
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 4, APRIL 2023 1123

Leveraging Modern C++ in High-Level Synthesis
Sakari Lahti , Matti Rintala, and Timo D. Hämäläinen , Member, IEEE

Abstract—High-level synthesis (HLS) enables the automated
conversion of high-level language algorithms into synthesizable
register-transfer level code, allowing computation-intensive algo-
rithms to be accelerated on FPGAs. Most HLS tools have C++ as
their input language, as it is widely known in both software and
hardware industry. However, even though C++ receives a new
standard every three years, the HLS tool vendors have mostly
provided support and examples using C++98/03. Limiting to
early C++ standards imposes a productivity penalty, since the
newer standards provide both compilation time reductions and
more concise, expressive, and maintainable way of writing code.
In this study, we make the case for adopting modern C++ in
HLS. We inspect the language features of C++11 and forward,
and consider their benefits for HLS. We also test the present sup-
port for the modern language features with two state-of-the-art
commercial HLS tools. Finally, we provide an extended exam-
ple, demonstrating the increased clarity of code achieved using
the newer standards. We note that the investigated HLS tools
already have good support for modern C++ features, and urge
their adoption to increase designer productivity.

Index Terms—Algorithms implemented in hardware, C++
language, high-level synthesis (HLS), reconfigurable hardware.

I. INTRODUCTION

FOR MORE than 30 years, register-transfer level (RTL)
methods have been the dominant way to describe and

verify digital circuits and systems with languages, such as
VHDL and Verilog. These languages have evolved rather
slowly, especially if compared to the advancements in soft-
ware programming languages during the same time period.
While robust, the RTL languages require special expertise and
have limited support for many of the features that have enabled
productivity increases in the software domain. For these rea-
sons, accelerating computation-intensive parts of algorithms
in CPU+FPGA co-systems has been out of reach for most
software engineers.

High-level synthesis (HLS) promises to bridge the gap
between the algorithmic design style and RTL synthesis by
transforming the high-level behavioral description into the
RTL code [1]–[3]. This mapping onto the hardware description
is directed by the user who selects the amount of parallelism
for loop iterations, implementation of arrays on memory com-
ponents, and so forth. The HLS design methodology promises
to increase productivity by skipping over the time-consuming
step of manually converting the behavioral high-level model
into RTL code and then verifying it. Indeed, this productivity

Manuscript received 21 April 2022; accepted 1 July 2022. Date of pub-
lication 25 July 2022; date of current version 21 March 2023. This article
was recommended by Associate Editor Z. Zhang. (Corresponding author:
Sakari Lahti.)

The authors are with the Unit of Computing Sciences, Tampere University,
33720 Tampere, Finland (e-mail: sakari.lahti@tuni.fi).

Digital Object Identifier 10.1109/TCAD.2022.3193646

increase has been demonstrated in several studies as surveyed
by Lahti et al. [4]. In the ideal case, the behavioral descrip-
tion could be used directly as the input for the HLS tool.
Consequently, someone with only software background could
implement their algorithms either partly or completely on
FPGAs without significant extra knowledge required [5]. This
is especially attractive for algorithms that can benefit from the
massive parallelization made possible by FPGA circuits.

However, this kind of ideal case is hampered by a few facts.
First, the HLS tools are not sophisticated enough to produce
efficient hardware structures from a completely behavioral
description without any input about the intended hardware
architecture [6]–[8]. The user must infer hierarchy, provide
efficient communication and memory handling, and adapt bit-
accurate data types in ways that are unfamiliar to a software
engineer. The work in [9] demonstrates the scale of trans-
formations that are needed. Second, even after these required
transformations, the micro-architectural design space explo-
ration (DSE) is a time-consuming task, which greatly affects
the quality of the results of the final product [10], [11]. HLS
accelerates this step compared to manual RTL coding by
enabling different DSE options with pragmas and GUI options,
but finding the pareto-optimal solution front is not trivial.

This article concentrates on the third reason that hinders
direct automated algorithm-to-RTL conversion: while many
HLS tools use widespread software programming languages as
their input language, they usually limit the user on what lan-
guage features they can use [12]. A salient example is C++,
which is the most widely used input language in commercial
HLS tools, as it is a well-known language in the embed-
ded systems design field [7], [13], [14]. However, most HLS
tools forbid the use of dynamic memory allocation, recursion,
function pointers, and large portions of the standard template
library (STL). Especially, dynamic memory handling and the
use of STL are ubiquitous in software C++ programming and
most software engineers would feel hindered without access
to them. Removing these structures from the source code is
an involved task [15].

C++ is also a rapidly developing language with new
standards being published every three years. However, the
HLS vendor given code examples and function libraries usu-
ally demonstrate a quite C-like coding style with perhaps
classes and templates added. This begs the question, do the
tools have robust support for features introduced in C++11
and beyond, even when promised in the tool’s user guide.
Omitting modern C++ features not only reduces designer
productivity and limits the language’s expressiveness but also
further alienates software engineers from adopting HLS. This
problem with HLS has been only very rarely discussed in
prior research articles. da Silva et al. [16] proposed a C++11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9915-4784
https://orcid.org/0000-0002-7867-0800

1124 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 4, APRIL 2023

driven methodology for HLS using Xilinx Vivado HLS, but
to the best of our knowledge, no other studies have widely
experimented with modern C++ language features in HLS.
The motivation of this study is therefore to promote the usage
of modern C++ with the following contributions.

1) We go through the most important features of modern
C++ and discuss their relevance for increasing HLS
productivity.

2) We explore the present support of two widely used
commercial HLS tools for the modern C++ features.

3) We then present a code example demonstrating some of
the benefits of adopting modern C++.

4) Finally, we give suggestions for the HLS tool users and
developers based on the study.

This article does not delve into testing the support of various
STL containers and functions in HLS, as there are hundreds
of them, warranting a dedicated paper.

The remainder of this article is structured as follows:
Section II presents the prominent features of C++11 and
newer standards and considers their use in HLS, after which
Section III explores their support in two state-of-the-art HLS
tools. Next, Section IV provides a motivating example for
adopting modern C++ in HLS, and finally, Section V con-
cludes this article with discussion based on the results.

II. FEATURES OF MODERN C++
In this section, we go through the major language features of

C++ revisions 11, 14, 17, and 20 in alphabetical order. We
shortly introduce the features and discuss their relevance to
hardware description based on our tests (Sections III and IV)
and analytical considerations. Often, the benefit in HLS is the
same as in software programming: more expressive and read-
able code or reduced compilation times. In these cases, we
have usually not explicitly repeated the fact when considering
the feature.

We will see that many of the features involve template
classes and functions. These can be used to make HLS code
more generic with respect to the type and number of IO param-
eters and internal storage elements. As this is of tremendous
use in hardware design, we emphasize features that make using
templates easier or more versatile.

The usage details of the features are only sparingly dis-
cussed, so we refer the reader to other sources in regards to
them (e.g., [17]). Furthermore, some language features only
make sense in the context of software programming, by ref-
erencing concepts, such as dynamic memory allocation or
call stack. We will therefore omit those from our discussion.
Finally, some minor features and changes to the language have
been omitted from the discussion as well.

A. C++11

1) Attributes: Traditionally, compiler and tool-specific
information about code has been provided with the #pragma
directive. C++11 introduced the concept of attributes, which
are syntactically provided within double square brackets:
[[attribute]]. Attributes can target separate elements of code,
whereas pragmas can only target entire lines of code.

Fig. 1. Using initializer list to add together an arbitrary number of variables.

HLS tools commonly use pragmas to direct the synthesis.
For example, the top-level component is often indicated by a
pragma, and whether a loop should be unrolled or not. The
HLS tool vendors should replace pragmas with the more mod-
ern and versatile C++ attributes. We did not test this feature
for this article, since the studied HLS tools still use pragmas
instead of attributes.

2) Constexpr: Constexpr is a very helpful specifier that
tells the compiler that a function can possibly be executed
at compile time. In hardware, this saves resources and com-
putation time, as the result can be stored as a constant
value in a register without any computation logic. Moreover,
constexpr functions can be used to replace compile-time
template recursion to generate certain parallel hardware struc-
tures, making the code more readable and concise. The
example in Section IV demonstrates this.

The usage of C++11 constexpr functions was rather
limited in that they could not contain many ubiquitous control
statements, such as if, switch, and for. Furthermore, local
variables were disallowed. These restrictions were lifted in
C++14.

3) Extern Templates: A template can be defined with the
keyword extern to prevent its instantiation in a translation
unit. This can be used to reduce compilation time if the same
template is instantiated with the same arguments in another
translation unit in the same project. There is no effect on the
synthesized hardware, regardless.

4) Initializer Lists: Initializer lists allow building construc-
tors and other functions that take {}-lists as arguments.
This is convenient in creating classes and functions that are
agnostic about the number of input arguments of the same
type. The number of arguments is decided only when creat-
ing an object or calling a function. The usage requires the
std::initializer_list template, and is demonstrated
in Fig. 1.

In HLS, initializer lists provide the ability to infer functional
units with a variable number of ports from a single function. It
should be noted that the number of elements in the list must
be determinable at compile time upon each function call to
such a function.

5) Lambda Expressions: Lambda expressions implement
anonymous functions in C++. These are functions that do
not have a name and are often used as arguments for higher
order functions. A common reason to use them is to avoid
populating code with small separate functions that are only
called once. Lambdas are especially useful with many STL

LAHTI et al.: LEVERAGING MODERN C++ IN HLS 1125

functions, but they also have utility in HLS-oriented coding
as shown in the example of Section IV. An example of using
lambdas to implement synthesizable recursion can be found
in [18].

6) Range-Based for Loop: Range-based for loop gives a
simpler syntax for iterating over each element in an array, ini-
tializer list, or container with begin and end functions. A
usage example can be found in Fig. 1. It is good practice to
use a reference with a range-based for loop range declara-
tion. This prevents copying the values in the iterated list for
the loop. Instead they are accessed from the list directly, sav-
ing memory in simulation. For synthesized hardware, this can
mean a difference between copying the values to a separate
register or accessing the values directly from the registers or
memory where the list is stored.

7) Rvalue References, Move Constructors, and Perfect
Forwarding: C++11 introduced rvalue references primarily
to allow move semantics without creating costly deep copies
when objects are passed by value [19, pp. 193–196]. As
temporary objects are not an issue with move semantics on
hardware, this usage of rvalue references is not a relevant
feature for HLS, except during algorithm development and
RTL/C++ co-simulation. It would still be convenient for the
HLS tool to allow them to reduce the number of needed mod-
ifications between the software algorithm and the HLS source
code. The hardware implementation should be the same for
normal references and rvalue references.

Rvalue references are also used to allow perfect forwarding,
which is useful, for example, in creating flexible constructors
(factory methods) [20]. Perfect forwarding passes template
function arguments to a subfunction retaining their lvalue
or rvalue nature. In C++, this also requires support for
the std::forward function. Perfect forwarding is a con-
venience feature for generic programming and should be
supported by HLS tools, as template functions and classes
are often employed to instantiate components.

8) Static Assertions: Static assertions, using the declaration
static_assert allow checking for assertions at compile
time. This is especially useful for testing template argument
properties. Also, compiler-specific assumptions, such as the
size of various standard data types can be tested with static
assertions. A usage example can be found in the extended
example in Section IV. Assertions are one of the most impor-
tant tools in both software and hardware verification, so
compile-time support for them is of great utility.

9) Strongly Typed Enumerations: Strongly typed enumer-
ations allow for safer, more portable, and more flexible
enumeration types. From C++11 forward, enumeration types
should be declared with the enum class keywords to
use the strongly typed enumerations. This prevents declar-
ing the enumerators in the enclosing scope, which is usually
undesirable. Another benefit is that the underlying type of
enumerations can now be any integral type instead of just
int. Bit widths to represent the enumerators can thus be
reduced manually in case the HLS tool does not optimize them
automatically.

10) Type Aliases and Alias Templates: C++11 introduced
type aliases with the using keyword that can be used much

in the same way as the old typedef specifier. They have no
difference in semantics. However, the using keyword allows
declaring alias templates, whereas typedef does not. Alias
templates allow creating, for example, partially bound tem-
plates from previous template definitions, which is a beneficial
feature in generic HLS code that can be template-heavy. An
example can be found in Section IV.

11) Type Inference (auto, decltype): The auto key-
word allows the compiler to deduce the type of a variable.
This is beneficial when the type is determined by, for exam-
ple, the return value of a template function, saving programmer
effort. The verbosity of the code is also reduced by using auto
instead of some long type name. The decltype specifier, on
the other hand, can be used to determine the type of an expres-
sion at compile time, which is especially useful in determining
the actual type of auto variables. Again, the template-rich
HLS code will greatly benefit from these features. A usage
example is in Section IV.

12) Variadic Templates: Traditional C++ templates
allowed for a fixed number of template arguments. Variadic
templates, on the other hand, allow an arbitrary number of
template arguments, i.e., zero or more. This makes templates
even more flexible in generic programming. For example, a
generic matrix class could be implemented with a variable
number of dimensions in the following manner:

template <typename T , s i z e _ t dim0 , s i z e _ t . . . dims >

c l a s s M a t r i x .

Here, T is the data type of the elements and size_t· · ·
dims represents the arbitrary number of dimensions and their
sizes. (The second parameter makes sure that there is at least
one dimension.) Due to the usefulness of generic programming
in hardware description, the support for variadic templates is
recommended for any modern HLS tool.

B. C++14

1) Binary Literals: Binary-valued literals can be declared
using the prefixes 0b and 0B. This is useful in conjunc-
tion with bit-accurate data types, allowing arbitrary-length
bit vectors akin to std_logic_vectors in VHDL, which are
ubiquitous in that language. Decimal-valued literals should
usually be preferred for readability reasons, but binary values
can be a better choice with, for example, bit vectors related
to control signals, where decimal interpretation would be
meaningless.

2) Function Return-Type Deduction: C++14 provided the
convenient ability for functions to automatically deduce their
return type based on the return statement. Such a function is
denoted by using the keyword auto as its return type. The
usage of this is demonstrated in the example of Section IV.
This is one of the features that make using templates easier,
as they can produce complex return types.

3) Generic Lambdas: C++11 demanded lambda function
parameters to be declared with explicit types, but C++14
relaxed this by allowing type deduction with the auto keyword.
These types of lambdas are demonstrated in Section IV.

4) Variable Templates: Variable templates allow variables
whose type is a template parameter that can be determined

1126 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 4, APRIL 2023

Fig. 2. Summing absolute values with fold expressions.

upon instantiation. An example would be declaring a variable
template for the constant pi

template < c l a s s T> c o n s t e x p r T p i = T (3 . 1 4 1 5 9 2 6 5 3 5 8) ;

a c _ f i x e d <16 ,8 > a r e a = pi < a c _ f i x e d <11 ,3 > > ∗ r ∗ r ; .

HLS uses bit-accurate data types, so a variable of desired
accuracy could be instantiated from this definition. This exam-
ple uses the Siemens Algorithmic C library, with a fixed point
value of <X,Y>, where X denotes the total bit width and Y
the number of integer bits.

C. C++17

1) Class Template Argument Deduction: In C++17, a
class constructor can deduce its type parameters from its con-
structor arguments. For example, std::pair(5, true)
can be used instead of std::pair<int, bool>(5,
true). In HLS, this feature should be used with care to avoid
accidentally inferring non bit-accurate data types that waste
more bit width than is necessary to represent the intended
value range.

2) Constexpr If: The constexpr specifier
(Section II-A2) was expanded in C++17 to allow con-
ditional compiling and compile-time calculations with the if
constexpr(condition) structure. This can be combined
with an else if/else structure as with normal conditional
statements. Example utilization of this useful feature can be
found in Section IV. This kind of conditional compiling is
more readable than using preprocessor directives, so it should
be used when possible.

3) Fold Expressions: C++11 introduced variadic tem-
plates (Section II-A12). C++17 expanded their usefulness
with fold expressions, which allow to repeat an operator or
function over a variadic template pack. Fold expressions allow
many convenient code structures, such as the abs_sum func-
tion shown in Fig. 2 function that calculates the absolute value
for an arbitrary number of parameters and sums the results.

The fold expression is indicated with the ellipsis notation.
In this example, the addition operator in the body of the
abs_sum function, followed by the fold expression, unpacks
the argument list and applies the my_abs function on all the
arguments. Using fold expressions avoids the need for pass-
ing arguments in arrays and iterating over the elements. In
HLS, the number of parameters used should be determinable
at compile time upon each invocation, as hardware resources
cannot be reserved dynamically.

4) Initializers For If and Switch: C++17 makes it possible
to give an initial statement within if and switch statements in
the manner of

i f (i n i t −s t a t e m e n t ; c o n d i t i o n) { . . . } .

The init-statement can be, for example, a function call that
initializes a variable with a value that is used in the if condi-
tion. The benefit of this feature is to simplify some common
code patterns and prevent variables from leaking outside their
scope. Without the init-statement, a return value from a func-
tion that is only used for the if condition is also seen outside
the scope of the if statement. With C++17, this variable can
be kept strictly within the scope of the if expression.

5) Inline Variables: In C++17, variables can be declared
as inline, similar to how the inline specifier is used for
functions. Inline variables ease defining global constants that
are used in multiple compilation units. The inline speci-
fier informs the linker that only one instance of the variable
should exist, even in the case that the variable is present
in multiple compilation units. Inlining helps avoid a set
of workarounds that used to adversely affect either code
readability or performance.

6) Structured Bindings: Structured bindings allow the abil-
ity to declare multiple variables initialized from an array or
nonunion class type, which makes code cleaner and easier to
understand. For example, with array int arr[3] = {0,
1, 2}; separate variables could be initialized to the cor-
responding elements of the array using structured binding:
auto[x0, x1, x2] = arr;.

7) Template Parameters Declared With Auto: Since
C++17, compilers can deduce the type of nontype class
template parameters. This means that template <auto
N> class MyClass is valid, and the type of N will be
deduced upon instantiation. This will help make templatized
code more concise and understandable.

D. C++20

1) Coroutines: Coroutines are defined as functions that can
be suspended and resumed later. C++20 enables the cre-
ation of such functions with the co_yield, co_return,
and co_await keywords that each infer a coroutine when
encountered in a function body. A coroutine stores its state
when suspended and continues from that state when resumed.
In the software domain, the state is often stored in the heap
from which space is dynamically allocated. In hardware, the
implication is that the number of coroutine instances should
be statically determinable and each instance should have its
own register storage for state.

Coroutines provide interesting alternative ways to imple-
ment state machines that are so commonly encountered in
digital logic. They can also be employed to perform nonblock-
ing reads and create generators that produce elements of a
sequence only when needed. The C++ support for coroutines
is still developing, but they seem to be potentially a very useful
addition when employed in HLS. The benefits in, for example,
state machine description are beyond the scope of this article,
but should be investigated.

2) Concepts: Concepts provide a way to name sets of
behavioral constraints on a type. This allows type-checked
generic programming up front, where previously programming
errors would be caught only later at template instantiation. This
results in more understandable compiler messages, the ability

LAHTI et al.: LEVERAGING MODERN C++ IN HLS 1127

to overload templates based on parameter type properties, and
also faster compilation times. Due to the ubiquitousness of
templates in HLS code, concepts will provide a productivity
boost when supported by HLS tools. They do not have any
implications on the generated hardware, being a compile-time
checking mechanism.

3) Modules: Header files have been the standard way to
share language objects between source code files since the
original C language. However, there are many problems
associated with them, such as increased compilation times
with multiple inclusions, side effects of inclusion order, and
multiple inclusion errors. Some of these problems have tra-
ditionally been solved with cumbersome workarounds, such
as inclusion guards. The modules introduced in C++20 solve
these problems by being compiled independently of the units
that import them. Just as in conventional software program-
ming, HLS benefits from compartmentalization of code and
shareable libraries that can contain utility functions or whole
IP blocks. Modules will therefore be of benefit to prevent the
problems associated with header files.

4) Three-Way Comparison <=>: C++20 introduces
three-way comparison with the so-called spaceship operator.
The operation a <=> b returns less than 0 if a < b, greater
than 0 if a > b, and 0 if a = b. This operator reduces the need
for boilerplate code when overloading comparison operators
for self-defined classes. In hardware, the natural representation
of a three-way comparison is a generic comparator component.
The operator should be used with care as a generic comparator
is relatively area hungry.

5) Consteval and Constinit: The consteval specifier is
similar to the constexpr specifier in that it enables compile-
time functions. The difference is that consteval ensures
compile-time execution, whereas constexpr converts to
run-time function if compile time is not possible. Using the
new specifier prevents accidentally generating run time code
that would be synthesized in hardware components.

The new constinit specifier can also be applied to
variables to ensure compile-time initialization. The main use
is to prevent the static initialization order fiasco during
compilation [21].

III. HLS SUPPORT OF MODERN C++ FEATURES

We tested the C++ features listed in Section II with two
commercial, state-of-the-art HLS tools: Siemens Catapult HLS
and Xilinx Vitis HLS, which ships with the Vivado synthesis
tool suite [22], [23]. Officially, the language standard support
extends to C++14 for the newest versions of both the tools.
However, C++11/14 features are rarely seen in code examples
provided by the HLS tool vendors, so there was some room
for doubt about the reality of the support in practice.

In addition, we had the assumption that by choosing a front-
end compiler that supports C++17, we could enable some
features that are not officially supported. If the front-end com-
piler analyzes the source code and creates a language-agnostic
intermediary representation of it, the HLS tool should not
notice the usage of the modern features, unless it is explic-
itly checking the source code. We did not test the C++20

features, however, as even compiler support is still partially
experimental. HLS tool support for C++20 should not be
expected until few years from now.

A. Catapult HLS

We used Catapult HLS version 2021.1 running on Red
Hat Enterprise Linux 7 to perform the tests. This version of
Catapult officially supports C++14 standard with the follow-
ing limitations: Dynamic memory allocation, recursion (except
with template functions), system calls, and function pointers
are prohibited. Most standard libraries as well as most fea-
tures of the STL are unsupported as well. However, Catapult
allows choosing a path to the used compiler, which may
support newer C++ versions. We used the GCC 10.2.0 com-
piler, which has almost complete support for C++17. In the
Catapult options we indicated using C++14, the newest ver-
sion that could be selected. Therefore, we told Catapult we
were using the C++14 standard but we were actually using a
compiler that has support for C++17.

As a first step in the synthesis, Catapult uses Edison Design
Group front-end compiler (version 6.1) to analyze the source
code [24]. The front-end translates the program into a high-level,
tree-structured intermediate language from which Catapult pro-
duces the source code information for synthesis. Since the
front-end supports a newer C++ version than Catapult itself,
we hypothesize that the front-end can hide modern C++ fea-
tures from Catapult when it performs its transformations. This
is likely the cause why Catapult does accept many C++17
features, as was demonstrated by our tests.

The synthesis target was the Catapult default (a 45-nm ASIC
library) with 100-MHz clock frequency. The target should not
affect the reported results, however, so it could be an FPGA as
well. The tests were based on either the determinant example
of Section IV or on simple functions demonstrating the feature.
The synthesis results were checked with the Catapult design
analyzer tool after running pure C++ and C++/RTL co-
simulations in Catapult. We considered a simulation successful
if Catapult was able to compile and simulate the C++ and
the results were correct. The correctness of the generated RTL
was then checked with a simulation against the C++ model.

Table I summarizes the test results. The first column lists
the features discussed in Section II and the second column
shows whether Catapult was able to perform C++ simulation
(“Sim”) and final RTL synthesis (“Syn”) on the feature. In
most cases, both simulation and synthesis were successful,
but for some features, there was only partial or no support.

The rvalue references was the only C++11 feature that
was not fully supported by Catapult. The C++ simulation
produced correct results, but synthesis failed to include an
adder for an operation where a variable value was added to
an rvalue reference. All other C++11 and all C++14 fea-
tures were fully supported. C++17 proved more problematic.
Structured bindings, class template argument deduction, and
template parameters declared with auto were not supported,
but compilation errors were issued. Since these same fea-
tures were accepted in a later test with Vitis HLS, we assume
that the problem lies in the Edison Design Group front end.

1128 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 4, APRIL 2023

TABLE I
C++11/14/17 FEATURE SUPPORT WITH CATAPULT AND VITIS HLS

Despite this, we can still note that linking a modern compiler
to Catapult HLS enables some language features that are not
officially supported.

B. Vitis HLS

The Vitis HLS version used in the tests was 2020.2 run-
ning on Red Hat Enterprise Linux 7. Vitis promises support
up to the C++14 standard, but with the same limitations as
Catapult, prohibiting dynamic memory allocation, recursion,
system calls, function pointers, and most of the STL. We
directed Vitis to use the same GCC 10.2.0 compiler as with
Catapult tests and ran all the same feature tests. First, we ran
C++ simulation for the code in Vitis, then synthesized to
VHDL, ran C++/RTL co-simulation, and finally checked the
synthesis result in the Xilinx Vivado synthesis tool. The syn-
thesis target was the Vitis default (xcvu11p-flga2577 FPGA
chip) with a 100-MHz clock.

As Table I shows, Vitis HLS was able to simulate and
correctly synthesize all the tested features, including those
of C++17, which are not officially supported by Vitis.
Considering that the used compiler was the same for both
Catapult and Vitis, but Catapult did not accept all of the fea-
tures during compilation, the difference is likely due to the
Edison Design Group front end compiler. This tool used by
the Catapult appears to restrict the usability of some mod-
ern C++ features even when the C++ compiler accepts
them.

With Vitis, it seems that any modern C++ feature can be
used when a new enough compiler is linked to the tool. We
expect that C++20 features will similarly be well supported
by Vitis when they become robustly backed by compilers.

IV. EXTENDED EXAMPLE

This section demonstrates some of the benefits to be gained
by using modern C++ in the HLS source code. We show an

algorithm adapted for HLS for calculating the determinant of
an n × n matrix A using the Laplace expansion

det(A) =
n∑

j=1

(−1)i+jAi,jMi,j

where Ai,j is the element of the ith row and jth column of A,
and Mi,j is the determinant of the submatrix (called minor) that
is extracted by removing the ith row and the jth column from
A. This is a recursive formula, as it requires the calculation of
the determinant of the minors.

Generally, HLS tools do not support recursion as it involves
runtime memory allocation, but if the matrix size is known
at compile time, then the recursion depth is also known. We
should therefore be able to express the algorithm so that a
fixed hardware architecture for n × n determinant calculation
is generated for a given value of n. For example, for the 3×3
matrix

A =
⎡

⎣
1 2 3
4 5 6
7 8 9

⎤

⎦

the Laplace expansion along the first row gives

det(A) = 1 · (5 · 9 − 6 · 8) − 2 · (4 · 9 − 6 · 7)

+ 3 · (4 · 8 − 5 · 7).

We can see that all of the multiplications, additions, and sub-
tractions of this formula are possible to do in parallel, and this
holds true for any value of n assuming that there are enough
arithmetic components available on the target platform. We
demonstrate an implementation, which creates such a fully
parallel determinant calculation and is generic with respect
to n.

A. C++03 Implementation

In C++03, this requires using recursive template functions.
The code is shown in Fig. 3. We utilize a matrix class whose
implementation is not shown. The class simply stores a 2-D
array and provides some matrix operations. In this example,
we use only the constructor and a getter function for matrix
elements. The matrix class is templatized with respect to the
data type of the matrix elements. In this case, we use the
bit accurate algorithmic C data types with bit width W and
signedness S [25].

Line 49 starts the top-level function for the determinant
block. The actual templatized determinant calculation function
(line 42) is called from the top-level function. This function is
templatized with respect to the data type of the matrix elements
and the size of the matrix. However, we cannot use this func-
tion directly to implement the compile-time recursion. This is
because the end of the recursion needs to be specialized for
the value n = 1. This is complicated by the fact that the matrix
element type is another template parameter, whose type should
then also be mentioned for the specialization. This is infeasi-
ble, as the number of possible element types is practically
limitless. To circumvent this problem, line 2 starts a tem-
plate struct, which contains the actual recursive function that is
called on line 45. This struct is templatized only with respect

LAHTI et al.: LEVERAGING MODERN C++ IN HLS 1129

Fig. 3. Determinant calculation code using C++03 style.

to n. Template substitution is used to pass the datatype to the
functions get_minor and do_determinant within the
struct. The get_minor is a helper function used to extract
a minor of a matrix given as a parameter (implementation not
shown). The do_determinant function recursively calcu-
lates the determinant by calling itself on line 21. Finally, the
determinant_helper specialization for 1 × 1 matrix is
shown in line 30.

When synthesizing from this code, all the loops should
be fully unrolled and the main loop pipelined with initia-
tion interval of 1. This gives a fully parallel architecture with
a throughput of 1 sample/clock cycle after pipeline ramp-up
latency. Even though this coding style gives the desired result,
it is complex and the employed template meta-programming is

prone to errors. This coding style has been explored for HLS
in [26]–[28]

B. C++17 Implementation

Fig. 4 shows the code listing for the same algorithm, where
C++17 has been adopted. We can immediately see that the
code is more concise than with C++03. The major change is
that in addition to the top-level function (line 33), there is only
one extra function, whereas the previous example contained an
extra function along with two structs. The actual determinant
calculation function starts on line 6, and it is only templatized
with respect to the matrix size. The constexpr keyword on
line 7 tells the compiler that this function can be evaluated

1130 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 4, APRIL 2023

Fig. 4. Determinant calculation code using C++17 style.

at compile time, which ensures that no dynamic recursion is
implied by it. Instead, the compiler will generate a tree-like
structure of function calls that is implemented directly as con-
current logic on the target platform. The matrix element type
has been discarded as a template parameter thanks to type
inference and function return-type deduction.

The constexpr if structure within the function imple-
ments the recursion. It checks for the size of N_det in the
template parameter and either returns the lambda in line
12 or 16. The first lambda, which terminates the recursion,
returns just the single element in the 1 × 1 minor. The sec-
ond lambda is returned for larger matrices. It extracts the
minor and gives that as the parameter to the recursive call
to determinant_helper in line 23.

Other modern C++ features used in this example are:
1) alias template in lines 2–3, which is used in line 35.

This reduces code if objects from the Matrix class are
often instantiated;

2) template parameter-type deduction in line 6 to reduce
programmer effort;

3) static assertion in line 9 to ensure at compile time that
the recursive algorithm is not used in too large matrices,
which could cause excessive resource usage on the target
platform because of the recursion.

We were able to simulate and synthesize this code with
Vitis HLS. Catapult HLS accepted the code when the auto
keyword in line 6 was changed to int, as Catapult does

not support class template argument deduction, a C++17
feature.

It should be stressed that the benefit gained from using mod-
ern C++ is the clarity of code, ease of expression, faster
compilation and simulation, and fewer bugs. Furthermore,
DSE becomes easier with features, such as type aliases and
deduction and constexpr if , which allow switching data types
and design parameters with minimal code changes. All of these
translate to better design and verification productivity, a vital
metric for competitiveness. Performance, energy consumption,
or area benefits on hardware are less likely, unless the compiler
can generate a more efficient intermediary representation from
the modern source code. For example, the determinant imple-
mentation produced the exact same microarchitecture and area
score from both input codes.

V. CONCLUSION

In this article, we have briefly summarized the most salient
features of modern C++ language and what their benefits
for HLS are. We tested the features with two state-of-the-art
commercial HLS tools and noted that even though code exam-
ples from the tool vendors usually omit using modern C++,
the tools support it well. However, this may require bypass-
ing the default compilers used by the tools and linking newer
compiler versions instead, when going beyond officially sup-
ported language versions. This article has also made the case

LAHTI et al.: LEVERAGING MODERN C++ IN HLS 1131

for adopting the new language features by demonstrating the
code simplification to be gained with an example application
coded in both traditional and modern C++.

HLS promises to increase the productivity of digital system
design and verification, and facilitate relatively straightforward
porting of parts of application to be accelerated on FPGAs.
This promise has been proved true in studies. However, in
our experience, many hardware-oriented HLS tool users still
write source code in C++98/03, whereas software-oriented
users may have felt that the tools do not support the more
modern language versions that they are used to. For the former
group, we urge to familiarize with modern C++ and leverage
it to increase productivity. The tool support is already largely
present. For the latter group, we have shown in this study that
they do not have to resort to early C++, but can employ most
of the language features they are used to in modern C++. The
HLS tool vendors, for their part, should ensure that their tools
do not lag too much behind the C++ standard development.
Furthermore, they should produce examples and tutorials that
demonstrate the usage of the modern features, as opposed to
being satisfied with traditional C-like coding style sugar-coated
with classes and templates.

What is still missing from HLS is the ability to fully use
the STL. The STL is used extensively by software program-
mers for its convenient data structures and functions. HLS tool
users, on the other hand, must be content with C arrays and
self-written functions, which is a major drawback for produc-
tivity. Those STL features that do not require dynamic memory
handling may have support in HLS tools, but the list of these
is usually missing from the tool manuals, and it is impracti-
cal for the user to try and test the support on a case-by-case
basis. The HLS tool vendors should therefore make it one of
their top priorities to provide their own implementations of
STL constructs that take into account the limitation of not
being able to dynamically reserve memory. The ultimate goal
of HLS should be to make the transition from software code
to HLS-targeted code as invisible as possible, which requires
this kind of STL emulation.

REFERENCES

[1] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduc-
tion to high-level synthesis,” IEEE Design Test Comput., vol. 26, no. 4,
pp. 8–17, Jul./Aug. 2009.

[2] H. Ren, “A brief introduction on contemporary high-level synthesis,” in
Proc. IEEE Int. Conf. IC Des. Technol., 2014, pp. 1–4.

[3] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011.

[4] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there yet?
a study on the state of high-level synthesis,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 38, no. 5, pp. 898–911, May 2019.

[5] R. Venkatakrishnan, A. Misra, and V. Kindratenko, “High-level
synthesis-based approach for accelerating scientific codes on FPGAs,”
Comput. Sci. Eng., vol. 22, no. 4, pp. 104–109, Jul./Aug. 2020.

[6] J. Matai, D. Richmond, D. Lee, and R. Kastner, “Enabling FPGAs for
the masses,” 2014, arXiv:1408.5870.

[7] M. W. Numan, B. J. Phillips, G. S. Puddy, and K. Falkner, “Towards
automatic high-level code deployment on reconfigurable platforms: A
survey of high-level synthesis tools and toolchains,” IEEE Access, vol. 8,
pp. 174692–174722, 2020.

[8] K. Rupnow, Y. Liang, Y. Li, and D. Chen, “A study of high-level syn-
thesis: Promises and challenges,” in Proc. 9th IEEE Int. Conf. ASIC,
2011, pp. 1102–1105.

[9] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler,
“Transformations of high-level synthesis codes for high-performance
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 5,
pp. 1014–1029, May 2021.

[10] B. C. Schafer and Z. Wang, “High-level synthesis design space explo-
ration: Past, present, and future,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 39, no. 10, pp. 2628–2639, Oct. 2020.

[11] L. Ferretti, J. Kwon, G. Ansaloni, G. D. Guglielmo, L. P. Carloni,
and L. Pozzi, “Leveraging prior knowledge for effective design-space
exploration in high-level synthesis,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 39, no. 11, pp. 3736–3747, Nov. 2020.

[12] Z. Zhang and D. Chen, “Challenges and opportunities of ESL design
automation,” in Proc. IEEE 11th Int. Conf. Solid-State Integr. Circuit
Technol., 2012, pp. 1–4.

[13] L. Daoud, D. Zydek, and H. Selvaraj, “A survey of high level synthe-
sis languages, tools, and compilers for reconfigurable high performance
computing,” in Advances in Systems Science, J. Swiatek, A. Grzech,
P. Swiatek, and J. M. Tomczak, Eds. Cham, Switzerland: Springer Int.,
2014, pp. 483–492.

[14] A. Takach, “High-level synthesis: Status, trends, and future directions,”
IEEE Design Test, vol. 33, no. 3, pp. 116–124, Jun. 2016.

[15] F. Winterstein, S. Bayliss, and G. A. Constantinides, “High-level syn-
thesis of dynamic data structures: A case study using Vivado HLS,” in
Proc. Int. Conf. Field-Program. Technol. (FPT), 2013, pp. 362–365.

[16] J. S. da Silva, F.-R. Boyer, and J. M. P. Langlois, “Module-per-object: A
human-driven methodology for C++-based high-level synthesis design,”
in Proc. IEEE 27th Annu. Int. Symp. Field-Program. Custom Comput.
Mach. (FCCM), 2019, pp. 218–226.

[17] “C++ Reference.” 2021. [Online]. Available: https://en.cppreference.
com/w/

[18] D. B. Thomas, “Synthesisable recursion for C++ HLS tools,” in Proc.
IEEE 27th Int. Conf. Appl. Spec. Syst. Archit. Process. (ASAP), 2016,
pp. 91–98.

[19] B. Stroustrup, The C++ Programming Language, 4th ed. Upper Saddle
River, NJ, USA: Addison Wesley, 2013, pp. 193–196.

[20] “Std::Forward.” 2021. [Online]. Available: https://en.cppreference.
com/w/cpp/utility/forward

[21] “Static Initialization Order Fiasco.” 2020. [Online]. Available:
https://en.cppreference.com/w/cpp/language/siof

[22] “Catapult C++/Systemc Synthesis.” Siemens. 2021. [Online]. Available:
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-
cplus/f

[23] “Vivado ML Editions.” Xilinx, Inc. 2021. [Online]. Available:
https://www.xilinx.com/products/design-tools/vivado.html

[24] “Edison Design Group.” Edison Design Group, Inc. 2021. [Online].
Available: https://www.edg.com/

[25] “Algorithmic C (AC) Datatypes.” Mentor Graphics Corporation.
Apr. 2021. [Online]. Available: https://github.com/hlslibs/ac_types/blob/
master/pdfdocs/ac_datatypes_ref.pdf

[26] T. R. Mück and A. A. Fröhlich, “Toward unified design of hardware
and software components using C++,” IEEE Trans. Comput., vol. 63,
no. 11, pp. 2880–2893, Nov. 2014.

[27] D. Richmond, A. Althoff, and R. Kastner, “Synthesizable higher-order
functions for C++,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 37, no. 11, pp. 2835–2844, Nov. 2018.

[28] M. Fingeroff, High-Level Synthesis Blue Book. Bloomington, IN, USA:
Xlibris, 2010, pp. 137–140.

Sakari Lahti received the first M.Sc.(tech.) degree
in engineering physics and the second M.Sc.(tech.)
degree in computer engineering from the Tampere
University of Technology, Tampere, Finland, in 2002
and 2014, respectively.

He was a Doctoral Researcher with the Tampere
University of Technology from 2014 to 2017. He
is currently a University Instructor with the Unit of
Computing Sciences, Tampere University, Tampere.
His current research interests include high-level syn-
thesis of digital systems, and hardware and system-

on-chip designing in general.

1132 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 4, APRIL 2023

Matti Rintala received the M.Sc.(tech.) and
Ph.D. degrees in computer science from Tampere
University of Technology, Tampere, Finland, in 1995
and 2012, respectively.

He works as a University Lecturer with the Unit of
Computing Sciences, Tampere University, Tampere.
He also participates in the standardization of the
C++ programming language. His current research
interests include concurrency, generic programming,
and exception handling.

Timo D. Hämäläinen (Member, IEEE) received the
M.Sc.(tech.) and Ph.D. degrees in electrical engi-
neering from the Tampere University of Technology,
Tampere, Finland, in 1993 and 1997, respectively.

He is currently a Full Professor and the Head
of the Unit of Computing Sciences, Tampere
University, Tampere. He has authored more than 60
journal and 200 conference publications. He holds
several patents. His current research and teaching
activities include system-on-chip design methodolo-
gies and tools, as well as SoC architectures and
systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

