
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 10, OCTOBER 2023 3157

A Security-Aware and LUT-Based CAD Flow
for the Physical Synthesis of hASICs

Zain Ul Abideen , Graduate Student Member, IEEE, Tiago Diadami Perez , Graduate Student Member, IEEE,
Mayler Martins , and Samuel Pagliarini , Member, IEEE

Abstract—Numerous threats are associated with the global-
ized integrated circuit (IC) supply chain, such as piracy, reverse
engineering, overproduction, and malicious logic insertion. Many
obfuscation approaches have been proposed to mitigate these
threats by preventing an adversary from fully understanding the
IC (or parts of it). The use of reconfigurable elements inside an
IC is a known obfuscation technique, either as a coarse grain
reconfigurable block (i.e., eFPGA) or as a fine grain element (i.e.,
FPGA-like lookup tables). This article presents a security-aware
CAD flow that is LUT-based yet still compatible with the stan-
dard cell-based physical synthesis flow. More precisely, our CAD
flow explores the FPGA-ASIC design space and produces heavily
obfuscated designs where only small portions of the logic resem-
ble an ASIC. Therefore, we term this specialized solution a hybrid
ASIC (hASIC). Nevertheless, even for heavily LUT-dominated
designs, our proposed decomposition and pin swapping algo-
rithms allow for performance gains that enable performance
levels that only ASICs would otherwise achieve. On the secu-
rity side, we have developed novel template-based attacks and
also applied existing attacks, both oracle-free and oracle-based.
Our security analysis revealed that the obfuscation rate for an
SHA-256 study case should be at least 45% for withstanding tra-
ditional attacks and at least 80% for withstanding template-based
attacks. When the 80% obfuscated SHA-256 design is physically
implemented, it achieves a remarkable frequency of 368 MHz in a
65-nm commercial technology, whereas its FPGA implementation
(in a superior technology) achieves only 77 MHz.

Index Terms—Hardware obfuscation, hybrid ASIC (hASIC),
LUT-based obfuscation, reverse engineering, secure ASIC design.

I. INTRODUCTION

NOWADAYS, high-performance and energy-efficient inte-
grated circuits (ICs) are enablers in a variety of applica-

tion domains. However, this demands the fabrication of ICs in
advanced technology nodes. Current predictions are that the
sales of semiconductor devices will rise to $680B in 2022,
the first time this mark has been surpassed in a calendar year
since 2020 [1]. In tandem, the majority of IC design houses are
adhering to a globalized supply chain to outsource fabrication

Manuscript received 13 July 2022; revised 25 October 2022 and 3 February
2023; accepted 10 February 2023. Date of publication 14 February 2023; date
of current version 20 September 2023. This work was supported by the Project
“ICT Programme” which was supported by the European Union through
the ESF. This article was recommended by Associate Editor J. Rajendran.
(Corresponding author: Zain Ul Abideen.)

Zain Ul Abideen, Tiago Diadami Perez, and Samuel Pagliarini are with
the Department of Computer Systems, Centre for Hardware Security, Tallinn
University of Technology, 12616 Tallinn, Estonia (e-mail: zain.abideen@
taltech.ee; tiago.perez@taltech.ee; samuel.pagliarini@taltech.ee).

Mayler Martins is with SRG, Synopsys Inc., Mountain View, CA 94085
USA (e-mail: mayler.martins@synopsys.com).

Digital Object Identifier 10.1109/TCAD.2023.3244879

from pure-play foundries. Even very large semiconductor com-
panies rely on the so-called fab-for-hire model [2], [3], a
framework that originates from the technological and financial
challenges of developing and maintaining a foundry. The esti-
mated cost to build a 3-nm production line is $15B–$20B [4].
The trend is clear: more than ever, fabless design companies
rely on outsourcing the manufacturing of their ICs.

While this business model enables design houses to have
access to high-end manufacturing, the integrity and trustwor-
thiness of the ICs are potentially affected. For manufacturing
an IC, the design house must share a blueprint of the IC
with the foundry. This blueprint inevitably exposes all aspects
of the IC and its many parts. A rogue element within the
foundry can entirely or partially copy the design, i.e., the
foundry and its employees are considered potential adver-
saries. Many potential threats are associated with the untrusted
fabrication aspect of a globalized IC supply chain [5]. Such
threats include tampering, counterfeiting, reverse engineering,
and overproduction.

Numerous techniques have been devised to protect
against the aforementioned security threats. Countermeasures
to secure an IC also apply to a malicious end user
that can be interested in reverse engineering a design.
Noteworthy examples of countermeasures are Logic Locking
[6], [7], [8], [9], [10], IC Camouflaging [11], [12], [13],
Split Manufacturing [14], [15], and FPGA-like obfuscation
approaches [16], [17], [18], [19], [20], [21], [22], [23], [24].
The latter style of obfuscation attempts to exploit an FPGA
(or FPGA-like) fabric, where the functionality of the circuit is
hidden by the configuration and the bitstream serves as a key
to unlock the design.

Generally, the fabric in an FPGA device contains many
reconfigurable blocks that can be leveraged for obfuscation
purposes. The ability to reconfigure a device does incur
performance penalties (i.e., FPGA versus ASIC). Being so,
custom solutions where only a small portion of the design is
reconfigurable have been sought, a solution typically termed
eFPGA. This work also takes advantage of this possibility. A
visualization of the obfuscation landscape is given in Fig. 1.
As illustrated, performance increases if we move from right to
left. Contrarily, obfuscation and flexibility increase if we move
from left to right. However, we argue that neither extremes of
the landscape are a good design point for circuits with strin-
gent security and performance constraints. A midpoint solution
is a better tradeoff, which is precisely the motivation for our
work. We term our midpoint solution a hybrid ASIC (hASIC).

In [25], we have described an initial attempt at exploring
and automating the design spaces captured in Fig. 1. In this

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8865-9402
https://orcid.org/0000-0001-6006-1938
https://orcid.org/0000-0002-2848-2190
https://orcid.org/0000-0002-5294-0606

3158 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 10, OCTOBER 2023

Fig. 1. Design obfuscation landscape.

work, we extend and improve our results considerably while
keeping the same general theme: we seek to obfuscate a circuit
by generating a hybrid design that consists of a reconfigurable
portion and static logic. The reconfigurable part provides the
obfuscation while the static logic provides performance ben-
efits. We perform our design space exploration at the block
level. Finally, the architecture of the generated block is a mix
of reconfigurable and static cells. The reconfigurable part is
implemented with programmable LUTs; the circuit is largely
nonfunctional until it is programmed.

Earlier obfuscation techniques utilizing reconfigurable ele-
ments have focused on keeping the reconfigurable part as small
as possible. Understandably, the goal would be to avoid large
performance and area overheads. However, we emphasize (and
later provide results) that proper hiding of the circuit’s intent
requires a high degree of obfuscation that is generally not
investigated in the state-of-the-art. For this reason, in [25],
we have proposed a CAD tool for automatically obfuscating
a design, thus, generating a specialized solution called hASIC
that is compatible with standard-cell-based flows and current
design and fabrication practices. In this work, we markedly
extend the CAD tool from [25]. The main contributions of
this work are as follows.

1) Specialized algorithms for performance improvement of
hASIC designs, including LUT decomposition and pin
swapping approaches.

2) An analysis of performance versus obfuscation and
area versus obfuscation tradeoffs for numerous designs,
including known benchmarks.

3) A detailed analysis (physical synthesis) of performance,
power, and area versus obfuscation for SHA-256, includ-
ing tapeout-ready layouts in a 65-nm commercial tech-
nology.

4) Thorough analysis of hASIC’s security against custom
attacks and known oracle-based and oracle-less attacks.

II. CAD FLOW FOR HASIC

Our CAD flow utilizes a custom tool named tuneable design
obfuscation technique using hASIC (TOTe). Our custom tool
produces an hASIC design with reconfigurable and static logic.
For the reconfigurable portion, we implement the logic utiliz-
ing the notion of programmable lookup tables (LUTs)—same
as in FPGAs. The complete process for obfuscating a design
is fully automated and infers a marginal increase in design
time (when compared to a traditional ASIC flow).

At its core, TOTe looks for critical paths and replaces “slow”
reconfigurable elements with “fast” static ones. From this point
of view, TOTe’s design decisions are decoupled from security
decisions. Later, in Section VI, we introduce a well-defined
threat model and provide insights into the security of an hASIC
design. A designer using TOTe only has to define an obfusca-
tion target obfc which is the percentage of LUTs that should
remain reconfigurable (obfuscated).

A. Overview of TOTe

Initially, a commercial FPGA synthesis tool is utilized to
synthesize the design under obfuscation (DUO), described
in the register-transfer level (RTL) form. The DUO does
not require any particular change in its representation. Then,
the commercial FPGA synthesis tool generates a synthesized
netlist and a timing report. This netlist includes all the typical
FPGA primitives, i.e., LUTs, MUXs, and FFs.

Next, TOTe takes the ASIC standard cell library of choice
as well as the outputs generated by the FPGA synthesis. The
parser of TOTe reads the elements from the netlist and the
paths from the timing report, which are then processed by a
timing engine. The primary goal of TOTe is to replace FPGA
cells for ASIC cells. More precisely, TOTe selects LUTs in
the critical path (i.e., the path with the highest delay) and
replaces them with standard cells that implement the same
logic (except the programmability aspect is taken out). This
process is repeated until enough LUTs have been converted
to standard cells according to a user-provided obfuscation tar-
get (obfc). The obfuscation target determines the ratio of the
LUTs that must remain programmable. Replacing LUTs for
static logic reduces the area, power, and delay (thus, improv-
ing the performance of the design). Finally, an obfuscated
hybrid Verilog file containing reconfigurable and static LUTs
is generated as the output.

In order to finalize the hASIC design, a commercial physi-
cal synthesis tool is used to implement it. Then, the foundry
receives the layout and fabricates the design.

B. Detailed Flow and Internal Architecture of TOTe

The complete design flow for obfuscating a design, gener-
ating an hASIC along with logical and physical synthesis, is
illustrated in Fig. 2 and comprises a total of seven steps, which
we represent as circled numbers in the text that follows.

In Step 1 , the DUO’s RTL is synthesized using a com-
mercial FPGA synthesis tool. The DUO requires no special
annotations, no synthesis pragmas, nor any other change in
its representation. Outputs from Step 1 are in the form of
a synthesized netlist and a timing report. The netlist com-
prises all the typical FPGA primitives, i.e., MUXs, LUTs, and
FFs. We note that, at this point, the logic of the design is
100% obfuscated since it is entirely captured by LUTs. In
very short words, the next steps of TOTe will find LUTs that
are good candidates for being replaced by static logic. This is
the core functionality of TOTe and is illustrated in the bottom
left corner of Fig. 2.

Next, in Step 2 , preprocessing takes place. This step aims
to filter and interpret the timing report and Verilog netlist. The
parsing of the timing report is a relatively trivial task. The

ABIDEEN et al.: SECURITY-AWARE AND LUT-BASED CAD FLOW 3159

Fig. 2. Overview of TOTe’s obfuscation flow and its inner steps.

timing report contains information that should be discarded
(empty lines, headers, etc.) for which a bash script has been
written. After filtering the timing report, every analyzed path
may now contain four FPGA primitives: FF, CARRY, LUTi,
and MUX. TOTe encodes (hashes) the instance names to avoid
lengthy string representations. The preprocessing step ends
when TOTe produces a list of timed paths, where each path
contains a list of hashed instances and associated delay values.
Note that an instance can appear in many paths and also can
appear in many paths under different timing arcs. Finally, the
list of timed paths is sorted in ascending order. As a result,
the path that has the highest delay (critical path) is referred to
as CP and the sum of all CPs is referred to as sumCP.1

Step 3 is the process of primitive extraction and LUT
decoding. TOTe builds a graph representation of the netlist to
keep track of port connections such that the circuit structure
can be preserved once optimizations are applied. Under the
graph representation, primitive types are annotated for every
instance; For LUTs, in particular, the tool also annotates their
masking patterns (i.e., configuration bits of an individual LUT).
In practice, TOTe is able to interpret the LUT encoding scheme
utilized in the netlist coming from FPGA synthesis. For the
case of a LUT6, the 64-bit masking pattern extracted from the
netlist is converted to a truth table with six inputs and one
output. The masking pattern determines which combinations of
inputs generate outputs as 1s and 0s. The process is identical for
smaller LUTs, which then have smaller truth tables. By using
truth tables populated by the masking patterns, TOTe builds
combinational logic that is equivalent to the LUT’s logic. The
truth tables are exported as synthesizable Verilog code. Other
primitives, such as FF and MUX, require no decoding and are
directly translated to their ASIC equivalents.

1CP and SumCP are analogous to WNS and TNS in traditional static
timing analysis (STA), except all paths, here, are assumed to pass timing
checks. For simplicity, no negative values are, therefore, considered in this
analysis.

Algorithm 1: TOTe’s Obfuscation Procedure
Input: L (list of LUTs), P (list of paths), obfc (obfuscation

criterion)
Output: hASIC← f (input)

1 LST ← φ, LRE ← L
2 while SIZE_OF (LST) ≤ obfc do
3 path ← FIND_CRITICAL(P)
4 lut ← FIND_SLOWEST(path)
5 if lut ∈ LRE then
6 INSERT(lut, LST)
7 REMOVE(lut, LRE)
8 UPDATE_TIMING(lut, P)

9 else
10 REMOVE(path, P)

11 for each lut ∈ LST do
12 DECODE(lut)

13 for each lut ∈ LRE do
14 GEN_CASE_0_1(lut)
15 DECOMPOSE_OPT(lut)
16 SWAP_PINS(lut)

17 hASIC← LST ∪ LRE

TOTe comes with obfuscation and timing engines that drive
the security versus performance objectives of the tool. These
engines are utilized in Step 4 and are responsible for dif-
ferent important tasks, including timing analysis, critical path
identification, and replacement of reconfigurable cells for static
cells. Algorithm 1 describes the different operations inside the
obfuscation main loop of the tool, where L is a list of LUTs,
P is a list of timed paths, and obfc is the obfuscation criterion.
The internal variables LST and LRE are lists of LUTs in static
and reconfigurable form, respectively. Initially, all LUTs are
considered (line 1). Then, the obfuscation engine executes until
the desired number of LUTs is made static (line 2), where the
SIZE_OF function returns the size of a list. Inside the obfusca-
tion inner loop, the critical path is identified (line 3) using the
FIND_CRITICAL function, then the slowest LUT on that path
is identified using the FIND_SLOWEST function (line 4). If
the identified LUT is a reconfigurable LUT (line 5), the lists
of LUTs are updated (lines 6 and 7) and the timing engine
recalculates the affected paths (line 8). If the identified LUT
is not reconfigurable (line 9), the path is removed (line 10)
and the loop continues (line 2). The INSERT and REMOVE
functions update the lists as hinted by their names.

A few additional steps take place after the obfuscation cri-
terion has been met (lines 11–17). These steps are already
related to the implementation of hASIC, but we list then,
here, for completeness. The DECODE function operates on
every LUT that was assigned to be static. From Step 3 ,
TOTe already possesses their description in Verilog as truth
tables. TOTe then executes the ASIC synthesis of the truth
tables to obtain netlists composed of standard cells. The func-
tion GEN_CASE_0_1 generates the “force logic” to be used
for timing and power analysis during physical synthesis; other-
wise, each LUT would be timed for its worst timing arc instead
of the actual implemented timing arc when the LUT is pro-
grammed. DECOMPOSE_OPT decomposes the larger LUTs
into smaller LUTs. Due to the complexity of this operation, we

3160 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 10, OCTOBER 2023

Fig. 3. Layout of macros for LUT4, LUT5, and LUT6. Implementation was
executed in Cadence Innovus.

dedicate an entire section to it (see Section III). SWAP_PINS
performs a final timing optimization that is an attempt to swap
the LUT pins in order to improve the delay, also discussed later
in Section III-C. Finally, the algorithm merges LST and LRE
to generate hASIC and returns.

In Step 5 , area estimation is performed. The estimated area
of the hASIC design is calculated as A = Are+Ast, where Are
is the area of the reconfigurable part and Ast is the area of
the static part. For calculating Are, we sum the area of the
LUTs that remain reconfigurable. For calculating Ast, we sum
the area of the standard cells of the static LUTs. Later, a very
precise area estimation is done in an industry-strength physical
synthesis tool, where congestion is properly accounted for.

Step 6 mostly relates to the generation of files that describe
the hASIC intent. This step exports an obfuscated hybrid
Verilog file, a timing report, and an area report. A designer
can repeat this procedure until he/she achieves his obfusca-
tion (security) and performance targets. Finally, in Step 7 ,
the obfuscated netlist is implemented in a commercial phys-
ical synthesis tool where traditional P&R, CTS, DRC, etc.,
steps are executed and the resulting tapeout database is sent
to the foundry for fabrication. Once the fabricated parts are
delivered, they have to be programmed for the hASIC design
to be functional. The programming step requires a bitstream,
the same as in an FPGA design.

III. LUT-SPECIFIC APPROACHES TO IMPROVE QOR

In this section, we discuss LUT-related optimizations and
decisions taken in order to make an hASIC design display
the high-performance characteristics of an ASIC and the
obfuscation capability of an FPGA fabric.

A. Custom Standard Cell-Based LUTs

We have designed our own custom LUTs (LUT1,
LUT2, . . . , LUT6) out of regular standard cells and by follow-
ing VPR’s template [26]. The layouts for LUT4, LUT5, and
LUT6 macros are shown in Fig. 3. Table I shows the average
delays and other characteristics of the implemented LUTs.

Commercial FPGAs typically implement only one LUT
size, but hASIC provides the flexibility to implement the
design with different LUT sizes. This is because the generated
hASIC solution is design-specific, meaning that the reconfig-
urability notion of an FPGA is no longer sought. Moreover,
our LUT macros are highly compact, which helps placement
to achieve high-density designs. Every single LUT contains a
number of flip-flops for storing the configuration bits that serve

TABLE I
BLOCK IMPLEMENTATION RESULTS FOR LUTi

Fig. 4. Logic conversion and decomposition of LUT6.

as a lock for the obfuscated design. Each LUT also makes use
of three extra pins (serial_in, serial_out, and enable) to con-
figure these registers. The LUTs are serially connected to one
another, forming a daisy chain that is analogous to a scan
chain. The choice of a flip-flop-based implementation makes
our framework technology-agnostic while making the floor-
plan and placement almost effortless. Moreover, the LUTs
themselves are also treated as regular standard cells during
physical synthesis. This allows us to take full advantage of
placement algorithms from commercial EDA tools, thus, elim-
inating the need for any extra custom scripts for placing the
LUT macros.

B. LUT Decomposition

The area and delay of a LUT are directly related to its
number of inputs: the area is mainly bounded by the number
of sequential elements used to store the LUT’s truth table,
whereas the delay is proportional to the LUT’s internal MUX
tree. However, not all 6-input functions require a LUT6 to be
implemented. For instance, an AND6 can be decomposed in
5 AND2s, as presented in Fig. 4. Referring to Table I, it is
clear that the area almost doubles for each input added. Also,
the delay vastly increases, where a LUT6 has almost 6× more
average delay than LUT2. The previous example shows that
a LUT6 decomposition can reduce the area to less than one-
third. Moreover, the delay is reduced to approximately half.
This example presents a promising approach to improving both
area and timing of the circuit.

To decompose our LUTs, we will use functional compo-
sition (FC) [27], an approach that can perform bottom-up
association of Boolean functions and control the costs in the
composition process. Such capability contrasts with traditional
top-down functional decomposition, which does not provide a
final cost until the decomposition is complete.

1) Functional Composition for LUTs: A summary of the
FC paradigm and its application for LUTs will be presented.
Readers can obtain more details from [27], [28]. FC is a
bottom-up paradigm that has five principles: 1) it uses bonded
pairs (BPs) that have a functional part (canonical implementa-
tions of a Boolean function, i.e., BDDs or truth tables) and an
implementation part (the structure that is being optimized, i.e.,

ABIDEEN et al.: SECURITY-AWARE AND LUT-BASED CAD FLOW 3161

Algorithm 2: FC-OPT-LUT Algorithm
Input: N (number of LUT inputs), C (cost function)
Output: ALL_IMP

1 ALL_IMP← φ, B← φ, i← 1
2 MAX_COST ←LUT_COST(C, N)
3 B.add (CREATE_INITIAL_FUNCTIONS (N))
4 AT ←NEXT_BUCKET(B, i, C)
5 while COST(AT, C) < MAX_COST do
6 B.add (ASSOCIATE (AT , C, ALL_IMP))
7 i← i+ 1
8 AT ←NEXT_BUCKET(B, i, C)

9 if SIZE_OF(IMP_LUT) < 22N
then

10 CREATE_NAIVE_IMPS(ALL_IMP, N)

11 return ALL_IMP

a fanout-free LUT circuit in this article); 2) every BP asso-
ciation performs independently the functional/implementation
operations, allowing for more complex implementations with
simple functional operations; 3) using partial ordering and
dynamic programming, all BPs with the same cost are stored
together in a set (bucket), allowing the use of intermediate
solutions as subproblems and to perform associations in a cost-
increasing fashion; 4) to start any FC algorithm, initial BPs
are required, i.e., constants and single input variables; and 5) it
allows the heuristic selection of a subset of allowed functions
to reduce the composition search space.

2) Exhaustive LUT FC Method: FC can be applied exhaus-
tively, providing fanout-free implementations that have optimal
cost. Algorithm 2 generates all minimal LUT fanout-free imple-
mentations for functions up to four variables. The algorithm
to generate functions with N inputs consists of generating all
implementations using LUT(N − 1) with a smaller cost than
the LUT(N). Functions with up to two inputs are by definition
not decomposable. For functions containing N inputs, a set of
functions that will serve as Boolean operators are required.
The Boolean operators are the NPN class functions from 2 up
to N − 1 inputs and their negated and permuted variants.

We take area values from the LUT macros’ bounding box
for the cost functions, and delay values are the average delay
of all timing arcs. If a more sophisticated timing analysis is
done, some permutations can generate different delays, yield-
ing different results. This difference can be mitigated at the
end of the flow by the SWAP_PINS capability later presented
in Section III-C.

The FC-OPT-LUT algorithm takes the number of LUT
inputs N and the cost function C, which accounts for area and
delay. The result is ALL_IMP, a map of functions and LUT
implementations. Lines 1–3 initialize the variable B, which is
the bucket list containing all functions already implemented,
and MAX_COST, which will provide the single LUT-N
cost. Also, B is initialized with constants and single vari-
ables through the method CREATE_INITIAL_FUNCTIONS.
In line 4, the association of tuples and arrival time (AT) is
computed, which consists of tuples containing the indices of
the buckets used to combine the functions, from index 0 to
i − 1, where the cost needs to be higher than B[i − 1]. Still,
at the same time, it is the smaller one of all possibilities. As
an example, if the candidate ATs have cost 14, 10, 10, and 12

Algorithm 3: FC-HEUR-LUT Algorithm
Input: F (target function), C (cost function)
Output: IMP

1 ALL_IMP← φ, B← φ
2 B.add (CREATE_INITIAL_FUNCTIONS (F, ALL_IMP))
3 IMP← ALL_IMP(F)
4 if IMP �= φ then
5 return IMP

6 ALL_COF← EXTRACT_ALL_COFACTORS (F)
7 foreach cofactor COF ∈ ALL_COF do
8 6 COF_IMP← FC_HEUR_LUT(COF, C)
9 ALL_IMP← [COF, COF_IMP]

10 ALL_IMP← [F, GET_NAIVE_SOLUTION(F)]
11 COMBINE_COFACTORS(ALL_COF, ALL_IMP)
12 ASSOCIATE_FUNCTIONS (ALL_COF, ALL_IMP, C)
13 IMP← ALL_IMP(F)
14 return IMP

and B[i− 1] cost is 9, the candidate ATs with cost 10 will be
selected.

The while loop in lines 5–8 checks, at each iteration, if the
cost of AT is not higher than MAX_COST. In such cases, it
is better to use the naive solution. If the cost is smaller, the
method ASSOCIATE will process the list of AT, combining
them 2 by 2 or 3 by 3 (depending on the tuple size), using
the cost function for breaking ties. The result is added to the
bucket list. A new list of ATs is computed, which will continue
or break the loop. Finally, in lines 9 and 10, if there are remain-
ing functions, they are considered not decomposable (i.e., the
cost to decompose them is higher than the naive solution).
The method CREATE_NAIVE_IMPS will look for Boolean
functions that do not have an implementation on ALL_IMP
and add a naive one, guaranteeing that all Boolean functions
of up to N inputs are present on the ALL_IMP map, returned
in line 11.

3) Heuristic LUT FC Method: The method described in
the previous section can only generate optimal LUTs of up to
four inputs. A heuristic is required to deal with more com-
plex LUTs. A LUT decomposition can be thought of as a
factorization problem, where there is a direct conversion from
a factored form to a LUT tree (i.e., a fanout-free) structure.
With some modifications, we can apply the Boolean factor-
ing method presented in [28] to perform decompositions. This
approach is called FC-HEUR-LUT. These modifications are
necessary to derive LUT decompositions that can have a better
cost than the naive solution.

FC-HEUR-LUT is presented in Algorithm 3. The algo-
rithm takes the target function F and the cost function C.
The result is the LUT implementation IMP, which is the
LUT circuit containing the decomposed naive solution.
Lines 1–3 initialize the variables ALL_IMP, which represents
a map storing all known implementations for the functions
already decomposed, and B, which contains the buckets.
The method CREATE_INITIAL_FUNCTIONS remains the
same as in FC_OPT_LUT. Lines 4 and 5 check if it is
a trivial case and returns if so. In line 6, the method
EXTRACT_ALL_COFACTORS is executed. This method
computes all the cofactors and cubecofactors (excluding
constants) from F and stores them in the ALL_COF set.

3162 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 10, OCTOBER 2023

Fig. 5. Example of a beneficial pin swap.

Lines 7–9 are a recursive call to the algorithm, providing
a LUT implementation to all cofactors and cubecofactors.
With the cofactors and cubecofactors derived, the combi-
nation of cofactors takes place in line 11, using the same
strategies presented to expand the “allowed functions” set, as
explained in [28]. This expansion guarantees at least 2 factored
subfunctions that, when associated in the next step, will pro-
vide at least one functionally equivalent solution. In line 12,
the ASSOCIATE_FUNCTION will perform AND/OR/XOR

operations using the rules mentioned and NAND/NOR/XNOR

associations using the “not comparable” functions. These asso-
ciations are discarded if they are not the target function F. If
the association is functionally equivalent to F, the cost func-
tion C will compare the current solution (which initially is the
naive one) with the current one, replacing it in the case of a
better cost. Finally, lines 13 and 14 will collect the resulting
implementation IMP and return.

Some techniques applied to greatly speed-up FC-HEUR-LUT
include using FC-OPT-LUT results to aid FC-HEUR-LUT. The
ALL_IMP map is used at the beginning of the algorithm to
quickly return the optimal implementation if the function F has
a support of 4 or fewer inputs while also improving the decom-
position quality of results (QoR). Another technique applied
is the limit on the number of associations of not comparable
Boolean functions because those can be a considerable number
(i.e., more than 100 thousand). This limit avoids substantial
runtime trying to decompose more complex functions, which
generally have worse costs when decomposed.

C. Pin Swap Approach

The method SWAP_PINS takes advantage of the fact that
a LUT function can have an arbitrary input pin swap if the
truth table is permuted accordingly. So, our method takes a
LUT function and timing information as input and provides
the permuted truth table and the new order of input pins/nets.
The example presented in Fig. 5 shows an effective pin swap
that improved the slack of the design. The pin swap algorithm
takes the LUT function, the AT of each input net (termed
[n0, n1, n2]), the cell arc delay (DLY) associated with each
input, and the required time (RT) at the output. In the example,
RT = 1.1, and the critical arc is n2, with a total delay of 1.23.
The algorithm initially tries all the input permutations, trying
to minimize WNS. If two or more arcs have negative slack,
it also tries to reduce TNS. Once all permutations are tried,
and a new order improves WNS and/or TNS, the truth table
is permuted accordingly to keep the same functionality. The
algorithm returns the truth table 0x10 and the new net order
[n2, n0, n1].

IV. EXPERIMENTAL RESULTS USING TOTE

Without loss of generality, for all experimental results, we
have executed FPGA synthesis in Vivado and the target is

Fig. 6. TOTe’s obfuscation versus performance for SBM.

Fig. 7. TOTe’s obfuscation versus area for SBM.

a Kintex-7 XC7K325T-2FFG900C device which contains 6-
input LUTs [29]. Following, Cadence Genus is used for the
logic synthesis with three flavors of a commercial 65-nm stan-
dard cell library (LVT/SVT/HVT). However, we emphasize
that TOTe is agnostic with respect to PDKs, libraries, and
tools.

For our first experiment, we considered a small but prag-
matic design that covers all possible FPGA primitives. We
selected a schoolbook multiplier (SBM) design as DUO [30].
We obfuscated an 8-bit SBM by varying obfc from 55% to
100% and evaluated the obfuscation versus performance and
obfuscation versus area trends. We have synthesized the SBM
design targeting a challenging frequency of 540 MHz. As cal-
culated by TOTe’s timing engine, the CP and sumCP values
become 0.490 and 16088.69 ns, respectively. These values cor-
respond to a design obfuscated at 100%, i.e., all LUTs are
reconfigurable. At this stage, these values represent a simplis-
tic timing analysis, realistic timing values will be obtained
when the final timing analysis is performed using a com-
mercial physical synthesis tool. However, as we move along
with the obfuscation process, CP and sumCP remain consis-
tent in relative terms, which is sufficient to generally determine
critical paths to target.

After performing the obfuscation for different levels, the
timing characteristics for the 8-bit SBM are illustrated in
Fig. 6. The analysis of CP and sumCP shows that performance
is decreasing as we increase the level of obfuscation.
Conversely, decreasing the level of obfuscation increases the
performance of the design. The trend depicted in Fig. 6 is
that CP improves inversely with the obfuscation, but it is sat-
urated when the obfuscation is below 80%. This fact is not
true for sumCP, the decrease in obfuscation causes continuous
improvement as expected. Similarly, the performance versus
area profile of the 8-bit SBM is illustrated in Fig. 7.

ABIDEEN et al.: SECURITY-AWARE AND LUT-BASED CAD FLOW 3163

Fig. 8. Obfuscation results for ISCAS’85 benchmarks using TOTe.

Fig. 9. Obfuscation results for AES-128, RISC-V, and SHAKE-256 using TOTe.

Next, we investigate whether the same saturation would
appear for other designs. We first selected the ISCAS’85
benchmarks and the results are depicted in Fig. 8. These rel-
atively outdated combinational benchmarks were selected for
the reason that they have a single stage of logic, so the CP
and sumCP correlation is easy to follow (i.e., the critical path
does not change from different reg2reg paths). Even in these
simplistic designs, saturation occurs remarkably fast.

Naturally, we have also obfuscated more representative
designs. In [25], detailed results are provided for SBM, SHA-
256, and FPU [31] designs. For the sake of brevity, we do not
repeat those results here. Additional results are also provided
in graphical form in Fig. 9 for AES, RISC-V, and SHAKE-256
designs so the trends are easy to visualize.

In summary, the results presented in this section confirm that
TOTe is a generic tool for obfuscation and it can obfuscate a
design regardless of its complexity. It also becomes clear that
the reliance on a LUT-based representation of the circuit, akin
to an FPGA, has different implications for delay and area. For
area, the trend is clear: the lesser is the obfuscation target,
the more compact the circuit becomes. However, for delay,
it appears that hASIC brings performance penalties that can-
not be overcome by simply reducing the targeted obfuscation
level. Therefore, other strategies are needed for achieving bet-
ter performance. In the next section, we will present a more
detailed analysis of physical synthesis. We will also apply the
optimization methods described in Section III for improving
performance.

V. PHYSICAL SYNTHESIS FOR HASIC

This section contains the physical implementation results for
an obfuscated SHA-256 [33] design. Cadence Innovus is uti-
lized for physical synthesis, together with a commercial 65-nm
PDK. We have selected SHA-256 as it is popular and widely
used in cryptography. The variants of the design with different

obfuscation levels are implemented with the aid of the LUTs
defined in Section III-A. The results obtained after implemen-
tation are focused on performance versus area tradeoffs for the
80%–100% obfuscation range, thus, avoiding the saturation
trend highlighted in Section IV.

Initially, we synthesized and implemented SHA-256 on
FPGA, the target device being a Kintex-7. The FPGA imple-
mentation achieves a frequency of only 77 MHz (for reference,
the Kintex-7 family is produced on a 28-nm CMOS tech-
nology). To start the analysis, we select 100% obfuscation
as a baseline design because it is fully reconfigurable and
somewhat analogous to an FPGA design. The implementa-
tion results for 80%, 85%, 90%, and 100% obfuscation are
given in Table II. The timing results are obtained after phys-
ical synthesis and are for the worst process corner (SS),
VDD = 0.9*VDDnominal, and a temperature of 125 ◦C.

From the results, it is clear that the level of obfuscation
does not affect the utilization density of the design (i.e.,
the ratio of placement sites that are occupied versus empty).
For all designs, we achieved around 80% utilization density,
which is very high considering a large number of macros. In
other words, our macros do not compromise global routing
resources. It is noteworthy that the performance of TOTe-
generated designs is increasing as we decrease the level of
obfuscation; our baseline hASIC design is running at 223 MHz
(as shown in Freq. column of Table II) and it increases as
obfc decreases. This behavior matches the goal we set from
the start: to establish a tradeoff between performance (ASIC)
and security (FPGA).

The area of the design is proportional to the obfuscation
level, which means that increasing the security of the design
comes with an area penalty. As we only exploit LUT primi-
tives for promoting obfuscation, the number of LUTs increases
with the obfuscation level. In the same manner, leakage and
dynamic power figures are proportional to security as reconfig-
urable logic is less efficient than static. This is mainly because

3164 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 10, OCTOBER 2023

TABLE II
RESULTS FOR THE IMPLEMENTATION OF SHA-256 FOR DIFFERENT OBFUSCATION LEVELS

Fig. 10. Implementation results for SHA-256 with different obfuscation levels. (a) SHA-256 with 80% obfuscation. (b) SHA-256 with 85% obfuscation.
(c) SHA-256 with 90% obfuscation. (d) SHA-256 with 85% obfuscation (routed layout). (e) SHA-256 with 85% obfuscation (magnified view). (f) SHA-256
with 85% obfuscation (routed and assembled layout). (g) SHA-256 with 80% obfuscation. (h) SHA-256 with 85% obfuscation. (i) SHA-256 with 90%
obfuscation. (j) SHA-256 with 85% obfuscation (routed layout). (k) SHA-256 with 85% obfuscation (magnified view). (l) SHA-256 with 85% obfuscation
(routed and assembled layout).

of the use of flip-flops to store the LUT truth tables. The
last five columns of Table II show the resource requirements
for hASIC (number of buffers, combinational cells, inverters,
sequential cells, and the total wirelength).

In Fig. 10, we show many different views of the SHA-
256 layouts under different obfuscation targets. The considered
metal stack has seven metals assigned to signal routing. Panels
(a)–(c) of Fig. 10 illustrate the layouts for 80%, 85%, and 90%
obfuscation levels. The dimensions of the layouts are indicated

on the bottom and left sides of each panel. All six variants of
LUTs are highlighted with different colors and the static part
of hASIC is highlighted in red—notice that, as expected, the
design remains primarily a sea of LUTs. The majority of those
LUTs are LUT6, thus, the layouts appear to be dominated by
yellow boxes.

Panel (d) of the same figure demonstrates the final post-route
layout of hASIC. Notice how the post route design contains
mostly vertical orange lines which correspond to M6. Panel

ABIDEEN et al.: SECURITY-AWARE AND LUT-BASED CAD FLOW 3165

TABLE III
RESULTS FOR THE IMPLEMENTATION OF SHA-256 FOR DIFFERENT OBFUSCATION LEVELS WITH DECOMPOSED LUTS

(e) of Fig. 10 shows the magnified view of the placement in
an hASIC design. The mixed structure of LUT macros and
standard cells clearly depicts the placement pattern and the
spacing between the macros is usually filled with standard
cells. Notice how the LUT macros align with the standard cell
rows, allowing for the entire design to have a uniform power rail
and power stripe configuration. In panel (f) of the same figure,
we illustrate the same design but filter out some routing layers
(only M2, M3, and M4 are shown). As depicted in Fig. 3, the
implemented LUTs utilize the aforementioned metal layers,
therefore, the assembled view of a panel (f) represents how
visually regular the hASIC structure is.

In the results shown in panels (g)–(l) of Fig. 10, we have
utilized the same design and conditions but applied LUT
decomposition for improving performance. Notice that the
layouts are drawn to scale to highlight the area reduction
brought by decomposition. In particular, when comparing pan-
els (f) and (l), we note that regularity is still present even after
decomposition, as expected.

The detailed results for these designs are listed in Table III.
With decomposition, the baseline frequency increased signif-
icantly, from 223 to 307 MHz. As in the nondecomposed
version, the performance increases inversely with the obfus-
cation level. On top of that, the area was reduced by more
than half, along with the power consumption. However, due
to a large number of small LUTs (mostly LUT2s), placing and
routing become slightly more challenging. For this reason, the
maximum utilization density across the optimized designs is
approximately 65%. Nevertheless, decomposition is very ben-
eficial: the gain in PPA when compared with the nonoptimized
versions is significant. We argue that since decomposition has
a negligible impact on the runtime of the physical synthesis
flow, it should always be applied. For instance, the runtime to
apply the decompositions in the SHA-256 circuit with 100%
obfuscation containing 2238 LUTs was 11 min in an Intel Core
i7-6700K. The decomposition achieved improvements of 50%
in the LUT area and 32% in the total LUT delay.

While the LUT decomposition brings significant
performance improvement, we seek to achieve performance
levels that are as close to the ASIC implementation as
possible. For that reason, after the decomposition, we also
applied the pin swapping technique. As we noted earlier, this
is possible because the same logic function can be generated
with different input orders and different masking bits (truth
table). Therefore, we can search for LUTs that appear on the
critical path(s) and swap their pins to reduce the total delay.

For illustrating the capability of pin swapping, we first cre-
ate an artificial scenario where we increase the target frequency
of the design until several paths violate setup timing. The

Fig. 11. Change in the TNS/WNS with respect to the swap of LUT pins.

frequency increase determines the number of violating paths
that indirectly determines the number of LUTs that will be
considered for pin swap purposes.2 All LUTs from violating
paths are chosen as candidates and saved in a list. Then, iter-
atively, starting with the worst violating path, the pins of the
LUTs are swapped until the critical path is improved (i.e.,
WNS). The number of swaps performed versus the TNS and
WNS is illustrated in Fig. 11. From this figure, the first few
swaps improved the WNS while the TNS remain the same.
The continuing swapping starts to improve the TNS without
any change in the WNS. If the TNS is improving, that means
there is a chance to reach a better WNS. Thus, we performed
the swapping until the next jump in the WNS. After attempting
200 swaps, WNS improved by approximately 80 ps and TNS
by 2 ns, thus, making the design 11 MHz faster.

VI. SECURITY ANALYSIS

A. Threat Model

In our considered threat model, the primary adversary is
the untrusted foundry. We make no distinction whether the
adversary is institutional or a rogue employee. Assuming
the security of an hASIC design is a function of its static
logic (fully exposed) and reconfigurable logic (protected by
a bitstream that serves as a key), we make the following
assumptions.

1) The main adversary goal is to reverse engineer the
design in order to pirate its IPs, overproduce the IC,
or even insert sophisticated hardware trojans. For this
goal, the adversary must recreate the bitstream.

2) The adversary goal might also be to identify the circuit
intent, even in the presence of obfuscation. For this goal,
the adversary does not need to recreate the bitstream.

2Here, we establish a runtime versus QoR tradeoff. The more aggressive
the frequency target is, the more LUTs are considered for pin swap.

3166 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 10, OCTOBER 2023

Fig. 12. Frequency of masking patterns for RISC-V and MIPS.

3) The adversary has access to the GDSII file of the hASIC
design sent for fabrication. The adversary is skilled in
IC design and has the knowledge and tools required for
understanding this layout representation.

4) The adversary can recognize the standard cells, there-
fore, the gate-level netlist of the obfuscated circuit can
be easily recovered [35].

5) The adversary can identify reconfiguration pins [36],
[37], thus, being able to effortlessly enumerate all LUTs
and their programming order.

6) The adversary can group the standard cells present in
the static logic and convert them back into a LUT
representation.3

We have proposed two different attacks to evaluate the
security hardness of hASIC: one based on the structure of
design and another based on the composition of known differ-
ent circuits. We assert that an adversary can learn and extract
information by exploiting the static portion of the design,
including the frequency of specific masking patterns. This
capability would allow an adversary to shrink the search space
for the key that unlocks the design.

Similarly, the notion of masking pattern frequency can be
utilized as a template to compare different designs. In other
words, the composition of the LUTs in a design would allow
for a template-based attack. Moreover, we have also evaluated
the security hardness of hASIC for conventional oracle-guided
and oracle-less attacks borrowed from logic-locking attacks.
All the experiments reported in this section were run on
a server equipped with 32 processors (Intel Xeon Platinum
8356H CPU @ 3.90 GHz) with 1.48 TB of RAM.

B. Structural Analysis Attack

Goal: By statistical analysis means, decrease the key search
space before attempting to recover the bitstream.

We recall again that TOTe’s obfuscation engine utilizes six
variants of LUTs. However, the majority of the LUTs are
LUT6 due to the packing algorithm executed during FPGA
implementation. The decomposition only applies to the recon-
figurable part of the design. The initial knowledge that the
adversary acquires is from the static part, which remains
unchanged whether decomposition is used or not used. The
static part is composed mostly of LUT6, so the adversary ought

3This is a very generous concession since the static logic is repeatedly opti-
mized during synthesis. Nevertheless, we assume the adversary can achieve
a perfect reconstruction of LUTs.

to keep his/her analysis geared at LUT6 too. Therefore, we
consider this scenario and present our analysis of it.

For a LUT6, the possible number of keys is 264. But this
number is only realistic if the FPGA synthesis tool is genuinely
able to exercise the entire key search space. This does not
appear to be true: We have synthesized a considerable number
of representative designs (>30) and extracted all unique LUT6
masking patterns from the corresponding netlists. We term
these values mi. We considered designs of varied size, com-
plexity, and functionality until the combined number of unique
masking patterns forms a set of M =∑

mi = 3376 elements
that appear to settle. This result alone, albeit being empirical,
reduces the global search space from 264 to 3376 = 211.72.

With this information at hand, we hypothesize that an attacker
can exploit the frequency at which LUTs appear in a netlist
in order to mount attacks, thus, the name structural analysis
attack. In other words, the adversary is interested in finding
the values of mi for a given circuit Ci. However, the adversary
only has partial knowledge of the design. The question then
becomes whether the adversary can estimate mi by performing
statistical analysis on a portion of Ci. To this end, we targeted two
processor designs in our statistical analysis: MIPS and RISC-V.
For each circuit, we utilize tuples of 〈pattern, frequency〉 for
tracking how often masking patterns repeat. The pattern is a 64-
bit hexadecimal number. The tuples are referenced by integer
identifiers and ordered by frequency as shown on the bar charts
in Fig. 12. Notice that the MIPS netlist has 776 unique LUTs
and that there are very few outliers that occur more than 50
times. Similarly, for RISC-V, there are 628 unique LUTs and
only 3 occur more than 100 times.

We investigate this by analyzing the behavior of the
frequency of masking patterns as depicted in Fig. 13. For
this, we utilized netlists generated by TOTe at 98%, 95%,
92%, 89%, and 86% obfuscation levels. Therefore, for this
experiment, we assume the attacker only has visibility over
2%, 5%, 8%, 11%, and 14% of the LUTs, respectively. The
adversary then attempts to predict the distribution of actual
masking patterns in the design from his/her observation of the
small percentage of LUTs that are exposed in the static por-
tion of hASIC. In Fig. 13, the adversary’s guessing attempt
is performed with the aid of polynomial trendlines. For MIPS
and RISC-V, it appears that the adversary can estimate to some
degree what masking patterns are the outliers. The actual num-
ber of unique patterns, mi, is not trivial to determine from
extrapolation since many patterns appear a single time or very
few times (see Fig. 12). We clarify that several circuits stud-
ied in this article (e.g., PID, IIR, GPU, SHA-256, etc.) have a

ABIDEEN et al.: SECURITY-AWARE AND LUT-BASED CAD FLOW 3167

Fig. 13. Structural analysis of RISC-V and MIPS.

Fig. 14. Correlation of SHA-256 and AES-128 versus numerous other designs.

similar profile, where only a handful of high-frequency LUTs
appear. As stated earlier, the attack exploits only the static
part. But, when the decomposition is applied the adversary
needs an in-depth knowledge of the decomposition algorithm
to estimate the frequency of outliers for the reconfigurable part.
Therefore, it remains to be studied if the knowledge gathered
from this attack can be useful for some form of hill climbing
attack (or even a biased version of SAT).

C. Composition Analysis Attack

Goal: identify the circuit by correlation to known circuits.
This attack also exploits the frequency of the LUTs, but,

here, we correlate several designs against each other based on
their composition, thus, the name. We suppose that the attack
is already successful if the adversary is able to identify the
circuit (i.e., breaking the key is not necessary).

In the experiment depicted in Fig. 14, we carried out cor-
relation analysis for two different crypto cores: 1) SHA-256
and 2) AES-128. The goal of this analysis is to examine the
leaked information from the static part against a database4 of
circuits that are known to the attacker. We perform obfuscation
of SHA-256 and AES-128 in the 70%–100% range and then
correlate their static portions with the designs in the database.
The x-axis of Fig. 14 is the obfuscation level, and the y-axis
is the number of unique LUTs (left) and Pearson correlation
(right).

The correlation results reveal very interesting trends. For
SHA-256, three regions of interest can be defined based on
the degree of obfuscation: 97%–100% (no correlation), 86%–
96% (strong correlation to another circuit), and 70%–85%

4We assume that the adversary can obtain samples of open-source cores
from repositories and execute FPGA synthesis on them to create a database.

(correlation to itself). A similar analysis has been performed
for AES-128 as shown in the right side of Fig. 14. The
correlation between obfuscated AES-128 versus AES-128 is
almost one for obfuscation < 97%. Conversely, the correlation
for obfuscated AES-128 versus other designs is almost zero
obfuscation in the same range (< 97%).

Assuming that the adversary’s objective is exclusively to
recognize the circuit’s intent (“what is this circuit?”), hASIC
could prove as vulnerable as an ASIC design. This is the case
for the AES-128 circuit, while the SHA-256 case reveals a
contrasting trend: there are obfuscation ranges that can be tar-
geted on purpose to confuse an adversary. For SHA-256, this
range appears to be 86%–96%.

Finally, for an adversary that is interested in obtaining the
bitstream, we hypothesize that the correlation analysis herein
depicted might be useful to shrink the key search space fur-
ther. In practice, if the attacker could know for a fact that
the obfuscated circuits are indeed AES, or SHA-256, or Ci,
his key guessing would be based on the mi of the circuit
with the highest correlation. It is noteworthy to mention that
this attack leverages the design attributes and the frequency
of LUTs derived from the static part of the design. Hence,
the attack’s success or failure depends upon three key points:
First, the adversary’s ability to reconstruct the LUTs from the
static part; Second, the availability of enough datapoints in the
database of known circuits; Third, the design has static parts,
i.e., the obfuscation level is below 100%. Referring again to
the example from the previous section, the search space would
shrink further; from 3376 to 776 for MIPS and from 3376 to
628 for RISC-V. As stated in Section VI-B, this attack also
exploits only the static part. Therefore, identifying the design
has no relationship with decomposition, i.e., a decomposed
design is not easier (or harder) to correlate. From this point

3168 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 10, OCTOBER 2023

Fig. 15. Execution time of SAT attacks for two different designs.

onward, in order to obtain the actual key, an adversary would
still have to resort to other attacks (not specific to hASIC). We
discuss such attacks in the text that follows.

D. Oracle-Guided Attacks

Goal: To retrieve a key or a key guess.
As compared to conventional logic locking [38], the LUTs

introduced in hASIC are the elements that serve as key gates.
A LUT6, in theory, introduces 64 bits of key, akin to 64
XOR/XNOR gates in conventional logic locking. The very first
circuit we introduced in Section IV, the SBM, has 25 LUTs
(out of which 11 are LUT6) when its obfuscation rate is 86%.
In turn, the key search space would be 211×64 for LUT6 alone.
Such a large search space would discourage an adversary from
performing SAT attacks on hASIC.

However, enumerating the key search space is a very sim-
plistic/naive approach. One has to perform actual attacks
in order to evaluate the security of the designs, espe-
cially, well-known satisfiability-based attacks. We have, there-
fore, considered three different SAT attacks to evaluate the
security hardness of hASIC: 1) Conventional SAT [36];
2) AppSAT [39]; and 3) ATPG-based SAT [40].

We have selected large combinational circuits (c7552 and
c6288) from the ISCAS’85 suite to evaluate the security hard-
ness of hASIC against SAT-based attacks. Importantly, we
present the results for two different variants of hASIC, opti-
mized and nonoptimized, for the selected designs. Concerning
the nonoptimized variant, Fig. 15 illustrates the execution time
for different SAT attacks and different obfuscation rates, where
the x-axis is the obfuscation level and the y-axis is the exe-
cution time. As expected, the execution time increases as we
increase the obfuscation level. The region to the left of the
green line shows successful SAT attacks. However, the region
on the right corresponds to unsuccessful attacks, where timeout
(48 h) was achieved before the solver returned an answer. In
principle, this is an encouraging result since even a very small
and combinational-only circuit like c6288 leads to timeouts at
relatively low obfuscation rates ∼15%.

More intriguingly, another combinational-only circuit c7552
led to timeout after reaching 40% obfuscation rate. Thus, the
obfuscation rate where the SAT solver returns a timeout varies
in different designs. Additional statistics about the behavior
of the SAT solver for the obfuscated circuits are given in
Fig. 16. The SAT solver determines when a Boolean formula
is satisfiable or not. One approach to measuring the chance of
convergence of the attack is to measure the ratio of clauses

Fig. 16. Variables to clauses ratio of SAT attacks for two different designs.

Fig. 17. Optimized results for c7552 with regards to the execution time and
the ratio of variables to clauses in SAT attacks.

to variables of the SAT solver. With the help of this ratio,
an obfuscated design can be labeled SAT-hard if the ratio is
around 4.2 [41]. Fig. 16 shows the evolution of the number
of clauses to variables with respect to the obfuscation level.
The x-axis is the obfuscation level (%) and the y-axis shows
the ratio of clauses to variables. We label the right region of
Fig. 16 as “Ideal region” because the clauses to variables ratio
are near the ideal value of 4.2.

TOTe automatically optimizes designs by decomposing
LUTs into smaller LUTs. While power, area, and performance
are improved, the decomposition reduces the size of the key
for unlocking the design. We must, therefore, verify that
this reduction does not make the hASIC designs vulnera-
ble to existing attacks. For the optimized version of c7552
in Fig. 17, we can see that there is a reduction in the time
that it takes for the successful attacks to complete. However,
none of the attacks is successful beyond 40% obfuscation.
Further details for c7552 are given in Table IV where we also
list the key sizes for different designs and two obfuscation
rates, namely, 55% and 60%. Note that, counter-intuitively,
the decomposed designs have better variables-to-clause ratios.
Our interpretation is that decomposition keeps keys that are
less correlated to one another, thus, each individual key bit is
more effective. Readers are directed to [41] for details on the
SAT attack and to [40] for a discussion on key interference.

E. Oracle-Less Attacks

Goal: To retrieve a key or a key guess.
Oracle-less attacks do not require an oracle (i.e., a func-

tional IC). Instead, they operate directly on the netlist of the
obfuscated circuit. One of such attack is the synthesis-based
constant propagation attack on logic locking (SCOPE) [42].

ABIDEEN et al.: SECURITY-AWARE AND LUT-BASED CAD FLOW 3169

TABLE IV
ANALYSIS OF VARIABLES-TO-CLAUSES RATIO FOR obfc = 55% AND 60%

Fig. 18. Comparison between the baseline and optimized design for the
oracle-less SCOPE attack.

This attack does not require any knowledge about the lock-
ing technique or the obfuscated design. SCOPE performs a
synthesis-based analysis on a single key-input port and extracts
important design features that may assist to derive the correct
key bits. Fig. 18 illustrates the comparison of execution time,
COPE metric for the baseline, and optimized design of the
c7552 design. It is clear from the left panel that the execution
time is exponentially increasing with the obfuscation level.
Similar trends are seen for the baseline and optimized design,
both are exponential but present different rates. The right panel
of Fig. 18 shows the COPE metric, which decreases with the
obfuscation level. The details for the calculation of COPE met-
ric are available in [42]. For simplicity, we clarify that the
COPE metric is a rough estimate of the level of vulnerability
(%) to the SCOPE attack.

When SCOPE concludes, a key guess is produced. For each
bit of the key, SCOPE assigns either a “1,” a “0,” or an “X”
(undetermined). When matching the guess from SCOPE with
our known key, the result is that about 50% of the key bits
are correctly guessed. This percentage is not related to the
obfuscation level, the result is always the same for baseline
and optimized designs. In other words, SCOPE cannot perform
better than a random guess for hASIC.

VII. DISCUSSION

A recent trend in obfuscation research is the use of embed-
ded FPGA (eFPGA) [17], [18]. While there are advantages
to this practice, it has been used selectively to only protect
key portions of a design and, therefore, keep the performance

penalty as low as possible. The challenge is in determining
which portions/modules of the circuit merit protection and
which ones do not. Our hASIC approach bypasses this ques-
tion almost completely by only revealing (portions of) critical
paths when they are selected to become static logic, which
we consider an advantage. Mohan et al. [44] presented a top-
down methodology to implement ASICs with eFPGAs. Their
designs share many of the advantages of our hASIC solu-
tion while presenting more regularity than our designs (they
make use of logic tiles as in commercial FPGAs). Our tile-free
design trades this regularity for performance as evidenced by
the layout in Fig. 10 and the corresponding results in Table II.

VIII. CONCLUSION

The main finding of our work is that an hASIC solution
contrasts with the current practice of eFPGA obfuscation; our
experimental results illustrate that obfuscation rates have to
be high to secure the design’s intent. To this end, we have
presented a custom tool that obfuscates a design and gener-
ates an hASIC block. Our LUT decomposition, along with the
pin swapping, improves the performance and reduces the area
of hASIC designs. We have also validated our results in a com-
mercial physical synthesis tool with industry-strength timing
and power analysis. Our security analysis, anchored by the
results from diverse attacks, confirms that obfuscation rates
should be high.

REFERENCES

[1] “2022 semiconductor sales to grow 11% after surging 25% in 2021.”
IC Insights. 2022. [Online]. Available: https://www.icinsights.com/data/
articles/documents/1424.pdf

[2] “Apple’s M3 chips on track for 2023 as next-gen 3nm process begins.”
Mac World. 2021. [Online]. Available: https://www.macworld.com/
article/557232/m3-chips-apple-devices-tsmc-3nm-process-2023.html

[3] “TSMC to kick off mass production of Intel CPUs in 2H21 as
Intel shifts its CPU manufacturing strategies, says TrendForce.”
TrendForce. 2021. [Online]. Available: https://www.trendforce.com/
presscenter/news/20210113-10651.html

[4] “Big trouble at 3nm.” Semiconductor Engineering. 2018. [Online].
Available: https://semiengineering.com/big-trouble-at-3nm/

[5] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proc. IEEE, vol. 102, no. 8,
pp. 1283–1295, Aug. 2014.

[6] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Threats on
logic locking: A decade later,” in Proc. Great Lakes Symp. VLSI, 2019,
pp. 471–476.

[7] Y. Xie and A. Srivastava, “Delay locking: Security enhancement of logic
locking against IC counterfeiting and overproduction,” in Proc. 54th
ACM/EDAC/IEEE Des. Autom. Conf. (DAC), 2017, pp. 1–6.

[8] M. Yasin, J. Rajendran, and O. Sinanoglu, Trustworthy Hardware
Design: Combinational Logic Locking Techniques. Cham, Switzerland:
Springer, 2019.

[9] M. Yasin and O. Sinanoglu, “Evolution of logic locking,” in Proc.
IFIP/IEEE Int. Conf. Very Large Scale Integr. (VLSI-SoC), 2017,
pp. 1–6.

[10] J. Sweeney, V. M. Zackriya, S. Pagliarini, and L. Pileggi, “Latch-based
logic locking,” in Proc. IEEE Int. Symp. Hardw. Orient. Security Trust
(HOST), 2020, pp. 132–141.

[11] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal
attacks on logic locking and camouflaging techniques,” IEEE Trans.
Emerg. Topics Comput., vol. 8, no. 2, pp. 517–532, Apr.–Jun. 2020.

[12] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang, “Circuit
camouflage integration for hardware IP protection,” in Proc. 51st
ACM/EDAC/IEEE Des. Autom. Conf. (DAC), 2014, pp. 1–5.

[13] M. Li et al., “Provably secure camouflaging strategy for IC protection,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 8,
pp. 1399–1412, Aug. 2019.

3170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 10, OCTOBER 2023

[14] T. D. Perez and S. Pagliarini, “A survey on split manufacturing: Attacks,
defenses, and challenges,” IEEE Access, vol. 8, pp. 184013–184035,
2020.

[15] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing
secure?” in Proc. Des. Autom. Test Eur. Conf. Exhibit. (DATE), 2013,
pp. 1259–1264.

[16] B. Liu and B. Wang, “Embedded reconfigurable logic for ASIC design
obfuscation against supply chain attacks,” in Proc. Des. Autom. Test Eur.
Conf. Exhibit. (DATE), 2014, pp. 1–6.

[17] B. Hu et al., “Functional obfuscation of hardware accelerators through
selective partial design extraction onto an embedded FPGA,” in Proc.
Great Lakes Symp. VLSI, 2019, pp. 171–176.

[18] J. Chen, M. Zaman, Y. Makris, R. D. S. Blanton, S. Mitra, and
B. C. Schafer, “DECOY: DEflection-driven HLS-based computa-
tion partitioning for obfuscating intellectual propertY,” in Proc. 57th
ACM/EDAC/IEEE Des. Autom. Conf., 2020, pp. 1–6.

[19] J. Bhandari et al., “Exploring eFPGA-based redaction for IP protection,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des. (ICCAD), 2021,
pp. 1–9.

[20] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “LUT-
lock: A novel LUT-based logic obfuscation for FPGA-bitstream and
ASIC-hardware protection,” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI (ISVLSI), 2018, pp. 405–410.

[21] G. Kolhe, P. D. S. Manoj, S. Rafatirad, H. Mahmoodi, A. Sasan, and
H. Homayoun, “On custom LUT-based obfuscation,” in Proc. Great
Lakes Symp. VLSI, 2019, pp. 477–482.

[22] G. Kolhe et al., “Security and complexity analysis of LUT-based
obfuscation: From blueprint to reality,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des. (ICCAD), 2019, pp. 1–8.

[23] S. D. Chowdhury, G. Zhang, Y. Hu, and P. Nuzzo, “Enhancing SAT-
attack resiliency and cost-effectiveness of reconfigurable-logic-based
circuit obfuscation,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
2021, pp. 1–5.

[24] G. Kolhe et al., “Breaking the design and security trade-off of look-
up-table–based obfuscation,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 27, no. 6, pp. 1–29, 2022.

[25] Z. U. Abideen, T. D. Perez, and S. Pagliarini, “From FPGAs to obfus-
cated eASICs: Design and security trade-offs,” in Proc. Asian Hardw.
Orient. Security Trust Symp. (AsianHOST), 2021, pp. 1–4.

[26] K. E. Murray et al., “VTR 8: High-performance CAD and customizable
FPGA architecture modelling,” ACM Trans. Reconfigurable Technol.
Syst., vol. 13, no. 2, pp. 1–55, 2020.

[27] M. G. A. Martins, R. P. Ribas, and A. I. Reis, “Functional composition:
A new paradigm for performing logic synthesis,” in Proc. 13th Int. Symp.
Qual. Electron. Des. (ISQED), 2012, pp. 236–242.

[28] M. G. A. Martins, L. Rosa, A. B. Rasmussen, R. P. Ribas, and A. I. Reis,
“Boolean factoring with multi-objective goals,” in Proc. Int. Conf.
Comput. Des. (ICCD), 2010, pp. 229–234.

[29] “Xilinx Kintex-7 FPGA KC705 evaluation kit.” Xilinx, Inc. 2021.
[Online]. Available: https://www.xilinx.com/products/boards-and-kits/
ek-k7-kc705-g.html

[30] M. Imran, Z. U. Abideen, and S. Pagliarini, “An open-source library
of large integer polynomial multipliers,” in Proc. 24th Int. Symp. Des.
Diagnos. Electron. Circuits Syst. (DDECS), 2021, pp. 145–150.

[31] J. Al-Eryani. “Floating-point unit (FPU) controller.” 2017. [Online].
Available: https://opencores.org/projects/fpu100

[32] J. Carlos. “FPGA-based median filter.” 2014. [Online]. Available: https://
opencores.org/projects/fpu100

[33] S. Joachim. “SHA-256.” 2020. [Online]. Available: https://github.com/
secworks/sha256

[34] O. Kindgren and M. John. “FPGA-based median filter.” 2015. [Online].
Available: https://github.com/openrisc/or1200

[35] R. S. Rajarathnam, Y. Lin, Y. Jin, and D. Z. Pan, “ReGDS: A reverse
engineering framework from GDSII to gate-level netlist,” in Proc. IEEE
Int. Symp. Hardw. Orient. Security Trust (HOST), 2020, pp. 154–163.

[36] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in Proc. IEEE Int. Symp. Hardw. Orient. Security
Trust (HOST), 2015, pp. 137–143.

[37] M. Yasin, A. Sengupta, M. T. Nabeel, A. Ashraf, J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to prac-
tice,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security, 2017,
pp. 1601–1618.

[38] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of inte-
grated circuits,” in Proc. Des. Autom. Test Eur., 2008, pp. 1069–1074.

[39] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in Proc. IEEE Int.
Symp. Hardw. Orient. Security Trust (HOST), 2017, pp. 95–100.

[40] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in Proc. Des. Autom. Conf., 2012, pp. 83–89.

[41] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y. Shoham,
“Understanding random SAT: Beyond the clauses-to-variables ratio,” in
Principles and Practice of Constraint Programming (CP), M. Wallace,
Ed. Berlin, Germany: Springer, 2004, pp. 438–452.

[42] A. Alaql, M. M. Rahman, and S. Bhunia, “SCOPE: Synthesis-based
constant propagation attack on logic locking,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 29, no. 8, pp. 1529–1542, Aug. 2021.

[43] “Using encryption and authentication to secure an ultrascale/ultrascale+
FPGA bitstream.” Xilinx. 2022. [Online]. Available: https://www.
xilinx.com/content/dam/xilinx/support/documents/application_notes/
xapp1267-encryp-efuse-program.pdf

[44] P. Mohan, O. Atli, O. Kibar, M. Zackriya, L. Pileggi, and K. Mai,
“Top–down physical design of soft embedded FPGA fabrics,” in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2021, pp. 1–10.

Zain Ul Abideen (Graduate Student Member, IEEE)
received the M.S. degree in computer engineer-
ing (Master in Integration, Security and Trust in
Embedded Systems) from the Grenoble Institute of
Technology, Grenoble, France, in 2019. He is cur-
rently pursuing the Doctoral degree with the Tallinn
University of Technology, Tallinn, Estonia.

During his master’s studies, he was associated
with the Cybersecurity Institute, Univ. Grenoble
Alpes, Grenoble. He worked on hardware secu-
rity and side-channel attacks. His research work is

mainly focused on hardware security and obfuscation-based ASIC design.

Tiago Diadami Perez (Graduate Student
Member, IEEE) received the M.S. degree in elec-
trical engineering from the University of Campinas,
São Paulo, Brazil, in 2019. He is currently pursuing
the Ph.D. degree with the Tallinn University of
Technology, Tallinn, Estonia.

From 2014 to 2019, he was a Digital Designer
Engineer with Eldorado Research Institute,
São Paulo. His current research interests include the
study of hardware security from the point of view
of digital circuit design and IC implementation.

Mayler Martins received the M.S. (summa cum
laude) and Ph.D. degrees in microelectronics from
the Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil, in 2012 and 2015, respectively.

From 2016 to 2018, he was a Research
Scientist with the ECE Department, Carnegie Mellon
University, Pittsburgh, PA, USA. He worked as a
Lead Engineer with Siemens EDA, Fremont, CA,
USA, from 2018 to 2022. He is currently a Research
and Development Engineer Staff with Synopsys,
Sunnyvale, CA, USA. His current research interests

include logic synthesis methods focusing on QoR optimization.

Samuel Pagliarini (Member, IEEE) received the
Ph.D. degree from Telecom ParisTech, Paris, France,
in 2013.

He has held research positions with the University
of Bristol, Bristol, U.K., and Carnegie Mellon
University, Pittsburgh, PA, USA. He is currently a
Professor with the Tallinn University of Technology,
Tallinn, Estonia, where he leads the Centre for
Hardware Security. His current research interests
include many facets of digital circuit design and
hardware security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

