increasing it by a maximum of 1.62%.
On average, the wirelength is increased by only 0.61%.
Additionally, ILPGRC resulted in significant improvements
in the off-track and wrong-way wirelength in this experi-
ment. This behavior shows that the ILPGRC technique leads
TritonRoute to choose better routing paths for the nets.

D. Runtime Analysis of ILPGRC

The Checkered Paneling strategy is essential to make the
ILPGRC technique viable since it allows for reducing the
problem size and breaks data dependency, thus enabling par-
allel execution. For example, for the largest circuit in our
experiment (19_t10) containing 899 K cells and 895 K nets,
we have less than ten ILP instances with more than 1 K cells
and 5K nets. For all the other ILP instances (5584) the number

364 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024

Fig. 10. Speedup when using parallel mode with eight threads (y-axis) for
each circuit (x-axis).

TABLE VII
RUNTIME IN SECONDS OF THE ILPGRC IN SEQUENTIAL AND PARALLEL

MODE. THE BEST RUNTIME FOR EACH CIRCUIT IS

HIGHLIGHTED IN BOLD

of cells and nets is smaller. Therefore, the circuit partition-
ing makes it possible to build and solve the ILP model in an
acceptable runtime. It is important to mention that, in con-
trast with an ILP model for GR which must consider only the
net candidates, in ILPGRC the ILP model must consider all
candidate nets and cells that are entirely inside the panel.

In ILPGRC only the Checkered panels within the same
level and of the same color are run in parallel. This guar-
antees a deterministic solution for all levels, hence, making
the results of the parallel version exactly the same as those of
the sequential version. Fig. 10 displays the speedup achieved
when the Checkered panels are run in parallel using eight
threads, assuming the sequential execution as a baseline.

The speedup difference among the circuits is very notice-
able in Fig. 10, ranging from less than 1× for the smaller
circuits to more than 6× in the case of circuit 18_t10_nf. As
shown in Table VII, for the smaller circuits, such as 18_t1,
18_t2, 18_t3, 19_t1, and 19_t3, the runtime of the parallel
version is greater than that of the sequential version. This
is because the overhead time to create and synchronize the
threads supersedes the benefits of running ILP in parallel. On
the contrary, for the larger circuits, with more than 290K cells
and 182K nets (18_t10_nf, and 19_t7 to 19_t10), the time to
create and synchronize the threads is less significant compared
to the time to create and solve the ILP model.

VI. CONCLUSION

In this article, we proposed ILPGRC, an ILP-based
technique to optimize the GR by simultaneously moving cells
and routing nets, maintaining the legality of the circuit, and

avoiding DRVs. We also proposed a checkered paneling strat-
egy, which reduces the input size of the ILP model, making
this approach scalable. The Checkered paneling strategy also
enables the execution of multiple ILP models in parallel, pro-
viding a speedup for large circuits. ILPGRC allows the router
to move cells to optimize different routing objectives, such
as the total number of VIAs, wirelength, and the number of
DRVs. This is in contrast with the traditional approach that
considers fixed placement during routing steps. This approach
can assist other routing algorithms in working collaboratively
with the placement algorithms, making both placement and
routing more agile and efficient. Unlike other related work,
we evaluated the impacts of the proposed technique after the
DR. The experimental results show that ILPGRC reduces the
number of VIAs by 4.69%, moving only 1.98% of the cells
and degrading the wirelength less than 1%, on average. In
addition, the detailed router reported no open nets after the
proposed technique, while the number of DRVs was reduced
in two out of three cases.

REFERENCES

[1] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical Design:
From Graph Partitioning to Timing Closure, 1st ed. Dordrecht, The
Netherlands: Springer, 2011.

[2] S. Held, D. Müller, D. Rotter, R. Scheifele, V. Traub, and J. Vygen,
“Global routing with timing constraints,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 2, pp. 406–419, Feb. 2018.

[3] P. Tu, W.-K. Chow, and E. F. Young, “Timing driven routing tree
construction,” in Proc. SLIP, 2017, pp. 1–8.

[4] J. Liu, C. Pui, F. Wang, and E. Young, “CUGR: Detailed-Routability-
driven 3D global routing with probabilistic resource model,” in Proc.
DAC, 2020, pp. 1–6.

[5] G. Chen, C. Pui, H. Li, and E. F. Y. Young, “Dr. CU: Detailed routing
by sparse grid graph and minimum-area-captured path search,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 9,
pp. 1902–1915, Sep. 2020.

[6] A. B. Kahng, L. Wang, and B. Xu, “TritonRoute: An initial detailed
router for advanced VLSI technologies,” in Proc. ICCAD, Nov. 2018,
pp. 1–8.

[7] A. B. Kahng, L. Wang, and B. Xu, “TritonRoute: The open-source
detailed router,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 40, no. 3, pp. 547–559, Mar. 2021.

[8] A. B. Kahng, L. Wang, and B. Xu, “TritonRoute-WXL: The open-source
router with integrated DRC engine,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 41, no. 4, pp. 1076–1089, Apr. 2022.

[9] T. A. Fontana et al., “ILP-based global routing optimization with cell
movements,” in Proc. ISVLSI, 2021, pp. 25–30.

[10] F. Wang, L. Liu, J. Chen, J. Liu, X. Zang, and M. D. Wong, “Starfish:
An efficient P&R co-optimization engine with A*-based partial rerout-
ing,” in Proc. ICCAD, 2021, pp. 1–9.

[11] E. Aghaeekiasaraee et al., “CR&P: An efficient co-operation between
routing and placement,” in Proc. DATE, 2022, pp. 772–777.

[12] P. Zou, Z. Cai, Z. Lin, C. Ma, J. Yu, and J. Chen, “Incremental
3-D global routing considering cell movement and complex routing
constraints,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 42, no. 6, pp. 2016–2029, Jun. 2023.

[13] S. Mantik, G. Posser, W.-K. Chow, Y. Ding, and W.-H. Liu, “ISPD 2018
initial detailed routing contest and benchmarks,” in Proc. ISPD 2018,
pp. 140–143.

[14] W.-H. Liu, S. Mantik, W.-K. Chow, Y. Ding, A. Farshidi, and G. Posser,
“ISPD 2019 initial detailed routing contest and benchmark with
advanced routing rules,” in Proc. ISPD, 2019, pp. 147–151.

[15] K.-S. Hu, M.-J. Yang, T.-C. Yu, and G.-C. Chen, “ICCAD-2020 CAD
contest in routing with cell movement,” in Proc. ICCAD, 2020, pp. 1–4.

[16] K.-S. Hu, M.-J. Yang, and T.-C. Yu. “Problem B: Routing with cell
movement advanced.” 2021. [Online]. Available: http://iccad-contest.org/
2021/Problems/Problam_B_20210220_1540.pdf

[17] Z. Huang et al., “Detailed placement and global routing co-optimization
with complex constraints,” Electronics, vol. 11, no. 1, p. 51, 2021.

FONTANA et al.: ILPGRC: ILP-BASED GLOBAL ROUTING OPTIMIZATION WITH CELL MOVEMENTS 365

[18] Z. Zhu, F. Shen, Y. Mei, Z. Huang, J. Chen, and J. Yang, “A robust
global routing engine with high-accuracy cell movement under advanced
constraints,” in Proc. ICCAD, 2022, pp. 1–9.

[19] X. Zang, F. Wang, J. Liu, and M. D. Wong, “ATLAS: A two-level layer-
aware scheme for routing with cell movement,” in Proc. ICCAD, 2022,
pp. 1–7.

[20] E. Aghaeekiasaraee et al., “CRP2.0: A fast and robust cooperation
between routing and placement in advanced technology nodes,” ACM
Trans. Design Autom. Electron. Syst., to be published.

[21] X. He, W.-K. Chow, and E. F. Young, “SRP: Simultaneous rout-
ing and placement for congestion refinement,” in Proc. ISPD, 2013,
pp. 108–113.

[22] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: Fast legal-
ization of standard cell circuits with minimal movement,” in Proc. ISPD,
2008, pp. 47–53.

[23] Y. Manolopoulos, A. Nanopoulos, A. Papadopoulos, and Y. Theodoridis,
R-Trees: Theory and Applications. London, U.K.: Springer, 2006.

[24] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed
placement algorithm,” in Proc. ICCAD, 2005, pp. 48–55.

[25] C. Chu and Y. Wong, “FLUTE: Fast lookup table based rectilin-
ear steiner minimal tree algorithm for VLSI design,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 1, pp. 70–83,
Jan. 2008.

[26] “CPLEX optimizer 12.8.” IBM. 2018. [Online]. Available: www.ibm.
com/analytics/data-science/prescriptive-analytics/cplex-optimizer

[27] “Ophidian: An open source library for physical design research and
teaching.” Embedded Computing Lab. 2022. [Online]. Available: https://
gitlab.com/eclufsc/ophidian

[28] B. Schling, The Boost C++ Libraries, 1st ed. XML Press, Laguna Hills,
CA, USA, 2011.

[29] “Innovus.” Cadence. 2022. [Online]. Available: https://www.cadence.
com/ko_KR/home/tools/digital-design-and-signoff/soc-implementation-
and-floorplanning/innovus-implementation-system.html

[30] T. A. Fontana, R. Netto, S. F. Almeida, E. Aghaeekiasaraee, L. Behjat,
and J. L. Güntzel, “Towards a reference place and route flow for aca-
demic research,” J. Integr. Circuits Syst., vol. 17, no. 3, pp. 1–12,
2022.

[31] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan,
“DREAMPlace: Deep learning toolkit-enabled GPU acceleration for
modern VLSI placement,” in Proc. DAC, 2020, pp. 1–6.

[32] N. K. Darav, A. Kennings, A. F. Tabrizi, D. Westwick, and
L. Behjat, “Eh? Placer: A high-performance modern technology-driven
placer,” ACM Trans. Design Autom. Electron. Syst., vol. 21, no. 3,
pp. 1–27, 2016.

[33] Y. Xu, Y. Zhang, and C. Chu, “FastRoute 4.0: Global router with efficient
via minimization,” in Proc. ASPDAC, 2009, pp. 576–581.

Tiago Augusto Fontana received the B.S. and
M.S. degrees in computer science from the Federal
University of Santa Catarina, Florianópolis, Brazil,
in 2016 and 2018, respectively, where he is currently
pursuing the Ph.D. degree in computer science.

Since 2015, he has been a member of
the Embedded Computing Laboratory, Federal
University of Santa Catarina, conducting research
activities on physical design, focusing mainly on the
signal-routing and placement steps of standard cells.

Erfan Aghaeekiasaraee received the B.Sc. degree
from the University of Guilan, Rasht, Iran, in 2012,
the M.Sc. degree in computer engineering from the
University of Mohaghegh Ardabili, Ardabil, Iran, in
2015, and the Ph.D. degree in electrical engineer-
ing from the University of Calgary, Calgary, AB,
Canada, in 2023.

His research interest focuses on designing and
developing optimized algorithms in physical design
flow, such as routing and placement.

Renan Netto received the B.Sc., M.Sc., and Ph.D.
degrees in computer science from the Federal
University of Santa Catarina, Florianópolis, Brazil,
in 2015, 2017, and 2021, respectively.

He is currently a Lead Software Engineer with
Cadence, San Jose, CA, USA. His main interests
are the application of machine learning for physical
design applications.

Sheiny Fabre Almeida received the B.Sc. and
M.Sc. degrees in computer science from the Federal
University of Santa Catarina, Florianópolis, Brazil,
in 2016 and 2019, respectively, where he is currently
pursuing the Ph.D. degree.

His current research interests include machine
learning and parallel optimizations for routability
improvement during the physical design placement
step.

Mr. Almeida was a recipient of the Third Place in
ICCAD 2017 Multideck Standard Cell Legalization
Contest.

Upma Gandhi received the B.Tech. degree in com-
puter science from the University of Delhi, New
Delhi, India, in 2017, and the M.Sc. degree in elec-
trical and computer engineering from the University
of Calgary, Calgary, AB, Canada, in 2019s, where
she is currently pursuing the Ph.D. degree.

Her research focuses on optimizing the routing
process of VLSI physical design step in VLSI using
reinforcement learning algorithms.

Laleh Behjat (Senior Member, IEEE) received
the Ph.D. degree from the University of Waterloo,
Waterloo, ON, Canada, in 2002.

She is a Professor with the Department of
Electrical and Software Engineering, University of
Calgary, Calgary, AB, Canada, and the Natural
Sciences and Engineering Council of Canada
Research Chair for Women in Science and
Engineering—Prairie Region. Her research focuses
on developing mathematical techniques and software
tools for automating the design of digital integrated
circuits.

José Luís Güntzel (Senior Member, IEEE) received
the M.Sc. and Ph.D. degrees in computer science
from the Federal University of Rio Grande do Sul,
Porto Alegre, Brazil, in 1993 and 2000, respectively.

He is a Full Professor with the Department of
Informatics and Statistics, Federal University of
Santa Catarina, Florianópolis, Brazil. His research
interests include physical design automation of VLSI
circuits and algorithms and VLSI architectures for
video coding.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

