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Abstract—In the age of artificial intelligence (AI), the huge
data movements between memory and computing units become
the bottleneck of von Neumann architectures, i.e., the “memory
wall” problem. In order to tackle this challenge, processing-
in-memory (PIM) architectures are proposed, which perform
in-situ computations in memory and give alternative solutions to
boost the computing energy efficiency and performance. Because
of the large-scale neural network (NN) algorithm models and
the huge hardware design space, various factors affect comput-
ing accuracy and performance, bringing the need for efficient
PIM modeling and evaluation tools. In this work, we pro-
pose a behavior-level modeling tool, MNSIM 2.0, to model the
performance of PIM architectures efficiently. At the hardware
level, MNSIM 2.0 provides a hierarchical PIM modeling structure
with flexible architecture configurability and components exten-
sibility. Moreover, the first unified PIM memory array model is
proposed for describing both digital and analog PIM. At the algo-
rithm level, MNSIM 2.0 supports the PIM-based NN computing
accuracy simulation considering various architecture and device
parameters. A PIM-oriented NN model training and quantization
flow is also integrated to improve the performance gain brought
by PIM. At the scheduling level, MNSIM 2.0 adopts a univer-
sal scheduling description compatible with different scheduling
strategies. Validation using fabricated PIM macros shows the
relative modeling error rate of MNSIM 2.0 is 3.8%-5.5%. Case
studies show that MNSIM 2.0 enables PIM design space explo-
rations, influences analysis of device parameters, and architecture
design insight discoveries.
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I. INTRODUCTION

N THE past few years, convolutional neural networks

(CNNs) have demonstrated powerful capabilities in many
fields, e.g., object detection [1], face recognition [2], etc. In
addition to the high computing accuracy, the amount of data
and model size increase dramatically as the CNN models
become more and more complex. In traditional von-Neumann
architectures (e.g., CPU and GPU), the CNN computations
cause massive data movements between memory and comput-
ing units, which consume more than 80% of the overall system
energy and exacerbate the “memory wall” problem [3].

In order to tackle the “memory wall” problem, researchers
have proposed novel processing-in-memory (PIM) architectures
that perform computations inside memory [4], [5], [6], [7], [8],
[9], [10]. Fig. 1 shows two mainstream PIM approaches, i.e.,
analog PIM and digital PIM. In the analog PIM [Fig. 1(a)],
each CNN weight kernel is expanded to a vector and stored
in one column of the memory array. The input feature map is
also expanded in the same way and transformed into a voltage
vector loaded to the word-line (WL) of the memory array. Then,
the current of bit-line (BL) can represent the result of matrix—
vector multiplications (MVMs) between weights and feature
maps [4], [5], [6], [7], [8]. In the digital PIM [Fig. 1(b)], the
weight kernels are stored in the memory array, whose memory
cells are attached to simple computing units (e.g., logic gates).
During NN computation, the feature map data are loaded bit-
by-bit, and the attached computing units perform bit-serial
multiplications. Afterward, multiple adder trees are used to
merge the results of bit-serial multiplications, achieving mas-
sively parallel MVM operations [9], [10]. Both the analog and
digital PIM architectures eliminate the weight data movements
between memory and computing units, which are also the most
time and energy-consuming parts of CNNs, bringing impressive
performance gain.

Due to the huge PIM design space and large-scale NN mod-
els, SPICE simulation will take unacceptably long time to
simulate the entire PIM architecture. For example, an §-kB
memristor array needs more than 10 min for SPICE simula-
tion on one input vector [11], while typical NN models have
MB-scale weights, requiring days to months of simulation
time for PIM architectures. Besides, restricted by the evolv-
ing fabrication technologies, existing PIM chips mainly focus
on the macro designs (e.g., 1-Mb memory arrays with their
peripheral circuits). There exists an urgent need to evaluate
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the performance of the entire PIM architecture based on these
macro designs.

For the purpose of evaluating PIM architecture performance
thoroughly and efficiently, the PIM modeling tool needs to be
designed meticulously from the following perspectives.

1) Algorithm Level: Different datasets and CNN models
should be supported. Besides, the analog-domain com-
puting error and noise cause NN accuracy degradation
in analog PIM architectures. Therefore, in order to eval-
uate and exploit the benefits of an NN model on PIM,
PIM-oriented algorithmic optimizations are required.

2) Schedule Level: Algorithm mapping and scheduling
bridge various NN models and PIM architectures, deter-
mining the data flow among computing units. Carefully
designed scheduling optimization techniques conduce
to improvements in hardware resource utilization and
performance.

3) Architecture Level: In order to support different PIM
architectures and NN models, a basic PIM architecture
abstraction model is necessary. The architecture abstrac-
tion model should support computations with different
data precision. It also should be easy to extend to be
compatible with other computing components.

4) Circuit Block Level: A unified PIM memory array model
is required for describing both analog and digital PIM
macro designs, which is still an open research problem.

5) Device Level: Memory device is the basic comput-
ing and storage unit of PIM architectures. The PIM
modeling tool should support different memory tech-
nologies (e.g., SRAM, memristor, etc.) and be able to
analyze the impact of device parameters on performance
and accuracy.

In this article, we first review existing representative PIM
modeling tools and summarize these modeling tools from a
cross-level perspective, i.e., from algorithm simulation sup-
port to memory device configurability analysis. Then, we
propose MNSIM 2.0,' a behavior-level PIM modeling tool
aiming at efficient PIM-based CNN accuracy and architecture
performance simulation. Fig. 2 summarizes the new features
of MNSIM 2.0 and various functions enabled by MNSIM 2.0.
The contributions of this article include the following.

1) At the hardware level, inspired by the conventional
memory structure, we propose a hierarchical PIM
modeling structure with flexible architecture configura-
bility and component extensibility. The basic architec-
ture of MNSIM 2.0 provides support for mixed-precision
NN operations, which can cover computations with dif-
ferent data precision. Furthermore, we design the first

IThe code is available in https://github.com/thu-nics/MNSIM-2.0.git.
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unified memory array model for both digital and analog
PIM, offering the opportunity for a fair comparison of
different digital and analog PIM architectures.

2) At the algorithm and scheduling level, we emulate PIM
computing behaviors and build a PIM hardware-aware
NN accuracy simulation flow in machine learning frame-
works. In order to fully exploit the benefits of PIM
and make the tool easier for users in different areas,
we integrate a PIM-oriented NN model training and
quantization flow in MNSIM 2.0. Besides, MNSIM 2.0
adopts an arbitrary precision NN mapping and the uni-
versal scheduling description interface to support various
algorithm models and scheduling strategies.

3) We use two fabricated PIM macros to validate the sim-
ulation results of MNSIM 2.0. The relative error rate is
3.8%-5.5%, showing good modeling accuracy. Multiple
case studies are provided to demonstrate the function-
alities of MNSIM 2.0 from the algorithm level to the
device level.

The remainder of this article is organized as follows.
Section II introduces the basic knowledge of CNN and PIM.
The overview of MNSIM 2.0 is explained in Section III.
Section IV provides the basic hierarchical PIM modeling struc-
ture used in MNSIM 2.0. Sections V=VII introduce the detailed
modeling flow from the scheduling level, the architecture
and circuit block level, and the algorithm level, respectively.
Section VIII shows the experimental results, and Section IX
concludes this article.

II. PRELIMINARY
A. Convolutional Neural Network

CNNs are usually composed of three types of layers, i.e.,
the convolutional (CONV) layers, the pooling layers, and the
fully connected (FC) layers. CONV layers perform convo-
lution operations between 3-D feature map matrices F; and
convolution weight kernels W. In this article, we denote kernel
size, input channel, and output channel as K, Cj,, and Coyy,
respectively. In each CONV layer, the convolution kernels tra-
verse the entire input feature map according to the sliding
stride s. FC layers are similar to CONV layers, and these two
types of layers can be expressed as MVMs. Pooling layers
usually come after CONV layers, which execute subsampling
operations in each sliding window. Two common types of
pooling layers are max pooling and average pooling.

B. Processing-In-Memory Architecture

The PIM (also known as computing-in-memory, CIM)
architectures mainly contain two categories, i.e., analog PIM
and digital PIM.
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flow.

The analog PIM architectures perform MVMs in the analog
domain, e.g., using conductances and voltages for compu-
tations. Memristor and SRAM are the two most common
memory types used for analog PIM with a similar work-
ing principle. Here, we use the memristor-based PIM as an
example. Memristor is a kind of nonvolatile memory that
stores information using different resistance values. Typical
memristors contain resistive random access memory (RRAM),
magnetic RAM (MRAM), etc. Multiple memristors construct
the crossbar structure, which is the basic computing unit of
analog PIM. The input vector is represented by a voltage
vector V loaded to the WL of crossbars, and the memristors
are used to represent the matrix. Then, the MVM results are
derived by the output current vector I from each BL. Some
interfaces [e.g., analog-to-digital converters (ADCs), digital-
to-analog converters (DACSs), and sensing amplifiers (SAs)] are
required between PIM memory array and other digital circuits.

The analog PIM exploits MVM computing parallelism in
the analog domain, causing the requirement of costly analog-
digital interfaces. To reduce the interface overhead, digital PIM
is gradually rising in recent years [9], [10]. The weights are
stored in the memory array of digital PIM architectures. Each
memory cell or each memory row is attached with simple dig-
ital computing units that perform the multiplication between
the input bit and weights. The feature map is loaded bit-
by-bit during the computation so that the digital computing
units can be simplified to logic gates. Besides the memory
array, a near-memory adder tree is added to complete the
multiply-accumulate for input feature map with multiple bits

B-1
b
0j=Y 2"x
b=0

where B is the bitwidth of the input feature map, Ay; is the bth
bit of input A;, and Wj; is the (i, j) value in the weight matrix.
The multiplication between Ap; and Wj; can be expressed as
Boolean logic operation (e.g., bitwise AND operation).

N

> (s x W)

i=1

(D

ITI. MNSIM 2.0 OVERVIEW

Fig. 3(a) shows the high-level depiction of MNSIM 2.0, con-
taining the PIM-oriented NN model training and quantization

Analog: SPICE = Digital: Design Compiler Buffer: CACTI & NVSim
Reference Data Library

(a) High-level depiction of MNSIM 2.0. (b) PIM-oriented NN training and quantization flow. (c) PIM architecture performance modeling and evaluation

flow and the PIM architecture performance modeling and eval-
uation flow. These two parts form a closed feedback loop.
The training and quantization flow utilizes the architecture
modeling results to guide the CNN algorithm optimizations
for PIM. Then, the optimized CNN models, which contain the
information of network structure and weight parameters, are
sent to the architecture performance modeling flow to assess
the PIM-based NN computing accuracy and hardware metrics.

The PIM-oriented NN training and quantization flow
[Fig. 3(b)] aims at tailoring the NN model to suit the com-
putation pattern of PIM architectures from the perspectives
of accuracy, energy, latency, and area. In the NN train-
ing phase, MNSIM 2.0 splits the weight matrices according
to the memory array size and introduces ADC quantization,
which help to obtain a high-accuracy NN model for PIM
architectures. In addition to the original training flow, we
integrate an energy-efficient weight regularization method in
MNSIM 2.0. 1t is designed to explore the relationship between
weight values and hardware energy consumption by intro-
ducing an energy “loss” into the NN training loss function.
In the NN quantization phase, MNSIM 2.0 leverages two
PIM-aware quantization techniques: the mixed-precision quan-
tization method and the nonuniform activation quantization
method. The former method performs the layerwise weights
and input activations quantization based on weight storage
overhead and MVM calculation volume. It can reduce hard-
ware area and latency while maintaining comparable accuracy.
The latter method performs the data distribution-aware nonuni-
form quantization method on output activations. It reduces
the requirement for readout ADC resolution, achieving high
energy efficiency.

The PIM architecture performance modeling and evalu-
ation flow [Fig. 3(c)] evaluates PIM hardware performance
and PIM-based CNN accuracy. In MNSIM 2.0, users can
describe the specific PIM architecture by setting configura-
tion parameters of the proposed hierarchical PIM modeling
structure. For the hardware performance modeling part, we
first use a CNN mapping module to allocate the hardware
resource for the input CNN model. It will also construct the
PIM-based CNN computing data flow considering different
scheduling strategies. Then, the overall performance of PIM
architecture is modeled according to the specific data flow,
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process element (PE). (f) PIM memory array.

resource utilization, and performance data of basic units. The
performance data of basic units are obtained from the reference
data library, which is built offline based on the logic synthesis
and circuit simulation results. The CNN accuracy evaluation
part is designed to assess the PIM-based NN accuracy by
emulating the hardware computing behaviors. We build the
PIM-based NN accuracy simulation flow in the following
steps: 1) splitting weight matrices and activation vectors due to
design parameters of the PIM memory array; 2) performing
MVMs on the split data; 3) introducing circuit-/device-level
nonideal factors and ADC quantization error; 4) generating
the CONV/FC results; and 5) propagating errors to get the
final accuracy.

IV. HIERARCHICAL PIM MODELING STRUCTURE

MNSIM 2.0 provides a hierarchical PIM modeling structure
for describing different analog/digital PIM architectures, as
shown in Fig. 4. From a system perspective, the entire system
is composed of CPU, DRAM, and PIM. Before the calculation
starts, CPU generates NN mapping results, deploys weights to
PIM memory, and initializes PIM controller. DRAM provides
a large off-chip storage capability and is used to store the NN
weights to be deployed and input images to be calculated.
After the NN model is deployed, the PIM part is woken up
by CPU and reads the input image from DRAM. PIM relies
on its internal controller to manage the entire NN computing
data/control flow. Besides, PIM uses the multilevel on-chip
buffer for storing all the intermediate data during the com-
putation, eliminating frequent data communications between
PIM and DRAM. After the NN inference is completed, the
results are returned to CPU.

For the PIM part, MNSIM 2.0 uses a basic PIM architecture
design to adapt to different architectures with flexible hard-
ware configurability and component extensibility. We follow
the hierarchical structure of conventional memory and describe
the PIM architecture from five levels: the global architec-
ture [Fig. 4(a)], PIM banks [Fig. 4(a)], PIM tiles [Fig. 4(b)],
Processing Elements (PEs) [Fig. 4(e)], and PIM memory
arrays [Fig. 4(f)]. In each level, we provide multiple default
hardware modules with various configurable parameters (i.e.,
hardware module class and its member variables).
The typical architecture configuration parameters are listed
in Table I. Users can configure their architecture designs

Hierarchical PIM modeling structure used in MNSIM 2.0. (a) Global architecture and PIM bank. (c) Data forwarding unit in PIM bank. (e) PIM

TABLE I
ARCHITECTURE CONFIGURATION PARAMETERS OF MNSIM 2.0 (R/'W
REPRESENTS READ AND WRITE)

Variable Parameters Variable Parameters
Device Area PE Array Number
Device Device R/'W Power Level ADC/DAC Number
Level Device R/W Latency Array Polarity
eve - —
Device Precision Tile PE Number
Variation and SAF Level Inter Tile Bandwidth
Array Size Intra-Tile Bandwidth
Array Cell Type Tile Number
Level Wire RC Bank | Inter Bank Bandwidth
Technology Node Level | Intra-Bank Bandwidth
ADC/DAC Resolution NoC Configuration
Interface | ADC/DAC Sample Rate Arch Bank Number
Level ADC/DAC Power Level Buffer Configuration
ADC/DAC Area Pooling Structure

by setting these parameters. Furthermore, MNSIM 2.0 also
contains the interface for integrating new hardware modules.

The global architecture includes several PIM banks, the
global buffer, the global accumulator, and the PIM controller.
The global buffer and accumulator perform computations of
elementwise sum layers in the skip connection network struc-
ture (e.g., ResNet [19]). The PIM controller manages the
data/control flow of the entire PIM architecture. The func-
tionality of the controller is determined by its internal status
registers, which are configured by the host CPU according to
NN model mapping and scheduling results.

In each PIM bank, an array of PIM memory tiles are orga-
nized and connected as a 2-D-mesh network-on-chip (NoC)
structure. It is also easy to extend the mesh-based NoC to other
interconnection structures like ring and torus. Each memory
tile is adjacent to a data forwarding unit, a kind of comput-
ing capability enhanced router [Fig. 4(c)]. The data forwarding
unit merges data from different tiles, performs activation func-
tions of NN, and transfers the data to neighbor tiles within the
same PIM bank. Different PIM banks use the bank-level output
buffer and bus for data communications.

For the PIM memory tile, to reduce the complexity of
control logic and data path, MNSIM 2.0 specifies that each
tile should only process one CNN layer. While for some
large-scale layers, weight matrix splitting is required, and
multiple tiles collaborate to complete the layer computations.
According to the layer type, tiles can be configured as the
MVM mode or the pooling mode. This is achieved by using
an input distributor to distribute data to the PE array or
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the pooling module. The PEs in one tile are linked in an
H-Treestructure to reduce the intratile interconnection over-
head. Each connection node of the H-Treeis an inner-tile
joint module, which manages the data movements and summa-
tions of PE results [Fig. 4(d)]. The pooling module consists of
digital comparators and adders to implement the max pooling
and average pooling functions.

PE mainly contains multiple PIM memory arrays with
peripheral circuits. To support computations with different
data precision, MNSIM 2.0 leverages a reconfigurable multibit
weights mapping method. Multiple memory arrays with low-
precision devices are used to store the high-precision weights.
Then, the MVM outputs of each PIM memory array are shifted
and added to obtain the final results. Using different numbers
of PIM memory arrays and configuring the shift bitwidth can
realize the computations with different data precision.

PIM memory array carries out the core MVM computa-
tions of CNNs. It is the major difference between digital PIM
and analog PIM. In order to support the modeling of both
digital and analog PIM architectures, we propose a unified
PIM memory array model in MNSIM 2.0, as shown in Fig. 5.
In the unified PIM memory array model, we split one PIM
memory array into multiple subarrays, and an adder tree is
attached to the memory array for merging the partial results.
Each subarray contains a separate set of peripheral circuits,
including WL drivers, decoders, DACs (for analog PIM), read-
out circuits (high-resolution ADCs for analog PIM or SAs for
digital PIM), and the logic gates required for digital PIM. The
adjustable configuration parameters of the memory array are
listed in Fig. 5(a). Fig. 5(b) shows an example of describing
a5 x 4 memristor crossbar for analog PIM. Here, we want to
accumulate the current of different rows in one memory array,
so the subarray number is set to one (i.e., without splitting the
memory array). In this example, the memristor crossbar con-
tains three DACs and two ADCs, and the activated row/column
number per subarray is set to three/two, respectively. The res-
olution of the readout interface is set to eight, representing
the 8-bit ADCs, and the in-memory computing operation is
analog-domain MVMs. Furthermore, an example of a digital
PIM memory array is demonstrated in Fig. 5(c). In this exam-
ple, each row of the memory array reads the weight data in
parallel and completes bitwise multiplications with the input
activation bit. Therefore, the subarray number is set to the
number of array rows (i.e., the row number per subarray equals
one). Only 1-bit SAs are required for weights readout. And
the memory cells are attached with AND gates for performing
bitwise multiplications.

V. MAPPING AND SCHEDULING MODULE IN MNSIM 2.0

The first step in evaluating PIM performance is to map
and deploy the CNN model into PIM architecture. Then,

s [ [
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CH CF CH CF O
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L M, i, i,
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Unified PIM memory array model. (a) Basic model. (b) Example of analog PIM. (c) Example of digital PIM.
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we schedule the computation tasks among different comput-
ing units and analyze the data flow. MNSIM 2.0 focuses on
the mapping of mixed-precision NNs and provides a univer-
sal scheduling description interface to support different CNN
models and scheduling strategies.

A. CNN Model Mapping and Hardware Resource Allocation

Ideally, in PIM architectures, the 3-D CONV kernel is flat-
tened into a 1-D column vector and mapped onto devices
in one column of PIM memory arrays. Different kernels in
one layer are placed in different columns of the same array.
However, because of the limited device precision and array
size, it is difficult to map a large-scale network layer in one
PIM memory array. Therefore, we split the CONV kernels
from two dimensions, i.e., weight precision and kernel size,
to complete the reconfigurable mapping procedure for dif-
ferent precision data, as shown in Fig. 6(a). For the weight
precision splitting, if the weight precision (e.g., 8-bit) is higher
than the memory device precision (e.g., 1-bit), we use one
PIM memory array to store a certain bit of all the data in
the weight matrix. Therefore, we can flexibly deploy mixed-
precision weights by using different numbers of arrays for
different layers. For kernel size splitting, if the number of
output channels and the kernel vector length exceed the array
size, multiple PEs are needed in the horizontal and vertical
direction, each of which processes a part of the CONV layer.

According to the mapping rules, the allocation results of
PIM memory tiles can be modeled as (only shows CONV
layers here, FC layers are similar)

Cin Cout Py
|7 Lrow/KzJ —| IVW—I lr#xharpEme—I
#PETile

@)

#TﬂeCONV =
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Fig. 7. Examples of: (a) layer-by-layer execution and (b) inner layer pipeline
structure.

where row/col is the row/column number of the PIM memory
array. P, and P, represent the precision of weights and
memory devices. #xbarpg and #PETil. are the number of PIM
memory arrays per PE and PE number per tile, respectively.

The input feature mapping is shown in Fig. 6(b).
Corresponding to the expansion of CONV kernels, the 3-D
input feature block is converted to a vector, which will be
transformed into voltage pulse signals through WL drivers or
DAC:s and loaded onto the WLs of arrays. Different from the
spatial expansion in multiple arrays of CONV kernels, the
input feature blocks in each sliding window need to be loaded
sequentially in different computation cycles. Besides, if the
precision of the feature map is higher than the DAC’s res-
olution, the input needs to be split and loaded into WLs in
multiple cycles.

B. Universal Scheduling Description Interface

At the scheduling level, MNSIM 2.0 is dedicated to analyz-
ing when to start the calculation for each operation in CNNs.
The calculation start time depends on the data dependencies
among different CNN layers and the scheduling strategy. To
be specific, assume that we want to calculate the output pixel
(r, ¢)iy1 of the layer (i + 1) (i.e., the data in the rth row and
the cth column of the output feature map). We can analyze the
calculation start condition for this output from two aspects.

1) Data Dependency: The coordinate of the last input that

the layer i needs to provide: (rg, cq);.

2) Scheduling Strategy: The coordinate of the last output

that the layer (i 4+ 1) needs to complete: (rg, Cs)it1-

Denote the calculation start time, completion time, and

results transfer latency of the output (7, ¢); are Tf;ft)’, Te(;dc)’,

and L7 respectively. Then, the calculation start time can
be modeled as
T = max (T ™ + Lt 1067 )

Users can leverage different scheduling stratiges in
MNSIM 2.0 by describing the relationship between (7, ¢);+1
and {(rg, cq)i, (rs,cs)i+1}. As default, MNSIM 2.0 takes
two strategies into consideration: 1) the vanilla layer-by-layer
execution and 2) the inner layer pipeline structure.

The vanilla layer-by-layer execution is shown in Fig. 7(a);
each layer starts calculations until the previous layer completes
all the calculations (e.g., the convolution kernel has traversed
the entire input feature). So the strategy can be described as

(Hiv Wl)
c—Dip “4)

where H; and W; are the height and width of the output feature
map of layer i, respectively.

In the inner layer pipeline structure, each layer starts its
calculation once the required input data are ready. Fig. 7(b)
demonstrates a simple example of the inner layer pipeline

(ra, ca)i =
(rs, Cs)i—H =(r-1

4117

HW code Arch update Sim & Syn.
[ [ [ I ] -
Arch SPICE Sim & Synthesis HW
design (Time Consu?irig) code
a

_________________ .A;CHa_esgl;iaﬂ_oh_._v_._v_._,_._ [

N N N N -
Modeling

Pre SPICE Sim & Syn.
for basic units

|Hierarchica| PIM structurel Reference data
¥ librar
/ CNN model / / User defined arch /
| Algorithm mapping |
construction

\ Activation times \

A A y
\Resource utilization\ \ Unit performance \

[ Architecture Performance Modeling |

(©)

Fig. 8. (a) Original PIM hardware design and simulation flow. (b) Modeling
flow of MNSIM 2.0. (c) Detailed hardware performance modeling flow used
in MNSIM 2.0.

structure. Here, we consider two consecutive layers with the
convolution kernel size of 2 x 2. In the second step of
Fig. 7(b), layer i generates the intermediate data that can be
used to perform the convolution of layer (i + 1). Then, the
layer (i+ 1) starts the computation, rather than waiting for the
layer i to complete all the convolutions. Therefore, the strategy
can be described as

mm(H,, Ki+si x (r—1) —p;), CONV
(ra); = FC
la
) min(W;, K; +5; x (¢ — 1) — p;), CONV
(ca)i = w;, FC
(rs, €)ip1 = (r =1, c = Dy o)

where K; is the kernel size, and s and p represent the size of
stride and padding, respectively.

V1. HARDWARE PERFORMANCE MODELING
A. Modeling Flow Overview

The original PIM hardware design and simulation flow
[Fig. 8(a)] spends long time on SPICE simulation and logic
synthesis to derive the architecture performance, which is
time-consuming and becomes the bottleneck of architec-
ture iterative optimization. MNSIM 2.0 moves these time-
consuming parts to the tool design phase [Fig. 8(b)]. During
the iterative architecture optimization, we only need to per-
form efficient hardware modeling without the necessity of
circuit simulation and synthesis. Therefore, MNSIM 2.0 can
evaluate the performance of large-scale PIM architectures in
several seconds, enabling efficient architecture design space
exploration.

Fig. 8(c) depicts the detailed hardware performance
modeling flow of MNSIM 2.0. First, users provide the CNN
model and describe the PIM architecture using the proposed
hierarchical PIM modeling structure. Second, MNSIM 2.0
maps the CNN model onto the given PIM architecture and
allocates the hardware resources. Third, the data flow in PIM
is constructed according to the scheduling strategy. The con-
structed data flow reflects the activation times and working
time of each computing unit (e.g., the working clock cycles of
each PIM memory array). Fourth, based on the reference data
library, we use the performance LUT and approximate fitting
functions to obtain the performance data of each computing
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Fig. 9. Example of the tile interconnection graph model.

unit. Finally, the performance of the entire PIM architecture
is evaluated due to the resource utilization, working time of
computing units, and performance of each computing unit.

B. Intertile NoC Performance Analysis

In PIM architectures, multiple PIM memory tiles are
required for processing the large-scale NN layers. The NoC
structure is designed for intertile data communications. In
order to describe the communication relationship among dif-
ferent tiles and model the NoC performance, we construct
the tile interconnection graph model in MNSIM 2.0. The
tile interconnection graph model takes the following basic
assumptions.

1) We assume each layer has a merging node tile as a “data
harbor” to the next layer. The blue tile in Fig. 9 shows
an example of the merging node tile, and the red arrow
indicates the first hop of the interlayer transmission.

2) Other tiles transmit their outputs to the merging node tile
via NoC. The outputs of the tiles are merged hop-by-hop
during the data transmission, as the blue arrows in Fig. 9
show. Different NoC wires transmit data concurrently.

3) The final results of one layer are transferred from its
merging node tile to the tiles belonging to the next layer
(green arrows in Fig. 9). The data transfer time depends
on the maximum Manhattan distance from the merging
node tile to tiles of the next layer.

Based on these assumptions, the merging node is selected by

max (|x; — x,| + —
ne{Tile},-(| m nl 4 1Ym — yal)

My € arg min(

me(Tile};

it (b5l b d) 0

where (x;,, ym) is the coordinate of the tile m, {Tile}; is the
tile set of the layer i. My represents the merging node tile that
achieves the minimum summation of the distance from the
farthest tile in this layer and the distance from the farthest tile
in the next layer. On the basis of the tile interconnection graph
model, MNSIM 2.0 evaluates the NoC performance in two
simulation modes: 1) hop-based NoC modeling and 2) time-
slice-based NoC simulation.

1) Hop-Based NoC Modeling: It uses the number of data
transfer hops among different tiles for NoC evaluation. To
reduce the simulation complexity, we model the data transfer
time between adjacent tiles (i.e., one hop) according to the
transferred data volume and NoC bandwidth. According to
the tile interconnection graph model, the transfer latency of
layer i can be calculated as
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Fig. 10. Example of the time-slice-based NoC simulation.

TABLE 11
COMPARISON OF NOC SIMULATION RESULTS

Time-slice-based (time slice: n.s)
Hop-based |— 5 10 | 50 100
Runtime (s) 6.3 1610.7 | 348.8 | 1585 | 324 | 17.5
Latency (ms) 3.30 3.90 3.88 3.74 375 | 4.06
Dinter DVd Dingra DVd
Lirans,i = 2 BW + (;) BW + Imerge,d (7

where Dinga and Dijper are the Manhattan distance from the
farthest tile to the merging node in this layer and next layer,
respectively. DV is the transferred data volume and BW is
the bandwidth. Besides the communication time, the intralayer
transfer latency includes the merging time (fmerge,4), Which is
determined by the number of tiles to be merged at once.

2) Time-Slice-Based NoC Simulation: It divides the entire
timeline into a number of time slices (e.g., each time slice is
2ns). The status of each tile and the link between adjacent tiles
is tracked from two aspects. One is the work status of each
tile/link, including data generation, data transfer, waiting, and
idle. The other is the remaining time to complete the current
operation for the tile/link, which is measured by the number
of time slices. During the simulation, we traverse the time
slice in chronological order and update the work status and
remaining time of each tile and link, as shown in Fig. 10.

Compared with the hop-based NoC modeling, the time-
slice-based NoC simulation provides more accurate simulation
results when the time slice is extremely “narrow” (e.g., 1 ns),
while the overhead is the significant increase in simulation
time. Besides, when the time slice is shorter than the clock
cycle, the ground truth value of the NoC latency can be
obtained from time-slice-based simulation. A simple NoC ana-
Iytical example of running VGG [20] on an RRAM-based
analog PIM is demonstrated in Table II, showing the run-
time and simulation results of the two modes. For the NoC
power and area estimation, we refer to the method used in [21]
and [22].

C. Intratile Performance Analysis

The PIM memory tile can be configured into two operation
modes, i.e., MVM mode for CONV and FC layers and Pooling
mode for Pooling layers, as shown in Fig. 11. The entire data
flow within the PIM tile is composed of three parts.

1) Input Data Flow (Blue-Striped Arrow): In the MVM
mode, the input data flow starts from the data forward-
ing unit, goes through the H-Treeto PEs, and writes
the input activation buffer. In the pooling mode, the
input data flow bypasses the H-Treeand ends with the
pooling buffer.
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2) Computation Data Flow (The Cyan-Blue Arrow): For
the MVM mode, the input feature is first read from the
buffer and then sent to the input register (iReg). On
account of the restricted DAC resolution and WL/BL
parallelism, the PIM array needs to keep activated
for multiple cycles to complete the calculation of the
high-precision input feature

" P, —‘ K2 min(L%J, Cin)
mul = X
Rpac

Parallel,
min(Coyt, col)
Parallel,. '

®)

In (8), the first term represents that multiple cycles are
required for loading the high precision activation (P,) by
the low-resolution DAC (Rpac). The second and the third
terms reflect the limited WL/BL computation parallelism
(Parallel,, Parallel.) causes more calculation cycles. In
each cycle, several input activation bits are loaded to
the DAC of the PIM memory array. Then, the analog
MVM values or digital logic results generated by the
PIM memory array are converted to the digital form by
ADCs or SAs. The digital outputs are shifted and added
with the previous temporary results and then stored in the
output register. After mul cycles, the adder tree merges
all the arrays’ results in this PE. For the pooling mode,
the computation latency is quite simple. It is determined
by the kernel size of the pooling layer and the number
of computing resources in the pooling module.

3) Output Data Flow (The Green Arrow): The output data
flow is similar to the input data flow. The results of PEs
are first merged by the joint module in H-Tree, then
the merged results are sent to the output buffer. Data
forwarding units read data from the output buffer and
send them to other tiles.

D. Area, Power, and Latency Models for Basic Units

1) PIM Memory Array: MNSIM 2.0 provides the device
description interface in Table I to model different device
technologies. For the area estimation, users can provide
information from three aspects: 1) array area; 2) device area;
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Fig. 12. Accuracy evaluation of PIM-based CNN inference.

and 3) technology node, as shown in

User Given Value

col x row x Device_Area

col x row x 120F?2 SRAM (9)
col x row x 3(W/L+ 1)F? ITIR

col X row x 4F2 0TIR

where 1T1R and OT1R represent the MOSFET-accessed mem-
ristor and cross-point memristor structure, W/L is the tran-
sistor technology parameter, and F is the technology node.
Similarly, for the latency estimation, users can provide the
array-level latency or the device read latency. For the latter
one, we model the latency of PIM memory array by intro-
ducing the RC delay caused by interconnection wires. As for
the power consumption model, MNSIM 2.0 uses the percent-
age of bit-0/1 in the feature map and weights to estimate the
equivalent power.

2) Analog and Digital  Conversion Interface: In
MNSIM 2.0, the design of ADCs/DACs is mainly customized
by users. User needs to provide the circuit parameters shown
in Table I. MNSIM 2.0 also includes some state-of-the-art
DAC and ADC designs with different resolutions as default
values.

3) Digital Circuits: For non-MVM computing circuits,
MNSIM 2.0 synthesizes the digital circuit modules at TSMC
65-nm technology node by the Synopsys Design Compiler.
The digital circuit modules include address decoders, adder
trees, pooling modules, data forwarding units, etc. For other
technology nodes, we get the modeling results converted from
65-nm simulation results using the scaling-down estimation
method [23].

4) Buffer Design: For the on-chip buffer, MNSIM 2.0 uses
CACTI [18] and NVSIM [24] to get reference data (area,
power, bandwidth, etc.) of different memory technologies (i.e.,
SRAM, DRAM, Nonvolatile Memories). After users give the
buffer configurations (e.g., buffer size), MNSIM 2.0 uses the
method of fitting and looking up table through reference data
to estimate the buffer read/write overhead.

Xbar_Area =

VII. PIM-BASED CNN EVALUATION
AND OPTIMIZATIONS

A. PIM-Based CNN Accuracy Evaluation Flow

The PIM-based CNN accuracy evaluation flow is illus-
trated in Fig. 12, which emulates PIM computing behaviors
and is implemented within the PyTorch framework. First,
considering the size of PIM memory array, the precision of
memory devices, and the DAC resolution, we split the weight
matrix and input feature into submatrices and subvectors,
as mentioned in Section V-A. Second, for each submatrix,
device nonideal factors are introduced to update the values.
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MNSIM 2.0 takes three major nonideal factors of memory
devices into consideration, i.e., stuck-at-faults (SAFs), limited
on/off ratio, and resistance variations. These nonideal factors
are modeled as additive noises and mask matrices applied to
weight matrices. We also retain the interface for describing
other nonideal factors. Third, MVMs are performed between
the updated submatrices and subvectors. The MVMs results
are quantized according to the ADC resolution. Finally, the
quantized MVM results are merged into the CONV results and
propagated to the next layers to get the final CNN accuracy.

B. PIM-Oriented NN Training and Quantization

1) PIM-Oriented NN Training: When deploying an origi-
nal well-trained NN model on PIM architecture, the circuit-
/device-level nonideal factors (red box in Fig. 12) induce sig-
nificant accuracy loss. In order to improve the PIM-based CNN
computing accuracy, MNSIM 2.0 integrates a PIM-oriented NN
training flow. In the modified NN training flow, the forward
propagation utilizes the PIM-based CNN accuracy evaluation
flow to calculate the loss term, while the backward propaga-
tion remains similar as the original training flow without much
modifications. Besides, the analog PIM architectures perform
MVMs in the analog domain, where the energy consump-
tion is closely related to the weights/activations distribution.
MNSIM 2.0 integrates an energy-efficient weight regularization
method, which adjusts the distributions of weights and acti-
vations to reduce energy consumption [25]. To be specific, if
we use the voltage and conductance to represent input activa-
tions and weights, then the updated loss function considering
energy consumption is

L—1

Losspew = Loss, + Zf(Xlz Wl)
=0

(10)

where Loss, is the original loss function, L is the total CNN
layer number, and f(-) represents an elementwise product
function. X; and W; represent the activations and weights of
layer [.

2) PIM-Oriented NN Quantization: In CNN algorithms,
different layers have different quantization sensitives [26]. In
order to maintain the accuracy, some layers’ weights and acti-
vation must be kept in high precision while others can be quan-
tized into low bit width. In PIM architectures, the precision of
weights and activation will affect the storage usage and latency
according to (2) and (8). Therefore, MNSIM 2.0 leverages the
layerwise mixed-precision quantization to reduce storage bur-
den and latency with little accuracy loss. Besides, existing
work has demonstrated that high-resolution ADCs occupy the
major energy consumption of PIM architectures, and their res-
olution has a crucial impact on computing accuracy [25]. In
order to reduce the ADC energy consumption, MNSIM 2.0
integrates a PIM-based nonuniform activation method, which
optimizes the quantization range and determines the ADC
quantization steps according to the distribution of output acti-
vations. Thus, the ADCs can pay more attention to the interval
with more data. As a result, the ADC resolution can be reduced
by 2-bit with lower power consumption.

VIII. EXPERIMENTAL RESULTS
A. Experiment Setup

We use four typical CNNs as benchmarks, i.e., LeNet [28],
modified VGG-8, VGG-16 [20], and ResNet-18 [19]. All
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TABLE III
CONFIGURATION PARAMETERS OF TWO REPRESENTATIVE PIM MACROS:
SRAM-BASED DIGITAL PIM (ISSCC 22-11.7 [10]) AND RRAM-BASED
ANALOG PIM (ISSCC 20-33.2 [27])

[ISSCC 22-11.7] | [ISSCC 20-33.2]
(#array, #row, #col) (32, 16, 64) (1, 784, 100)
(#act_row, #act_col) (1, 64) (784, 100)
(Res, Op) (1, AND) (8, MVM)
TABLE IV

COMPARISONS BETWEEN CHIP MEASUREMENT RESULTS AND
SIMULATION RESULTS OF MNSIM 2.0

[ISSCC 22-11.7] | MNSIM 2.0 Error
Area 0.030 0.034 13.3%
(mm*)
Performance
(GOPS) 16.00 16.22 1.4%
Energy efficiency
(TOPS/W) 27.38 28.23 3.1%
[ISSCC 20-33.2] | MNSIM 2.0 Error
Area 3.77 3.50 7.2%
(mm?)
Latency 51.10 53.38 45%
(ns)
Energy efficiency
(TOPS/W) 78.40 74.44 -5.1%

experiments are evaluated on the CIFAR-10 and ImageNet
datasets [29], [30]. The memristor and SRAM data we used
refer to existing papers [10], [27], [31]. The driver, DAC, SA,
and ADC data come from [5], [32], [33], [34], [35], [36]. The
digital parts are synthesized at 65 nm with 500 MHz using
Synopsys Design Compiler. We scale the synthesized results to
other technology nodes according to the scaling equations [23].

B. Validation of Simulation Results

In order to validate the simulation results of MNSIM 2.0,
we consider two fabricated PIM chips and use the device and
circuits parameters from these PIM macros in MNSIM 2.0.

1) We use the Dynamic Logic-based SRAM PIM macro
proposed in [10] as an example of digital PIM. It con-
tains a 32-kb array that is split into 32 compartments,
each of which has 16 WLs and 64 BLs. In each cycle,
one WL is activated and performs logic operation with
the 1-bit input signal.

2) We use the fully integrated analog RRAM PIM macro
proposed in [27] as an example of analog PIM. It con-
tains two RRAM arrays for computing two FC layers.
For simplicity, we focus on the 784 x 100 RRAM array
designed for the first layer, whose ADC resolution is
eight. When performing MVM operations, all rows and
columns are activated.

To evaluate these designs, we configure parameters of the
PIM memory array model as shown in Table III. The com-
parison results are shown in Table IV. Compared with chip
measurement results, the relative error rate of MNSIM 2.0 is
only 3.8% and 5.5% for SRAM-based digital PIM and RRAM-
based analog PIM, respectively, showing acceptable simulation
accuracy of MNSIM 2.0. Besides these two mentioned PIM
macros, other PIM designs can also be modeled by setting
different configuration parameters in Fig. 5.
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TABLE V
SIMULATION TIME COMPARISONS (UNIT: s)

MNSIM 2.0 SPICE
HW | NN accuracy | #Mem array | Sim time
LeNet 3.1 3.2 48 5.35
VGG-8 4.5 48.5 1272 per PIM
VGG-16 6.3 53.2 2040 memory
ResNet-18 5.5 37.3 1968 array
TABLE VI
ACCURACY AND PERFORMANCE RESULTS
OF RESNET-18 ON DIFFERENT DATASETS
Accuracy Area Latency | Energy
(%) (mm?) (ms) (mJ)
CIFAR-10 | 89.80 (TOP1) | 459.96 3.28 1.3
ImageNet | 89.08 (TOP5) | 831.21 79.4 473
TABLE VII

ACCURACY AND PERFORMANCE RESULTS @ CIFAR-10
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C. Simulation Time

Table V shows the simulation time of MNSIM 2.0 and
SPICE. Because of the extremely long SPICE simulation
time, we use the simulation time of one PIM memory array
(256 x 256) and the number of memory arrays for compar-
isons. Results show that the entire architecture modeling time
of MNSIM 2.0 is similar to the SPICE simulation time of
only one PIM memory array. Considering that large-scale NNs
require thousands of PIM memory arrays, MNSIM 2.0 is more
efficient for the design space exploration.

D. Algorithm-Level Case Study

Thanks to the flexible CNN description interface and the
proposed PIM-based CNN optimization flow, MNSIM 2.0 pro-
vides the opportunity for evaluating different datasets and
CNN models on PIM. Table VI shows the accuracy and hard-
ware performance of PIM-based ResNet-18 on CIFAR-10 and
ImageNet datasets. Here, we use an RRAM-based analog PIM
with 256 x 256 crossbars and four ADCs as the hardware
instance. The larger scale of ImageNet causes high latency
and energy consumption on PIM.

We also integrate MNSIM 2.0 with an open-sourced PIM
and NN co-exploration tool, i.e., Gibbon [37]. By using
MNSIM 2.0 as the performance evaluator, the results of the
automated neural architecture search are shown in Table VII.
The co-exploration results bring 7.37x and 2.55x reduction
in area and energy-delay-product, respectively.

E. Scheduling-Level Case Study

MNSIM 2.0 supports different scheduling strategies by ana-
lyzing the calculation start condition of output pixels in
each layer. Here, we use the built-in layer-by-layer execution
and inner layer pipeline to demonstrate the influence on the
performance of different scheduling strategies.

Fig. 13 shows an example of the inner layer pipeline data
flow. The dots in different rows represent the computing time
of different layers, revealing the high computing parallelism.

4-bit ADC 6-bit ADC 8-bit ADC 10-bit ADC

Fig. 14. Normalized latency, energy, and accuracy results under different
ADC resolutions. NN accuracy baseline: LeNet 70.6%, VGG-8 93.5%, and
ResNet-18 91.2%.

The table in Fig. 13 shows the inner layer pipeline structure
reduces the buffer size and latency by 6.13x and 3.2x.

F. Architecture-Level Case Study

Because of the fast evaluation speed, MNSIM 2.0 enables
early-stage PIM architecture design space exploration. Here,
we use two examples to demonstrate the design space explo-
ration results given by MNSIM 2.0.

1) Tradeoff Between Accuracy and Hardware Performance:
One primary computing deviation source of the analog PIM
architecture is the quantization error of ADCs. The quan-
tization error mainly depends on two factors: 1) the ADC
resolution and 2) the activated row number (i.e., input par-
allelism). These two factors also influence the hardware
performance significantly, so the optimal architecture should
be carefully studied.

For the ADC resolution, Fig. 14 shows the CNN accuracy
and hardware performance under different ADC configura-
tions. We use the analog PIM architecture with 256 x 256
RRAM crossbars, and 256 rows are activated at the same
time. The results demonstrate that the CNN computing power
drops dramatically when the ADC resolution becomes lower.
But ADCs with low resolution may destroy the CNN func-
tion. Besides, different CNN models have different tolerance
capabilities for quantization errors. Thus, the ADC resolution,
together with the NN model, should be selected meticu-
lously to achieve the tradeoff between accuracy and hardware
performance.

For the input parallelism, the computation parallelism is
enhanced as the number of activated rows increases, result-
ing in low latency. However, the higher input parallelism also
leads to higher ADC quantization error since the precision of
accumulated current becomes large. Fig. 15 shows the CNN
accuracy and latency under different input parallelisms. Here,
we use 256 x 256 RRAM crossbars with 1-bit DACs and
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Fig. 16. Normalized Latency, Area, and Power results under different readout
parallelisms (CNN model: VGG-16, 256 x 256 crossbars with 256 1-bit DACs
and 8-bit ADCs).

4-bit ADCs. Theoretically, 16 rows can be activated simul-
taneously without ADC quantization error when using 4-bit
ADC designs. Thanks to the inherent error tolerance features
of NN, the maximum input parallelism with little accuracy
loss reaches 32, significantly reducing the latency compared
with the input parallelism of one. However, when the input
parallelism becomes larger (e.g., 128), the huge ADC quan-
tization error causes unacceptable accuracy loss. Under this
circumstance, a higher ADC resolution is required.

2) Tradeoff Among Latency, Area, and Power: Due to the
place and routing limitations, multiple WLs/BLs usually share
one DAC/ADC in memory array. Interface sharing reduces the
hardware area and power consumption at the cost of increased
latency. Fig. 16 shows the latency, area, and power chang-
ing trend with respect to (w.r.t) readout parallelism (i.e., the
number of ADCs attached to one array). We can extract two
optimal points from Fig. 16. One is the power and area optimal
point, which can reduce the latency by 60% with little addi-
tional overhead. And the other is the latency optimal point.
It achieves more aggressive optimized latency results (~70%
reduction), but the overhead (e.g., power increased by 16 W) is
not negligible.

3) Area and Power Breakdown: We use the area/power
optimal design in Fig. 16 to analyze the area and power break-
down. The results are shown in Fig. 17. The PIM memory
arrays occupy the most area, and ADCs spend the most power
budget. Further optimization should be done for ADCs to
improve energy efficiency in future work.

G. Circuit Block-Level Case Study

At the circuit block level, the major contribution of
MNSIM 2.0 is providing a unified memory array model for

Analog PIM | Digital PIM
Latency (ms) 5.33 4.44
Area (mm?) 705 510
Energy(mJ) 3.83 1.04
Accuracy 93.36% 93.54%
TABLE IX

PIM-BASED NN COMPUTING ACCURACY (%) UNDER
DIFFERENT VARIATION LEVELS @ CIFAR-10

0% 1% 5% 10% 20%

LeNet 69.63 | 6891 | 62.18 | 26.63 | 22.82
VGG-8 9336 | 93.09 | 92.72 | 90.91 | 71.82
VGG-16 | 93.09 | 93.45 | 89.73 | 91.18 | 27.00

both digital and analog PIM, which helps to make a fair com-
parison among different PIM architectures. Table VIII shows
the performance comparisons between analog PIM and dig-
ital PIM when executing VGG-8 on the CIFAR-10 dataset.
Here, we use the device and circuits parameters extracted
from the PIM device and macro designs [10], [31]. For the
latency, the analog PIM and the digital PIM show similar
performance. These small performance differences are mainly
influenced by the metrics of memory devices and interface
circuits. However, analog PIM architectures suffer from signif-
icant weaknesses in terms of area, energy, and accuracy. In the
analog PIM architecture, high-resolution ADCs are required
for high CNN accuracy, which account for ~80% of the total
area and energy consumption. Besides, the ADC quantization
error and other device-level analog noise cause MVM results
deviation, resulting in the NN accuracy loss.

H. Device-Level Case Study

Emerging memory technologies like memristor have shown
great potential in storage density and in-sifu computing capa-
bility. Despite these virtues, the device parameters and non-
ideal factors may cause unexpected accuracy loss. Because
of the memory device description interface of MNSIM 2.0,
researchers can easily analyze the influence of various
device parameters. Here, we consider three kinds of device
parameters.

1) Resistance Variations: They mean the deviation
between the actual and ideal resistance values. MNSIM 2.0
models the variation as a Gaussian noise added to the
resistance and uses the noise variance to describe the intensity
of the resistance variation. Table IX provides the PIM-based
NN accuracy under different noise variances. The results
demonstrate that VGG is more tolerant to variations than
LeNet.
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Fig. 19. PIM-based NN accuracy under different SAF probabilities (CNN
model: VGG-8 @ CIFAR-10).

2) On/Off Ratio: ltis the ratio of the high resistance state to
the low resistance state. The high on/off ratio makes the data
stored in the memory array more closely to the ideal value
while mitigating the effects of resistance variations. Fig. 18
shows the NN accuracy under different on/off ratios, indicating
the on/off ratio > 50 conduces to maintain high accuracy.

3) Stuck-At-Fault: It refers to a damaged memory device
that can not be written correctly. Fig. 19 shows the heat map
of computing accuracy w.r.t SAF probabilities. Compared with
the low-resistance faults, the increased probability of the high
resistance faults does not cause a significant decrease in accu-
racy. This is due to the fact that sparse NNs have a higher
proportion of bit-0, and the high resistance faults (i.e., stored
data becoming 0) have a lower impact on accuracy.

IX. CONCLUSION AND FUTURE WORK

In this article, we propose MNSIM 2.0, a behavior-level
modeling tool for both digital and analog PIM architectures.
The proposed tool can help architecture and algorithm design-
ers to fast evaluate the performance of PIM architectures and
enable the design space exploration, device parameters influ-
ence analysis, and design insight discoveries. In the future,
we will add more algorithm mapping strategies and circuit
noise models to support other Al algorithms and PIM circuit
modules.
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