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Abstract—We propose a new three-level XOR-AND-XOR form
for autosymmetric functions, called XORAX expression. In gen-
eral, a Boolean function f over n variables is k-autosymmetric if
it can be projected onto a smaller function fk, which depends on
n−k variables only. We show that XORAX expressions can ease
the reversible synthesis of autosymmetric functions, producing
compact reversible networks, without inserting additional new
input lines. Autosymmetry occurs especially for functions that
exhibit a regular structure, as for instance arithmetic functions.
For this reason, compact reversible networks for autosymmet-
ric functions might be interesting for quantum computing.
Experimental results validate the proposed approach.

Index Terms—Autosymmetric function, quantum circuits,
reversible logic.

I. INTRODUCTION

AUTOSYMMETRIC Boolean functions are functions that
exhibit a structural regularity based on the notion of

affine spaces and are easily expressed using XORs. They were
introduced in [20] and further studied in [4], [8], [9], and [18],
where it was shown how this regularity can be exploited to
derive, in shorter synthesis time, compact logic representations
for the CMOS technology. More recently, the autosymme-
try property has been applied in logic synthesis for emerging
technologies, i.e., switching nano-crossbars [7], and to better
estimate the multiplicative complexity of functions for security
protocols [5], [41].

The aim of this article is to establish whether the concept
of autosymmetry can ease the synthesis of Boolean functions
also in the context of reversible and quantum circuits. Indeed,
since autosymmetry often occurs for functions presenting a
regular structure, as for instance arithmetic functions, com-
pact reversible networks for autosymmetric functions might
be interesting to ease the quantum circuit synthesis of subrou-
tines given as classical functions, an issue occurring in many
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contexts (e.g., the Shor’s algorithm for factoring and discrete
logarithm and the Grover’s search algorithm).

For this reason, we first propose a new three-level XOR-
AND-XOR form, called XORAX, for autosymmetric functions,
and then, we analyze theoretically and experimentally the
applications of this new logic form for the synthesis of
reversible and quantum circuits. Note that an XORAX form
can be described as a generalization of exclusive-or sum-of-
products (ESOPs) expressions, that is an XOR of ANDs of
literals. Indeed, an XORAX is an XOR of ANDs of XORs of
literals.

Intuitively, a Boolean function f over n variables is
k-autosymmetric if it can be projected onto a smaller func-
tion fk that depends on n − k variables and contains a reduced
number of minterms. The regularity of a Boolean function f
is then measured computing its autosymmetry degree k, with
0 ≤ k ≤ n, where k = 0 means no regularity. In this arti-
cle, we prove that the reduction from f to fk can be efficiently
implemented onto reversible and quantum circuits using only a
limited number of controlled NOT (CNOT) gates and without
adding additional input lines/qubits to the networks. Moreover,
since fk is smaller than the original function f , both in terms of
input variables and number of on-set minterms, its reversible
synthesis should be easier and should lead to more compact
quantum circuits.

Observe that in an exact synthesis scenario the autosymme-
try preprocessing would not be necessary. However, in more
realistic scenarios, where heuristic procedures are applied, the
autosimmetry property can actually ease the synthesis process
by simplifying the input instances. Indeed, the experimental
results of this article show that the heuristic procedures are
not in general sensitive to autosymmetry, and therefore, a pre-
processing exploiting this regularity, often guarantees better
synthesis results.

Autosymmetric functions are just a subset of all Boolean
functions. Nevertheless, a considerable amount of standard
functions of practical interest falls in this class. For instance,
about 24% of the functions in the classical ESPRESSO bench-
mark suite [44] has at least one non degenerate autosymmetric
output [8], [9], [10]. Notice that on the other hand, the total
number of classical symmetric functions, i.e., the Boolean
functions invariant under any permutation of their variables
is much lower [8].

We have experimentally evaluated the approach proposed
for the reversible synthesis of autosymmetric functions start-
ing from their XORAX expressions, with interesting results.
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The main goal of our experiments is first to verify whether
ESOP standard minimization is sensitive to the autosymmetry
regularity and it is able to exploit it. The experimental results
clarify that this regularity is not detected, therefore, a sec-
ond set of experiments aims at analyzing the gain of using
a preprocessing phase, detecting autosymmetry, and repre-
senting functions in XORAX form, before standard reversible
synthesis.

To better evaluate the quality of the circuits obtained,
we study their cost in terms of elementary quantum
gates, after the technology mapping using the Clifford+T
library [1], [19], [27]. We consider two different methods
for quantum compilation: one based on standard ESOP
minimization, and a more recent one presented in [23] that
finds a quantum circuit starting from XOR-AND graph (XAG)
representations of logic functions. In both cases, our experi-
ments show that the autosymmetry-based strategy guarantees
gains in area (measured in terms of the number of ele-
mentary quantum gates) of about 40%–45% and requires
41%–43% fewer ancillary qubits, on average, for the subset
of nondegenerate autosymmetric functions.

We finally observe that any other quantum compilation
method could be applied, with the only requirement of adding
(before and after the quantum circuit for fk) a small number
of elementary quantum gates (CNOTs) needed to implement
the projection of the original function f onto fk.

This article is organized as follows. Motivations and
previous work on quantum logic synthesis are reviewed in
Section II. Preliminaries on autosymmetric functions, ESOP
forms, quantum computing, and reversible circuits are given
in Section III. Sections IV introduces the new three-level
XORAX form, and Section V discusses the strategy for con-
structing compact reversible circuits starting from XORAX
forms. Section VI reports the experimental results. Finally,
Section VII concludes the work.

II. MOTIVATIONS AND RELATED WORK

In this section, we briefly discuss the motivations of our
work and review some representative recent work on logic
synthesis for quantum computing.

In the last few years, we have witnessed a growing
interest in quantum computing motivated by the technological
enhancement in quantum architectures. The new architec-
tures will be able to both solve new problems and increase
the performance of algorithms in many different application
domains by exploiting the inherent parallelism provided by
quantum computers. At the same time, there still are several
issues that should be addressed, for instance, regarding the
quantum circuit implementations of subroutines given as clas-
sical functions. In this regard, we recall that many quantum
algorithms, including Shor’s and Grover’s algorithms, usually
require to compute some classical logic functions, the so-
called oracles [27]. According to the postulates of quantum
Mechanics, the evolution of quantum systems is described by
unitary operators, which are reversible. Thus, this implies that
logic functions and oracles must be first realized in terms of
reversible logic networks, whose gates are then translated into
unitary quantum gates.

Moreover, today’s quantum computers only support a very
limited set of quantum operations natively. Thus, non-native
operations have to be decomposed into sequences of sim-
pler native operations of the targeted quantum hardware. This
decomposition should be performed with the goal of mini-
mizing the overall gate count of the quantum circuits to be
executed.

This is precisely the reference context of our current work.
We intend to establish whether the concept of regularity (in
particular, autosymmetry) can ease the synthesis of Boolean
functions in the context of reversible and quantum circuit
synthesis, and can lead to circuits with a reduced number
of elementary quantum gates, thus mitigating the impact of
combinational logic on the cost of quantum algorithms.

Standard approaches to synthesize quantum oracles gener-
ally consist of two steps. The logic function is first embedded
into a classical reversible circuit containing only reversible
gates, as for instance multiple-controlled (MC) Toffoli gates
derived from an ESOP expression [12], [14] (these notions
are reviewed in Section III-D). The second step consists of
mapping each reversible gate into a sequence of elementary
quantum gates. Indeed, since quantum oracles are typically
formulated in an abstract way that does not take into account
the restrictions imposed by the physical hardware, one or more
compilation steps are always required in order to execute them
on a given target hardware.

Recently, many new methods for reversible circuit synthesis
and quantum compilation have been proposed in the litera-
ture. In [39], a hierarchical reversible synthesis approach based
on k-feasible Boolean logic networks is proposed. These are
logic networks in which every gate has at most k inputs,
often referred to as k-LUT (lookup table) networks. This
approach to reversible circuit synthesis outperforms other
existing state-of-the-art hierarchical methods [37], [38], [42].

In [24], an efficient method to map reversible single-target
gates into a universal set of quantum gates (the Clifford + T
library [1], [19], [27]) is discussed. The proposed mapping
method aims at reducing the cost of the resulting quan-
tum network. This article also proposes a post-synthesis
optimization method to further reduce the cost of the final
quantum network.

Finally, Meuli et al. [23] presented a constructive compila-
tion algorithm that finds a quantum circuit starting from XAG
representations of Boolean functions, i.e., Boolean networks
consisting only of two input AND gates, two input XOR gates,
and that can have constant one inputs. A very interesting result
of this work is that the number of elementary quantum T gates
in the final quantum circuit for a given function f depends on
the number of AND gates used to represent the function f
in XAG form. Thus, this result suggests a new upper bound
on the number of T gates proportional to the multiplicative
complexity of the function f , i.e., to the minimum number of
AND gates required to realize f in XAG form [11]. Since,
as proved in [5], the autosymmetry property can be exploited
to better estimate the multiplicative complexity of functions,
this approach to quantum compilation should be particularly
convenient for the class of autosymmetric functions.

Other approaches have been proposed and discussed in the
recent literature. In contrast to standard approaches, Zulehner
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and Wille [45] proposed a new strategy for designing
reversible circuits based on the idea of combining the embed-
ding step, in which additional variables are added to the circuit,
and the synthesis steps that produce the reversible circuit, into
a single one, thus avoiding the growth in complexity of the
function representation.

In [2], a post-synthesis optimization technique based on
templates is proposed. The authors introduce several templates
to merge two or more consecutive multiple-Toffoli gates and
then replace the high-cost subroutines with equivalent low-cost
solutions. Along with the templates, they also provide an algo-
rithm for template-matching and thus for optimizing reversible
circuits.

Finally, we refer the reader to [31] for more details on
reversible circuits, and to [43] for an overview of efficient
quantum compilation methods.

III. PRELIMINARIES

A. Autosymmetric Functions

Autosymmetric Boolean functions [9], [10], [20] exhibit a
special type of regularity based on the notion of affine spaces
and are easily expressed using XORs. A function f over n vari-
ables is autosymmetric if it can be projected onto a function
depending on a smaller number of variables and containing a
reduced number of minterms. More precisely, the autosym-
metry of a Boolean function f is measured computing an
autosymmetry degree k, with 0 ≤ k ≤ n: k = 0 means no
regularity, while for k ≥ 1, f is said autosymmetric, and a new
function fk depending on n − k variables only and called the
restriction of f , is identified in time polynomial in the dimen-
sion of some standard representations of the original function
f , for instance, the dimension of a reduced ordered binary deci-
sion diagram (ROBDD) for f [9]. In particular, Bernasconi
and Ciriani [4] and Bernasconi et al. [9] described implicit
procedures for the test, working on BDD representations
of incompletely and completely specified Boolean functions,
respectively.

An autosymmetric function f can be expressed in terms of
its restriction fk as follows:

f (x1, x2, . . . , xn) = fk(y1, y2, . . . , yn−k)

where the n − k variables y1, y2, . . ., yn−k are given by
XOR combinations of subsets of the original input vari-
ables xi’s. These combinations are denoted XOR(Xi), where
Xi ⊆ {x1, x2, . . . , xn}, and the equations

yi = XOR(Xi) i = 1, . . . , n − k

are called reduction equations. Thus, the autosymmetry test
consists of finding the value of k, the restriction fk, and every
single XOR with its input variables (i.e., reduction equations).

The autosymmetry of a function can be exploited for any
logic minimization problem, according to the overall structure
shown in Fig. 1. In fact, the reduction from f to fk can be
obtained with an additional logic level of XOR gates, whose
inputs are the original variables x1, . . . , xn and the outputs are
the new variables y1, . . . , yn−k, that become the inputs to a
circuit for fk. For example, in [5] and [6], autosymmetry has

Fig. 1. General network for an autosymmetric function f , defined using a
network for the restriction fk , and an XOR layer implementing the reduction
equations [9]. The restriction fk can be synthesized in any framework of logic
minimization, e.g., in SOP form, ESOP form, as an And-Inverter graph, as an
XAG, etc. In particular, if fk is represented in ESOP form, the overall circuit
corresponds to an XORAX expression.

been exploited to ease the XAG synthesis and better evaluate
the multiplicative complexity. In this work, we exploit this
regularity in order to derive compact reversible and quantum
circuits.

As shown in [9] and [10], any k-autosymmetric function f
is associated to a k-dimensional vector space Lf , defined as
the set of all minterms α s.t.

f (x) = f (x ⊕ α)

for all x ∈ {0, 1}n. The k variables that are truly indepen-
dent onto Lf are called canonical variables, while the other
variables are called noncanonical. Informally, the canonical
variables are the ones that assume all the possible combina-
tions of {0, 1} values in the vectors of the vector space Lf ,
meanwhile, the noncanonical variables are the variables that
on Lf , have a constant value or are a linear combination of
the canonical ones. Moreover, the restriction fk corresponds to
the projection of f onto the subspace {0, 1}n−k where all the
canonical variables assume value 0, while the reduction equa-
tions correspond to the linear combinations that define each
noncanonical variable in terms of the canonical ones.

The restriction fk is “equivalent” to, but smaller than f , and
has |S(f )|/2k minterms only, where S(f ) denotes the support
of f , and thus, |S(f )| is the number of minterms of f . As we
will discuss in this article, the reversible synthesis of f can
be reduced to the synthesis of its restriction fk, which can be
identified in polynomial time, as already mentioned.

Example 1: Consider the function f , depending on n = 6
variables, depicted in Fig. 2(a). It is possible to verify that f
is autosymmetric, with vector space Lf = {000000, 001100,
110000, 111100}. Since the dimension of Lf is k = 2, f is 2-
autosymmetric. The canonical variables are x1 and x3. Indeed,
x1 and x3 assume all possible combinations of 0 and 1 values
onto Lf , meanwhile x2 and x4 are always equal to x1 and x3,
respectively, and x5 and x6 are constant and equal to 0. The
reduction equations are y1 = x1 ⊕ x2, y2 = x3 ⊕ x4, y3 = x5,
and y4 = x6 (for details on the computation see [9]). Thus, the
restriction f2 depends on four variables only and corresponds
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(a) (b)

Fig. 2. (a) 2-autosymmetric Boolean function f in a Karnaugh map of six variables and (b) its restriction f2 that depends on the new input variables
y1 = x1 ⊕ x2, y2 = x3 ⊕ x4, y3 = x5, and y4 = x6.

to the projection of the function f onto the space where x1 =
0 and x3 = 0, as it can be noted from Fig. 2(a) and (b).
Finally, we can reconstruct f from f2 in the following way:
f (x1, . . . , x6) = f2(x1 ⊕ x2, x3 ⊕ x4, x5, x6).

Autosymmetric functions are a subset of the total number
of Boolean functions. Nevertheless, as already mentioned, a
considerable amount of functions of practical interest falls in
the class of autosymmetric functions, i.e., about 24% of the
functions in the classical ESPRESSO benchmark suite [44] has
at least one truly (i.e., non degenerate) autosymmetric out-
put [9], [10]. Moreover, autosymmetry occurs especially for
functions that exhibit a regular structure, as for instance arith-
metic functions. For this reason, compact reversible networks
for autosymmetric functions might be interesting for quantum
computing.

B. ESOP Forms

An ESOPs form is a two-level Boolean expression consist-
ing of one level of AND gates followed by one XOR gate on
the second level (i.e., is an XOR of ANDs of literals). The
problem of synthesizing an ESOP form for a given Boolean
function f thus consists of identifying a set of product terms
over the Boolean input variables of f such that each minterm
in the off-set of f is covered by the product terms an even
number of times, or never, while each minterm in the on-set
is covered an odd number of times. Such a representation is
not unique. A Boolean function can be expressed by different,
but semantically equivalent, ESOP forms.

Example 2: Consider the function f depicted in Fig. 2(a). f
can be represented in ESOP form with five products and ten
literals as follows:

ESOP(f ) = x1x3 ⊕ x1x4 ⊕ x2x3 ⊕ x2x4 ⊕ x5x6. (1)

Observe that the on-set minterm 000011 is covered only once
by the product x5x6, the on-set minterm 111111 is covered by
all the five products in the ESOP, the off-set minterm 111100 is
covered four times, and so on. An alternative and functionally
equivalent ESOP representation for f is given by the following
expression:

ESOP(f ) = x1x2x3 ⊕ x1x4 ⊕ x1x2x3 ⊕ x2x4 ⊕ x5x6.

ESOP forms play an important role in logic synthesis,
design for tests, and other areas of the computer technol-
ogy. Indeed, they require fewer products than standard SOP
forms to realize randomly generated functions [34], [35]. They
are more compact than other two-level representations, espe-
cially for arithmetic or communication circuits [33]. They have
excellent testability properties [15], [17]. Finally, thanks to
the reversibility of the XOR operation, ESOP forms represent
the backbone of synthesis schemes for reversible logic cir-
cuits [12], [14], [16] and are therefore important for quantum
computing.

For all these reasons, in the last decades, several algorithms
have been proposed for exact and heuristic minimization of
ESOP forms [26], [28], [29], [30], [32], [36], with the aim of
reducing the overall costs of their hardware realizations and
software implementations. Heuristic methods focus on finding
small (but not necessarily minimum) ESOP forms; they are
fast, but only examine a subset of the possible search space.
Heuristic methods, e.g., the Exorcism approach [26], usually
operate in two phases. In the first phase, an ESOP form with a
suboptimal number of product terms is derived, e.g., by trans-
lating each minterm of the function into one product term. In
the second phase, the ESOP form is iteratively optimized and
reshaped using cube transformations with the overall goal of
merging as many product terms as possible. The second phase
terminates when, after several iterations, no further size reduc-
tion is achieved. For this reason, heuristic methods produce
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Fig. 3. Simple quantum circuit.

small ESOP forms in reasonable time, but suffer from local
minima that cannot be easily escaped. On the other hand, exact
methods try to find an ESOP form with a minimum number of
product terms, but they hardly can deal with more than eight
Boolean variables and a few product terms. Recently, an exact
synthesis method based on Boolean satisfiability (SAT) has
been proposed in [30]. This novel approach is hardly affected
by the number of Boolean variables and turns out to be partic-
ularly fast if the Boolean function can be expressed by using
only a reduced number of product terms.

C. Qubits and Quantum Operations

The unit of information of classical computation is the
bit which can be either in state 0 or 1. Instead, the unit of
information of quantum computation is the qubit and its state

is a superposition of two basis states, |0〉 =
[

1
0

]
and |1〉 =

[
0
1

]

corresponding to the states 0 and 1 for a classical bit. The
state |ψ〉 of a qubit is described mathematically by a linear
combination of the two basis states

|ψ〉 = α|0〉 + β|1〉 =
[
α

β

]
, α, β ∈ C, |α|2 + |β|2 = 1.

The evolution of a n-qubit quantum system is described by
the multiplication of the state-vector, a vector of 2n complex
parameters, by 2n × 2n unitary matrices. Each quantum com-
putation is then described as the composition of elementary
quantum operations, or quantum gates, that act on one or two
qubits and implement the abstract unitary matrices. This article
uses the so-called Clifford+T library, a universal and fault-
tolerant library. The generator gates in the Clifford+T group
are

H = 1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, T =

[
1 0
0 eiπ/4

]

and

CNOT =
[

I 0
0 X

]
, where X =

[
0 1
1 0

]
.

This group includes also the Pauli matrices, which can be
obtained by multiplying H and S gates, for example, for the
NOT gate denoted by X, we have X = HS2H.

Quantum circuits are diagrams used to visualize the flux of
computation. Each qubit is associated with a horizontal line (or
a wire) and each operation (gate) with a box. Controlled gates
are important gates acting on more than a qubit. Among them,
the CNOT gate is the simplest and most important example.
The NOT operation on the target (second) qubit is performed
only when the control (first) qubit is |1〉; otherwise, it is left
unchanged. Fig. 3 is depicted a simple circuit composed of
a Hadamard gate (H gate) on the qubit |x1〉 followed by a
CNOT.

Fig. 4. MCMP Toffoli gate with four control lines, with polarities 0, 1, 0,
and 1, respectively, where polarity 0 is represented by an empty bullet.

D. Reversible Circuits

Reversible circuits are circuits with the same number of
input and output signals that implement bijections, i.e., each
input assignment maps to a unique output assignment. As a
consequence, reversible computations can not only be per-
formed from the inputs to the outputs but also in the other
direction [13]. A reversible circuit computes a reversible
Boolean function, i.e., a bijective function that uniquely maps
each input assignment to a unique output assignment and vice
versa. Recall that an irreversible function can always be con-
verted into a reversible one by adding extra outputs such that
the input–output mapping is unique.

Reversible logic networks are usually composed as cascades
of Toffoli gates [22], [25]. Let X = {x1, x2, . . . , xn} be the
set of input variables in the reversible circuit. An MC mixed-
polarity (MCMP) Toffoli gate T(C, t) has a (possibly empty)
set C ⊂ X of control lines, which are literals over X , and one
target line t which is a variable in X \ C.

The MCMP Toffoli gate inverts the value of the variable
assigned to the target line, if and only if the polarity of all
inputs to the control lines match their polarity, or if C = ∅. All
remaining values are passed through unaltered. More precisely,
given C = {xc1, xc2 , . . . , xck} ⊂ X , the gate maps the target
line t to

t ⊕ (
xp1

c1
xp2

c2
· · · xpk

ck

)

where p1, p2, . . . , pk denote the polarities, 0 or 1, of the control
variables (i.e., x pi

ci corresponds to xci if pi = 1, and to xci

otherwise). Fig. 4 illustrates one MCMP Toffoli gate with four
control qubits.

An MCMP Toffoli gate is called an MC Toffoli gate if all
the control variables are positive literals, i.e., their polarities
are all equal to 1.

Note that an MC Toffoli gate corresponds to the NOT (X)
quantum gate if C = ∅, to the CNOT quantum gate if C
contains only one variable, and to the standard Toffoli gate
(used for computing the logic AND between two variables) if
C contains two variables [27].

We can observe that there is a natural correspondence
between product terms in an ESOP expression and MCMP
Toffoli gates, and this is the reason why ESOP-based logic
synthesis is widely used in reversible logic synthesis [12],
[14], [16]. Indeed, given an ESOP expression, one can extract
a sequence of MCMP Toffoli gates whose control lines corre-
spond to the literals in the product terms of the ESOP form.
Observe that, when considering multiple-output functions, the
resulting reversible circuit will contain n+m lines, where n is
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Fig. 5. Reversible circuit for the function f , derived from the ESOP
representation (1).

the number of input variables and m is the number of outputs
of the function.

Example 3: Consider again the function f in our running
example. From its ESOP representation (1), we can build the
reversible circuit depicted in Fig. 5. The circuit contains five
standard Toffoli gates computing the AND of their two control
variables.

Reversible logic synthesis, i.e., the ability to generate a
reversible circuit for a given target function, has many applica-
tions, especially in the area of quantum computing. Indeed, as
discussed in Section II, quantum algorithms consist of quan-
tum and classical operations, and classical operations are first
realized in terms of reversible logic networks. Such networks
must then be mapped into quantum circuits using an additional
synthesis step, whose goal is to transform reversible circuits
of MCMP Toffoli gates into functionally equivalent quan-
tum circuit implementations: input lines are translated into
qubits and reversible gates, as MCMP Toffoli gates are imple-
mented into quantum circuits referring to a chosen quantum
gate library [22], [25]. This process often requires additional
support qubits, that are called ancillary qubits. In this work,
as already mentioned, we will refer to the Clifford+T library
for this mapping step.

IV. XORAX SYNTHESIS

For any given function f : {0, 1}n → {0, 1}, the algorithms
for computing the autosymmetry degree k, the restriction fk
and the reduction equations are polynomial in the dimension
of an ROBDD for f [9]. Obviously, note that the dimension
of the ROBDD of f might be exponential in the number n of
input variables.

Thus, in the synthesis process for f (x1, . . . , xn), we could
first obtain and implement the reduction from f to fk, through
the construction of the new variables y1, . . . , yn−k from the
original ones x1, . . . , xn by an additional level of XOR gates,
and then synthesize the restriction fk(y1, . . . , yn−k) in any two-
level logic framework. This gives rise to a three-level form for
autosymmetric functions.

In general, we expect that the time required by the
minimization of fk will be obviously less than the time
required for the minimization of f , since fk is defined on a

smaller space: it depends only on n − k variables and has
|S(f )|/2k minterms only, where |S(f )| is the number of on-set
minterms of f . A similar approach has been studied and proven
to be particularly convenient within standard sum of prod-
ucts (SOP) minimization. A three-level OR-AND-XOR form
(shortly, ORAX form) has been defined and experimentally
evaluated in [10].

Unfortunately, the OR operator is not suited for reversible
logic synthesis. For this reason, here, we focus on ESOP syn-
thesis and introduce a new three-level XOR-AND-XOR form
for autosymmetric functions, which we call XORAX expres-
sion. In particular, since several methods in quantum synthesis
start from ESOP (XOR-AND) forms instead of SOP (OR-
AND) expressions, we consider here XORAX forms, that
are a natural extension of ESOP forms, instead of ORAX
(OR-AND-XOR) expressions.

As already mentioned, this expression can be derived by first
running the autosymmetry test to detect the reduction equa-
tions and the restriction fk, and then, by synthesizing in ESOP
form the restriction fk only.

The reduction from f to fk is obtained through an ini-
tial logic level composed of XOR gates that implement the
reduction equations. The inputs are the original variables
x1, . . . , xn and the outputs are the new variables y1, . . . , yn−k,
that become the inputs to a minimal ESOP form for fk, accord-
ing to the network decomposition depicted in Fig. 1. Notice
that if the function f is not autosymmetric, XORAX and ESOP
expressions coincide.

Example 4: Consider again the function f and its restriction
f2 depicted in Fig. 2. Recall from Example 1 that the reduction
equations are y1 = x1 ⊕x2, y2 = x3 ⊕x4, y3 = x5, and y4 = x6.
A minimal ESOP for f2 is given by ESOP(f2) = y1y2 ⊕ y3y4,
and the XORAX of f is then obtained by adding a level of
XORs

XORAX(f ) = (x1 ⊕ x2)(x3 ⊕ x4)⊕ x5x6. (2)

Note how this expression is more compact than the ESOP
representation (1) for f : it contains only six literals and
two products, while ESOP(f ) contains five products and ten
literals.

As shown also by this simple example, in general, a mini-
mal XORAX form has a smaller size than a standard minimal
ESOP form for the same function, thanks to the extra level
of XOR gates. Moreover, the gain in size can also become
exponential, as proved in the following proposition.

Proposition 1: An XORAX form for a function f can be
exponentially smaller than a minimal ESOP expression for f .

Proof: To prove the proposition, we show an example of a
function whose XORAX contains only one product of XOR

combinations, while a minimal ESOP contains an exponential
number of products. Consider the autosymmetric function f ,
that depends on n = 2-m binary variables and whose XORAX
form is

XORAX(f ) = (x1 ⊕ x2)(x3 ⊕ x4) · · · (xn−1 ⊕ xn).

This form contains n literals and just one product of m = n/2
XOR combinations of two variables each. This is a conse-
quence of the fact that f is m-autosymmetric, with reduction
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(a) (b)

Fig. 6. Reversible circuits, (a) with and (b) without new input lines, for the function f of the running example, derived from its XORAX representation (2).
The last two CNOTs of the circuit (b) are used for restoring the two noncanonical variables x2 and x4 to their initial values.

equations yi = x2i−1 ⊕ x2i, 1 ≤ i ≤ m, and with restriction
fm = y1 y2 . . . , yn.

A minimal ESOP for f instead contains 2m = 2n/2 products,
each containing m variables. This can be proved by induc-
tion on n, exploiting the fact that, when we add a new factor
(xn+1 ⊕ xn+2), the resulting function f ′ = f · (xn+1 ⊕ xn+2)

is such that the cofactors obtained assigning a value to xn+1
and xn+2, satisfy f ′

00 = f ′
11 = 0 and f ′

01 = f ′
10 = f . This, in

turn, implies that any ESOP for f ′ must contain an ESOP for f
multiplied by xn+1, and one multiplied by xn+2. Thus, the num-
ber of products doubles each time leading to an exponential
growth.

V. CONSTRUCTION OF REVERSIBLE CIRCUITS FROM

XORAX FORMS

As reviewed in Sections III-B and III-D, ESOP-based logic
synthesis is widely used in reversible logic synthesis because
of the natural correspondence between product terms in an
ESOP expression and MCMP Toffoli gates.

In particular, given an ESOP expression, one can easily
extract a sequence of MCMP Toffoli gates whose control lines
correspond to the literals in the product terms of the ESOP
form, and whose target lines correspond to the output of the
function. Notice that all MCMP Toffoli gates act on the same
target line, thus realizing the exclusive OR sum of all product
terms.

In this section, we propose a method for deriving com-
pact reversible circuits computing k-autosymmetric functions,
starting from their representation in XORAX form. The idea
of the approach is to concatenate two circuits: 1) a circuit
implementing the transformation from the old input variables
X = {x1, x2, . . . , xn} to the new n−k variables and 2) a circuit
implementing the restriction fk.

Observe that this approach will require n−k new lines (and
therefore n − k new qubits in the quantum implementation of

the reversible circuit for f ), corresponding to the new variables
y1, . . . , yn−k.

Each reduction equation yi = XOR(Xi), where Xi ⊆ X and
i = 1, . . . , n − k, is then implemented through CNOT gates,
one for any variable in Xi. The control line of each CNOT
corresponds to a different variable in Xi, eventually comple-
mented using a NOT gate, while the target line corresponds
to the new variable yi. Then, the new variables y1, . . . , yn−k

are used as control variables in the cascade of MCMP Toffoli
gates implementing a reversible circuit for the restriction fk,
as shown in Fig. 6(a).

The number of lines, and therefore of qubits, grows up to
a factor 2 with respect to a standard reversible circuit build
from an ESOP of f , but the reduced number of products and
literals in the ESOP for fk should compensate the cost of the
additional input lines, trading-off the number of qubits for the
number of quantum gates.

However, due to the current technological limitations of
quantum circuits (current machines contain just a few dozen
qubits), it is very important to keep the number of input
qubits as low as possible. Fortunately, the structural prop-
erties of autosymmetric functions can be better exploited,
so that no additional input qubits must be added to the
network for the new variables, as proved in the following
proposition.

Proposition 2: Let f : {0, 1}n → {0, 1} be a k autosymmet-
ric function, with vector space Lf and restriction fk. Then, a
reversible circuit for f can be derived from a reversible circuit
for the restriction fk without adding new input lines, nor new
MCMP Toffoli gates.

Proof: Recall from Section III-A that any k-autosymmetric
function f is associated to a k-dimensional vector space Lf .
Onto this space, only the k canonical variables are truly inde-
pendent, i.e., can assume all the possible combinations of
{0, 1} values. The remaining noncanonical variables have a
constant value or are defined by linear combinations of the
canonical ones.
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These linear combinations can be used to derive the reduc-
tion equations, that precisely define each noncanonical variable
in terms of the canonical ones. As proved in [9], each non-
canonical variable appears in one and only one reduction
equation, alone or in XOR combination with a subset of canon-
ical variables. Thus, instead of adding new inputs, we can
implement each equations yi = XOR(Xi), simply modifying
the only noncanonical variable in Xi.

In particular, the noncanonical variable is used as target vari-
able, while the remaining canonical variables in Xi, if any, are
used as control variables in the CNOTs used to implement
the linear combination defining the noncanonical one. The
procedure is correct since the noncanonical variable that has
been modified does not occur in any other reduction equation.
Finally, we can use the n − k modified noncanonical variables
as input variables for the reversible circuit implementing fk.

Once f has been computed on the output line, we can
restore the noncanonical variables to their initial values apply-
ing the so-called uncomputing procedure [3], [27]. Basically,
we uncompute the linear combinations stored in the non-
canonical variables by reapplying the CNOT gates used to
implement the corresponding reduction equations in reverse
order. This disentangles the variables, reverting them to their
initial values.

Example 5: Let us consider the function f in our running
example, and its XORAX representation (2). The reduction
equations y1 = x1 ⊕ x2, y2 = x3 ⊕ x4, y3 = x5, and y4 = x6
can be translated into the first two CNOT gates in Fig. 6(b)
(blue box). The ESOP representation of the restriction f2,
ESOP(f2) = y1y2 ⊕ y3y4, is represented by the two CNOTs
in the red box. Finally, the last two CNOT gates (green box)
are used for the uncomputing procedure on the noncanonical
variables.

We finally observe that the methodology that we have
proposed to derive a reversible circuit for an autosymmetric
function is very flexible. Here, we have considered the stan-
dard technique based on ESOP minimization, however, we
could apply any other reversible synthesis technique to the
restriction fk, with the only requirement of adding (before and
after the reversible circuit for fk) the CNOT gates needed to
implement and then to uncompute the reduction equations.

VI. EXPERIMENTAL RESULTS

In this section, we report our experimental results. First
of all, we consider the practical gain, in terms of area, of
XORAX forms with respect to ESOP expressions. (Recall
that, by theoretical results, the area gain can be exponential.)
Second, we evaluate the proposed decomposition in the con-
text of reversible and quantum circuit synthesis, considering
two different quantum compilation strategies.

Note that as several methods in quantum synthesis start from
ESOP (XOR-AND) forms instead of SOP (OR-AND) expres-
sions, we consider XORAX (XOR-AND-XOR) forms instead
of ORAX (OR-AND-XOR) expressions.

Our method has been tested on autosymmetric functions
taken from the LGSynth’89 benchmark suite [44] and the

TABLE I
COST OF k-CONTROLLED TOFFOLI GATES IN NUMBER

OF T, H, AND CNOT GATES

EPFL benchmark suite [40], [41]. Observe that autosymme-
try is a property of single outputs, i.e., different outputs of
the same benchmark can have different autosymmetry degrees.
Therefore, we perform the autosymmetry test on single outputs
of the benchmark functions.

We consider only proper autosymmetric functions, i.e.,
autosymmetric functions whose reduction equations contain
at least one XOR operator. Notice that this choice excludes
all functions whose autosymmetry is only due to the fact that
they are degenerate.

The experiments have been run on a Pentium Intel core
i7-6700HQ, 4-core, 2.60-GHz processor with 16-GB RAM.

The first aim of the experiments is to compare the XORAX
expression of an autosymmetric function and the correspond-
ing ESOP form. For this purpose, we perform the autosym-
metry test [4] (for noncompletely specified functions) on the
benchmark outputs. The functions f and fk are then minimized
in ESOP form, using EXORCISM-4 [26]. The average gain,
in using XORAX expressions with respect to ESOP ones, is
about 40% of literals in the form. Due to the heuristic nature
of the ESOP minimizer, the synthesis times for the function
f and the corresponding restriction fk are quite similar and
very short (of order of 10−2 s on average). Therefore, in our
experiments, the gain in synthesis time is negligible.

This set of experiments verifies that the standard ESOP
minimization is not sensitive to autosymmetry. Therefore, we
propose a preprocessing phase detecting autosymmetry before
standard reversible synthesis, as shown in the following set of
experiments.

A. ESOP- and XORAX-Based Quantum Circuit Synthesis

We now evaluate the impact of using XORAX forms for
autosymmetric functions in quantum circuit synthesis. We
emphasized in Section III-D the correspondence between
ESOP expressions and multicontrolled Toffoli gates. However,
controlled Toffoli gates are only an intermediate representa-
tion that needs to be mapped into elementary quantum gates.
To perform this additional step, we select the universal fault-
tolerant Clifford+T quantum gate library [1], [19], [27] as
low-level gate library.

The cost model for this last synthesis step is nontrivial.
In general, heuristics try to minimize the number of MCMP
Toffoli gates and the number of control lines inside each gate
in the reversible circuit that must be transformed into a quan-
tum one. This in turn corresponds to minimize the number
of products in the ESOP expression and the number of liter-
als in each product, respectively, as smaller ESOP expressions
naturally lead to fewer and smaller MCMP Toffoli gates.
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TABLE II
COMPARISON BETWEEN QUANTUM CIRCUITS COMPUTED WITHOUT AND WITH AUTOSYMMETRY TEST, STARTING FROM ESOPS

As reviewed in Section III-C, the Clifford+T library is
composed of the Pauli, Hadamard, and CNOT gates and of
the additional non-Clifford T gate. Since the T gate is con-
sidered the most expensive gate in the library, usually the
cost of a Toffoli gate is expressed in the number of T gates
needed for its realization and the algorithms for the mapping
of k-controlled Toffoli gates minimize respect to this measure.
In Table I, we report the cost in terms of Hadamard, CNOTs,
and T gates of the realization of k-controlled Toffoli gates with
the algorithm described in [21]. We report also the number of
ancillary qubits used. Ancillas indeed impact the efficiency
of connections between primary qubits. Both kinds of qubits
share the same physical space and they need to be close to
each other to ensure high efficiency.

Table II reports a significant subset of benchmarks as rep-
resentative indicators of our experiments. The first column
reports the name, the number of the considered output of each
benchmark, and the autosymmetry degree. The second column
reports the number of inputs of the benchmark. The following
group of four columns reports the costs, in terms of elemen-
tary quantum gates, of the quantum circuits derived from the
ESOP representation of the functions, while the last group of
four columns reports the costs of the circuits derived from the
XORAX representation. The last column reports the gain in
the number of T gates. The last row reports the average costs
for all the benchmarks considered in our experiments.

The gain obtained synthesizing a quantum circuit starting
from XORAX forms instead of ESOP ones is quite interesting.
Indeed, the cost gain for T gates is about 46%, the cost gain
for H gates is about 47%, the cost gain for CNOTs is about
45%, and the gain in ancillary qubits is about 43%, as shown
in Table III.

Some particular benchmarks highly benefit from the
proposed strategy. For example, the benchmark dk48_9 can
be represented, exploiting the autosymmetry of the func-
tion, with a gain of 92%, in T gates. We can notice that
benchmarks with a high autosymmetry degree often have
a very high gain in T gates. See, for example, pdc_22
that has an autosymmetry degree 4 and has a gain of
about 94%.

TABLE III
GAIN FOR T, H, CNOT GATES, AND ANCILLARY QUBITS FOR THE

ENTIRE BENCHMARK SUITE

TABLE IV
GAIN FOR T AND CNOT GATES, T-DEPTH, AND ANCILLARY QUBITS FOR

THE ENTIRE CONSIDERED BENCHMARK SUITE

For other benchmarks we do not obtain any significant gain,
for example, add6_5 and in5_3. We can notice that there are
cases, e.g., in5_3, where even if the autosymmetry degree is
high, e.g., 5, the gain in T nodes is not relevant. In the specific
case of the benchmark in5_3, we can notice that the proposed
method gives a very high gain in terms of CNOT gates. This is
due to the fact that, using our method, the XORs of the circuit
have been factorized in the reduction equations.

Finally, we can observe that even if, in general, arithmetic
functions are autosymmetric, this does not directly imply that
arithmetic functions always benefit from this strategy. In fact,
the arithmetic benchmark add6_5 is autosymmetric, but the
proposed method does not give any gain in terms of T gates.
Also in this case, the main advantage is the gain in CNOT
gates.

B. Comparison With XAG-Based Quantum Compilation [23]

To further confirm the efficacy of the autosymmetry-based
synthesis strategy, we run another set of experiments consider-
ing the recent quantum compilation method proposed in [23].
Indeed, as already pointed out, autosymmetry can be exploited
by different optimization methods, simply adapting the general
decomposition scheme shown in Fig. 1 to the chosen frame-
work. In the context of quantum compilation, this task simply
requires to add (before and after any quantum circuit for the
restriction fk) some CNOT gates, acting on the noncanoni-
cal input variables of f , in order to implement, and then to
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TABLE V
COMPARISON BETWEEN QUANTUM CIRCUITS COMPUTED WITHOUT AND WITH AUTOSYMMETRY TEST, STARTING FROM XAGS (COMPUTATIONAL

TIMES ARE OF A FEW MILLISECONDS ON AVERAGE AND ARE NOT REPORTED)

uncompute, the reduction equations. Recall that, as proved
in Proposition 2, this task does not require any additional
ancillary qubit.

These last experiments were run on two AMD EPYC 7282
processors with 16 cores each, at 2.8 GHz, with 504 GB of
RAM in total.

The quantum compilation heuristic discussed in [23] starts
from an XAG representation of a Boolean function f (a
network consisting only of two input AND and XOR gates,
and that can have constant one inputs), and targets quantum
circuits over the Clifford+T gate set.

The experimental results show that, also for this method, the
autosymmetry-based approach guarantees an overall reduction
not only in the number of T gates, but also in the number of
CNOT gates, T-depth, ancillary qubits, and compilation time.
In particular, compiling a quantum circuit starting from an
XAG for fk, instead of an XAG for f , we can obtain a cost gain
in T gates of about 43%, a gain in CNOTs of about 39%, a gain
in T-depth of 23%, and a gain in the number of ancillary qubits
of about 41%, as shown in Table IV. The computational times
required by this compilation step are very short (a few mil-
liseconds on average), with autosymmetry-based compilation
about 66% faster on average.

We report in Table V a subset of all the benchmarks that are
considered for our experiments. The first column contains the
name, the number of the output, and the autosymmetry degree
of the considered benchmark. The second column reports the
number of inputs of the benchmark. The following group of
four columns reports the costs, in terms of elementary quantum
gates, of the quantum circuit derived from the XAG represen-
tation of the function f , while the last group of four columns
reports the costs of the quantum circuit for f derived from
the XAG for fk and the reduction equations. The last col-
umn reports the gain in the number of T gates. The last row
reports the average costs for all the benchmarks considered in
our experiments.

We first observe that the overall T cost of the XAG-based
quantum compiler is much lower than the corresponding cost
of the circuits derived from ESOP forms (see Tables II and V).

Moreover, from Table V, we observe that there are cases
where the proposed strategy gives a circuit with a higher num-
ber of T gates (see for instance, in5_3 and m181_6). This
fact is due to the heuristic nature of the XAG optimization
and of the quantum compiler. In any case, the overall T gain
of the entire benchmark suite is very encouraging (i.e., 43%).
Interesting enough comparing the two Tables II and V, we
notice that the autosymmetry property gives very different
T gains. For example, add6_5 shows no T gain in Table II
and presents a T gain of about 38% in Table V. Conversely,
the benchmark dk48_9 has no T gain for the XAG approach
(Table V) and 92% of T gain in Table II. This is due to
the very different approaches of the two quantum compilers
considered.

VII. CONCLUSION

In this article, we have proposed and evaluated a methodol-
ogy to derive compact reversible circuits for autosymmetric
functions. This methodology is very flexible and can be
applied to any quantum compilation method. We have experi-
mentally tested two different compilation methods, the classic
one based on ESOP minimization, and a more recent one,
based on XAG representations of logic functions.

As future work, it would be interesting to verify whether
other quantum synthesis techniques are sensitive to this struc-
tural regularities and are able to exploit it in the optimization
process.
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