
3958 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

Heuristic Logic Resynthesis Algorithms
at the Core of Peephole Optimization

Siang-Yun Lee and Giovanni De Micheli , Life Fellow, IEEE

Abstract—Logic resynthesis is one of the core problems in
modern peephole logic optimization algorithms. Given a target
function and a set of existing functions, logic resynthesis asks for
a circuit reusing some of the existing functions and generating the
target. While exact methods, such as enumeration and SAT-based
synthesis, guarantee optimal solutions, limitations on the problem
size are inevitable due to scalability concerns. In this work,
we propose heuristic resynthesis algorithms for AND-based,
majority-based, and multiplexer-based circuits, which are scal-
able in all aspects. Used as the core of high-effort optimization,
our heuristic resynthesis algorithms play a key role in enabling
2%–3% further size reduction on benchmarks that are already
processed by state-of-the-art optimization flows.

Index Terms—Boolean resubstitution, combinational circuit,
logic synthesis, peephole optimization, resynthesis.

I. INTRODUCTION

LOGIC synthesis plays an important role in modern elec-
tronic design automation flows, optimizing gate-level

netlists, and removing redundant logic in them [1], [2], [3].
Peephole optimization is a divide-and-conquer strategy to
maintain scalability of logic synthesis algorithms, where small
portions of a circuit, often referred to as windows or cuts,
are extracted, optimized independently, and substituted back.
With the large scale of designs nowadays, most logic synthesis
algorithms, such as rewriting [4], [5], [6], [7], resubstitu-
tion [4], [8], [9], [10], refactoring [4], [9], [11], etc., fall into
the category of peephole optimizations.

One of the important steps in any peephole optimization
algorithm is resynthesizing the extracted subcircuit into a bet-
ter one. In this work, we define the logic resynthesis problem
as a generalized formulation of this step: the problem is given
a target function, which is usually the root of a cut or the
output(s) of a window, and some divisor functions, which are
existing functions from neighboring nodes in the network. The
resynthesis problem asks for a dependency circuit, computing
a dependency function, that takes as inputs a subset of divi-
sor functions and generates the target function at the output.
If the solution is better than the original subnetwork in the

Manuscript received 7 November 2022; revised 24 January 2023; accepted
3 March 2023. Date of publication 13 March 2023; date of current ver-
sion 20 October 2023. This work was supported by the SNF Grant
“Supercool: Design Methods and Tools for Superconducting Electronics,”
under Grant 200021_1920981. This article was recommended by Associate
Editor L. Amaru. (Corresponding author: Siang-Yun Lee.)

The authors are with the Integrated Systems Laboratory, Swiss Federal
Institute of Technology Lausanne, 1015 Lausanne, Switzerland (e-mail:
siang-yun.lee@epfl.ch).

Digital Object Identifier 10.1109/TCAD.2023.3256341

predefined cost metric, then it can be used to substitute the
targeted node.

Various resynthesis strategies are adopted by different logic
synthesis algorithms. For example, in cut rewriting, the divi-
sor functions are always the projection (identity) functions and
the target function has a small number of inputs (usually 4),
thus the optimal dependency circuit can be looked up from a
precomputed database [4], [5] or be synthesized by SAT solv-
ing [6], [7]. As another example, in refactoring, the divisor
functions are also the projection functions, but the dependency
circuit is synthesized by two-level logic optimization [4], [9].
In contrast, in resubstitution, divisor functions other than only
the projection functions are collected and used as stepping
stones to construct the target function. As the number of all
possible sets of divisor functions is very large, a resubstitution
algorithm has to investigate the divisor functions and resynthe-
size the dependency circuit on the fly. Previous resubstitution
works mostly attempt to enumerate small dependency circuits
and compare them to the target function [4], [9], [10]. The
drawback of this approach is that the dependency circuit is
limited to a small size, as otherwise the search space becomes
too big.

With the introduction of the simulation-guided logic syn-
thesis paradigm [12], where simulation signatures are used
to approximate global logic functions, it becomes afford-
able to extend the window sizes in peephole optimization.
Craving for better optimization effort, resynthesis methods
capable of optimizing more complex functions, which require
larger dependency circuits, are in need. In a highly optimized
network where rewriting with a small cut size cannot make any
further optimization, there may still be hidden optimization
opportunities requiring the involvement of a larger portion of
the network. In some cases, not only a larger cut (and thus a
larger window) needs to be considered but the resynthesized
subnetworks should also not be limited to small ones.

In this article, we research on the problem of logic resyn-
thesis and propose resynthesis algorithms for networks based
on AND, MAJ, or MUX gates, targeting size optimization.1

The proposed algorithms share the following characteristics.
1) Support for Incomplete Functions and Don’t Cares: The

divisor and target functions may be given as completely
specified Boolean functions or partial simulation sig-
natures [12]. The algorithms resynthesize dependency

1This manuscript is an extension to and summary of two of the authors’
previous works: AND-based resynthesis was first proposed in [13] and MAJ-
based resynthesis was first proposed in [14], whereas MUX-based resynthesis
is new in this manuscript.

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5907-2314
https://orcid.org/0000-0002-7827-3215

LEE AND MICHELI: HEURISTIC LOGIC RESYNTHESIS ALGORITHMS AT THE CORE OF PEEPHOLE OPTIMIZATION 3959

circuits satisfying the given parts of functions and make
no assumption on the uninformed parts. Moreover, don’t
cares of the target function may be given, and the algo-
rithms take advantage of this information to resynthesize
smaller dependency circuits.

2) Heuristic But Unlimited: Optimality may only be guar-
anteed when the optimal solution is small. It is also not
guaranteed that a solution is always found. Nevertheless,
there is no limit on the possible solution size. When a
small-sized solution does not exist, the heuristic may still
find a bigger solution which exact methods can never
find within reasonable runtime.

3) Top-Down Decomposition: Although the three proposed
algorithms are designed differently, they all start from
choosing “good” divisors based on some evaluation cri-
teria involving the target function. Then, if the target
cannot be realized within a few gates, it is decomposed
into easier-to-realize targets by a gate on top.

The proposed heuristic resynthesis algorithms have better
complexities comparing to existing exact algorithms, while
compromising with little overhead in the quality of result com-
paring to optimal solutions. With their high efficiency and
unlimited problem size, heuristic resynthesis is the only prac-
tical candidate to serve as the core of high-effort peephole
optimization. Experimental results show that our proposed
techniques enable 2%–3% additional size reduction on bench-
marks which are already highly optimized by state-of-the-art
flows, achieved within less than 50% runtime of the state-of-
the-art flows.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Boolean Functions and Truth Tables

A Boolean variable is a variable taking values in the
Boolean domain B = {0, 1}, and a Boolean function is a
function of Boolean variables. Unless otherwise specified, all
functions in the remaining of this article are single-output
Boolean functions.

There are several possible representations of Boolean func-
tions, such as propositional formulas, Boolean chains [15],
binary decision diagrams [16], and truth tables. We use the
conventional Boolean operators when writing propositional
formulas (¬ for NOT, ∧ for AND, ∨ for OR, ⊕ for XOR, and
↔ for XNOR). In this article, the truth table T[f] of a k-input
Boolean function f : Bk → B is a bit-string u = u1 · · · ul, i.e.,
a sequence of bits, of length l = 2k. The bit ui ∈ B at the ith
position (0 ≤ i < l), denoted as T[f]i, is equal to the output
of f under the input assignment
a = (a1, . . . , ak), where

2k−1 · ak + · · · + 20 · a1 = i. (1)

The assignment
a ∈ B
k is also called a minterm in the input

space of f . If T[f]i = f (
a) = 1,
a is said to be an onset
minterm; otherwise, if T[f]i = f (
a) = 0,
a is said to be an
offset minterm.

We use

ONES(f) =
l−1∑

i=0

T[f]i (2)

to denote the number of 1 bits in the truth table of f , which is
also the number of onset minterms, or the size of the onset.

Truth tables are manipulated by carrying out the usual
Boolean operations on all of their bits. Suppose that u =
u1 · · · ul and v = v1 · · · vl are two truth tables of length l, and
α : B→ B and β : B2 → B are, respectively, unary and binary
Boolean operations, then α(u) = α(u1) · · ·α(ul) and β(u, v) =
β(u1, v1) · · ·β(ul, vl). Such truth table manipulations can be
highly efficiently implemented with the bit-parallel operations
supported by modern CPUs [17]. The bits of the truth tables
are split into buckets of 32- or 64-bit machine words and each
bucket is processed in one machine instruction.

B. Logic Resynthesis

Logic resynthesis (or simply resynthesis) is the problem of
re-expressing a function in terms of other functions.

Problem Formulation 1 (Resynthesis): Given a target func-
tion (or simply target) f : Bk → B over k Boolean variables

x = (x1, . . . , xk) and a collection G = {g1, . . . , gn} of n divi-
sor functions (or simply divisors) gi : Bk → B, 1 ≤ i ≤ n over
the same variables, find a dependency function h : Bn → B

satisfying

f (
x) = h(g1(
x), . . . , gn(
x)) ∀
x ∈ B
k. (3)

In this formulation, variables x1, . . . , xk are not inputs of the
function h, but any subset of them may be embedded as divi-
sors by defining, for example, g1(
x) = x1. Also, the expression
of h does not necessarily depend on all of its n inputs. In prac-
tice, a resynthesis problem may be further restricted by, for
example, a set of logic operations or the number of opera-
tions allowed to be used in the expression of the dependency
function. This will be further introduced in Section II-D.

Example 1 (Unrestricted Resynthesis): Given the target
function

f (x1, x2, x3) = (x1 ∧ x2) ∨ (¬x2 ∧ ¬x3) (4)

and the divisor set

G =
{

g1(x1, x2, x3) = x1 ∧ ¬x2

g2(x1, x2, x3) = ¬x2 ∧ x3

g3(x1, x2, x3) = x3

g4(x1, x2, x3) = x1 ↔ x2

}
(5)

one possible dependency function is

h(g1, g2, g3, g4) = (g1 ∨ g4) ∧ ¬g2. (6)

Notice that (3) is satisfied because

h = ((x1 ∧ ¬x2) ∨ (x1 ↔ x2)) ∧ ¬(¬x2 ∧ x3)

= (x1 ∧ x2) ∨ (¬x2 ∧ ¬x3) = f . (7)

The resynthesis problem can be seen as a generalization
of the classical logic synthesis problem, where an expression
or realization of h over the same variables x1, . . . , xk as f is
sought for, i.e., G is restricted to {g1 = x1, . . . , gk = xk}. Logic
resynthesis is different from logic decomposition [18], [19]
or functional decomposition [20], [21], where the problem
is not limited to a given divisor collection G, but involves

3960 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

identifying the needed divisors. In contrast, solving resynthe-
sis problems can be seen as the core step in a resubstitution
algorithm [4], [8], [9], [10].

C. Logic Networks

Logic networks, or simply networks, are gate-level rep-
resentations of digital circuits commonly used as the data
structure during logic optimization. Networks are directed
acyclic graphs (DAGs), where nodes model logic gates chosen
from a predefined set, and edges model interconnecting wires.
Edges may optionally be tagged as being complemented, rep-
resenting an inverter on the wire. Incoming edges of a node
are called fanins, whereas outgoing edges are called fanouts.
For convenience, nodes having fanouts pointing to a common
node (i.e., fanin nodes of a node) are said to be siblings of
each other. The size of a network is determined by its number
of nodes, whereas inverters are, in this article, not counted
toward the network size.

Prominent examples of logic networks include and-inverter
graphs (AIGs), where each node represents a two-input AND
gate, and majority-inverter graphs (MIGs) [22], where each
node represents a three-input majority (MAJ) gate. The MAJ
gate computes the majority function M of its fanins [23], i.e.,

M(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x3). (8)

Extending the gate library with XOR gates, the Xor-AIG (XAG)
is a logic network where nodes can be either a two-input AND
gate or a two-input XOR gate. Another interesting type of
networks is the multiplexer-inverter graph (MuxIG), where
each node represents a 2-to-1 multiplexer (MUX) gate. The
MUX gate has three nonsymmetric inputs: 1) the S-input as
the selection (“if”) signal; 2) the T-input as the “then” signal;
and 3) the E-input as the “else” signal. The function computed
by a MUX gate can be written as

MUX(s, t, e) = (s ∧ t) ∨ (¬s ∧ e). (9)

D. Peephole Optimization

Peephole optimization is a class of logic optimization algo-
rithms that repeatedly select a small subnetwork, optimize it,
and replace the subnetwork with an optimized one. A number
of well-known logic optimization algorithms fall into this cate-
gory, such as cut rewriting [5], [7], resubstitution [8], [9], [12],
and window rewriting [13]. Logic resynthesis can be used in
the second step of peephole optimization, i.e., optimizing the
selected subnetwork by resynthesizing the output function(s)
of the subnetwork. For details in the other steps, such as cut
computation, windowing, collecting divisors, and evaluation
of candidate replacement subnetworks, we refer the interested
readers to the literature cited above. In this work, we focus
on the resynthesis problem for AND-based, MAJ-based, and
MUX-based circuits targeting size optimization. That is, the
dependency function h is represented by an AIG, XAG, MIG,
or MuxIG, called the dependency circuit, and the optimization
goal is minimizing its size.

Example 2 (MIG Resynthesis Targeting Size Optimization):
Given the target function

f (x1, x2, x3) = x1 ⊕ x2 ⊕ x3 (10)

and the divisor set

G =
{

g1(x1, x2, x3) = x1

g2(x1, x2, x3) = x2

g3(x1, x2, x3) = x3

g4(x1, x2, x3) = M(¬x1, x2, x3)

g5(x1, x2, x3) = M(¬x1,¬x2, x3)
}

(11)

extracted from an MIG by a peephole optimization algorithm.
The resynthesis problem is restricted to use only majority gates
and inverters, and solutions with fewer gates are preferred. One
possible dependency function is

h(g1, g2, g3, g4) = M(¬g2, g4,¬g5) (12)

whose corresponding dependency circuit has the least possible
size of 1.

E. Don’t-Care-Based Optimization

Most modern logic optimization algorithms place emphasis
on the computation and utilization of don’t cares, which are
flexibilities in logic functions [24]. The peephole optimization
algorithms mentioned in Section II-D are all examples of
don’t-care-based optimization [5], [7], [8], [9], [12], [13].
When solving the resynthesis problem as part of peephole
optimization, it is important to take the computed don’t cares
into account. Although don’t cares may come from differ-
ent sources, namely, satisfiability don’t cares and observability
don’t cares, they can be treated the same when formulating the
resynthesis problem. Formally, the don’t-care set of a single-
output Boolean function is defined as the set of minterms (i.e.,
input value assignments) for which the output value is allowed
to be either 0 or 1.

Problem Formulation 2 (Resynthesis With Don’t Cares):
Given a target function f : Bk → B over k Boolean variables

x = (x1, . . . , xk), a don’t-care set D ⊆ B

k, and a collection
G = {g1, . . . , gn} of n divisor functions gi : B

k → B, 1 ≤
i ≤ n over the same variables, find a dependency function
h : Bn → B satisfying

f (
x) = h(g1(
x), . . . , gn(
x)) ∀
x ∈ B
k\D. (13)

For convenience, we define the care set C = B
k\D and the

care function c : Bk → B, where

c(
x) =
{

1,
x ∈ C
0,
x ∈ D.

(14)

Thus, (13) is equivalent to

f (
x) = h(g1(
x), . . . , gn(
x)) ∀
x ∈ B
k s.t. c(
x) = 1. (15)

Moreover, if we define the target onset function fon = f ∧c and
the offset function foff = ¬f ∧c, then (13) is also equivalent to

h
(

g1(
x), . . . , gn(
x)
)
=⇒ ¬foff(
x) and

fon(
x) =⇒ h
(

g1(
x), . . . , gn(
x)
)
∀
x ∈ B

k. (16)

Example 3 (Resynthesis With Nonempty Don’t-Care Set):
Suppose we have the same target function f and divisor set G

LEE AND MICHELI: HEURISTIC LOGIC RESYNTHESIS ALGORITHMS AT THE CORE OF PEEPHOLE OPTIMIZATION 3961

as in Example 1 [(4) and (5), respectively]. Additionally, we
are now given the care function

c(x1, x2, x3) = x2 ∨ (x1 ↔ x3).

In other words, the don’t-care set D = {(1, 0, 0), (0, 0, 1)} is
nonempty. For this relaxed problem, one possible dependency
function is

h(g1, g2, g3, g4) = g4 (17)

which is simpler than (6) thanks to the provided don’t cares.
Notice that (13) is satisfied because the difference between f
and h (f ⊕h = {(1, 0, 0), (0, 0, 1)}) does not intersect with the
care set.

F. Simulation-Guided Logic Synthesis

The simulation-guided paradigm [12] is a logic synthe-
sis and verification model where partial simulation signatures
are used to approximate the global functions of nodes in a
network. In this paradigm, a nonexhaustive set of simulation
patterns (i.e., value assignments to primary inputs) is gener-
ated and used to simulate the network. The simulated values,
called simulation signatures, at each node in the network are
approximations of their global function and can be used to
resynthesize dependency circuits.

The resynthesis algorithms proposed in this article are com-
patible with the simulation-guided paradigm. In this case, the
target and divisor functions are represented by the simulation
signatures of the corresponding nodes in the network and par-
tial truth tables are used as the data structure. A partial truth
table is a truth table of arbitrary length l, representing a par-
tially specified, incomplete function f : X→ B, where X ⊆ B

k

and k is the number of primary inputs of the network. The ith
bit T[f]i is the output of f under the ith simulation pattern
in the set. What the pattern actually is not important for the
resynthesis problem. It is only required that the partial truth
tables of the target and divisors use the same ordered set of
simulation patterns.

Problem Formulation 3 (Resynthesis With Incompletely
Specified Functions): Given a target function f : X → B

and a collection G = {g1, . . . , gn} of n divisor functions
gi : X → B, 1 ≤ i ≤ n defined over the same input space
X ⊆ B

k, k ∈ N
+, find a dependency function h : B

n → B

satisfying

f (
x) = h(g1(
x), . . . , gn(
x)) ∀
x ∈ X. (18)

Optionally and similarly to the problem formulation in
Section II-E, a don’t-care set D ⊆ X may be given. The care
set is then C = X\D, and the care function c : X → B is
defined the same as in (22).

A resynthesis algorithm receiving target and divisor func-
tions as truth tables does not distinguish the case where
functions are incompletely specified from where they are
completely specified. A solution given by the algorithm ful-
fills (18), and it is up to the simulation-guided framework to
validate the dependency circuit in the context of the network
and add more bits into the partial truth tables to block invalid
solutions [12].

III. RELATED WORKS

In this section, we introduce previous works dealing with
the same or similar problems.

A. Functional Dependency by Interpolation

In [25], a method to find functional dependency using inter-
polation was proposed. The problem of finding functional
dependency is essentially the same as the unrestricted logic
resynthesis problem (Problem Formulation 1), where the goal
is only to find a dependency function without a particular focus
on (minimizing) the corresponding dependency circuit. In [25],
given a target function f and a set of base functions G (i.e.,
divisor functions in our terminology), it is first checked if f
functionally depends on G, i.e., if a dependency function h
exists. This is done by solving a satisfiability (SAT) problem
consisting of two copies of the circuit representation of f and G
and additional constraints that the outputs of G are the same,
but one copy outputs f = 0 and the other outputs f = 1.
Intuitively, the SAT problem encodes that there exists a pair of
offset
x0 and onset
x1 minterms of f , such that gi(
x0) = gi(
x1)

for all gi ∈ G. A dependency function h exists if and only if
the SAT instance is unsatisfiable, and such h can be computed
by deriving the interpolant from the refutation proof given by
the SAT solver.

The interpolation-based method was later used in [8] as part
of resubstitution for look up table (LUT) networks. Because
the dependency function is implemented as an LUT node, it
is not needed to construct a dependency circuit. However, for
resubstitution algorithms for AIGs, XAGs, or MIGs, etc., the
size of the dependency circuit is crucial for the optimization
quality. Thus, the interpolation-based method is not applicable
there. Also, as the procedure involves constructing conjunc-
tive normal form (CNF) clauses of a circuit computing f and
G, it cannot solve the resynthesis problem with incomplete
simulation signatures (Problem Formulation 3).

B. SAT-Based Exact Synthesis

SAT solving can also be used to find the smallest depen-
dency circuit, instead of just some feasible dependency func-
tion. SAT-based exact synthesis of Boolean chains encodes
the following question into a CNF formula: “Does there exist
a Boolean chain which implements the given function f with
exactly r steps2?” A solution Boolean chain can be interpreted
from a satisfiable assignment to the encoded CNF formula,
whereas an unsatisfiable result means a solution of r steps is
impossible. By solving such SAT problem iteratively with dif-
ferent values of r, the smallest feasible r can be found [15].
While SAT-based exact synthesis was originally described to
synthesize a Boolean chain computing a given function at
its output(s) in terms of its input variables, i.e., it solves
a subset of the resynthesis problem where divisors are pro-
jection functions, it can be modified and extended to solve
the general resynthesis problem where divisors can be any

2Using the terminology in this article, a Boolean chain with r steps is a
logic network with r nodes, where each node models an arbitrary logic gate.
Additional clauses may be added to the CNF formula to constrain possible
gate types to a predefined set.

3962 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

functions and don’t cares are supported [7]. In [26], different
CNF encodings of the problem were analyzed and compared.
However, although it is possible to reduce the number of vari-
ables involved in the SAT instance, it is done at the cost of
more clauses in the CNF formula. As the intrinsic complex-
ity of the problem is exponential, the scalability of an exact
algorithm is always limited.

C. Enumeration-Based Resubstitution

Resubstitution is a logic optimization technique which sub-
stitutes a node in the network with another existing node,
or with newly created nodes constructed upon other existing
nodes [3]. Resubstitution for AIG size minimization was first
proposed in [4], where windows of no more than 16 inputs
are constructed to collect structurally proximate divisor nodes
and to perform complete local simulation. Small subnetworks
of up to three AND gates and taking divisors as inputs are
enumerated, simulated, and compared to the target function.
If the composed function is the same as (or compatible sub-
ject to the care set) the target, a viable dependency circuit is
found. Such search for resubstitutions is essentially the AIG
resynthesis problem with size awareness. The complexity of
the enumeration-based resynthesis approach is O(|G||H|+1),
where |G| is the number of divisors and |H| is the size of
possible dependency circuit. Thus, |G| is limited to at most
150 and |H| is limited to at most 2 in [4].

In [9], enumeration-based resynthesis was extended to larger
dependency circuits, but still limited to some predefined struc-
tures, such as AND-XOR, MUX, MUX-XOR, etc. A Boolean
filtering rule was proposed to filter out useless divisors, so that
the search space was reduced. Overall, eight types of depen-
dency circuit structures are tried in the increasing order of
their size, and for each structure, filtered set of divisors are
enumerated at the inputs similarly to [4].

An enumeration-based resubstitution for MIGs was first
proposed in [10]. The algorithm enumerates dependency cir-
cuits of up to two MAJ gates. Two efficiency enhancement
techniques were proposed.

1) A filtering rule derived from the majority law is applied

if x �= y and ∃z, M(x, y, z) = f , then M(x, y, f) = f . (19)

2) As a preprocessing step, the truth tables are normalized
to have the first bit always 1, such that the number of
inversion cases to investigate is reduced. Truth tables
having a 0 as the first bit are complemented and the
inversion is recorded.

In addition to enumerating small dependency circuits, a
special type of node replacement, called R-resubstitution,
is explored. R-resubstitution exploits the relevance rule of
majority gates [22]

M(x, y, z) = M
(
xy/z̄, y, z

)
(20)

where xy/z̄ is obtained by replacing all occurrences of y with
¬z in x. Instead of substituting the root node with a depen-
dency circuit in the classical resubstitution, R-resubstitution
substitutes a fanin node x of the root r = M(x, y, z) with a
divisor d if (x ⊕ d)(y ⊕ z) = 0 and r is the only fanout

of x. Unfortunately, finding R-resubstitution cannot be formu-
lated as a resynthesis problem, thus it is not considered in the
remainder of this article.

The core problem resubstitution algorithms solve is logic
resynthesis. Existing works on resubstitution are based on enu-
meration, thus there exist small upper bounds on the size of
dependency circuits they can find. In contrast, the heuristic
resynthesis algorithms proposed in this work are unlimited in
this respect.

D. Akers’ Majority Synthesis

Akers’ majority synthesis algorithm was the earliest work
on heuristic synthesis of MIGs [27]. It is a bottom-up approach
that builds new gates using the constructed ones. In [27],
Akers’ Algorithm was presented to synthesize an MIG for
any given function from primary inputs, but the algorithm can
actually also solve the MIG resynthesis problem. First, the
truth tables of the primary inputs are normalized by taking
their XNOR with the target function, such that the goal of the
algorithm becomes building the constant 1 function. The main
data structure in Akers’ Algorithm, called the unitized table,
is a collection of the normalized truth tables of primary inputs
(and their negations) and of the outputs of MAJ gates created
throughout the algorithm. Each column of the unitized table
corresponds to a node (a PI or a gate) that can be used to build
the next gate, and each row corresponds to a value assignment
to the PIs (i.e., a minterm). The algorithm iteratively reduces
the unitized table, by removing redundant columns and domi-
nated rows, and expands the unitized table, by choosing three
columns to build a new MAJ gate and adding a new column.
The procedure repeats until there is only one column of all 1s
left, or until the resource limit exceeds. The choice on using
which columns to build new gates is heuristic, so the algorithm
does not guarantee to always find a solution.

IV. HEURISTIC AND-BASED RESYNTHESIS

In this section, we introduce the heuristic AND-based resyn-
thesis algorithm which resynthesizes an AIG or an XAG.
The algorithm primarily considers AND gates (and cost-free
inverters), but it may be extended to consider XOR gates as
well, although in a limited way. The algorithm is based on:
1) classification of divisors and 2) recursive decomposition.
The former idea has been practically adopted in enumeration-
based resubstitution [4], but rarely described in the literature.
In Section IV-A, we give the definition of the unateness of divi-
sors and explain why it is useful in reducing the search space
of resynthesis. On top of that, in Section IV-C, we propose
the recursive decomposition, which is key for our resynthesis
algorithm being unbounded by the solution size.

We use figures to illustrate essential concepts in this section.
In Figs. 1–3, a rectangle marks the Boolean space under which
the target and divisor functions are defined (Bk in Problem
Formulation 1 and 2 or X in Problem Formulation 3). Black
dots in the rectangle represent onset minterms of the target and
white dots represent offset minterms. In the space where no
dots are present, there can be don’t-care minterms. For clearer

LEE AND MICHELI: HEURISTIC LOGIC RESYNTHESIS ALGORITHMS AT THE CORE OF PEEPHOLE OPTIMIZATION 3963

(a) (b) (c) (d) (e)

Fig. 1. Illustration of unate literals and binate divisors. (a) Literal g1 is positive unate. (b) Literal ¬g2 is negative unate. (c) g3 is a binate divisor. (d) AND-pair
g3 ∧ ¬g4 is positive unate. (e) XOR-pair g5 ⊕ g6 is negative unate.

illustration, don’t-care minterms are plotted as gray dashed
dots in Fig. 3.

A divisor function g separates the Boolean space into two
halves, the region where g = 1 and the region where g = 0 (or
equivalently, ¬g = 1). We refer to a divisor with or without
negation as a literal, i.e., a literal is either a divisor g or a
negated divisor ¬g, corresponding, respectively, to the two
halves of the Boolean space.

A. Classification of Divisors

Any composition of some divisor functions is also a function
defined over the same Boolean space, thus also separates the
space into two halves. For example, composing two literals
l1 and l2 with an AND gate results in a separation where the
region l1 ∧ l2 = 1 is the intersection of the regions l1 = 1 and
l2 = 1, and the region l1 ∧ l2 = 0 is the union of the regions
l1 = 0 and l2 = 0. The goal of the resynthesis algorithm is
to find a composition whose resulting function separates the
Boolean space into a half containing only onset minterms of
the target and a half containing only offset minterms.

We observe that, if two literals l1 and l2 are to be composed
using an AND gate and realizing the target, then the regions
l1 = 0 and l2 = 0 must not contain any onset minterm of the
target. Similarly, if two literals l3 and l4 are to be composed
using an OR gate (equivalent to an AND gate with input and
output negations) and realizing the target, then the regions
l3 = 1 and l4 = 1 must not contain any offset minterm of the
target because the resulting region l3 ∨ l4 = 1 is the union
of the regions l3 = 1 and l4 = 1. We call such property
unateness.

A literal l is said to be positive unate if l ∧ foff = 0. For
example, in Fig. 1(a), g1 is positive unate. Similarly, a literal
l is said to be negative unate if l ∧ fon = 0. For example, in
Fig. 1(b), ¬g2 is negative unate. In contrast to unate literals,
binateness is defined for divisors. Given a divisor g, if both
g and ¬g are neither positive nor negative unate, then g is
said to be a binate divisor. For example, in Fig. 1(c), g3 is a
binate divisor. Note that unateness is defined for literals and
binateness is defined for divisors. A (nonbinate) divisor g may
have one of its literals being unate, but the other literal being
neither positive nor negative unate, such as g1 in Fig. 1(a) and
g2 in Fig. 1(b). Also note that these definitions are different
from the unateness of a Boolean function with respect to a
variable [28].

Only unate literals can be used to construct the target func-
tion using one gate. Thus, by classifying divisors, the number
of comparisons required to identify dependency circuits of no

(a) (b)

(c) (d)

Fig. 2. Illustration of composing simple dependency circuits. (a) ¬g7 is a
0-resyn. (b) g8 ∨ ¬g9 is a 1-resyn. (c) g10 ∧ ¬g11 is a 1-resyn. (d) g12 ∧¬(g5 ⊕ g6) is a 2-resyn.

(a) (b)

Fig. 3. Illustration of the recursive decomposition. (a) Decompose fon with a
positive unate literal g1. (b) f ′on can be more easily realized by ¬g13 ∧¬g14.

more than one gate is reduced. Nevertheless, binate divisors
are not totally useless. Two binate divisors may be composed
with a gate and become unate. Thus, the definitions of posi-
tive and negative unateness are extended for pairs of literals.
A pair p of two literals l1 and l2 obtained from (optionally
negating) two binate divisors is said to be a positive unate
AND-pair if (l1 ∧ l2) ∧ foff = 0. For example, in Fig. 1(d),
(g3,¬g4) is a positive unate AND-pair. Similarly, it is neg-
ative unate if (l1 ∧ l2) ∧ fon = 0. When finding unate pairs,
we investigate all pairs of two binate divisors and all of the
four possible inverter configurations, corresponding to the four
regions of the Boolean space divided by the two divisor func-
tions. There is no need to try an OR-pair because composing
two binate divisors with an OR gate (i.e., taking the union)
will never lead to a unate function. If XOR gates are allowed,
we additionally try to find unate XOR-pairs. For example, in
Fig. 1(e), (g5, g6) is a negative unate XOR-pair.

B. Simple Dependency Circuits

Simple dependency circuits of no more than three gates are
identified similarly to the enumeration-based method. First, if

3964 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

Algorithm 1: Heuristic AND-Based Resynthesis
Algorithm

Input: target onset fon, target offset foff, divisors
G = {g1, . . . , gn}

Output: dependency circuit H
1 if fon = 0 then return Constant 0
2 if foff = 0 then return Constant 1
3

4 Up ← positive_unate(G, foff)
5 Un ← negative_unate(G, fon)
6 B ← binate(G, Up, Un)
7

8 if u ← find_0resyn(Up, Un) then return u
9

10 Up ← sort(Up, fon)
11 Un ← sort(Un, foff)
12

13 if u, v ← find_1resyn(Up, fon) then return u ∨ v
14 if u, v ← find_1resyn(Un, foff) then return ¬u ∧ ¬v
15

16 Pp ← positive_unate_pair(B, foff); Pp ← sort(Pp, fon)
17 Pn ← negative_unate_pair(B, fon); Pn ← sort(Pn, foff)
18

19 if p, u ← find_2resyn(Pp, Up, fon) then
20 return (p1 ◦p p2) ∨ u
21 if p, u ← find_2resyn(Pn, Un, foff) then
22 return ¬(p1 ◦p p2) ∧ ¬u
23 if p, q ← find_3resyn(Pp, fon) then
24 return (p1 ◦p p2) ∨ (q1 ◦q q2)
25 if p, q ← find_3resyn(Pn, foff) then
26 return ¬(p1 ◦p p2) ∧ ¬(q1 ◦q q2)
27

28 u ← choose_top(Up, Un, Pp, Pn)

29 f ′on ← new_target(u, fon)

30 f ′off ← new_target(u, foff)

31 Hr ← resynthesize(f ′on, f ′off, G)

32 return u ◦u Hr

the target onset or offset is empty, then it can be realized with a
constant (lines 1 and 2 in Algorithm 1). After classifying divi-
sors and collecting unate literals as described in Section IV-A
(lines 4–6), we first check if there exists a literal that realizes
the target without extra gates. That is, if a literal l is positive
unate and its negation ¬l is negative unate, then l realizes the
target (line 8). We call this a 0-resyn because it has 0 gates
in the dependency circuit. For example, in Fig. 2(a), ¬g7 is
positive unate and g7 is negative unate, thus ¬g7 is a 0-resyn.

To find dependency circuits with one gate, called 1-resyn,
we try to compose two positive unate literals with an OR
gate, or to compose two negative unate literals with an AND
gate (lines 13 and 14). For each pair l1 and l2 of positive
unate literals, we check if their union contains all of the onset
minterms. That is, if ¬(l1 ∨ l2) ∧ fon = 0, or equivalently,
¬l1 ∧ ¬l2 ∧ fon = 0. We do not need to check for offset
minterms thanks to the definition of positive unate literals.
For example, Fig. 2(b) is an OR-type 1-resyn because there
is no more onset minterms in the white region. Similarly, two
negative unate literals l3 and l4 form an AND-type 1-resyn if
their union contains all of the offset minterms. That is, ¬l3 ∧
¬l4 realizes the target if ¬l3∧¬l4∧ foff = 0, such as Fig. 2(c).
As the condition to be checked in this step is whether the union

of two literals contains all onset (for positive unate) or offset
(for negative unate) minterms, we first sort the literals based
on how many onset or offset minterms they contain (lines 10
and 11). This way, we may terminate the investigation earlier
when we know the remaining pairs of literals all have a total
number of onset (or offset) minterms less than the number of
onset (or offset) minterms of the target.

If a dependency circuit of size no more than one cannot be
found, we proceed to collect unate pairs (lines 16 and 17) and
try to find a 2-resyn (lines 19–22) or 3-resyn (lines 23–26).
A 2-resyn is composed of a unate literal and a unate pair.
The conditions to be checked are similar to those for 1-resyn.
For example, in Fig. 2(d), a negative unate literal ¬g12 and a
negative unate XOR-pair (g5, g6) [taken from Fig. 1(e)] forms
an AND-type 2-resyn. Similarly, a 3-resyn is composed of two
unate pairs. In Algorithm 1, we use ◦ to denote an unspecified
gate type depending on the pair noted as the subscript, and we
use p1 and p2 to denote the two elements of a pair p.

C. Recursive Decomposition

When the target cannot be realized within three gates, the
algorithm heuristically chooses a unate literal or a unate pair to
decompose the target function (lines 28–32). If a positive unate
literal l1 is chosen, a new target onset f ′on = fon∧¬l1 with fewer
minterms is derived by constructing the dependency circuit
with an OR gate on top, having l1 as one of its fanins. Then,
Algorithm 1 is recursively called on the new onset f ′on and
the same offset f ′off = foff (line 31) to construct the remaining
circuit as the other fanin of the top OR gate. For example,
in Fig. 3(a), we decompose fon with a positive unate literal
g1 [taken from Fig. 1(a)], resulting in f ′on in Fig. 3(b). The
new f ′on has only one onset minterm remaining and is more
easily realized by ¬g13∧¬g14, which were both binate before
decomposition. The original target function is thus realized by
g1∨(¬g13∧¬g14).3 In contrast, if a negative unate literal l2 is
chosen, the target onset stays the same, whereas a new offset
f ′on = foff ∧ ¬l2 is derived. The dependency circuit is then
constructed with an AND gate with negated fanins on top.

The choice on which literal or pair to use to decompose
(line 28) is made by comparing the number of onset (for
positive unate literals or pairs) or offset (for negative unate)
minterms they contain. The one containing the most minterms
is preferred. However, a pair is only chosen if it contains
more than twice the number of minterms than the winning
literal because choosing a pair leads to one more gate in the
dependency circuit.

D. Summary

Algorithm 1 summarizes the AND-based resynthesis algo-
rithm. In Algorithm 1, lines 1–26 are similar to enumeration-
based resubstitution, which resynthesizes dependency circuits
of at most 3 gates. Lines 28–32 are the key for the algorithm

3The example is made simple for easier understanding. This solution can
actually be found as a 2-resyn without the recursive decomposition. To give a
real example where recursive decomposition is needed, for example, g13 and
g14 could be pairs instead of divisors, which only become unate with respect
to the new onset f ′on.

LEE AND MICHELI: HEURISTIC LOGIC RESYNTHESIS ALGORITHMS AT THE CORE OF PEEPHOLE OPTIMIZATION 3965

to resynthesize larger dependency circuits, where line 31 calls
the resynthesis algorithm recursively.

It is neglected in the pseudocode, but in practice an addi-
tional parameter size limit is passed to the algorithm. Before
each step, the size limit is checked and the algorithm termi-
nates without a solution if the limit is reached. For example,
before find_3resyn, if size limit is 2, the algorithm returns no
solution. In line 31, the size limit being passed to the recur-
sive call is the current size limit minus 1 (when decomposing
with a literal) or 2 (when decomposing with a pair). When
the algorithm returns no solution, it is possible that a solu-
tion larger than size limit exists and can be found if size limit
were set larger, or that the given problem is infeasible. It is
also possible that a solution exists, but cannot be found by
the algorithm because it is heuristic, irrelevant to size limit.
The same early-termination mechanism also applies to the
following MAJ-based and MUX-based resynthesis algorithms.

V. HEURISTIC MAJ-BASED RESYNTHESIS

We introduce the heuristic MAJ-based resynthesis algorithm
in this section, based on the following key ideas.

1) Normalization: Divisor functions are normalized to sim-
plify the algorithm and reduce the number of bitwise
operations needed. This step is done only once in the
beginning (Section V-A).

2) Covering the Care Function: We introduce the notion of
care functions at any position in the dependency circuit
under construction. The goal of the algorithm is to cover
more uncovered bits in the care function by modifying
the current dependency circuit until all bits are covered
(Section V-B).

3) Heuristic Choice of Divisors: The algorithm repeatedly
chooses three divisors to form a new majority gate.
Divisors are chosen according to their evaluation on a
heuristic weight function with respect to the current care
function (Section V-C).

4) Expansion to a Tree-Like Circuit: The algorithm con-
structs the dependency circuit by repeatedly expanding
on a leaf of the circuit. It chooses a fanin of a gate
which is connected to a divisor, takes out the divisor, and
replaces it with a newly constructed gate. The resulting
circuits thus have tree-like structures (Section V-D).

A. Normalization

Given the target f and the set of divisors G = {g1, . . . , gn},
the divisors are normalized by computing their XNOR with the
target. By doing so, the logic of the algorithm is simplified—
comparing the output function of the dependency circuit
against the target simplifies to testing if the output function
is a tautology. Moreover, due to the self-duality property of
the majority function [23], inverters can always be pushed to
the primary inputs. Hence, we limit our search to dependency
circuits without internal inverters and consider inverters only
at the inputs by supplementing the divisor set with negated
literals. The set N of normalized literals to be chosen from as
inputs to the dependency circuit is computed by

N = {l2i−1 = gi ↔ f , l2i = ¬gi ↔ f | 1 ≤ i ≤ n}. (21)

Fig. 4. Illustration of the care functions.

B. Care Function

Consider an MAJ gate with function y = M(x1, x2, x3) and
a certain bit position p in its truth table. In order to have
T[y]p = 1, we must have

T[xi]p = T
[
xj

]
p = 1, where i, j ∈ {1, 2, 3} and i �= j.

If the functions x1 and x2 have been decided but x3 is still
flexible, then, we require T[x3]p = 1 only if T[x1]p = 0 or
T[x2]p = 0. In such case, we say that p is a care bit for the
third fanin of the gate under construction.

Generalizing and extending to all bit positions, we define
the care function ci of a fanin i to a node n as

cn,i = (¬s1 ∨ ¬s2) ∧ cn (22)

where s1 and s2 are the other two fanin functions of n (i.e.,
siblings of i) and cn is the care function of n. If n is the top-
most node of the dependency circuit, as in Fig. 4, then its care
function cn is the care function c of the target, given as input to
the resynthesis problem. Otherwise, as our dependency circuits
are tree-like, the node n must have exactly one fanout (parent)
node, and its care function is derived using (22) according
to its parent’s care function and its siblings’ functions. For
example, the care function cni of node ni in Fig. 4 is the care
function of the fanin i to node n.

A care bit in a care function is said to be covered if the
function presented at the node (or at the fanin edge) indeed
provides 1 at this bit. For example, for a care bit in cni,3 to be
covered, the function x3 needs to be 1 at this bit. If the care
function of a node (e.g., cni in Fig. 4) is of interest, then, we
need at least two fanin functions of the node (e.g., x1 and x3)

to cover the bit by having 1’s.

C. Choosing Divisors

Given the care function cn of a node n, a heuristic selection
is used to choose three literals l1, l2, and l3 from N to construct
an MAJ gate, aiming at maximizing ONES(M(l1, l2, l3) ∧ cn)

l1 = argmax
l∈N

(ONES(l ∧ cn))

l2 = argmax
l∈N2

(ONES(l1 ∧ l ∧ cn)+ 2 · ONES(¬l1 ∧ l ∧ cn))

l3 = argmax
l∈N3

(ONES((l1 ⊕ l2) ∧ l ∧ cn)

+ 2 · ONES((¬l1 ∧ ¬l2) ∧ l ∧ cn)

where N2 = N\{l1,¬l1}, N3 = N2\{l2,¬l2}. (23)

The first literal is chosen to cover most care bits. When
choosing the second literal, the care bits covered by the first

3966 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

literal still need to be covered again, thus we acknowledge
more ONES(l1 ∧ l ∧ cn). But more importantly, we are more
eager to cover the care bits that are not covered by the first
literal, thus the weight for ONES(¬l1∧ l∧ cn) is doubled. For
the last literal, the care bits that are already covered twice can
be ignored; the care bits covered only once ((l1⊕ l2)∧ l∧ cn)

seek to be covered again; the care bits that are never covered
before ((¬l1 ∧ ¬l2) ∧ l ∧ cn) appear to be more difficult to
cover than the other bits and they are thus doubly weighed.
In the last case, it may seem counter-intuitive to cover these
bits with the last literal because covering them only once is
not enough. However, the first two literals may be replaced
by new nodes later on in the algorithm, so it is still useful to
cover them at least once in this stage.

This evaluation step will be repeatedly incurred throughout
the algorithm. The computational complexity is linear to the
number of divisors, which can be large. We observe that the
resulting choice depends solely on the care function cn. To
speed up the computation, a computed table can be used to
cache the results. This is implemented as a hash table mapping
from a care function to three divisors.

D. Expansion

When all care bits of the three fanins of the topmost node
are covered, the constant 1 function is successfully derived at
its output and the algorithm terminates. After constructing the
first node with three literals, we choose one of the fanins with
uncovered care bits, if any, and try to cover more care bits by
replacing the literal with a new gate. This process is called an
expansion.

To expand a fanin, the original literal is temporarily taken
away. Then, three literals are chosen as the fanins of the
new gate using (23). After an expansion, the function at the
expanded fanin is different, thus the functions of its transi-
tive fanouts, as well as the care functions of its siblings, are
updated accordingly. Until the constant 1 is derived at the
output of the topmost node by covering all the care bits, the
algorithm proceeds by choosing another position to expand.
An expansion position is a fanin of any node which is con-
nected to a literal and whose care function is not fully covered.
Heuristically, we choose the position with the least uncovered
care bits to be expanded first because it is closest to be fully
covered.

It is possible that the majority output of the three chosen
literals does not cover more care bits than the original literal.
Hence, the new gate is only constructed and used to replace
the original literal if the number of covered care bits increases.
When an expansion position is tried but the coverage of care
bits does not increase, the new gate is discarded and the posi-
tion is marked as visited to avoid trying it again. However,
if its care function is updated because of an update in the
function of one of its siblings, the visited flag is reset and the
expansion position may be tried again. To avoid constructing
gates using the same literals repeatedly as a chain, when the
care function of a node is the same as one of its fanins, the
expansion position at this fanin is directly marked as visited
without trying to expand it.

Algorithm 2: Heuristic MAJ-Based Resynthesis
Algorithm

Input: target function f , care function c, divisor functions
G = {g1, . . . , gn}

Output: dependency circuit H
1 N ← normalize(G, f)
2 n0 ← choose_literals(N, c)
3 H ← {n0}
4 while n0.output �= 1 do
5 (np, i) ← choose_expansion_position(H)
6 n ← choose_literals(N, np.fanin(i).care)
7 if accept_expansion(np, i, n) then
8 np.fanin(i) ← n
9 update(H)

10 else
11 mark_visited(np, i)
12 return H

E. Summary and Example

Algorithm 2 summarizes the heuristic MAJ-based resyn-
thesis algorithm. First, the set of divisors is normalized and
supplemented using (21) (line 1). Then, the top node n0 is
constructed by choosing three literals using (23) and added
into the dependency circuit as the first node (lines 2 and 3). If
the output function of n0 is not constant 1 (line 4), we choose
an expansion position (the ith fanin of a parent node np) which
is currently connected to a literal (line 5). The care function of
the position is computed by (22) and used to choose three lit-
erals to construct a new gate (line 6). If replacing the original
literal with the new gate increases the number of covered care
bits, the expansion is accepted and the dependency circuit is
updated (lines 7–9); otherwise, the position is marked as vis-
ited (lines 10 and 11). The expansion procedure is repeated
until the constant 1 function is obtained at the output of the
topmost node.

An example execution of the algorithm is illustrated in
Fig. 5, where the target function is

f (
x) = x1 ⊕ x2 ⊕ x3 (24)

the care function c = 1, and the set G of divisors consists of

G = {g1(
x) = x1, g2(
x) = x2, g3(
x) = x3, g4(
x) = 0}. (25)

The normalized set N of literals, computed according to (21),
is listed in their truth table representations in the box in
Fig. 5(a). The yellow-shaded parts Fig. 5 are the truth tables
being updated after expansions. First, in Fig. 5(a), given the
care function c = 1, three literals l7, l1, and l3 are chosen
according to (23) to form the topmost node n0, computing the
function at its output n0 = M(l7, l1, l3). Care functions of each
fanin c0,i are computed according to (22). Then, in Fig. 5(b),
the first fanin of n0 is chosen to be expanded with a new node
n1. According to its care function c0,1, three literals l2, l4, and
l6 are chosen. The function at the expanded fanin is updated
with n1 = M(l2, l4, l6). Following which, the care functions at
its siblings c0,2 and c0,3, as well as the output function n0 are
also updated. After the expansion, all care bits of the first fanin
of n0 have been covered by the function of n1, but there are still

LEE AND MICHELI: HEURISTIC LOGIC RESYNTHESIS ALGORITHMS AT THE CORE OF PEEPHOLE OPTIMIZATION 3967

(a) (b) (c)

Fig. 5. Example of MAJ-based resynthesis. (a) Topmost node n0. (b) Expand at (n0, 1) with n1 = M(l2, l4, l6). (c) Expand at (n0, 2) with n2 = M(l1, l4, l5).

two care bits in each of the updated c0,2 and c0,3 not yet cov-
ered. So, in Fig. 5(c), the second fanin of n0 is expanded with
another new node n2. Similarly, according to its care function
c0,2, three literals l1, l4, and l5 are chosen, and the node func-
tions n2 and n0, as well as the sibling’s care function c0,3, are
updated. Now, all care bits in c0,2 and also c0,3 are covered,
and the output function of n0 is constant 1. The resynthesis has
thus been completed. The final solution is h(g1, g2, g3, g4) =
M(M(¬g1,¬g2,¬g3), M(g1,¬g2, g3), g2).

VI. HEURISTIC MUX-BASED RESYNTHESIS

Although rarely researched on, MuxIGs may be a practi-
cal data structure for some technologies where MUX gates
are of similar cost as AND and XOR gates, such as mem-
ristors [29], quantum-dot cellular automata (QCA) [30], and
pass transistor logic [31]. Although the MUX gate itself is
functionally complete without inverters, we still use comple-
mented edges to represent cost-free inverters in the network to
be more memory efficient. This can be disabled [i.e., ¬x has to
be implemented as MUX(x, 0, 1)] and the MUX-based resyn-
thesis algorithm can also be adjusted accordingly, if desired.
A MUX gate can implement the 2-input AND, OR, and XOR
functions, thus MuxIGs are more compact than XAGs. Though
conceptually similar, MuxIGs are different from BDDs [16].
In BDDs, S-inputs can only be primary variables, whereas
in MuxIGs, S-inputs can be connected to the output of any
other MUX gates in the network. Thus, MuxIGs are more
general than BDDs. In this section, we propose a MUX-based
resynthesis algorithm that can be used to optimize MuxIGs.

Due to the natural characteristics of the MUX gate, our
MUX-based resynthesis algorithm is designed with a combi-
nation of ideas from AND- and MAJ-based resynthesis. First,
we observe that, similar to resynthesizing with MAJ gates,
we seek to select or construct functions resembling the tar-
get to be placed at the T- and E-inputs of a MUX gate,
subject to a care function depending on the function at its
S-input. Thus, we also normalize divisor functions and adopt
the bit-counting-based ranking and selection of divisors as in
MAJ-based resynthesis. Second, when there are some care bits
not covered, unlike MAJ-based resynthesis, the expansions on
the T- and E-inputs are independent of each other. For a MUX

Algorithm 3: Heuristic MUX-Based Resynthesis
Algorithm

Input: target function f , care function c, divisor functions
G = {g1, . . . , gn}

Output: dependency circuit H
1 N ← normalize(G, f)
2 return resynthesize(c)
3

4 Function resynthesize(care c):
5 t ← argmaxl∈N ONES(l ∧ c)
6 if ONES(¬t ∧ c) = 0 then
7 return t
8 S ← argminl∈{g,¬g : g∈G} ONES(¬t ∧ l ∧ c)
9 s ← argminl∈S ONES(¬l ∧ c)

10 if ONES(¬s ∧ c) = 0 then
11 e ← 0
12 else
13 e ← argmaxl∈N ONES(l ∧ ¬s ∧ c)
14 if ONES(¬e ∧ ¬s ∧ c) > 0 then
15 e ← resynthesize(¬s ∧ c)
16 if ONES(¬t ∧ s ∧ c) > 0 then
17 t ← resynthesize(s ∧ c)
18 return MUX(s, t, e)

gate with care function c, once the S-input s is selected, the
care function at the T-input is ct = c∧ s and the care function
at the E-input is ce = c ∧ ¬s. Thus, we adopt the recursive
decomposition similar to that in AND-based resynthesis to
expand on T- or E-inputs until all care bits are covered. To
avoid renormalizing divisors and to simplify the computation,
we do not expand on the S-input once it is selected.

Algorithm 3 illustrates the MUX-based resynthesis algo-
rithm. First, the set N of normalized divisors is derived
using (21) (line 1). The unchanged set N is then available
and used throughout the algorithm along with the original set
of divisors G. The recursive algorithm starts with the given
top-level care function c (line 2). In line 5, a literal t covering
the most care bits is chosen from N as the T-input. If all care
bits are covered by t, then it is a 0-resyn and is returned (lines
5 and 6). Otherwise, we continue to choose a literal s from G
as the S-input using two criteria: literals S whose (cared) 1-bits
overlap the least with the 0-bits of t are prioritized (line 8). If
there are more than one literal in S, then the literal with the

3968 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

least 0 in the cares bits is chosen (line 9). The first criterion
aims at reducing uncovered care bits at the T-input, whereas
the second criterion aims at reducing the care bits to be cov-
ered at the E-input. If the selected s has no cared 0-bit, then
the function at the E-input does not matter and we choose con-
stant 0 as the E-input, assuming it has the lowest cost (lines
10–11). Otherwise, similar to choosing t, a literal e covering
the most care bits is chosen as the E-input (line 13). Although
the philosophy behind the choice of t and the choice of e
is the same, there is a difference in their evaluations. When
choosing t, the S-input is not selected yet, thus only the care
function c for the gate is considered. However, when choosing
e, the S-input s is already decided, thus the more precise care
function at the E-input ce = c∧¬s is considered. Finally, we
check if the care bits at the T- and E-inputs are all covered
by t and e, respectively, and recursively expand on the inputs
using their care functions if not so (lines 16 and 17 and 14
and 15, respectively).

VII. EXPERIMENTAL RESULTS

The three resynthesis algorithms are implemented in C++
as part of the logic synthesis library mockturtle4 [32]. In this
section, we test the performance and efficiency of the proposed
resynthesis algorithms on sets of real resynthesis problems
extracted from the EPFL benchmarks [33] by resubstitution
(Section VII-A). We also demonstrate in Section VII-B the
effectiveness of using resynthesis as the core of a high-effort
optimization to further optimize highly optimized benchmarks.
The experiments were conducted on a laptop with Apple M1
Pro chip and 32-GB RAM.

A. Extracted Resynthesis Problems

As the core of peephole optimization, it is more meaningful
to compare different resynthesis approaches using real resyn-
thesis problems in their general form, with arbitrary divisor
functions coming into play. In this section, we test our heuristic
resynthesis algorithm on sets of resynthesis problems extracted
from the EPFL benchmark suite. The benchmarks are prepro-
cessed by running the script compress2rs in ABC [34]
once to rule out most optimizations that are easier to identify.
To extract resynthesis problems, for each node (root) in the
benchmarks, a reconvergence-driven cut [4] of size k = 4 or 6
is computed and used as the basis to obtain local functions of
nodes supported by the cut. The function of the root node is
the target of the resynthesis problem and the functions of all
nodes supported by the cut, including the cut leaves, are divi-
sors. The care set is derived by computing (local) satisfiability
don’t cares from a larger cut of size 12. A size limit max m
is given along with the resynthesis problem, determined by
the size of the root’s maximum fanout-free cone (MFFC) [35]
minus 1.

Three sets of AIG resynthesis problems are considered in
Table I.

1) First Big Column: A subset of problems extracted using
cut size k = 4 (thus truth table length l = 2k = 16)

where the size limit is at least 1.

4Available: https://github.com/lsils/mockturtle.

TABLE I
COMPARISON OF AIG RESYNTHESIS ALGORITHMS

2) Second Big Column: A subset of problems extracted
using cut size k = 6 (thus truth table length l = 2k = 64)

where the size limit is at most 3.
3) Third Big Column: A subset of problems extracted using

cut size k = 6 where the size limit is at least 4.
The total number of resynthesis problems (“#Probs”), the aver-
age number of divisors per problem (“Avg. n”), and the average
size limit (“Avg. max m”) are listed for each set in the upper
half of Table I. We compare our AND-based heuristic resyn-
thesis (“Ours”) against SAT-based exact synthesis [26] (“SAT,”
Section III-B, conflict limit = 10 000) and enumeration-based
method [4] (“Enum.,” Section III-C, up to 3 gates). The num-
ber of solutions found within the size limit (“#Sols”), the
average number of gates in the dependency circuits found
(“Avg. m”), the average overhead comparing to the optima
(“Avg. overhead”), and the total runtime in seconds (“Tot.
time”) are listed for each method.

We observe from this experiment that resynthesis prob-
lems requiring larger dependency circuits do exist in real
benchmarks. Both SAT and enumeration are exact algorithms,
meaning that the solutions they give, if any, are always
optimal. However, the optimality of SAT-based exact synthesis
comes with the cost of a much higher runtime, and enumera-
tion, although being fast, can only solve problems with small
solutions. In 2), the 341 more problems solved by our heuristic
than enumeration are cases where a solution cannot be found
within three gates and the recursive decomposition described
in Section IV-C is necessary. The quality degradation of our
heuristic is zero for smaller dependency circuits (m ≤ 3) and
is still very small (3%) for medium-sized dependency circuits
for which SAT-based synthesis needs a long time to find the
optimal solution.

B. Resynthesis as the Core of High-Effort Optimization

To demonstrate the practical application of the proposed
heuristic resynthesis algorithms in high-effort optimization,
we use them as the core component in the simulation-guided
resubstitution framework [12] and perform experiments on
benchmarks that are already optimized by state-of-the-art size
optimization flows. The resubstitution framework computes,
for each target node as the root, a reconvergence-driven cut of
at most 8 nodes to collect up to 150 divisors supported by the

LEE AND MICHELI: HEURISTIC LOGIC RESYNTHESIS ALGORITHMS AT THE CORE OF PEEPHOLE OPTIMIZATION 3969

TABLE II
AND-BASED HEURISTIC RESYNTHESIS AS THE CORE OF

SIMULATION-GUIDED RESUBSTITUTION APPLIED ON

HIGHLY OPTIMIZED AIG BENCHMARKS

cut. Functions of the target and divisor nodes are estimated by
global simulation using about 1000 simulation patterns.

1) AIG: For AIG size optimization, the script
compress2rs in ABC [34] is considered as the state-
of-the-art flow, which comprises 18 commands, including
balancing, resubstitution, rewriting, and refactoring with
different hyperparameters. In Table II, after listing the bench-
mark names and their original size, the size reduction in terms
of percentage number of gates (“Red.”) and runtime (“Time”)
of four optimization settings are presented. Column “O →
A” applies compress2rs once on the original benchmarks;
we call the resulting set of optimized benchmarks A. Column
“A → Ours” applies simulation-guided resubstitution using
our heuristic AND-based resynthesis on the benchmark set
A. Column “A → B” applies more times of compress2rs
on A until no more size reduction is observed for at least five
consecutive times; we call this set of benchmarks B. Column
“B → Ours” applies our resubstitution on the benchmark
set B. In the last row, “Total gain” lists the total number of
reduced gates, summed over all benchmarks.

Comparing “A→ Ours” and “A→ B,” we can observe that,
on top of the benchmark set A that is already optimized, our
high-effort optimization achieves similar “leftover” size reduc-
tion as the best compress2rs can do. Moreover, column
“B→ Ours” shows that our approach can still squeeze 1.78%
more size reduction out of the highly optimized benchmark set
B. In both “A → Ours” and “B → Ours,” the runtime of our
high-effort optimization is comparable with compress2rs.

Experiments on XAG, MIG, and MuxIG optimization all
use the optimized benchmark set A as the starting point

(column “AIG” in Table III). Besides size reduction percent-
age (“Red.”) and total runtime (“Time”; for Columns XAG
and MIG, time for compress2rs is excluded), the runtime
spent by our heuristic algorithms in solving the resynthesis
problems is also listed (“Tresyn”).

2) XAG: For XAG optimization, we first apply the LUT
mapping command &if in ABC with K (number of inputs
per LUT) set to 2, followed by the interpolation-based LUT
resubstitution command &mfs [8] to obtain XAG benchmarks
(column “XAG” in Table III; note that a 2-LUT network
is essentially an XAG). Then, in column “XAG → Ours”
we apply simulation-guided resubstitution using our AND-
based resynthesis with XOR enabled, and 2.86% size reduction
is obtained from the set of optimized XAGs within similar
runtime as optimizing and transforming into XAGs.

3) MIG: As the state-of-the-art MIG optimization flow, we
apply three times graph (re)mapping [36] from the optimized
AIGs, followed by enumeration-based MIG resubstitution [10]
repeated until no more size reduction is observed (column
“MIG” in Table III). Then, similarly, simulation-guided resub-
stitution using our MAJ-based resynthesis is applied, which
obtains 2.45% size reduction on top of highly optimized
benchmarks within a faster runtime (column “MIG → Ours”
in Table III).

4) MuxIG: Finally, as there is not yet much research
on MuxIG, we transform the optimized AIGs directly into
MuxIGs by replacing AND gates with MUX gates with a con-
stant input. Then, in column “MuxIG, ours,” simulation-guided
resubstitution using our MUX-based resynthesis successfully
reduces the sizes of these MuxIGs by 20.24% by identify-
ing MUX functions in the networks. It is worth noting that
although the runtime for the largest benchmark hyp seems to
be long, the time spent in the resynthesis algorithm takes only
1% and most of the time is spent in proving the validity of
the identified optimization choices.

VIII. CONCLUSION

In this article, three heuristic resynthesis algorithms are
proposed, targeting networks based on AND, MAJ, and MUX
gates. The common characteristic of the proposed algorithms
is that they are efficient heuristics without superlinear scalabil-
ity concerns. Table IV compares the proposed heuristics with
other existing methods. All methods compared solve the resyn-
thesis problem with incompletely specified functions (Problem
Formulation 3), except for looking up in an optimal database,
which only solves a subset of resynthesis problems where divi-
sors are projection functions and all functions are completely
specified. All algorithms are sound, but only database look
up, SAT-based exact synthesis, and enumeration are complete
and guarantee optimality. As a compromise, these exact meth-
ods have a rather high complexity (except for database) and
are practically limited by the number of divisors (n), the size
of dependency circuit (m), and/or the truth table length (l).
In contrast, although the proposed heuristics do not guaran-
tee optimality, their complexities are linear in all variables (or
only quadratic in n for AND-based resynthesis) and are thus
practically unlimited.

3970 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

TABLE III
HEURISTIC RESYNTHESIS AS THE CORE OF SIMULATION-GUIDED RESUBSTITUTION APPLIED ON HIGHLY OPTIMIZED BENCHMARKS

TABLE IV
COMPARISONS OF EXISTING AND PROPOSED RESYNTHESIS ALGORITHMS

Experimental results show that the proposed heuristic resyn-
thesis serve as an important component in high-effort peephole
optimization, achieving, on average, about 2%–3% more size
reduction on benchmarks that are already highly optimized,
within manageable runtime. The key to finding these hid-
den optimization opportunities is the heuristics’ capability
to solve resynthesis problems with more divisors (scalabil-
ity in n), having larger solutions (scalability in m), and
where functions are given as longer simulation signatures
(scalability in l).

ACKNOWLEDGMENT

The authors would like to thank Dr. Heinz Riener and
Dr. Alan Mishchenko for their valuable discussions.

REFERENCES

[1] J. A. Darringer and W. H. Joyner Jr., “A new look at logic synthesis,”
in Proc. 17th Design Autom. Conf., 1980, pp. 543–549.

[2] J. A. Darringer, W. H. Joyner Jr., C. L. Berman, and L. Trevillyan,
“Logic synthesis through local transformations,” IBM J. Res. Dev.,
vol. 25, no. 4, pp. 272–280, 1981.

[3] R. K. Brayton, R. L. Rudell, A. L. Sangiovanni-Vincentelli, and
A. R. Wang, “MIS: A multiple-level logic optimization system,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 6, no. 6,
pp. 1062–1081, Nov. 1987.

[4] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a
simple circuit structure,” in Proc. IWLS, 2006, pp. 1–8.

[5] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis,” in Proc. 43rd
Design Autom. Conf., 2006, pp. 532–535.

[6] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken,
“On-the-fly and DAG-aware: Rewriting boolean networks with exact
synthesis,” in Proc. Design, Autom. Test Europe Conf. Exhibit., 2019,
pp. 1649–1654.

LEE AND MICHELI: HEURISTIC LOGIC RESYNTHESIS ALGORITHMS AT THE CORE OF PEEPHOLE OPTIMIZATION 3971

[7] H. Riener, A. Mishchenko, and M. Soeken, “Exact DAG-aware rewrit-
ing,” in Proc. Design, Autom. Test Europe Conf. Exhibit., 2020,
pp. 732–737.

[8] A. Mishchenko, R. K. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable
don’t-care-based logic optimization and resynthesis,” ACM Trans.
Reconfigurable Technol. Syst., vol. 4, no. 4, pp. 34:1–34:23, 2011.

[9] L. G. Amarù et al., “Improvements to Boolean resynthesis,” in Proc.
Design, Autom. Test Europe Conf. Exhibit., 2018, pp. 755–760.

[10] H. Riener, E. Testa, L. G. Amarù, M. Soeken, and G. De Micheli, “Size
optimization of MIGs with an application to QCA and STMG tech-
nologies,” in Proc. 14th IEEE/ACM Int. Symp. Nanoscale Archit., 2018,
pp. 157–162.

[11] W. Haaswijk, L. G. Amarù, P. Vuillod, J. Luo, M. Soeken, and
G. De Micheli, “Integrated ESOP refactoring for industrial designs,” in
Proc. 25th IEEE Int. Conf. Electron., Circuits Syst., 2018, pp. 369–372.

[12] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli,
“A simulation-guided paradigm for logic synthesis and verification,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 8,
pp. 2573–2586, Aug. 2022.

[13] H. Riener, S.-Y. Lee, A. Mishchenko, and G. De Micheli, “Boolean
rewriting strikes back: Reconvergence-driven windowing meets resyn-
thesis,” in Proc. 27th Asia–South Pacific Design Autom. Conf., 2022,
pp. 395–402.

[14] S.-Y. Lee, H. Riener, and G. De Micheli, “Logic resynthesis of majority-
based circuits by top-down decomposition,” in Proc. 24th Int. Symp.
Design Diagnost. Electron. Circuits Syst., 2021, pp. 105–110.

[15] D. E. Knuth, The Art of Computer Programming, Volume 4A:
Combinatorial Algorithms, Part 1. Boston, MA, USA: Addison-Wesley,
2011.

[16] S. B. Akers Jr., “Binary decision diagrams,” IEEE Trans. Comput.,
vol. 27, no. 6, pp. 509–516, Jun. 1978.

[17] D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture—
A Hardware/Software Approach. San Francisco, CA, USA: Morgan
Kaufmann, 1999.

[18] V. Bertacco and M. Damiani, “The disjunctive decomposition of logic
functions,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, 1997,
pp. 78–82.

[19] A. Mishchenko, B. Steinbach, and M. Perkowski, “An algorithm for
bi-decomposition of logic functions,” in Proc. DAC, 2001, pp. 103–108.

[20] Z. Chu, M. Soeken, Y. Xia, and G. De Micheli, “Functional decompo-
sition using majority,” in Proc. ASP-DAC, 2018, pp. 676–681.

[21] Y.-T. Lai, K.-R. R. Pan, and M. Pedram, “OBDD-based function decom-
position: Algorithms and implementation,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 15, no. 8, pp. 977–990, Aug. 1996.

[22] L. G. Amarù, P. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A new paradigm for logic optimization,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 35, no. 5, pp. 806–819,
May 2016.

[23] S. Muroga, I. Toda, and S. Takasu, “Theory of majority decision
elements,” J. Franklin Inst., vol. 271, no. 5, pp. 376–418, 1961.

[24] K. A. Bartlett et al., “Multi-level logic minimization using implicit don’t
cares,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 7,
no. 6, pp. 723–740, Jun. 1988.

[25] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko, “Scalable
exploration of functional dependency by interpolation and incremen-
tal SAT solving,” in Proc. Int. Conf. Comput.-Aided Design, 2007,
pp. 227–233.

[26] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-
based exact synthesis: Encodings, topology families, and parallelism,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 4,
pp. 871–884, Apr. 2020.

[27] S. B. Akers Jr., “Synthesis of combinational logic using three-input
majority gates,” in Proc. 3rd Annu. Symp. Switch. Circuit Theory Logical
Design, 1962, pp. 149–157.

[28] R. McNaughton, “Unate truth functions,” IRE Trans. Electron. Comput.,
vol. 10, no. 1, pp. 1–6, 1961.

[29] H. Owlia, P. Keshavarzi, and A. Rezai, “A novel digital logic imple-
mentation approach on nanocrossbar arrays using memristor-based
multiplexers,” Microelectron. J., vol. 45, no. 6, pp. 597–603, 2014.

[30] A. Khan and R. Arya, “Design and energy dissipation analysis of simple
QCA multiplexer for nanocomputing,” J. Supercomput., vol. 78, no. 6,
pp. 8430–8444, 2022.

[31] C. Scholl and B. Becker, “On the generation of multiplexer circuits
for pass transistor logic,” in Proc. Design, Autom. Test Europe, 2000,
pp. 372–378.

[32] M. Soeken et al., “The EPFL logic synthesis libraries,” 2022,
arXiv:1805.05121.

[33] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in Proc. IWLS, 2015, pp. 1–5.

[34] R. K. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” in Proc. 22nd Int. Conf. Comput.-Aided
Verification, 2010, pp. 24–40.

[35] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 2, no. 2, pp. 137–148, Jun. 1994.

[36] A. T. Calvino, H. Riener, S. Rai, A. Kumar, and G. De Micheli,
“A versatile mapping approach for technology mapping and graph
optimization,” in Proc. 27th Asia–South Pacific Design Autom. Conf.,
2022, pp. 410–416.

Siang-Yun Lee received the B.Sc. degree from
the Department of Electrical Engineering, National
Taiwan University (NTU), Taipei, Taiwan, in 2019.
She is currently pursuing the Ph.D. degree with
the Integrated Systems Laboratory, EPFL, Lausanne,
Switzerland, led by Prof. G. De Micheli.

In NTU, she worked with Prof. J.-H. R. Jiang
on threshold logic synthesis. She is currently a
maintainer of the EPFL logic synthesis library
mockturtle. Her research interests include logic
synthesis and design automation for emerging
technologies.

Giovanni De Micheli (Life Fellow, IEEE) gradu-
ated in nuclear engineering from the Politecnico di
Milano, Milan, Italy, in 1979. He received the M.S.
and Ph.D. degrees in EECS from the University of
California at Berkeley, Berkeley, CA, USA, in 1980
and 1983, respectively.

He is a Professor and a Director with the
Integrated Systems Laboratory, EPFL, Lausanne,
Switzerland. Previously, he was a Professor of
Electrical Engineering with Stanford University,
Stanford, CA, USA. His current research interests

include several aspects of design technologies for integrated circuits and
systems, such as synthesis for emerging technologies.

Prof. De Micheli is the recipient of the 2022 ESDA-IEEE/CEDA Phil
Kaufman Award, the 2019 ACM/SIGDA Pioneering Achievement Award, and
several other awards. He is a member of the Scientific Advisory Board of
IMEC (Leuven, B) and STMicroelectronics. He is a Fellow of ACM and
AAAS, a Member of the Academia Europaea, and an International Honorary
member of the American Academy of Arts and Sciences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

