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Abstract—The memristor-based processing-in-memory (PIM)
architectures have been proven to be a potential architecture to
store enormous parameters and execute the complicated com-
putations of deep neural networks (DNNs) efficiently. Existing
PIM studies focus on designing high energy-efficient hardware
architecture and algorithm-hardware co-optimization for better
performance. However, the impacts of the algorithms and hard-
ware architectures on the performance intersect with each other.
Only optimizing the algorithms or the hardware architectures
cannot realize the optimal design. Therefore, the co-exploration
of NN models and PIM architecture is necessary. However, for
one thing, the co-exploration space size of NN models and PIM
architectures is extremely huge, and is challenging to search. For
another, during the co-exploration process, time-consuming PIM
simulators are needed to evaluate various design candidates and
pose a heavy time burden. To tackle these problems, we propose
an efficient co-exploration framework of NN models and PIM
architectures, named Gibbon. In Gibbon, the co-exploration space
is carefully designed to adapt both NN models and PIM architec-
tures. Besides, in order to improve search efficiency, we propose
an evolutionary search algorithm with adaptive parameter pri-
ority (ESAPP). In addition, Gibbon introduces a multilevel joint
simulator to alleviate the problem of time-consuming evaluation.
The experimental results show that the proposed co-exploration
framework can find better NN models and PIM architectures
than existing studies in only six GPU hours (9.8×–48.2× speed-
up). At the same time, Gibbon can improve the accuracy of
co-design results by 15.3% and reduce the energy–delay-product
(EDP) by 5.96× compared with existing work.

Index Terms—Hardware and software co-exploration, neu-
ral architecture search (NAS), neural network (NN) accelerator,
processing-in-memory (PIM) architectures.

I. INTRODUCTION

NOWADAYS, deep neural networks (DNNs) have made
great breakthroughs in various fields, such as computer
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Fig. 1. (a) PIM-based NN accuracy and (b) energy consumption (mJ) of
different NN structures and PIM architectures on the CIFAR-10 dataset [8].

vision [1] and natural language processing [2], and are becom-
ing the mainstream method to solve problems. However,
DNNs introduce explosive parameters and complicated com-
putations, causing high energy consumption and long com-
puting time. This problem is challenging for the memory
storage and the executing devices, hindering its deployment
and applications.

Emerging memristor-based processing-in-memory (PIM)
architectures have shown great potential to accelerate neu-
ral network (NN) computing. Based on the memristor, the PIM
architecture can perform in-situ matrix–vector-multiplications
(MVMs) computing and reduce redundant data movement.
Therefore, PIM-based NN accelerators can improve the energy
efficiency of NN computing by two to three orders of magnitude
over GPU and CMOS ASIC solutions [3], [4], [5], [6], [7].

Designing the PIM hardware architecture and algorithm-
hardware co-optimization for target NN models (e.g., pruning
and mapping) [7], [9] are two major research directions
in the PIM field. However, these studies neglect the com-
plex interplay between the NN model hyperparameters (e.g.,
kernel size and network depth) and the PIM architecture
design hyperparameters (e.g., Analog–Digital-Converter res-
olution and crossbar size) on the hardware performance and
accuracy. Due to the complex interplay, the optimal NN mod-
els for different PIM architectures are different and vice versa.
For instance, as shown in Fig. 1, when the NN model hyperpa-
rameters are fixed (the same column), the difference between
PIM architectures can introduce up to 91.95% energy con-
sumption variation and 2.72% accuracy variation. At the same
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time, while the PIM architecture design hyperparameters are
fixed (the same row), different NN models cause a 28.31%
energy consumption difference and 3.45% accuracy difference.
Besides, for different optimization targets, e.g., accuracy and
energy consumption, the optimal NN model and PIM architec-
ture designs are also different. In Fig. 1(a), the optimal design
for the best accuracy is in the first row and the last column,
while the optimal design for the lowest energy consumption
is in the second row from the bottom and the first column.
Therefore, co-designing the NN models and PIM architectures
is vital to ensure high accuracy and low-energy consumption
simultaneously for PIM-based NN accelerators.

However, manual co-design of the NN models and PIM
architectures is unrealistic due to the vast search space. For
instance, the typical search space size (i.e., the total number of
all possible candidates) of NN models1 can achieve up to 3.3×
1054. Moreover, the search space size of PIM architectures2

can raise to 1.3×1030. Therefore, the search space size of the
NN models and PIM architectures reaches 4.3 × 1084, which
is unrealistic for manual co-design.

Researchers have proposed neural architecture search (NAS)
to optimize the NN structures automatically [10], [11].
Compared with manually designed NN structures, NAS can
find NN structures with higher accuracy and lower com-
putation cost [12]. Inspired by the great success of NAS,
NACIM [13], UAE [14], and NAS4RRAM [15] proposed
PIM-oriented NAS framework to co-explore the NN models
and the PIM architectures automatically. These studies intro-
duce the PIM architecture design hyperparameters into the
NN model search space. Furthermore, they utilize PIM sim-
ulators, e.g., MNSIM [16] and NeuroSim [17], to evaluate
the PIM-based NN accuracy and other hardware performance.
However, these studies suffer from poor hardware performance
and extremely long search time cost. To be specific, we sum-
marize the weaknesses of existing PIM-oriented NAS methods
into the following three main parts.

First, these studies introduce PIM architecture design hyper-
parameters into the typical NN model search space. However,
the typical NN model search space lacks consideration of
the PIM hardware characteristics. For example, the comput-
ing units in PIM architectures are crossbars, and crossbars
are always even sized. However, the convolutional kernels
in the typical NN model search space are always odd sized.
Incompatible search space for the PIM architectures leads to
low PIM hardware resource utilization. For instance, NACIM
searches for the optimal design based on the VGG [18]-like
NN model search space, which is not designed for PIM archi-
tectures. As a result, the PIM hardware resource utilization of
the crossbars is only 53.1%.

Second, these studies introduce various PIM architecture
design hyperparameters, e.g., the crossbar size and memris-
tor precision, into the co-exploration space, resulting in an
explosive expansion of the search space size. As mentioned

1The search space is constructed by NN models with up to 30 convolutional
layers. Each convolution layer can be configured with different kernel sizes,
group numbers, output channel numbers, etc.

2We modify the crossbar size, DAC/ADC resolution, memristor precision,
etc., of a base PIM architecture to generate new PIM architecture candidates.

in the former example, the search space size increases from
3.3 × 1054 to 4.3 × 1084 after taking the PIM architecture
design hyperparameters into account. The expansion of the
search space size makes it more difficult for existing search
strategies to discover the optimal design candidate.

Finally, PIM-based simulators are an indispensable part
of the co-exploration process of the NN models and PIM
architectures. Simulators are utilized to evaluate the accuracy
and hardware performance of design candidates. However,
existing PIM-based simulators are highly time consuming,
resulting in an unacceptable time burden for the PIM-oriented
NAS. For example, in existing PIM-oriented NAS frameworks,
NeuroSim and MNSIM are the two main-stream simulators
for design candidate evaluation. These simulators need around
10 min to evaluate the accuracy and hardware performance
for each design candidate. Time-consuming simulation poses
a heavy time-cost burden to the NAS process, in which thou-
sands of design candidates need performance evaluation. For
instance, a typical PIM-oriented NAS framework needs to
evaluate 3000 design candidates. Evaluating all the design
candidates based on PIM-based simulators takes over 21 days.

To address these problems, we propose an efficient co-
exploration framework for NN models and PIM architectures
in this article, named Gibbon. Gibbon consists of three main
components: 1) a PIM-oriented search space to achieve bet-
ter accuracy and hardware performance; 2) an evolutionary
search algorithm to improve the search efficiency; and 3) a
multilevel joint simulator to alleviate the problem of heavy
time-cost burden. Owing to the well-designed search space,
efficient search strategy, and efficient and precise simulator,
Gibbon can reduce the search time from hundreds of GPU
hours to only several GPU hours. Moreover, Gibbon can find
better NN models and PIM architectures with higher accuracy
and better hardware performance than existing PIM-oriented
NAS methods. The main contributions of this article can be
summarized as follows.

1) We propose a PIM-oriented search space for NN models
and PIM architectures. We first introduce group con-
volution and convolution with even sized kernels into
the PIM-oriented NN model search space. Besides, we
propose a PIM friendly NN topology.

2) We propose an evolutionary search algorithm with adap-
tive parameter priority (ESAPP) to realize high search
efficiency. ESAPP assigns different priorities to differ-
ent search hyperparameters to construct small subsearch
spaces. Consequently, ESAPP can reduce the search time
by ∼90%.

3) We propose a recurrent NN (RNN) [19]-based accuracy
and hardware performance predictor. The proposed pre-
dictor can realize 72× speed up with only 2.6% accuracy
prediction error compared with typical PIM simulators.
Based on the efficient and precise predictor, we construct
a multilevel joint simulator and utilize the predictor to
filter 95% of design candidates.

4) Experimental results show that compared with existing
state-of-the-art PIM-oriented NAS framework, Gibbon
can achieve 9.8×–48.2× speed-up, and only takes six
GPU hours to find the optimal design. As for the
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accuracy and hardware performance, Gibbon can real-
ize up to 15.3% NN accuracy improvement and 5.96×
energy–delay-product (EDP) reduction.

5) Based on the results of Gibbon, we provide several
insights on the correlations of the NN model and PIM
architecture, which are helpful to guide the co-design of
the NN models and PIM architectures in the future.

The remainder of this article is organized as follows.
Section II introduces the DNN and PIM architecture basics
to facilitate the understanding of the proposed co-exploration
framework. Besides, Section II also discusses related work
of existing NAS and hardware-oriented NAS methods.
Section III gives an overview of the co-exploration framework.
Sections IV–VI explain the detailed design technique of the
proposed search space, search strategy, and multilevel joint
simulator, respectively. The experimental results and com-
parison with other existing work are shown in Section VII,
and Section VIII lists some insights for the co-design of the
NN models and PIM architecture in the future. Finally, we
conclude this article in Section IX.

II. PRELIMINARY AND RELATED WORK

A. Deep Neural Network

DNNs can be represented by a directed acyclic graph
(DAG). Each vertex in the DAG denotes an operation, e.g.,
convolution, fully connected operation, and batch normaliza-
tion. Moreover, the topology of the DAG represents the data
dependency among different operations. Convolutional oper-
ations are commonly used operations in DNNs. A typical
convolutional operation can be described as follows:

Ao(x, y, c) =
K−1∑

i=0

K−1∑

j=0

Cin−1∑

k=0

Ain(x + i, y + j, k)wc(i, j, k) (1)

where Ao and Ain denote the 3-D output and input feature map,
respectively. And wc is a 3-D weight matrix corresponding to
the cth output channel with the size of K × K × Cin. The key
factors affecting accuracy and hardware performance are the
topology and the hyperparameters of operations, e.g., kernel
sizes and the number of output channels.

B. Processing-In-Memory Architecture

Emerging memristors (e.g., Resistive Random Access
Memory [20], Phase Change Memory [21], and Magnetic
Random Access Memory [22]) provide an alternative solution
to realize high energy efficiency NN accelerators. Multiple
memristors can construct the crossbar structure. When apply-
ing the input voltages V on the word lines of the crossbar
and mapping the weights {gm,n} as the cell conductance of the
crossbar, we can acquire the output current I on the bit lines.
According to Kirchhoff’s laws, the relationship of I and V can
be described as follows:

Im =
N−1∑

k=0

Vkgm,k (2)

where N is the number of crossbar word lines, and Vk and
Im represent the voltage on the kth word line and the current

(a)

(b)

Fig. 2. (a) Typical NAS process and (b) process of evolutionary algorithms.

on the mth bit line, respectively. Therefore, the MVMs can
be performed in crossbars. In consideration of MVMs being
executed in the analog domain, digital-to-analog converters
(DACs) and analog-to-digital converters (ADCs) are important
components in crossbars. Existing studies have proposed var-
ious memristor-based PIM architecture and realize 2–3 orders
of magnitude energy efficiency improvement compared with
GPU and CMOS-based ASIC solutions [3], [4], [5], [6], [23].

C. Neural Architecture Search

NAS is proposed to automatically design well-performing
NNs [10], [24], [25]. In general, NAS consists of three
major components: 1) search space; 2) search strategy; and
3) performance evaluator, and the typical NAS process is
shown in Fig. 2(a). The search space contains all the pos-
sible design candidates for the NN structure. The search
strategy samples design candidates and updates its search
policy based on the evaluation results to sample candidates
with better performance. Moreover, after several iterations, the
search strategy will find the best search policy and produce
the optimal NN structure. As for the performance evaluator,
it receives design candidates and outputs the corresponding
performance.

The search strategy is an essential component in the NAS
process. A typical kind of search strategies is the evolutionary
algorithm [26], [27], [28], [29]. Evolutionary algorithms usu-
ally maintain one population group, a set of design candidates,
and find the optimal design candidate through population evo-
lution. Population evolution conducts three major steps, as
shown in Fig. 2(b).

1) Parent Selection: Select parent design candidates from
the original population group.

2) Child Generation: Derive child design candidates from
the selected parent candidates by the genotype “muta-
tion” and “crossover.”

3) Population Update: Update the population based on the
performance of the selected parents and derived child
candidates.

D. Hardware-Oriented NAS-Related Work

Recently, researchers have applied NAS methods in the
NN structure and accelerator architecture co-design [30]. For
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(a)

(b)

(c)

Fig. 3. Co-exploration framework overview (left part). Gibbon contains
three key components: (a) PIM-oriented co-exploration space, (b) ESAPP,
and (c) RNN-based accuracy and hardware performance predictor.

instance, NAAS [31] and NASAIC [32] adopt NAS to find
optimal NN structure and accelerator architecture design for
FPGA- and ASIC-based accelerators, respectively. They achieve
better accuracy and hardware performance with lower hardware
resource cost. There are also several PIM-oriented NAS methods
in the PIM field [13], [14], [15]. NAS4RRAM [15] proposes a
PIM-aware NAS framework to find an NN with the highest accu-
racy with the area constraints. However, NAS4RRAM searches
only for NN structures without considering the design hyper-
parameters of PIM architectures. NACIM [13] and UAE [14]
introduce hardware design hyperparameters into the search
space. Therefore, NACIM and UAE can co-explore NN struc-
tures and PIM architectures. However, NACIM utilizes a
time-consuming PIM simulator (i.e., NeuroSim [17]) as the
performance evaluator, resulting in a tremendous search time
cost (∼ 59-GPU hours). UAE adopts a more complicated eval-
uation strategy for the performance evaluator to better model
the PIM architecture, causing an even more severe time cost
(∼ 154-GPU hours).

III. CO-EXPLORATION FRAMEWORK OVERVIEW

The proposed co-exploration framework for NN models and
PIM architectures (Gibbon) is shown in Fig. 3. As shown in
this figure, Gibbon consists of three main components: 1) the
PIM-oriented search space for NN models and PIM architec-
tures; 2) the ESAPP; and 3) the multilevel joint simulator with
an RNN-based performance predictor.

The PIM-oriented search space contains design candidates
for NN models and PIM architectures. Each candidate spec-
ifies the design choices related to both the NN models and
the PIM architectures. Based on the PIM-oriented search
space, each iteration of the search process goes as shown
in the left of Fig. 3. First, ESAPP samples multiple parent
design candidates (parents) and sends them to the RNN-based
performance predictor. Based on the prediction results, we use
accuracy and hardware performance as the evaluation metric to
filter out ∼95% of the total sampled parent design candidates
and output the better 5% candidates as selected parent design
candidates (selected parents).

Afterward, ESAPP mutates the selected parent design can-
didates to get new design candidates (children), where the
mutations are conducted according to the priorities of search
hyperparameters. Then, the child design candidates are evalu-
ated by the accurate but time-consuming PIM simulator (in this
article, we use MNSIM [33]). Finally, to maintain a precise
prediction of the proposed performance predictor, we utilize
the evaluation results from the accurate but time-consuming
PIM simulator to fine tune and update the predictor. At the
same time, ESAPP analyzes the evaluation results to update
the priorities of search hyperparameters. Gibbon repeats these
steps until the search converges and outputs the optimal design
candidate of the NN models and PIM architectures.

IV. PIM-ORIENTED SEARCH SPACE FOR NN
AND PIM CO-EXPLORATION

The proposed PIM-oriented search space for the NN model
and PIM architecture co-exploration is the Cartesian product
of the following two search spaces: 1) the NN structure search
space and 2) the PIM-related hardware search space.

The PIM-related hardware search space is designed to
explore the hardware configurations of PIM architectures. We
adopt the PIM architecture proposed in MultiPrecision [6]
as our infrastructure, for it can achieve higher equivalent
energy efficiency with nearly no accuracy loss. Our infrastruc-
ture has various hardware configurations, e.g., crossbar sizes,
ADC/DAC resolutions, memristor precision, and the number
of activated word lines and bit lines at one time, and so on. The
choices of these hardware configurations construct the PIM
architecture search space, which is one part of the PIM-related
hardware search space.

The other part of the PIM-related hardware search space
is the quantization search space. The quantization search
space contains the weight quantization configurations and the
activation quantization configurations of each operation as
design hyperparameters. The quantization configurations are
related to the memristor precision and ADC/DAC resolutions
in the PIM architectures. In our quantization search space,
there can be different quantization configurations for weights
and activations of different operations. In this way, we can
achieve significant performance improvements to PIM-based
NN accelerating systems [6].

As for the NN structure search space, we carefully design
the NN structure search space to obtain a compatible and PIM-
friendly co-exploration space. As mentioned in Section II-A,
NN models can be described as a DAG, where each vertex
denotes an operation, and each edge represents the data depen-
dency among the operations. The topology (the edges) and
the operation choices (the vertex) are various for different NN
model candidates. Therefore, we split the NN structure search
space into two parts: 1) the DAG topology search space and
2) the operation choice search space.

A. DAG Topology Search Space

We refer to NAS4RRAM [15] to construct the baseline DAG
topology. As shown in the left of Fig. 4(a), in the baseline
topology search space, there is a head module, a tail module,
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(a)

(b)

Fig. 4. DAG topology comparison between the baseline search space (left, referring to NAS4RRAM [15]) and the proposed search space (right). (a) Overall
structure. (b) Structure of the basic block.

and blocks in three stages in each design candidate. And in
each stage, there are two to ten basic blocks. The head mod-
ule consists of a convolutional operation and a Rectified Linear
Unit (ReLU) to generate low-level features for input images.
Besides, the tail module contains a sequence of fully connected
operations to transfer features into the final prediction outputs.
As for each stage, the first and only first block downsamples
the input features, and all blocks in the same stage perform
feature extraction in the same feature map size. In Fig. 4(a),
Ni denotes the number of basic blocks in the ith stage, and
is also one design hyperparameter of the baseline topology
search space. The left of Fig. 4(b) shows the structure of the
basic block in the baseline topology search space. Inspired by
ResNet [34], there is a skip connection in the basic block. The
two inputs of the Add operation are the input and output of
the convolutional operation, which may have different chan-
nel numbers. However, the Add operation requires the same
channel numbers of the two inputs. To address this problem,
NAS4RRAM extends the channel number of the smaller one
to that of the bigger one by filling in zeros before the add
operation.

However, the baseline topology search space is not designed
for PIM architectures and is incompatible with the PIM hard-
ware, causing hardware performance reduction. On the one
hand, the baseline topology search space has only three stages
and up to ten blocks in each stage. Three stages lead to poor
feature representation. Moreover, too many blocks in the same
stage, especially, in the early stage, result in high computation
amounts and poor hardware performance. Taking VGG [18]
and ResNet [34] as examples, there are at least five stages
beside the head and tail modules to ensure rich feature repre-
sentation. And in the early stage, the size of the feature maps
is bigger than that in the later stages. Therefore, there will be
higher computation amounts for the same basic blocks in the
early stage. Too many blocks in the early stage will aggra-
vate this phenomenon and harm the hardware performance.
On the other hand, the channel extending operation before the
add operation causes channel deviation and low classification
accuracy. Nevertheless, there is a linear relationship between
the two input features of the add operation. In light of the

add operation being linear, we can transfer the convolutional
operation, add operation, and skip connection as an equiva-
lent convolutional operation. That means the skip connection
in the basic blocks is entirely ineffective.

To address these problems, we propose a new topology
search space as shown in the right of Fig. 4. The proposed
topology search space contains the same head and tail mod-
ules in the baseline topology search space. Unlike the baseline
topology search space, the proposed topology search space
has five stages and only one to two basic blocks in each
stage. Owing to more stages, design candidates in the proposed
topology search space can acquire rich feature representation
and achieve better classification accuracy. At the same time,
the proposed topology search space can reduce the computa-
tion amounts in the early stages by reducing the number of
basic blocks.

As shown in the right of Fig. 4(b), we construct new basic
blocks in the proposed topology search space. To address
the channel deviation problem, we add an extra pointwise
convolutional operation (i.e., a convolutional operation with
1 × 1 kernel) in the original skip connection branch [35]. The
extra pointwise convolutional operation in the skip connection
branch performs channel alignment and can avoid the channel
deviation problem. To address the problem of the entirely inef-
fective skip connection, we add a ReLU in the main branch to
introduce nonlinearity. Besides the ReLU operation, we intro-
duce an extra convolutional operation in the main branch for
better feature representation. In PIM architectures, the input
values are represented by the voltage in the word lines and are
always positive. Therefore, we replace the HardTanH opera-
tions (the input values may be negative) with ReLU operations
(the input values are always positive) in the proposed topology
search space.

To verify the advantages of the proposed topology search
space, we train and evaluate the representative design candi-
dates in the baseline topology search space and the proposed
search space. For the representative design candidate in the
baseline topology search space, the number of basic blocks in
each stage is 5. For the candidate in the proposed topology
search space, the number of basic blocks in each stage is one.
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Fig. 5. PIM-based NN accuracy and hardware performance comparison
between the representative design candidates.

Moreover, every convolutional operation in both representa-
tive design candidates has the same input and output channel
numbers and kernel sizes. And there are both 15 convolutional
operations in the above two representative design candidates.
The accuracy and hardware performance comparison of the
two design candidates is shown in Fig. 5. We can see that
the representative design candidate in the proposed topology
search space achieves better classification accuracy and can
reduce the area, latency, and energy consumption by around
25%, 60%, and 90%, respectively. In a word, the proposed
topology search space can reach better classification accuracy
under lower hardware resource cost.

B. Operation Choice Search Space

We construct the operation choice search space to con-
tain all possible operation choices for every vertex in the
DAG. Existing NN model and PIM architecture co-exploration
methods adopt the operation choice search space in the typi-
cal NAS methods [10], [25], which is not designed for PIM
architectures. The operation choices in these search spaces
are not compatible and friendly to PIM architectures, causing
poor hardware performance. On the one hand, the numbers
of rows and columns of the crossbars (the basic computing
units in PIM) are always the power of two, e.g., 64, 128,
and 256 [36]. In this way, the word line and the bit line
addresses can be encoded and decoded based on binary encod-
ing. However, the convolutional operations in typical NAS
search spaces are always with odd-sized kernels [25], such as
1 × 1 and 3 × 3 kernels. Mapping the weights of odd-sized
kernels onto the even-sized memristor crossbars deteriorates
the hardware resource utilization. On the other hand, lim-
ited by the current upper bound of the bit lines, only part
of the word lines in crossbars can be activated simultane-
ously. We set Lwl to represent the maximum number of the
activated word lines at the same time. To support long input
vectors, we split them into subvectors, where the length of
each subvector is not bigger than Lwl. Afterward, we gather
the computing results of every input subvector and get the
final output vectors. Splitting the input vectors harms the
hardware performance of the PIM architectures. For exam-
ple, if we split the input vector into two subvectors, we need
to perform analog-to-digital conversions twice. On the con-
trary, if we do not split the input vector, we only need to do
the conversions once. Furthermore, the energy consumption
of analog-to-digital conversions accounts for around 70% of
the overall energy consumption [6]. Therefore, reducing the

number of subvectors is critical to achieving better hardware
performance. However, typical NAS search spaces neglect this
characteristic of PIM architectures, leading to poor hardware
performance.

To tackle these problems, we propose a new operation
choice search space, which is compatible and friendly to PIM
architectures. First, we explore the feasibility of even-sized
convolutional kernels. We can improve hardware resource
utilization by introducing convolutional operations with even-
sized kernels. However, convolutional operations with even-
sized kernels lead to feature shifting problem [37]. For
example, in an NN where all convolutional operations are
with 2 × 2 kernels, the receptive field only contains the lower
right area and lacks features from other areas. Wu et al. [37]
proposed a symmetric padding method to alleviate the feature
shifting problem. The symmetric padding method splits input
feature maps into four subsets, and assigns the four subfeature-
maps with up, down, left, and right padding, respectively.
However, the symmetric padding method introduces four dif-
ferent padding types in the same input feature maps. Different
padding types make data at the same location on the input
feature maps be computed in different clock periods, which is
hard to implement on PIM architectures.

To address this problem, we propose the statistical equilib-
rium padding (SEP) method. Unlike the symmetric padding
method, the proposed SEP method assigns different padding
types in different input feature maps. Furthermore, for each
input feature map, there is only one type of padding pat-
tern. SEP method assigns random extra vertical and horizontal
padding to input feature maps of all convolutional operations
with even-sized kernels. The extra padding in the proposed
SEP method can be described as follows:

Paddingvertical = Xv, Xv ∼ B(1, 0.5)

Paddinghorizontal = Xh, Xh ∼ B(1, 0.5) (3)

where Paddingvertical and Paddinghorizontal denote the vertical
and horizontal extra padding in the input feature maps, respec-
tively. For example, Paddinghorizontal = 0 represents add extra
padding to the last column of the input feature maps, and
Paddinghorizontal = 1 represents add extra padding to the first
column. Moreover, B(1, 0.5) is a Bernoulli distribution with 1
as the number of independent experiments and 0.5 as the prob-
ability of success. In this way, each design candidate in the
NN structure search space has statistically the same left and
right, lower and upper padding to the feature maps, alleviating
the feature shifting problem.

As shown in Fig. 6, we compare the PIM-based NN accu-
racy and hardware performance among different convolutional
kernel patterns. Compared with the 3 × 3 kernel pattern,
the 2 × 2 kernel pattern achieves comparable accuracy and
reduces the area, latency, and energy consumption by around
40%, 60%, and 70%, respectively. Although the 1 × 1 kernel
pattern achieves the lowest area, latency, and energy consump-
tion, the accuracy loss is around 70% and is unacceptable for
deployment. Compared with the original 2 × 2 kernel pattern
without the SEP method, the 2 × 2 kernel pattern with the
SEP method can improve the accuracy by around 5% without



SUN et al.: GIBBON: AN EFFICIENT CO-EXPLORATION FRAMEWORK OF NN MODEL AND PIM ARCHITECTURE 4081

Fig. 6. PIM-based NN accuracy and hardware performance comparison
among different convolutional kernel pattern, i.e., 3 × 3 kernel, 2 × 2 kernel
with and without the SEP method, and 1 × 1 kernel. We select the rep-
resentative design candidate in the proposed topology search space as the
backbone.

Fig. 7. PIM-based NN accuracy and hardware performance compari-
son among different proportions of group convolutional operations in all
convolutional operations (G for all group convolutional operations is 2).

any hardware performance overhead. Note that we support not
only the 2 × 2 kernels but also 3 × 3 and 1 × 1 in our oper-
ation choice search space. We provide a possibility to utilize
2 × 2 kernels to improve the hardware performance, e.g., area
and latency.

Second, we introduce group convolutional operations into
the operation choice search space. The group convolutional
operation is a special kind of convolutional operation. It splits
the input and output feature maps into several groups in the
channel dimension. Afterward, the group convolutional oper-
ation performs typical convolutional computation for each
group independently. By splitting feature maps into G groups,
group convolutional operations can reduce the amount of com-
putation and weights to (1/G). Owing to the lower amounts
of computations and weights, group convolutional operations
are widely used in lightweight networks, e.g., MobileNet [38]
and ShuffleNet [39]. Furthermore, by dividing the input fea-
ture maps into G groups in the channel dimension, grouped
convolutional operations cut down the length of the input vec-
tor. Therefore, the energy consumption of analog-to-digital
conversions is reduced, improving the hardware performance.

As shown in Fig. 7, we compare the PIM-based NN accu-
racy and hardware performance among different proportions
of group convolutional operations. Baseline design candidates
do not contain any group convolutional operations and are
denoted by 0% G. 25% G represents that 25% of the total
convolutional operations are group convolutional operations.
And so as 50% G. Compared to the baseline candidates,
25% G and 50% G can achieve comparable accuracy and
latency. As for other hardware performance metrics, 50%
G decreases the area and energy consumption by around
10% and 30%, respectively. It should be noticed that not all

Fig. 8. Overview of the proposed ESAPP.

convolutional operations must be group convolutional opera-
tions in the proposed operation choice search space. Part of
the typical convolutional operations may stay the same dur-
ing the co-exploration process to obtain high PIM-based NN
accuracy.

To sum up, in the operation choice search space, we
explore the feasibility of even-sized convolutional kernels and
group convolutional operations. The proposed operation choice
search space is designed for PIM architectures and is friendly
for the NN model and PIM architecture co-exploration. To the
best of our knowledge, we are the first to introduce even-sized
convolutional kernels and group convolutional operations in
the PIM-oriented NAS field. Moreover, experimental results
show that the proposed operation choices can significantly
improve hardware performance with negligible accuracy loss.

V. EVOLUTIONARY SEARCH WITH ADAPTIVE

PARAMETER PRIORITY

The vast search space of the PIM-oriented co-exploration
poses search efficiency challenges in the application of the
evolutionary search. For instance, the total number of design
candidates reaches up to 4.3×1084 in our co-exploration space
of NN models and PIM architectures, resulting in hundreds of
GPU hours to find the optimal design. To address this problem,
we propose an ESAPP. ESAPP can be regarded as a dynamic
search space pruning method to improve search efficiency. As
shown in Fig. 8, it assigns different priorities to the design
hyperparameters, “omitting” mutation on unimportant hyper-
parameters. In our experimental results, ESAPP can reduce
the equivalent search space size3 from 4.3 × 1084 to roughly
1.3 × 1022 during the search process.

ESAPP leverages the idea of search space pruning to
improve search efficiency. In the children generation step

3The equivalent search space size is estimated by “omitting” design
hyperparameters with low priorities from the original search space.
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Fig. 9. Convergence of different design hyperparameters. The y-axis indicates
the proportion of the optimal candidates among all candidates (the closer to
1.0, the more convergent the hyperparameter is).

(a) (b)

Fig. 10. Hardware area comparison under different choices of design hyper-
parameters. (a) and (b) Design hyperparameters for the crossbar sizes and
ADC choices, respectively.

of each search iteration, ESAPP assigns a priority to each
design hyperparameter and determines which hyperparameters
to be mutated in this iteration. Specifically, we avoid mutating
design hyperparameters with low priorities, realizing equiv-
alent search space pruning. We assign low priorities to the
following two types of design hyperparameters.

The first type contains the design hyperparameters that
have been converged in the search process. As shown in
Fig. 9, different design hyperparameters show different con-
vergence curves. The block number hyperparameter converges
the fastest in around the 10th iteration. While the activa-
tion bit hyperparameter converges the slowest in around the
160th iteration. Searching the easy-to-converge hyperparam-
eters in the early search stage can help to save the search
efforts and pay more attention to the difficult-to-converge
hyperparameters in the later search stage. In the proposed
ESAPP, converged hyperparameters are assigned low priorities
to reduce the redundant search. We use Entropy to describe
the convergences of design hyperparameters, which can be
calculated as in

Entropy =
∑

vω∈�ω

−fvω log2
(
fvω

)
(4)

where �ω is the set of all possible values for one design hyper-
parameter ω. fvω represents the occurrence frequency for which
the value of ω is vω in the selected design candidate set.

The second type contains the design hyperparameters that
have little to do with the hardware performance. As shown
in Fig. 10, the impact of different design hyperparameters on
the hardware area performance is different. All possible ADC
choices result in similar hardware areas, and the difference

TABLE I
EQUIVALENT SEARCH SPACE SIZE OF ASSIGNING DIFFERENT METRICS

AS PRIORITIES TO THE DESIGN HYPERPARAMETERS

between the maximum and minimum is only 12%. As for the
crossbar size design hyperparameter, the difference between
the maximum and minimum rises to 90%. Therefore, we
should pay more attention to the crossbar size design hyper-
parameter for better hardware area. We utilize Intensity to
indicate the impact of design hyperparameters on the hardware
performance, which can be calculated as

Intensity = std(Perfω)/max(Perfω) (5)

where Perfω represents a hardware performance vector, and
we use Perfvω to denote the element in the vector. Perfvω

means the average performance of design candidates where
the value of ω is vω. std(·) and max(·) mean the functions
to get the standard deviation and the maximum, respectively.
Higher Intensity means that the design hyperparameter has a
greater impact on the target hardware performance. Searching
the design hyperparameters with low Intensity causes ineffec-
tive search. Therefore, ESAPP assigns low priorities to design
hyperparameters with low Intensity.

As shown in Table I, we compare the equivalent search
space size after adopting Entropy and Intensity. By assigning
Entropy and Intensity as the search priorities, the equivalent
search space size is reduced from 4.3×1084 to 9.3×1030 and
3.9 × 1042, respectively. To combine Entropy and Intensity,
we assign design hyperparameter priorities based on their
product. In this way, only design hyperparameters with both
high Entropy and high Intensity are assigned with high pri-
orities. Based on this kind of priority metric, the equivalent
search space size is reduced to 1.3 × 1022. Compared with
traditional search space pruning methods [40], ESAPP can
prevent the search from being stuck into the local optimum.
In traditional search space pruning methods, a hyperparameter
cannot become searchable again after being pruned out, lead-
ing to the local optimum. In contrast, ESAPP dynamically
adjusts the design hyperparameter priorities throughout the
search.

Algorithm 1 shows the details of the proposed ESAPP.
In each search iteration, ESAPP first selects design candi-
dates with good performance, e.g., top 100 design candidates,
(line 6). Then, we calculate the Entropy and Intensity based
on the selected design candidate set. Afterward, we assign
low priorities to design hyperparameters with low entropy and
low intensity (lines 8–13). Next, we determine the mutation
probability according to the design hyperparameter priorities
(line 15). Finally, the mutation is executed to generate the new
candidates for the next search iteration (lines 16–21).
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Algorithm 1 Pseudocode of ESAPP
Input:

1: Population: {Candidate}i−1
2: History priority table: HPT
3: Evaluation results of candidates: Perf

Output: New population: {Candidate}i

4: Initialize {Candidate}i: {Candidate}i.init()
5: Select good candidates as parents:
6: Parents = sort_select(Perf , {Candidate}i−1)

7: For hyperparam. x, cal. entropy and intensity in parents:
8: Entropyx = cal_e(Parents)
9: Intensityx = cal_i(Parents)

10: Update HPT:
11: HPT = HPT.append({Entropyx, Intensityx})
12: Assign priorities to each hyperparam.:
13: Priorityx = calc_p(HPT)

14: Determine the mutation probability of each hyperparam.:
15: Probx = Priorityx/

∑
j(Priorityj)

16: //Mutate according to {Probx}:
17: for each parent in Parents do
18: child = mutate(parent, {Probx})
19: {Candidate}i.append(parent)
20: {Candidate}i.append(child)

21: end for

VI. MULTILEVEL JOINT SIMULATOR

As mentioned in Section III, we utilize a simulator to
evaluate the hardware performance of the sampled design can-
didates. On the one hand, based on the evaluation results, we
update the sampling strategy in the search algorithm to find
the optimal design. Imprecise evaluation results lead to inaccu-
rate sampling strategy and, thus, harm the search performance.
On the other hand, thousands of design candidates will be
evaluated throughout the search. As a result, design candidate
evaluation takes more than 95% of the total search time con-
sumption. Therefore, it is necessary to construct a precise and
efficient simulator to evaluate the design candidates.

However, existing PIM simulators are not efficient and
are unsuitable for the NN model and PIM architecture
co-exploration. For example, NACIM [13] and UAE [14]
adopt NeuroSim [17] as the hardware performance simula-
tor. MNSIM 2.0 [33] is another popular and commonly used
PIM simulator. NeuroSim and MNSIM 2.0 require ∼10 min to
evaluate the hardware performance of a design candidate [33].
Since thousands of design candidates need to be evaluated in
the co-exploration process, minute-level PIM simulators will
consume unacceptable search time.

To tackle this problem, we propose a multilevel joint sim-
ulator. Inside the joint simulator, we construct an efficient
RNN-based predictor to predict the hardware performance of
the design candidates. We utilize the efficient predictor to filter
the design candidates with low hardware performance coarsely.
Afterward, the PIM simulator evaluates the filtered design can-
didates precisely. Therefore, the number of design candidates
evaluated by the time-consuming PIM simulator is greatly
reduced, significantly reducing the search time. To ensure a

Fig. 11. Overview of our RNN-based predictor. The predictor has three key
components: the design candidate embedder, the RNN-based feature extractor,
and the MLP-based regressor.

precise prediction, we train the predictor with the precise and
sufficient evaluation results generated by the PIM simulator.

A. Evaluation Metric

As shown in Fig. 11, the inputs of the efficient predictor
are the description of the NN models and PIM architectures
in the design candidates, such as crossbar sizes, ADC/DAC
resolutions, and kernel sizes. Moreover, the outputs are the
PIM-based NN accuracy and other hardware performance,
such as the area, power, energy consumption, and latency. For
performance predictors, ranking quality has been proven to
be the critical criterion in existing NAS studies [41]. In this
article, we adopt Kendall’s Tau (KD) ranking correlation coef-
ficient as the evaluation metric for the predictor. Its calculation
goes as follows:

KD =
∑

i<j

sign
(
yi − yj

)
sign

(
si − sj

)
/
(M

2

)
(6)

where M denotes the total number of design candidates, and
yi and si represent the ground-truth hardware performance
and predicted hardware performance, respectively. sign(·) is
the sign function. A higher KD coefficient indicates that the
ranking of predictions is more similar to that of ground truth.

Compared with the typical linear correlation coefficient,
the ranking correlation coefficient can better reflect the
performance ranking among design candidates. Therefore, it
helps us to filter the design candidates with poor hardware
performance precisely. Moreover, a high linear correlation
coefficient does not always mean a high ranking correla-
tion coefficient. For instance, the linear correlation coefficient
of [0, 0.49, 0.5, 0.51, 1] and [0, 0.51, 0.5, 0.49, 1] is 0.9992.
Meanwhile, for the ranking correlation coefficient, the KD
coefficient is only 0.3999, which is much lower than the lin-
ear correlation coefficient. Therefore, we should not adopt
the linear correlation coefficient to measure the predictor
performance.

The efficient predictor is constructed based on the RNN
structure. Furthermore, as depicted in Fig. 11, the RNN-
based predictor consists of three key components: 1) the
design candidate embedder; 2) the feature extractor; and
3) the regressor.
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B. Design Candidate Embedder

The design candidate embedder transforms the discrete
description of the NN models and PIM architectures in the
design candidates into continuous embedding vectors. The
description of the design candidates is discrete. For instance,
the kernel size of a convolutional operation belongs to a finite
set {1, 2, 3} in our NN structure search space. And assigning 1.2
as the kernel size is invalid and meaningless. The description
of the design candidates has an inherent correlation between
different types of description. For example, a convolutional
operation with 16 input channels and 2 × 2 kernels consumes
64 (= 16 × 22) crossbar word lines. While another convo-
lutional operation with 64 input channels and 1 × 1 kernels
consumes 64 (= 64 × 12) crossbar word lines too.

Taking the discrete description as the inputs makes it hard
to train the predictor and is unable to reflect the description’s
inherent correlation. To address this problem, we construct a
description embedding method to transfer the discrete descrip-
tion into embedding vectors. The embedding vectors are in a
continuous space, helping us to train the predictor. Furthermore,
different description types may have close embedding vectors,
reflecting the description’s inherent correlation. The description
embedding process goes as follows:

V = CodeBookn[D] (7)

where D denotes the description index and V represents the
output embedding vector. CodeBookn means a list of embedding
vectors, each element being a trainable n-dimensional vector.
For example, supposing the kernel size belongs to a finite
set {1, 2, 3}, the description index of kernel_size = 1 is 0
(the index in the set). Then, the output embedding vector is
the first element in the CodeBookn. Moreover, for different
description types, we set different CodeBooks. Based on the
proposed description embedding method, we utilize efficient
gradient-based optimization methods, e.g., stochastic gradient
descent (SGD) [42], to train the predictor efficiently. In the
optimization process, we also adopt gradient-based optimization
on the embedding vectors of the CodeBooks. Therefore, we
can construct the description’s inherent correlation.

C. Feature Extractor

The feature extractor takes the former embedding vectors as
the inputs and extracts the features of the design candidates.
Each design candidate in our co-exploration space contains
five stages, and each stage is stacked with multiple blocks.
These blocks have the following characteristics. For one thing,
all blocks in design candidates are isomorphic and share the
same basic block structure. The description of blocks con-
stitutes sequential data, and each element means the block
input features. For another, the numbers of the blocks are var-
ious in different design candidates. RNNs [19] are commonly
used network structures to process sequential data, which are
able to handle variable-length data. Therefore, we propose an
RNN-based feature extractor.

In the proposed RNN-based feature extractor, besides the
embedding vector of the block structure and hyperparameters,

(a) (b)

Fig. 12. KD coefficient comparison of the feature extractors with and with-
out the hardware description for the prediction of (a) area and (b) energy
consumption.

we also introduce the embedding vectors of the PIM architec-
tures as the block input features. Block input features without
the embedding vectors of the PIM architectures make it dif-
ficult to model the block hardware performance, e.g., the
area and energy consumption. Therefore, introducing the hard-
ware description helps us better model the design candidates’
hardware performance, especially, for the area and energy
consumption. As shown in Fig. 12, we compare the KD coef-
ficient of the feature extractors with and without the hardware
description as the block input features for the area and energy
consumption. Experimental results show that introducing the
hardware description into the block input features improves
the KD coefficient by around 10% and 5% for the area and
energy consumption, respectively.

D. Regressor

The regressor in our predictor is a three-layer multilayer
perception (MLP). It outputs the final predicted results based
on the extracted features from the RNN-based feature extrac-
tor. As mentioned before, we adopt the KD ranking correlation
coefficient as the evaluation metric for the predictor. However,
typical regression loss functions, e.g., mean-absolute error
(MAE, L1) loss and mean-squared error (MSE, L2) loss, are
designed to optimize the linear correlation coefficient and are
not suitable to optimize the ranking correlation coefficient.
To improve the predictor performance, we construct the KD
ranking loss function based on the ranking loss function in
Gates [41] as the surrogate loss to optimize the KD ranking
correlation. Our KD ranking loss function is named random
pair margin loss (RPM loss). The RPM loss function goes as
follows:

Loss =
∑

i<j

max
(
0,−sign

(
yi − yj

) · (
si − sj

) + margin
)

(8)

where yi and si represent the ith ground-truth hardware
performance and predicted hardware performance, respec-
tively, margin represents the margin to control the loss func-
tion. The similar form to (6) enables the proposed RPM
loss function to directly optimize the KD ranking correlation
coefficient, realizing end-to-end gradient-based optimization.

As shown in Fig. 13, we compare the KD coefficients under
L1 loss, L2 loss, and the proposed RPM loss functions for
the area and energy consumption prediction. The experimen-
tal results show that our RPM loss function always reaches the
best KD ranking correlation coefficient. Compared to the L1
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(a) (b)

Fig. 13. KD coefficient comparison under different loss functions, i.e., L1
Loss, L2 Loss, and the proposed random pair margin (RPM) loss, for the
prediction of (a) area and (b) energy consumption.

Fig. 14. KD coefficients of the prediction-for-difference predictor and the
vanilla predictor on the same validation set of candidate designs.

loss function, the proposed RPM loss improves the KD coef-
ficient by around 1% for both area and energy consumption
prediction.

E. Differential Accuracy Predictor

Unlike other CMOS-based NN accelerators, PIM architec-
tures face more severe computing errors caused by nonideal
factors (e.g., device variation) and hardware quantization
errors (e.g., ADC quantization). Thus, it is vital to predict
the PIM-based NN accuracy precisely and efficiently during
the co-exploration process. The PIM-based NN accuracy is
heavily affected by the weights of NN models. However, the
well-trained weights require a long training time, damaging
the efficiency of the predictor. To tackle this problem, we pro-
pose an accuracy predictor which is independent of the NN
weights. Different from vanilla predictor-based NAS meth-
ods [41] that predict the accuracy directly, Gibbon proposes
to predict the relative accuracy loss brought by PIM architec-
ture of a candidate design, as shown in Fig. 11. We use the
one-shot accuracy [28] as the base accuracy, and the one-shot
weights in the supernet are updated jointly in search iterations.
Thanks to the design of “prediction for difference,” the pre-
dictor only has to model the effects brought by the nonideal
factors of PIM architectures, which is an easier problem than
predicting the absolute accuracy.

Therefore, Gibbon manages to train a more accurate predic-
tor with a small amount of evaluation results as training data.
The experimental results in Fig. 14 show that the “prediction-
for-difference” predictor can give out predictions with better
KD ranking quality (∼10% improvement) using the same
amount of training data.

F. Predictor Performance

To demonstrate the effectiveness of our predictor, we com-
pare the evaluation time of the proposed predictor and the

(a) (b)

Fig. 15. (a) Evaluation time cost comparison of our predictor and the baseline
PIM simulator. (b) Prediction results normalized to PIM simulator (Acc. and
Lat. represent PIM-based NN accuracy and computing latency, respectively).

baseline PIM simulator, i.e., MNSIM 2.0. Fig. 15(a) shows
that the baseline PIM simulator takes 549 s to evaluate one
design candidate on average. Meanwhile, our predictor con-
sumes only 7.59 s on average, reducing the evaluation time by
98.6%. And Gibbon uses the predictor to substitute for 95%
of the simulation workload. As for the prediction error of our
predictor, compared with the baseline PIM simulator, the rela-
tive prediction error is only 1.6% and 0.4% for the PIM-based
NN accuracy and latency, respectively, as shown in Fig. 15(b).

G. Predictor Construction

To obtain a precise predictor, we need to carry out two steps:
1) constructing the training set and 2) updating the weights
of the predictor. The training set is constructed based on the
PIM-oriented search space and the hardware performance sim-
ulator, e.g., MNSIM 2.0 [33] and NeuroSim [17]. First, we
randomly sample 300 design candidates from the PIM-oriented
search space. Afterward, we conduct performance simulation
for these design candidates based on a time-consuming PIM
simulator to acquire the PIM-based NN accuracy and hardware
performance, e.g., area and EDP. Finally, 300 pairs of design
candidates and their performance results constitute the training
set of the predictor. The NN structure in each design candi-
date contains ten basic blocks, and the block structure affects
the hardware performance directly. Therefore, the training set
contains 3000 basic blocks. And our experimental results show
that 300 pairs of design candidates and their performance are
enough to train a precise performance predictor. The next step
is updating the weights of the predictor based on the training
set. We utilize gradient-based optimization methods to train
the predictor iteratively. It should be noticed that once the pre-
dictor is obtained, we can apply it in Gibbon under different
optimization targets.

VII. EXPERIMENTAL RESULTS

A. Experiment Setup

Gibbon is developed based on aw_nas [43], an open-source
NAS framework. Details of the searchable design hyperparam-
eters are summarized in Table II. In this article, we use the
most mature 1-bit and 2-bit memristors, and Gibbon also sup-
ports the search of other device precision. We adopt MNSIM
2.0 [33] as the baseline simulator to generate evaluation results
for the predictor (other PIM simulators can also be used
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TABLE II
NN STRUCTURE AND PIM-RELATED SEARCH SPACE

TABLE III
PERFORMANCE (PIM-BASED NN ACCURACY, EDP, AREA, AND SEARCH

TIME) COMPARISON OF DIFFERENT CO-EXPLORATION

METHODS UNDER CIFAR-10 DATASET

in Gibbon). The data of memristors, ADCs, and DACs in
Gibbon refers to the default values provided by MNSIM 2.0.
NACIM [13], UAE [14], and NAS4RRAM [15] are selected
as the baseline NN model and PIM architecture co-exploration
methods. We evaluate the proposed co-exploration framework
on the CIFAR-10 and CIFAR-100 [8] datasets. We utilize
MNSIM 2.0 to conduct performance simulation results for all
experiments. The co-exploration process and performance sim-
ulation are performed in Intel Xeon E-5 2630 processors. We
use NVIDIA R© GeForce R© RTX 2080 Ti devices to speed up
the co-exploration.

B. Co-Exploration Results Comparison

Table III provides the co-exploration result comparison
between Gibbon and other PIM-oriented NAS methods on
the CIFAR-10 dataset. For a fair comparison, we evaluate
the NN models discovered by NACIM [13] with MNSIM
2.0 to acquire the hardware performance. UAE [14] and
NAS4RRAM [15] only provide PIM-based NN accuracy
without giving other hardware performance. We also com-
pare Gibbon with the vanilla CARS [28] co-exploration
method without the proposed ESAPP and the predictor. We
provide the co-exploration results of Gibbon under three
different optimization targets (adjust the weight of each objec-
tive in the search reward): 1) Energy–Delay Product (EDP)
optimization; 2) Area optimization; and 3) PIM-based NN
accuracy optimization. All co-exploration time consumption
is evaluated on the same Nvidia RTX 2080 Ti device.

Compared with other PIM-oriented NAS work, Gibbon
can achieve 4.6%–15.3% PIM-based NN accuracy promotion

TABLE IV
PERFORMANCE (PIM-BASED NN ACCURACY, EDP, AREA) COMPARISON

OF THE MANUALLY DESIGNED NNS AND THE PROPOSED

CO-EXPLORATION FRAMEWORK UNDER CIFAR-10 DATASET

TABLE V
PERFORMANCE (PIM-BASED NN ACCURACY, EDP, AND AREA)

COMPARISON OF THE MANUALLY DESIGNED NNS AND THE PROPOSED

CO-EXPLORATION FRAMEWORK UNDER CIFAR-100 DATASET

in only six search hours. Gibbon improves the search effi-
ciency by 9.8×–48.2×. Furthermore, compared with the
vanilla CARS method, the proposed ESAPP and predictor
show 12× co-exploration speed-up with better co-exploration
performance. In terms of hardware performance, Gibbon with
the EDP optimization achieves 5.96× EDP reduction with
9.5% accuracy improvement. As for the area, Gibbon with
the area optimization realizes 1.25× area reduction.

We compare the co-exploration results of Gibbon with the
manually designed NNs, e.g., AlexNet [44], two kinds of
VGG [18], [45], and ResNet [34], on both the CIFAR-10
and CIFAR-100 datasets. As shown in Tables IV and V, com-
pared with manually designed NNs, Gibbon with the EDP
optimization reduces EDP by 1.46×–234.1×, and Gibbon with
the area optimization reduces the area consumption by 5.47×–
36.5×. As for the PIM-based NN accuracy optimization,
Gibbon can achieve 14.1× EDP reduction and 5.12× area
reduction on average with comparable PIM-based NN accu-
racy. The slight accuracy loss comes from that we limit the
output channel numbers of convolutional operations to 96 for
lower hardware resource cost. Meanwhile, those of manually
designed NNs can rise to 512 or 1024 (5.33×–10.6×).

Fig. 16 demonstrates the PIM-based NN accuracy and EDP
performance of Gibbon with different optimization targets and
NACIM. The performance results of Gibbon w/o ESAPP and
w/ESAPP are provided under the same search time. The supe-
riority of Gibbon w/ESAPP shows that ESAPP can find better
results in the same search time. Compared with the NACIM
method, Gibbon with EDP optimization can find the better
Pareto frontier with lower EDP and higher PIM-based NN
accuracy.
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Fig. 16. Co-exploration results (PIM-based NN accuracy and EDP) of
NACIM, Gibbon with EDP optimization w/ and w/o ESAPP.

Fig. 17. PIM-based NN accuracy loss and hardware performance comparison
among different crossbar sizes.

VIII. INSIGHTS PROVIDED BY GIBBON

By inspecting the NN models and PIM architectures dis-
covered by Gibbon, we find some interesting observations as
follows, hoping to provide some design suggestions for the
co-design of the NN models and PIM architectures in the
future.

Insight 1: Gibbon with EDP optimization finds that most
convolutional operations tend to select even-sized kernels.
When other design hyperparameters stay the same, design can-
didates with 2 × 2 kernels can decrease ∼84% EDP and ∼35%
area compared with those with 3 × 3 kernels.

Insight 2: Gibbon with PIM-based NN accuracy
optimization finds that convolutional operations in the
head and tail blocks tend to have larger output channels,
e.g., 64, while those in the middle blocks have smaller ones,
e.g., 16.

Insight 3: Gibbon with PIM-based NN accuracy
optimization finds that the deeper convolutional opera-
tions tend to choose high quantization bitwidth of weights.
At the same time, the shallower convolutional operations
prefer low weights precision. For the activation quantization,
both the head and tail convolutional operations prefer high
bitwidth, while the middle tends to choose low bitwidth for
lower hardware resource cost.

Insight 4: On the CIFAR-10 and CIFAR-100 dataset, the
PIM-based NN accuracy of 8-bit ADCs is close to that of
10-bit ADCs (i.e., 0.2% accuracy difference). Nevertheless,
6-bit ADCs lead to non-negligible accuracy loss.

Insight 5: Gibbon with EDP optimization finds that the
number of output channels of blocks in the early stages
impacts the total latency significantly. Gibbon with the latency
optimization tends to assign smaller output channels in the
early stages.

Insight 6: As shown in Fig. 17, we compare the aver-
age accuracy loss and hardware performance under different

crossbar sizes based on the predictor. 64 × 64 crossbars real-
ize the lowest accuracy loss, which is ∼36% lower than other
crossbar sizes. Gibbon with area optimization also finds that
crossbars in size of 64 × 64 realize the smallest area. The
energy and latency optimal PIM design tends to choose a large
crossbar size (e.g., 256 × 256), which can reduce the amount
of analog-to-digital conversions. Compared with crossbars in
size of 128×128, PIM architectures with 256×256 crossbars
can reduce energy consumption by around 68%.

IX. CONCLUSION

In this article, we propose Gibbon to efficiently co-
explore the NN model and PIM architecture. Compared with
existing PIM-oriented NAS work, Gibbon leverages ESAPP
and an RNN-based predictor to improve search efficiency.
Experimental results show that Gibbon can achieve 9.8×–
48.2× co-exploration speedup with up to 15.3% PIM-based
NN accuracy improvement and 5.96× EDP reduction com-
pared with existing work.
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