
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022 2885

Online Feature Selection for Efficient
Learning in Networked Systems

Xiaoxuan Wang , Graduate Student Member, IEEE, and Rolf Stadler , Senior Member, IEEE

Abstract— Current AI/ML methods for data-driven engineer-
ing use models that are mostly trained offline. Such models can
be expensive to build in terms of communication and comput-
ing costs, and they rely on data that is collected over extended
periods of time. Further, they become out-of-date when changes
in the system occur. To address these challenges, we investigate
online learning techniques that automatically reduce the num-
ber of available data sources for model training. We present
an online algorithm called Online Stable Feature Set Algorithm
(OSFS), which selects a small feature set from a large number
of available data sources after receiving a small number of mea-
surements. The algorithm is initialized with a feature ranking
algorithm, a feature set stability metric, and a search policy. We
perform an extensive experimental evaluation of this algorithm
using traces from an in-house testbed and from two external
datasets. We find that OSFS achieves a massive reduction in the
size of the feature set by 1-3 orders of magnitude on all inves-
tigated datasets. Most importantly, we find that the accuracy of
a predictor trained on a OSFS-produced feature set is some-
what better than when the predictor is trained on a feature set
obtained through offline feature selection. OSFS is thus shown to
be effective as an online feature selection algorithm and robust
regarding the sample interval used for feature selection. We also
find that, when concept drift in the data underlying the model
occurs, its effect can be mitigated by recomputing the feature set
and retraining the prediction model.

Index Terms—Data-driven engineering, machine learning
(ML), dimensionality reduction, online learning, online feature
selection.

I. INTRODUCTION

DATA-DRIVEN network and systems engineering is based
upon applying AI/ML methods to data collected from an

infrastructure in order to build novel functionality and man-
agement capabilities. This is achieved through learning tasks
that are trained on this data. Examples are KPI prediction and
forecasting through regression and anomaly detection through
clustering techniques.

The way AI/ML methods are currently applied in data-
driven engineering has several drawbacks. For instance, model

Manuscript received 7 December 2021; revised 12 April 2022; accepted
24 May 2022. Date of publication 8 June 2022; date of current ver-
sion 12 October 2022. This research has been partially supported by the
Swedish Governmental Agency for Innovation Systems, VINNOVA, through
projects AutoDC and ANIARA, as well as by Digital Futures through project
Democritus. The associate editor coordinating the review of this article and
approving it for publication was N. Zincir-Heywood. (Corresponding author:
Xiaoxuan Wang.)

The authors are with the Department of Computer Science, Digital Futures,
KTH Royal Institute of Technology, 100 44 Stockholm, Sweden (e-mail:
xiaoxuan@kth.se; stadler@kth.se).

Digital Object Identifier 10.1109/TNSM.2022.3180936

training is often expensive in terms of communication and
computing costs, and it relies on data that must be collected
over extended periods of time. Second, since training is per-
formed offline, models generally become out-of-date and the
performance of learning tasks degrades after changes in the
system or in the environment. To address these challenges,
we advocate investigating online learning techniques and per-
forming model recomputation after detecting a change in the
data distribution underlying the model.

Creating a model for a learning task, for example a model
for KPI prediction, includes (1) the extraction of metrics from
devices in a network or an IT system, (2) the transfer of this
data to a processing point, (3) the preprocessing of this data
(removing outliers, etc.), and (4) the training of the model.
The first two steps are part of the monitoring process. Each of
these four steps incurs computing and/or communication costs
that increase at least linearly with the number of sources from
which data are extracted and with the number of observations
that are used for training the model.

This paper focuses on automatically reducing the number of
data sources involved in creating an effective model with the
goal of significantly reducing monitoring cost and model train-
ing cost. We propose a novel online source-selection method
that requires only a small number of measurements to signif-
icantly reduce the number of data sources needed for training
models that are effective for learning tasks.

Using the terminology of machine learning, we call a (one-
dimensional, scalar) data source also a feature, and we refer
to measurements taken from a set of data sources at a specific
time as a sample.

Our approach consists of (1) ranking the available data
sources using (unsupervised) feature selection algorithms and
(2) identifying stable feature sets that include only the top k
features. We call a feature set stable if it remains sufficiently
similar when additional samples are considered.

We present an online algorithm, which we call Online
Stable Feature Set Algorithm (OSFS). It selects a small fea-
ture set from a large number of available data sources using a
small number of measurements, which allows for efficient and
effective learning. The algorithm is initialized with a feature
ranking algorithm, a feature set stability metric, and a search
policy.

We perform an extensive experimental evaluation of this
algorithm using traces from an in-house testbed (the KTH
dataset), the FedCSIS Challenge dataset [1], and the Poli
Torino dataset [2]. We find that OSFS achieves a massive
reduction in the size of the feature set by 1-3 orders of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2414-3108
https://orcid.org/0000-0001-6039-8493

2886 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

magnitude on all investigated datasets. The number of sam-
ples needed to compute the feature sets averages around 400,
which means that OSFS produces a stable feature set within an
average of 7 minutes on the KTH testbed, where monitoring
data is collected every second. Most importantly, we find that
the performance of a predictor trained on a OSFS-produced
feature set is similar to the one that uses offline feature selec-
tion. OSFS is thus shown to be effective as an online feature
selection algorithm and robust regarding the sample interval
used for feature selection.

We also find that, if concept drift occurs, its effect can
be effectively mitigated by recomputing the feature set and
retraining the prediction model.

Our results suggest that many data-driven functions in net-
worked systems can be trained rapidly and with low overhead
if they are retrained after a change is detected. In particular,
they do not require a lengthy monitoring phase and expensive
offline training before prediction can begin.

This paper is a significant extension of earlier work pub-
lished in CNSM 2020 [3]. In this paper, we present OSFS in
a new, generic form that allows instantiation with feature rank-
ing algorithm, feature stability metric, and search policy. We
introduce and evaluate an additional stability metric which can
be used with OSFS. The evaluation in this paper is more in-
depth and more extensive. It includes studying the performance
of OSFS on two additional dataset, namely, the FedCSIS chal-
lenge dataset and the Poli Torino dataset. Also, we study the
effect of concept drift on prediction accuracy and how to mit-
igate the increasing error through feature set recomputation
and model retraining. Finally, we revise and extend the related
work section.

The rest of the paper is organized as follows. Section II
formulates the problem we address in the paper. Section III
describes the feature selection methods we use to obtain
ranked feature lists. Section IV introduces the concept of the
stable feature set. Section V presents our online feature selec-
tion algorithm OSFS. Section VI discusses change detection
and model recomputation. Section VII details our testbed, the
traces we generate, the FedCSIS challenge dataset, and the Poli
Torino dataset. Sections VIII and IX contain the evaluation
results. Section X surveys related work. Finally, Section XI
presents the conclusions and future work.

II. PROBLEM FORMULATION AND APPROACH

We consider a monitoring infrastructure that collects read-
ings from a set F of n distributed data sources (or features).
Each feature has a one-dimensional, numerical value that
changes over time. We collect readings at discrete times
t = 1, 2, 3, . . . and store them in sample vectors X t ∈ R

n .
Our objective is to identify a subset F k ⊂ F with k � n
features using the samples X 1,X 2, . . . ,X tk . Second, we
consider a learning task, like KPI prediction or anomaly detec-
tion, whose model is trained using the samples X t ∈ R

k with
the features from F k .

Figure 1 illustrates the process how the subset F k is created.
Central to the process is the algorithm OSFS which will be
introduced in Section V.

Fig. 1. Online learning: feature selection and prediction. OSFS reads a stream
of samples (X t) and extracts a stable feature set Fk .

In order to keep the monitoring overhead low for collecting
the samples and the computational overhead low for training
the model associated with the learning task, the values for k
and tk should be small. Note that k indicates the number of
data sources that need to be monitored to train the model and
tk refers to the number of measurements that are needed to
compute F k . Assuming periodic readings, tk further indicates
the time it takes until the feature set F k is available.

Our goal thus is to select k and tk as small as possible,
while enabling the models trained using F k to be effective.

The task of selecting a subset of features from a larger set
is called feature selection in machine learning and data min-
ing and is a well-studied topic area (See Section X). We are
specifically interested in unsupervised feature selection meth-
ods, whereby the values of the target are not known during
the feature selection process, i.e., the process to compute F k .
This allows us to keep the feature selection process indepen-
dent from the learning task and will enable different learning
tasks in a system to share the same feature subset.

The specific problem we address in this paper is to design
an online algorithm that reads a sequence of n-dimensional
sample vectors X 1,X 2, . . . one by one, computes k and the
feature set F k , and terminates after step tk . The values for
k and tk must be small, while F k must be equally effective
as the feature set selected by the same ranking algorithm in
an offline setting on the complete data stream. We measure
the effectiveness of a feature set by computing the prediction
error of the predictor trained with the feature set.

In our approach, we choose an unsupervised feature selec-
tion method that ranks the n features at every step t of the
online algorithm and checks how the top i features (i =
1, . . . ,n) change with increasing t. We introduce two met-
rics to measure the stability of the feature set in Section IV.
If the feature set of the top k features has become sufficiently
stable, the algorithm terminates and F k , the values for k and
tk are returned (see Section V).

Note that we assume here that the feature set F is fixed.
In a real system that runs over some time, changes to the
physical configuration or the virtualization layer occur, which
result in changes to the set of available measurement points,
i.e., the feature set. In such a case, the online algorithm must

WANG AND STADLER: ONLINE FEATURE SELECTION FOR EFFICIENT LEARNING IN NETWORKED SYSTEMS 2887

TABLE I
TABLE OF NOTATION

be restarted. Note also that we do not investigate how many
samples are needed to train an accurate model for the learning
task. This is left for future work.

The solution approach we develop in Sections IV, V, VI
uses concepts from statistical learning [4] and is based
on assumptions about the system under consideration.
Fundamentally, we consider a distributed system whose state
evolves over time. We assume that time is discrete and global.
We monitor the system at a given frequency, which means
that we receive a sample with statistics of the system state at
constant time intervals. We model the sample as a vector with
fixed dimensionality.

We further assume that the system state evolves as a
sequence of epochs. During each epoch the monitoring sam-
ples are drawn from a fixed distribution. Epochs can vary in
duration. At each time step the current epoch can end and a
new epoch can start, in which monitoring samples are drawn
from a different, fixed distribution. Changes of epochs are
“rare”, and epochs generally continue for a “long time”. With
changes of epochs we model events that modify the behavior
of a networked system, such as a change in load pattern, a fail-
ure of a system component, a change in system configuration,
etc. During an epoch the system is stationary.

The above assumptions are not strictly valid for the systems
and scenarios we study, but our experience suggests that
they often lead to practical and sufficiently accurate results.
In fact, many works that apply machine learning techniques
to engineering networked systems make these or similar
assumptions explicitly or (oftentimes) implicitly, for exam-
ple [5], [6], [7], [8].

Table I shows the notation we use in the paper. The available
data for computing the feature set F k is presented as a design
matrix X ∈ R

m×n , whose n columns represent the feature
vectors and m rows represent the samples in the dataset. Since
we assume that the samples arrive in sequence one-by-one, m
is increasing over time and can be interpreted as a time index.

III. CREATING RANKED FEATURE LISTS

In this section, we describe two algorithms (ARR, LS)
that produce a ranked feature list from a list of samples.
They are based on unsupervised feature selection methods
from the literature. We will evaluate the suitability of these
algorithms for our online feature selection method OSFS in
Section VIII. We present these two algorithms as offline algo-
rithms since they appear in this form in the literature. In a

Algorithm 1: Adapted Relevance Redundancy Feature
Selection (ARR)

Input: Data matrix X ∈ R
m×n

Output: Ranked feature list F′
1 F′=[];
2 for i = 1; i ≤ n; i ++ do
3 relevancei =

∑m
j=1

∣
∣Xj ,i − X:,i

∣
∣;

4 sim_sumi = 0;
5 for l = 1; l ≤ n; l ++ do
6 sim_sumi+ = cosim(X:,i ,X:,l);

7 scorei =
relevancei
sim_sumi

;

8 F′ = a list of all features sorted by scorei in descending
order;

9 return F′;

practical implementation of OSFS, one would use an online
feature ranking algorithm, for instance, an online version of
ARR or LS.

The first algorithm is Adapted Relevance Redundancy Feature
Selection (ARR). It is based on the Relevance Redundancy
Feature Selection (RRFS) method [9], which we adapted to
compute a ranked feature list. ARR uses two criteria in assessing
the rank of a feature: (a) relevance, which relates to the distance
of a feature vector to the mean of all feature vectors, and (b)
redundancy, which relates to the cosine similarity between a
feature vector and the vectors of all other features. High relevance
and low similarity result in a high score. The pseudocode of
ARR is given in Algorithm 1. First, the relevance of a feature is
computed as the mean absolute difference of its feature vector
from the mean (line 3). Then, the redundancy of a feature is
computed as the sum of the cosine similarity of its feature
vector and each feature vector of the dataset (lines 5-6). The
score for ranking a feature is the relevance value divided by
the redundancy value (line 7). The computational complexity
of ARR is O(n2m). Recall that the cosine similarity between
two features vectors X :,a and X :,b is calculated as:

cosim(X :,a ,X :,b) =

∣
∣
∣
∣
∣
∣
∣
∣

∑m
i=1(Xi,aXi,b)

(√
∑m

i=1 Xi,a
2

)(√
∑m

i=1 Xi,b
2

)

∣
∣
∣
∣
∣
∣
∣
∣

(1)

The second algorithm is Laplacian Score (LS) [10]. It
follows the so-called filter method which examines intrinsic
properties of the data to evaluate the features. LS ranks those
features high that preserve locality with respect to a neigh-
borhood graph. Algorithm 2 shows the pseudocode of LS.
Input parameters for this algorithm are the design matrix and
the number of local neighbors K. First, using the m sample
vectors as the nodes of the graph, a neighborhood graph is
constructed with the K nearest neighbors of each node as the
links of the graph (line 1). Then, the graph connectivity and the
distance between node pairs are used to compute the weight
matrix (line 2). The graph Laplacian matrix is computed in
line 4. The Laplacian score of all n features is obtained in
the for loop (lines 5-7). A low score for a feature signifies

2888 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Algorithm 2: Laplacian Score (LS)

Input: Data matrix X ∈ R
m×n , K ∈ N nearest neighbors

Output: Ranked feature list F′
1 Construct graph G of K nearest neighbors from nodes

Xi ,:, i = 1, . . . ,m;
2 Compute weight matrix S ∈ R

m×m from G

Sij =

{
e−‖Xi,:−Xj ,:‖2 if nodes i and j are connected ,

0 otherwise

3 D = diag(S1) where 1 = [1,, 1]T , D ∈ R
m×m ;

4 L = D − S;
5 for i = 1; i ≤ n; i ++ do

6 Vi = X:,i − XT
:,iD1

1T D1
1 where Vi ∈ R

m×1;

7 lscorei =
VT
i LVi

VT
i DVi

;

8 F′ = a list of all features sorted by lscorei in ascending
order;

9 return F′;

high locality preservation (see [10] for justification), and the
features are ranked according to increasing score (line 8). The
computational complexity of the LS algorithm is O(nm2).

In the evaluations reported in Sections VIII and IX of this
paper, we choose K in relation to the value of m: K = 2 for
0 < m ≤ 16; K = 5 for 16 < m ≤ 128; K = 10 for m > 128.

IV. COMPUTING STABLE FEATURE SETS

In Section III we discussed the algorithms ARR and LS,
which produce ranked feature lists after reading m samples
X 1,. . . , Xm . In an online setting, where samples become
available one-by-one at discrete times t = 1, 2, . . . , the value
of m can be interpreted as time. Let’s assume we run a feature
ranking algorithm at time t1 and compute the set F k ,t1 with
the top k features. This set will generally be different from
the set F k ,t2 produced by the same algorithm at a later time
t2 for statistical reasons. Using the standard assumption from
statistical learning that samples are drawn from static distri-
butions [4], we expect that the sequence F k ,t converges to a
set F ∗

k with increasing time t. Our objective for this section is
to identify heuristic criteria that determine at which time the
sequence F k ,t , t = 1, 2, 3, . . . , has sufficiently converged or,
as we also say, F k ,t has become “stable”.

We define two criteria for feature set stability, which use
frequency-based stability methods [11]. The first is based on
the similarity of two feature sets, the second on the variance
of feature frequencies in feature sets.

A. A Stability Condition Based on Set Similarity

Given two feature sets F k ,t1 and F k ,t2 (k ∈ N), we define
the similarity between them as the fraction of joint features:

sim(F k ,t1 ,F k ,t2) := |F k ,t1 ∩ F k ,t2 |/k (2)

The values of the metric sim lie between 0 and 1. 0 means
no similarity, i.e., F k ,t1 and F k ,t2 have no common features,

Fig. 2. The similarity of consecutive feature sets over time using ARR and
LS with samples from the KV flash-crowd dataset and start time t = 1.

while 1 means the maximum similarity, i.e., F k ,t1 and F k ,t2
are identical.

When we study the evolution of sim(F k ,t ,F k ,2t) using the
traces described in Section VII, we observe that the similarity
metric tends to grow with the increase of k and t. Also, this
effect becomes stronger the larger k and t are. Figure 2 shows
an example with data from the KTH testbed running a KV
service.

We introduce the first heuristic notion of a stable feature
set:

F k ,t is stable, iff sim(F k ,t ,F k ,2t) > η

and sim(F k ,t ,F k ,2t) > sim(F k ,2t ,F k ,4t) (3)

Based on our experience with operational data, we set
η = 0.5 for this work. This means that F k ,t must share at
least half of its features with F k ,2t , which is computed with
double the number of samples. The second condition in equa-
tion (3) is met if the sequence of similarity values reaches a
local maximum. In Figure 2 (a) F 16,1024 and in Figure 2 (b)
F 64,512 are examples of stable feature sets.

B. A Stability Condition Based on Feature Frequency

In [12] the authors propose a metric for feature set sta-
bility based on statistical concepts. They measure the selec-
tion frequency of each feature and estimate its variance
for a sequence of consecutive feature sets. They model the
frequency of a feature using a Bernoulli process. The stabil-
ity criterion we introduce requires that the variance becomes
sufficiently small.

Given a feature set F k ,t and the original feature set
F = {f1, f2, . . . , fn} (k ∈ N, k ≤ n), we define the feature
representation vector Ak ,t ∈ {0, 1}n as follows

Ak ,t [j] =

{
1, if fj ∈ F k ,t
0, otherwise

(4)

We consider r consecutive vectors and set the matrix Z k ,t ,r :=

[Ak ,t , . . . ,Ak ,t+r−1]
T . We define the stability of F k ,t for r

consecutive feature sets as:

stab(Z k ,t ,r) := 1−
1
n

∑n
j=1 s

2
j

k
n

(
1− k

n

) (5)

To understand the right side of equation (5), we need to know
that pj is the parameter of the Bernoulli process that models
the occurrence of feature fj . If we denote the empirical feature
frequency with p̂j , we can write p̂j = 1

r

∑r
i=1 zij (zij is an

WANG AND STADLER: ONLINE FEATURE SELECTION FOR EFFICIENT LEARNING IN NETWORKED SYSTEMS 2889

Fig. 3. The feature set stability of current feature sets over time using ARR
and LS with samples from the KV flash-crowd dataset and start time t = 1.

element of Z k ,t ,r). The empirical sample variance is given
by s2j = r

r−1 p̂j (1 − p̂j). We know from theory that s2j is an
unbiased estimator of the variance of the feature frequency.

The stability metric stab(Z k ,t ,r) has values in [−
1

r−1 , 1] [11]. If no feature shows any variance, i.e., each fea-
ture is either always selected or always left out, the value is 1.
Otherwise, the value is less than 1.

Similar to sim(F k ,t1 ,F k ,t2) we observe using the data
from our testbed that stab(Z k ,t ,r) tends to grow with the
increase of k and t. This effect becomes stronger the larger k
and t are. Figure 3 shows an example with data from the KTH
testbed running a KV service.

We introduce the second heuristic notion of a stable feature
set:

F k ,t is stable for r , iff stab(Z k ,t ,r) > η

for w consecutive timesteps (6)

Based on our experience with operational data, we set
r = 10, w = 10 and η = 0.9 for this work. This means that
when 10 consecutive stability values are all larger than 0.9,
then the feature set F k ,t is stable. In Figure 3 (a) F 4,610 and
in Figure 3 (b) F 4,840 are examples of stable feature sets.

C. Feature Clustering

We also investigated a different approach to determine
whether a feature set F k ,t is stable. This approach includes
clustering the features after t samples have been obtained.
The two conditions we formulated to identify a stable fea-
ture set were then applied on the feature clusters instead of
on individual features. The motivation for this approach stems
from the idea that features in the same cluster have the same
information content for constructing the prediction model.
Specifically, we have used DBSCAN [13], which is based on
the cosine similarity metric to cluster the features. However,
the evaluation showed that the accuracy of the obtained predic-
tors has been only marginally better than when clustering was
not used. For this reason, we have not included the detailed
results in this paper.

V. OSFS: ONLINE FEATURE SELECTION

WITH LOW OVERHEAD

In this section, we introduce the Online Stable Feature Set
Algorithm (OSFS), which reads a stream of samples X 1, X 2,
X 3, . . . , and returns the number of features k, the number
of samples tk needed to determine k, and the stable feature
set F k ,tk .

Algorithm 3: Online Stable Feature Set (OSFS)
Input: Sample sequence X1, X2, X3,. . . .;

Feature ranking algorithm A;
Metric and condition for stable feature set C;
Search space S for (k , t);
Search policy P to traverse S.

Output: Stable feature subset Fk ,t , k, t.
1 Initialize (k , t);
2 while True do
3 Compute Fk ,t using A on X1,. . . ., Xt ;
4 if Fk ,t is stable or S is exhausted then
5 return Fk ,t , k, t;

6 else
7 choose next (k , t) following P;

Recall that the purpose of OSFS is to select a subset of
available data sources (i.e., features), in order to reduce the
monitoring costs and the training overhead for learning. To
keep costs and overhead low, we want k and tk to be small
while still allowing for effective learning and prediction.

The standard use case for OSFS plays out as follows. We
start monitoring the values of n features at time t = 1 and
collect a sequence of samples with index t = 1, 2, . . . , We
use the collected samples to find values for k << n and tk so
that the first tk samples allow us to compute a stable feature
set F k ,tk . At time tk+1, we reduce the number of data sources
from n to k and continue monitoring only sources from the
set F k ,tk .

We first present OSFS in a generic form, which allows
for a range of instantiations and configurations. Algorithm 3
shows the options for configuration. First, we choose a feature
ranking algorithm. Section III contains two examples of such
algorithms, namely, ARR and LS. Second, we choose a con-
dition for a feature set F k ,t to be stable. Section IV presents
two possibilities of such conditions, namely, (3) and (6). Third,
we choose the search space S, i.e., the space of possible val-
ues for (k, t). An example of S is a two-dimensional grid
where t has values [16, 64, 256, 1024] and k has the val-
ues [4, 16, 64, 256]. A search policy P is an algorithm to
traverse S. We have experimented with different search poli-
cies. For instance, policy k–small starts with the smallest k,
traverses all possible t values, continues to the next larger k,
traverses all possible t values, etc. This way the grid is tra-
versed from bottom to top (see Figure 4 red path). Similarly,
the policy t–small starts with the smallest t, traverses all possi-
ble k values, continues to the next larger t, traverses all possible
k values, etc. This way the grid is traversed from left to right
(see Figure 4 blue path). Many other policies are possible, for
instance, a policy based on random walk.

Once the execution of instantiated OSFS algorithm starts,
initial values for k and t are selected (line 1). It then enters a
loop where, during each iteration, one point in the grid is eval-
uated (line 2-7). First, the feature set F k ,t is computed using
the ranking algorithm A and available samples X 1, . . . ,X t .
Then, the stability condition is evaluated for F k ,t . If F k ,t

2890 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 4. Search policy on one search space. The red path follows the policy
k–small and the blue path follows the policy t–small.

is stable or the grid has been completely searched, the algo-
rithm terminates and returns F k ,t , k, t. Otherwise, the loop
continues with the next (k, t) pair.

When discussing the evaluations of OSFS in Sections VIII
and IX, we present results obtained with feature ranking
algorithms ARR and LS and with both feature set stability
conditions. Regarding the search policy, most of the results in
this paper are obtained with k–small, which gives priority to a
feature set of small size at the possible expense of larger run-
ning time of OSFS. We also perform evaluations with policy
t–small, which prioritises obtaining a stable feature set within
a short amount of time at the possible expense of a larger
feature set.

Algorithm 4 is an example of an instantiated OSFS algo-
rithm, which we use for evaluation. The algorithm takes as
input the sequence of arriving samples X t and is initialized
with the feature ranking algorithm ARR. ARR is used in the
function subset(), which takes as input k and the first t samples
and returns a set with the top k features ranked by ARR.

It has two main loops: an outer loop (lines 3-23) that iterates
over a subspace of k and an inner loop (lines 9-22) that iter-
ates over a subspace of t. The index values of k and t increase
exponentially to enable the exploration of a large space with
a small number of evaluations. The algorithm performs a grid
search in the space of tuples (k, t) with the termination con-
dition A: simkt < simk12 and simk12 > η (line 15) or B:
simkt > η and t == 1024 (line 17). In case the conditions A
or B are never met, the algorithm terminates after the search
on the grid [4 − 256]*[8 − 1024] has been completed. The
key termination condition A expresses the case where (1) the
similarity of two consecutive feature sets is above the threshold
η and (2) the similarity declines when the subsequent feature
set is considered.

The algorithm reads at least 32 samples in order to ensure
statistical viability and terminates after at most 1024 samples.
Since the outer loop is indexed by increasing k, it favors a
smaller k at the possible expense of a larger t. This means that
we prefer reducing the monitoring overhead over reducing the
time to compute F k ,t .

Let us clarify the time window over which the feature set
Fk ,t is computed in Algorithm 4. The algorithm starts at time
step t = 1. At every time step t a new sample Xt is read.
The stability test of the feature set Fk ,t is performed on the

Algorithm 4: OSFS-ARR-sim-k − small

Input: Sample sequence X1, X2, X3,. . . .;
Feature ranking algorithm ARR;
Metric sim and condition (3) for stable feature
set;
Search space [4− 256] ∗ [8− 1024] for (k , t);
Search policy k − small .

Output: Feature subset Fk ,tk , k, tk
subset(k , t ,ARR) returns top k features computed with
ARR using samples with index 1,, t .

1 η = 0.5 (threshold for stable feature set);
2 read = false;
3 for k in [4,16,64,256] do
4 if not read then
5 read and store Xt , t = 1,, 16

6 Fk1 = subset(k , 8,ARR);
7 Fk2 = subset(k , 16,ARR);
8 simk12 = sim(Fk1,Fk2);
9 for t = 17, . . . , 1024 do

10 if not read then
11 read and store Xt

12 if t in [32,64,128,256,512,1024] then
13 Fkt = subset(k , t ,ARR);
14 simkt = sim(Fk2,Fkt);
15 if simkt < simk12 and simk12 > η then
16 return Fk1, k , t/4;

17 else if simkt > η and t == 1024 then
18 return Fk2, k , t/2;

19 else
20 Fk1 = Fk2;
21 Fk2 = Fkt ;
22 simk12 = simkt ;

23 read = true

24 return Fk2, 256, 1024

samples Xi with time index i = 1, . . . , t . This takes place in
line 15. The time window in which the samples are evaluated
is thus expanding with t.

Note that in Algorithm 4 we choose a specific range for the
number of samples and the number of features in the search
space of the algorithm. These are configuration parameters
and can be changed. When experimenting with datasets from
three different sources described in this paper, we found that
the chosen values enable good performance of OSFS.

VI. RECOMPUTING FEATURE SET AFTER CONCEPT DRIFT

The distribution from which the samples are drawn for
training prediction models can evolve over time, and this phe-
nomenon is referred to as concept drift, which is a well-studied
topic in data analysis [14]. When concept drift occurs, the
prediction model must generally be recomputed in order to
maintain prediction accuracy. In addition, the feature set from

WANG AND STADLER: ONLINE FEATURE SELECTION FOR EFFICIENT LEARNING IN NETWORKED SYSTEMS 2891

Fig. 5. The testbed at KTH, providing the infrastructure for experiments. In
various scenarios we predict end-to-end service-level metrics from low-level
infrastructure measurements [19].

which the prediction model is computed should be adapted as
well for the same reason.

In the context of network systems and their operation, con-
cept drift can occur when a system is reconfigured or when
the resource allocation policy for services or applications is
changed. This means that, when concept drift occurs, OSFS
must be run again to identify the updated set of features for
recomputing the prediction model.

In this work, we use a state-of-the-art concept drift detec-
tion algorithm called STUDD (Student-Teacher Method for
Unsupervised Concept Drift Detection) [15] on our data traces.
STUDD detects concept drift in an unsupervised manner by
using a student-teacher paradigm [16]. The basic idea of this
paradigm is that in addition to the primary predictor, which is
called teacher, a second predictor, which is called student, is
trained. The student model is learned on the same input dataset
X as the teacher, but the target set Y is replaced with the
values predicted by the teacher. During the prediction phase,
the discrepancy between the teacher’s prediction and the stu-
dent’s prediction for the same target values is monitored. The
Page-Hinkley test [17] is applied to detect changes in the time
series of the discrepancy values. Such a change indicates a
concept drift event.

We use a random forest regressor from the scikit-learn
library [18] to compute the teacher as well as the student
models.

In Section IX we study the effect of recomputing the stable
feature set on the prediction accuracy using the KTH dataset.
Specifically, we compare the accuracy values for scenarios
where the stable feature set is recomputed after change detec-
tion, with scenarios where the stable feature set is computed
only at the beginning of the trace.

VII. TRACES FOR EVALUATION

A. KTH Dataset

Figure 5 outlines our laboratory testbed at KTH. It includes
a server cluster, an emulated OpenFlow network, and a set of
clients. A more detailed description of the KTH testbed setup
and the services running on it is given in [19].

The online feature selection method proposed in this paper
has been evaluated using data from four experiments. Two of
them involve running a Video-on-Demand (VoD) service and
two a Key Value store (KV) service.

1) VoD periodic: In this experiment, we run the VoD ser-
vice under a periodic load pattern on the testbed. Data is

TABLE II
DATASETS FROM KTH TESTBED

collected every second over a period of 50’000 seconds.
After cleaning the dataset, it contains 50’000 samples
and 1’296 features. More details about the experiment
are given in [20].

2) VoD flash-crowd: This experiment relies on the same
setup as VoD periodic, except that the testbed is loaded
with a flash-crowd pattern. After cleaning the dataset,
50’000 samples and 1’255 features remain. More details
about the experiment are given in [20].

3) KV periodic: In this experiment, we run the KV ser-
vice under a periodic load pattern on the testbed.
Measurements are collected every second over a period
of 28’962 seconds. The dataset contains 10’374 features
collected from the server cluster and 176 features from
the network switches. After cleaning the data set, 1’751
features remain. More details about the experiment are
given in [19].

4) KV flash-crowd: This experiment relies on the same
setup as KV periodic, except that the testbed is loaded
with a flash-crowd pattern. After cleaning the dataset,
19’444 samples and 1’723 features remain. More details
about the experiment are given in [19].

We describe the metrics we collect on the testbed, namely,
the input feature sets X cluster and X port — the union of
which we refer to as X. The X cluster feature set is extracted
from the kernel of the Linux operating system that runs on
the servers executing the services. To access the kernel data
structures, we use System Activity Report (SAR), a popular
open-source Linux library [21]. SAR in turn uses procfs [22]
and computes various system statistics over a configurable
interval. Examples of such statistics are CPU core utiliza-
tion, memory utilization, and disk I/O. X cluster includes
only numeric features from SAR. The X port feature set is
extracted from the OpenFlow switches at per-port granularity.
It includes statistics from all switches in the network, namely
1) Total number of Bytes Transmitted per port, 2) Total num-
ber of Bytes Received per port, 3) Total number of Packets
Transmitted per port, and 4) Total number of Packets Received
per port.

Table II summarizes the basic information about these four
traces, which are available at [23]. For the KV service, the
prediction target is ‘ReadsAvg’, which represents the average
response time per second of read operations. ‘DispFrames’ is
the prediction target for the VoD service and represents the
number of displayed video frames per second on the client
side.

B. FedCSIS 2020 Challenge Dataset

The FedCSIS 2020 Challenge dataset [1] is a public
dataset provided by EMCA Software, an analytics company.

2892 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

TABLE III
DATASETS FROM FEDCSIS 2020 CHALLENGE DATASET

TABLE IV
INFORMATION OF POLI-TORINO DATASETS

It contains around 2’000 samples collected from December
2019 to February 2020. Each sample aggregates one hour of
measurements, and there are 24 samples per day. The data
are gathered from 3’728 hosts. Hosts can have different num-
bers of attributes. For each attribute, such as CPU utilization,
several feature columns are included, for example, the mean
value or the standard deviation. The detailed information of
features can be found in [24]. From the challenge dataset, we
construct two smaller datasets for evaluation. In each of these
two datasets, all samples share the same features.

• Dataset1 contains samples from hosts that have the
following six attributes [‘cpu_1m’, ‘cpu_5m’, ‘cpu_5s’,
‘memoory_free’, ‘memory_total’, ‘memory_used’]. For
every attribute, four feature columns are included with
the mean, the standard deviation, the minimum and the
maximum value, respectively.

• Dataset2 contains samples from hosts that have the
following six attributes [‘cpuusagebyproc’, ‘memo-
ryallocatedbyproc’, ‘in_traffic’, ‘out_traffic’, ‘error_in’,
‘error_out’]. For every attribute, four feature columns
are included with the mean, the standard deviation, the
minimum and the maximum value, respectively.

In these two datasets, many feature values are missing.
We remove all feature columns where more than 30% of
the values are missing. The remaining missing values are
estimated through linear interpolation. After these steps, the
number of features and the number of samples in each dataset
are listed in Table III. For both datasets, we select one of
the feature columns as the prediction target. For dataset1 we
select ′host0958_cpu_1m ′, which denotes the mean 1-minute
CPU usage over 1 hour on host0958. For dataset2 we select
′host4846_cpuusagebyproc′, which denotes the mean CPU
time used by processes over 1 hour on host4846.

C. Poli Torino Dataset

A research group from Politecnico di Torino has pub-
lished two datasets that contain measurements from two
video conferencing applications, Webex and Jitsi [2]. During
videoconferencing sessions, transport-level protocol statistics
have been captured on a per-second basis. The statistics
relate to the length of UDP packets, the difference in length
between two consecutive packets, and the delay between two
consecutive RTP packets, etc. Table IV summarizes these
datasets.

TABLE V
THE NUMBER OF SAMPLES IN EACH TRAFFIC CLASS

OF POLI-TORINO DATASETS

The datasets were collected to predict the type of real-time
communication stream a measurement sample belongs to.
Table V lists the number of samples in each class. We can see
that the datasets are roughly balanced and there is no obvious
minority class. The Webex application uses FEC to mitigate
packet losses, which explains the two additional classes in the
Webex dataset.

VIII. EVALUATION OF OSFS ON DIFFERENT DATASETS

We evaluate OSFS by asking two main questions:
1) How effective is OSFS in reducing communication and

computing overhead as well as the data collection time,
i.e., the number of samples needed for feature selec-
tion? What are typical values for k and tk for the three
datasets?

2) How effective is OSFS in producing feature sets for
training accurate prediction models?

To obtain the evaluation results, we perform two preprocess-
ing steps on the datasets. First, we linearly scale the values of
each feature vector to the range [0, 1]. Second, we remove the
feature vectors with a variance below 0.0001. For prediction,
we use a random forest regressor or classifier. As for hyper-
parameters, we use 100 trees and the default values for the
other parameters.

The prediction targets in the KTH and FedCSIS datasets are
numerical values. We express the prediction error for these tar-
gets as the Normalized Mean Absolute Error (NMAE), which
is computed as follows:

NMAE =
1

y

(
1

q

q∑

i=1

|yi − ŷi |
)

(7)

where y is the mean value of the target in the test set, q is the
number of samples and ŷi is the predicted value.

The prediction target in the Poli Torino dataset is categor-
ical. We choose the prediction error of the trained classifier
as the proportion of misclassified instances over the set of
instances under consideration, which is computed as follows:

Classification Error =
1

q

q∑

i=1

1{yi �= ŷi} (8)

Table VI shows the evaluations for the KTH dataset,
Table VII for the FedCSIS dataset, and Table VIII for the
Poli Torino dataset. All three tables have the same column
structure. The first column identifies the dataset, the second
column lists the feature ranking algorithm, the third column
gives the feature set stability metric, the fourth column gives

WANG AND STADLER: ONLINE FEATURE SELECTION FOR EFFICIENT LEARNING IN NETWORKED SYSTEMS 2893

TABLE VI
EVALUATION OF OSFS ON KTH DATASETS. THE PREDICTION METHOD IS RANDOM FOREST REGRESSION. THE ERROR IS EXPRESSED IN NMAE (7).

EACH ROW SHOWS THE AGGREGATED RESULT FROM AN EVALUATION SCENARIO WITH TEN RUNS. THE VALUES PRINTED IN BOLDFACE

RELATE TO PREDICTORS TRAINED USING A FEATURE SET COMPUTED THROUGH ONLINE FEATURE SELECTION

TABLE VII
EVALUATION OF OSFS ON FEDCSIS 2020 CHALLENGE DATASETS. THE PREDICTION METHOD IS RANDOM FOREST REGRESSION. THE ERROR IS

EXPRESSED IN NMAE (7). EACH ROW SHOWS THE AGGREGATED RESULT FROM AN EVALUATION SCENARIO WITH TEN RUNS. THE VALUES

PRINTED IN BOLDFACE RELATE TO PREDICTORS TRAINED USING A FEATURE SET COMPUTED THROUGH ONLINE FEATURE SELECTION

TABLE VIII
EVALUATION OF OSFS ON POLI TORINO DATASETS. THE PREDICTION METHOD IS RANDOM FOREST CLASSIFICATION. THE ERROR IS EXPRESSED IN

CLASSIFICATION ERROR (8). EACH ROW SHOWS THE AGGREGATED RESULT FROM AN EVALUATION SCENARIO WITH TEN RUNS. THE VALUES

PRINTED IN BOLDFACE RELATE TO PREDICTORS TRAINED USING A FEATURE SET COMPUTED THROUGH ONLINE FEATURE SELECTION

the search policy. The fifth and sixth columns give the out-
put of OSFS, the seventh and eighth columns provide the
prediction error. The values of the seventh column are printed
in boldface, which means that they relate to predictors trained
using a feature set computed through online feature selection.

Each row in Tables VI, VII, and VIII shows the result from
an evaluation scenario for a given dataset, feature ranking

algorithm, feature set stability metric, and search policy. A
scenario contains both the mean values and the standard devi-
ations from ten evaluation runs of OSFS with different start
times (whereby one start time is t = 1 and the other 9 are
chosen uniformly at random from the trace).

We observe that OSFS produces a range of feature set sizes
k, from 4 to 212. The same applies to the number of samples

2894 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

tk (i.e., the data collection time) with a range from 8 to 882.
As expected, the search policy k–small produces small val-
ues for k and larger values for tk , and for the search policy
t–small, the opposite applies. In all scenarios, we see a signif-
icant reduction in the size of the feature sets compared with
the total number of features. We also find that, while the val-
ues for k and tk are strongly dependent on the search policy,
they are less influenced by other parameters, namely, the type
of dataset and the feature ranking algorithm.

The column Pred Error (Online FS) shows the error of a
prediction model trained with the feature set of size k that
has been produced with tk samples. These values reflect the
capability of OSFS to produce an effective feature set for
model training. We compare the results with two baseline
methods. The first baseline method uses all samples of the
dataset for feature selection. (When applying offline feature
selection using LS on the Poli Torino datasets, we use only
10% random samples of the Jisti dataset or 5% of the Webex
dataset, since these datasets are so large and smaller sample
size is sufficient to train accurate predictors.) The values for
this baseline are listed in column Pred Error (Offline FS). The
second baseline method does not rely on feature selection and
uses all features to train the prediction model. The result for
this method is listed in the lowest row of each dataset and
indicated by No FS.

Comparing the values in column Pred Error (Offline FS)
with the error values in No FS shows us the cost of reducing
the feature set. Depending on the scenario, the difference in
error ranges from 2% to 115% for the KTH datasets, from
158% to 369% for the FedCSIS datasets, and from 497%
to 3’345% for Poli Torino datasets. While the difference in
the error can be quite significant, we have shown in earlier
research that it can be effectively reduced by using a super-
vised feature ranking algorithm instead of an unsupervised
one [25].

Most importantly, the values in the column Pred Error
(Online FS) tend to be somewhat smaller than those in Pred
Error (Offline FS), 6% on KTH datasets, 25% on FedCSIS
datasets, and 32% on Poli Torino datasets in average. This
result suggests that OSFS is effective as an online feature
selection algorithm and is robust regarding the sample interval
on the trace that is used for feature selection.

Other conclusions we draw from Tables VI, VII, and VIII:
• OSFS can achieve a massive reduction in the size of the

feature set, 1-3 orders of magnitude.
• The number of samples needed to compute the feature

sets averages around 400 on the investigated datasets. For
the KTH testbed, where metrics are monitored once per
second, this means that OSFS produces a stable feature
set within an average of 7 minutes.

• For KTH and FedCSIS datasets, The feature ranking
algorithm LS generally provides much better results than
ARR, although at the cost of higher computational com-
plexity when the number of samples used for feature
selection becomes large (see Section III).

• Consistent with our earlier results (e.g., [19], [26]),
we find that the type of service and the load pattern
significantly affect the prediction error.

• We find that neither the feature set similarity metric nor
the feature set stability metric outperforms the other on
the datasets we investigated. Since the feature set simi-
larity has lower computational complexity, we prefer this
metric for future investigations.

• On the investigated datasets, OSFS achieves the best
results, on average, with feature ranking algorithm LS,
search policy k–small, and the feature set similarity
metric.

IX. EVALUATION OF OSFS WITH ONLINE TRAINING

AND CHANGE DETECTION

In Section VIII, we evaluate OSFS by studying the
prediction error of a random forest regressor or classifier. In
this case, feature selection is performed online, but model
training is performed offline. The column Pred Error (Online
FS) in Tables VI, VII, and VIII gives the evaluation results.

Building on these results, we investigate two key ques-
tions in this section. First, which prediction accuracy can be
achieved when not only feature selection is performed online,
but also model training, and how do the results compare to
offline training? Second, can better prediction accuracy be
achieved if the feature set is adapted over time? We address
the second question through detecting concept drift, i.e., a
change in the conditional distribution P(Y |X) over time (see
Section X). We use the STUDD algorithm for the concept drift
detection (see Section VI).

The implementation of the Page-Hinkley test in STUDD
uses the scikit-multiflow library [27] with the change parameter
delta set to 0.05. Regarding OSFS, we use the k–small search
policy and the similarity metric.

Table IX summarizes the results of these evaluations. The
first column indicates the dataset, the second shows the feature
ranking algorithm, and the third column (Offline train) gives
the prediction error when using online feature selection and
offline training. (The values are computed the same way as in
Tables VI, VII, and VIII column Pred Error (Online FS).) The
fourth column (Online train) shows the prediction error when
using online feature selection and online training. The fifth
column (Model retrain) gives the results when using online
feature selection, online training, and model retraining after
concept drift is detected. The sixth column (Model retrain
and feature recomp) provides the most important results. It
shows the prediction error when using online feature selec-
tion, online learning, as well as feature set recomputation, and
model retraining after detecting concept drift. Finally, the last
column (number of changes) indicates the number of changes
in concepts discovered by STUDD on the trace.

Each row in Table IX lists the result from a run with start
time t = 1. Figure 6 describes how an experiment takes place.
At the start time t0, the system begins with periodically col-
lecting samples with values from the entire feature set F. At
time t ′0, OSFS returns a stable feature set F 0 (based on the
samples in the interval [t0, t ′0]). At this point, the monitor-
ing system begins to collect samples with values only from
the reduced feature set F 0. Based on this feature set, the
prediction model M0 is trained and the system starts predicting

WANG AND STADLER: ONLINE FEATURE SELECTION FOR EFFICIENT LEARNING IN NETWORKED SYSTEMS 2895

Fig. 6. OSFS selects subset F0 from the entire feature set F using samples from interval [t0, t
′
0]. When a change is detected at time t1, OSFS selects subset

F1 from F using samples from interval [t1, t
′
1].

TABLE IX
EVALUATION OF OSFS FOR ONLINE MODEL TRAINING AND MODEL RETRAINING UNDER CHANGE DETECTION ON KTH DATASETS. THE PREDICTION

METHOD IS RANDOM FOREST REGRESSION. THE ERROR IS EXPRESSED IN NMAE (7). THE MOST IMPORTANT COLUMN IS ‘MODEL RETRAIN AND

FEATURE RECOMP’, WHICH SHOWS THE PREDICTION ERROR WHEN USING ONLINE FEATURE SELECTION, ONLINE LEARNING AS WELL AS

FEATURE SET RECOMPUTATION AND MODEL RETRAINING AFTER DETECTING CONCEPT DRIFT

target values. In the case of online training, the samples in the
interval [t0, t ′0] are used. At time t1, the change detection algo-
rithm detects a concept drift and triggers OSFS to recompute
the feature set. At this point, the monitoring system switches
to monitor the values from the entire feature set F. The newly
computed feature set F 1 becomes available at time t ′1. In
the case of model retraining, the new predictor M1 is trained
with the samples from the interval [t1, t ′1]. For the reason of
simplicity, the training time is omitted in Figure 6.

From Table IX, we gain the following insights regarding the
performance of OSFS on the studied datasets:

• Feature set recomputation is effective as it can achieve a
reduction in error by 3% to 6%, in addition to the reduc-
tion achieved by model retraining (8% to 80%). (The
scenarios with feature recomputation are those that have
values larger than 0 in the last column.)

• Online training (Online train), compared with offline
training (Offline train), incurs 18% to 955% higher
prediction error. This error can be reduced by considering
additional samples for training. Note that decreasing the
difference in prediction error between online training and
offline training is not studied in this work, as the focus
is on online feature selection.

In summary, the error of a predictor can be significantly
reduced by recomputing the feature set and retraining the
model after a concept drift.

X. RELATED WORK

In the context of this paper, we understand online learn-
ing as an iterative learning method where training samples

arrive sequentially as a data stream. Periodic monitoring of
infrastructure metrics in a networked system creates such a
stream of samples. The learning algorithms that enable learn-
ing on a stream of samples are often referred to as incremental
learning. Reference [28] formalizes the concept of incremen-
tal learning and discusses algorithms that require only constant
memory. In [29], the authors compare eight incremental learn-
ing algorithms for supervised classification. Instead of the term
incremental learning, many authors use the expression learn-
ing on data streams. Reference [30] is a textbook that provides
a state-of-the-art description of this subject. Algorithms for
data stream mining including classification, regression, clus-
tering, and frequent pattern mining are discussed. Most of
these algorithms are adapted from well-known offline learning
algorithms.

Most works that address learning on data streams assume
that the samples in a data stream are drawn from a distribu-
tion P(X, Y), which is also referred to as a concept [31]. The
change of such a concept is called a concept drift. For our
research, it is important to detect a change in the conditional
distribution P(Y |X), which is called a real concept drift [31].
In this paper, we use the STUDD algorithm [15] for detecting
a change in the conditional probability distribution P(Y |X)
(see Section VI). Reference [14] provides a survey on con-
cept drift adaptation methods, which detect concept drift and
adapt the prediction model. The paper contains a taxonomy of
such methods. It also lists metrics for the evaluation of change
detection methods.

A key challenge in learning on operational data from net-
worked systems, which are distributed by nature, is respecting
the resource constraints. The extraction of data on the devices,

2896 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

their transportation, the data preprocessing, and the model
training require network, computing, and memory resources.
Much research has been conducted to reduce resource con-
sumption while producing sufficiently accurate prediction
models. One research direction is online sample selection
where samples are kept in a cache of constant size for later
processing and model training. A sample selection algorithm
decides which samples should be stored in the cache and which
should be dropped from the data stream. A well-known and
efficient algorithm is reservoir sampling, which chooses a sam-
ple set of fixed size uniformly at random from a population
of unknown size in a single pass [32]. In [33] the authors
aim at solving the label budget problem and the class imbal-
ance problem on stream data. They propose an active sampling
scheme which involves biased sampling, biased archiving, and
genetic programming to identify the champion classifier. If the
predicted label relates to a minority class, the instance is prior-
itized for selection. Then, an archived instance which belongs
to a majority class will be replaced with a high probability.
In earlier work [34] we have evaluated four online sampling
algorithms which have been derived from known algorithms.
We specifically argue that feature selection algorithms can
be adapted for sample selection and provide experimental
evidence that the resulting algorithms can be effective.

A second research direction focuses on reducing the dimen-
sionality of the feature space, which corresponds to the
number of features. Many methods have been developed that
map a high-dimensional feature space into a low-dimensional
space. Principal Components Analysis (PCA) [35] is a lin-
ear and popular method that is often used for this purpose.
A second method, which is based on neural networks, is
auto-encoder [35]. Another approach to reduce the dimen-
sionality of the feature space is feature selection. In this
paper, we study feature selection methods, because they allow
us to significantly reduce monitoring costs, in addition to
saving model training costs. The other dimensionality reduc-
tion methods described above only reduce model training
costs.

Feature selection has been studied as an effective data pre-
processing strategy in both the machine learning and data
mining fields for several decades. Many survey papers cover
and compare feature selection methods, e.g., [36], [37], [38],
[39], [40]. For instance, [38] provides a useful categorization
of feature selection methods along several dimensions, such
as supervised and unsupervised methods; wrapper, filter, and
embedded methods; and static or streaming methods. In [40],
the authors evaluate several supervised feature selection meth-
ods on security datasets. They investigate the prediction
performance and computing time of these algorithms. They
find that the selected feature set varies with the type of attack
recorded in the dataset. In [41] the authors propose a policy-
induced unsupervised feature selection method based on a
concrete auto-encoder. The policies are expressed in form of
must-have features, which are pre-selected for the feature set.
KL-divergence is used as a similarity measure to identify fea-
tures which are significantly different from the pre-selected
features. This method requires the size of the feature set as
input and does not provide a ranked feature list.

Most feature selection methods described in the literature
have been developed for offline learning where all data fits
into memory. In recent years, however, online feature selec-
tion methods have received increasing attention. In this case,
the input to the algorithm is either a stream of feature vectors
(e.g., [42], [43], [44], [45], [46], [47]) or a stream of samples
(e.g., [47], [48], [49]). Interestingly, most published online fea-
ture selection methods fall into the first category and process
a stream of feature vectors. Such methods are not suitable for
the problem we study in this paper, since, in our case, the data
becomes gradually available as time progresses. Our interest
thus is in methods that process streams of samples. Examples
of such works are [48], [49], and [47].

In [48], the authors perform online supervised feature selec-
tion as a part of training the perceptron algorithm. During
a training step, the values of the selected features are used
to update the weights of the perceptron. Features with large
weights are selected with high probability and features with
small weights are selected with low probability. More closely
related to our work is [49], which presents an unsupervised
online feature selection algorithm based on clustering. The
algorithm uses constant memory. In [47], the authors intro-
duce an online feature selection algorithm called Geometric
Online Adaption (GOA). A characteristic of this algorithm is
that it works for both streams of samples and streams of feature
vectors.

Note that a large part of the online feature selection algo-
rithms we found in the literature require the number of features
to be selected as an input parameter. The algorithm we present
in this paper attempts to find a small but sufficiently large
number of features that form a stable feature set.

The authors of [50] provide a recent survey of work on
the stability of feature selection algorithms. By stability, they
mean that an algorithm selects similar feature sets from similar
sample sets. Another survey is given in [11], which addition-
ally proposes a novel metric for measuring feature set stability.
We are using this metric in Section IV.

XI. CONCLUSION AND FUTURE WORK

In this paper, we introduced OSFS, an online algorithm
that selects a small set from a large number of available data
sources, which allows for rapid, low-overhead learning and
prediction. OSFS is instantiated with a set of options and per-
forms a grid search that terminates when a stable feature set
has been identified.

Using datasets from three different sources, we found that
OSFS achieves a massive reduction in the size of the feature
set while maintaining its performance for training predictors.
We have shown the effectiveness of OSFS as an online fea-
ture selection algorithm which is robust regarding the sample
interval used for feature selection. In addition, we found that,
if concept drift occurs, its effect can be mitigated by recom-
puting the feature set with OSFS and retraining the prediction
model.

Regarding future work, there are many ways our method
can be improved or extended. We can evaluate OSFS with
additional instantiations of feature ranking algorithms, stability

WANG AND STADLER: ONLINE FEATURE SELECTION FOR EFFICIENT LEARNING IN NETWORKED SYSTEMS 2897

conditions, and search policies. Also, the tradeoffs between the
three metrics k, tk , and the prediction error warrant further
study.

Online learning is only one part of efficiently producing
a learning model using online techniques. Other parts include
online sample selection [34], and the integration of online fea-
ture selection, online sample selection, and online training into
a joint framework. Finally, we believe it should be investigated
how such a framework can be distributed, since we envision
both training and prediction as distributed processes in future
networked systems.

ACKNOWLEDGMENT

The authors are grateful to Andreas Johnsson, Hannes
Larsson, and Jalil Taghia with Ericsson Research for fruit-
ful discussion around this work, as well as to Forough Shahab
Samani, Kim Hammar, and Rodolfo Villaça for comments on
an earlier version of this paper.

REFERENCES

[1] A. Janusz, M. Przyborowski, P. Biczyk, and D. Ślezak, “Network device
workload prediction: A data mining challenge at knowledge pit,” in Proc.
15th Conf. Comput. Sci. Inf. Syst. (FedCSIS), 2020, pp. 77–80.

[2] M. Trevisan. Real-Time Classification of Real-Time Communications.
2021. [Online]. Available: https://smartdata.polito.it/rtc-classification/

[3] X. Wang, F. S. Samani, and R. Stadler, “Online feature selection for
rapid, low-overhead learning in networked systems,” in Proc. 16th Int.
Conf. Netw. Service Manag. (CNSM), 2020, pp. 1–7.

[4] V. N. Vapnik, Statistical Learning Theory. New York, NY, USA: Wiley,
1998.

[5] S. Handurukande, S. Fedor, S. Wallin, and M. Zach, “Magneto approach
to QoS monitoring,” in Proc. 12th IFIP/IEEE Int. Symp. Integr. Netw.
Manag. (IM) Workshops, 2011, pp. 209–216.

[6] O. Izima, R. de Fréin, and M. Davis, “Video quality prediction under
time-varying loads,” in Proc. IEEE Int. Conf. Cloud Comput. Technol.
Sci. (CloudCom), 2018, pp. 129–132.

[7] X. Tao, Y. Duan, M. Xu, Z. Meng, and J. Lu, “Learning QoE of mobile
video transmission with deep neural network: A data-driven approach,”
IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1337–1348, Jun. 2019.

[8] G. Perna et al., “Online classification of RTC traffic,” in Proc. IEEE
18th Annu. Consum. Commun. Netw. Conf. (CCNC), 2021, pp. 1–6.

[9] A. J. Ferreira and M. A. Figueiredo, “An unsupervised approach to
feature discretization and selection,” Pattern Recognit., vol. 45, no. 9,
pp. 3048–3060, 2012.

[10] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,”
in Advances in Neural Information Processing Systems. Red Hook, NY,
USA: Curran Assoc., 2006, pp. 507–514.

[11] S. Nogueira, K. Sechidis, and G. Brown, “On the stability of fea-
ture selection algorithms,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6345–6398, 2017.

[12] J. Haug, M. Pawelczyk, K. Broelemann, and G. Kasneci, “Leveraging
model inherent variable importance for stable online feature selection,”
in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., 2020,
pp. 1478–1502.

[13] “Scikit-Learn Developers, DBSCAN.” 2019. [Online]. Available: https:/
/scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

[14] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surveys, vol. 46,
no. 4, pp. 1–37, 2014.

[15] V. Cerqueira, H. M. Gomes, A. Bifet, and L. Torgo, “STUDD: A
student-teacher method for unsupervised concept drift detection,” 2021,
arXiv:2103.00903.

[16] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., 2006,
pp. 535–541.

[17] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41,
nos. 1–2, pp. 100–115, 1954.

[18] “Scikit-Learn Developers, sklearn.ensemble.RandomForestRegressor.”
2019. [Online]. Available: https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestRegressor.html

[19] R. Stadler, R. Pasquini, and V. Fodor, “Learning from network device
statistics,” J. Netw. Syst. Manag., vol. 25, no. 4, pp. 672–698, 2017.

[20] R. Yanggratoke et al., “Predicting service metrics for cluster-based
services using real-time analytics,” in Proc. 11th Int. Conf. Netw. Service
Manag., 2015, pp. 135–143.

[21] “SAR.” 2016. [Online]. Available: http://linux.die.net/man/1/sar
[22] T. Bowden, B. Bauer, J. Nerin, S. Feng, and S. Seibold. “The

/Proc Filesystem.” 2000. [Online]. Available: http://www.kernel.org/doc/
Documentation/filesystems/proc.txt (Accessed: Jun. 5, 2022).

[23] F. Shahab. “Data Traces for ‘Efficient Learning on High-Dimensional
Operational Data’ Paper, CNSM 2019.” 2018. [Online]. Available: https:/
/github.com/foroughsh/CNSM2019-traces

[24] C. Gao, “Online learning with sample selection,” M.S. thesis, School
Electr. Eng. Comput. Sci., KTH Royal Inst. Technology, Stockholm,
Sweden, 2021.

[25] F. S. Samani, H. Zhang, and R. Stadler, “Efficient learning on high-
dimensional operational data,” in Proc. 15th Int. Conf. Netw. Service
Manag. (CNSM), 2019, pp. 1–9.

[26] R. Yanggratoke et al., “Predicting real-time service-level metrics from
device statistics,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manag.
(IM), 2015, pp. 414–422.

[27] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, “Scikit-multiflow: A
multi-output streaming framework,” J. Mach. Learn. Res., vol. 19, no. 1,
pp. 2915–2914, 2018.

[28] A. Gepperth and B. Hammer, “Incremental learning algorithms and
applications,” in Proc. Eur. Symp. Artif. Neural Netw. (ESANN), 2016,
pp. 1–12.

[29] V. Losing, B. Hammer, and H. Wersing, “Incremental on-line learning: A
review and comparison of state of the art algorithms,” Neurocomputing,
vol. 275, pp. 1261–1274, Jan. 2018.

[30] A. Bifet, R. Gavaldà, G. Holmes, and B. Pfahringer, Machine Learning
for Data Streams: With Practical Examples in MOA. Cambridge, MA,
USA: MIT Press, 2018.

[31] J. Haug and G. Kasneci, “Learning parameter distributions to detect
concept drift in data streams,” in Proc. 25th Int. Conf. Pattern Recognit.
(ICPR), 2021, pp. 9452–9459.

[32] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math.
Softw., vol. 11, no. 1, pp. 37–57, 1985.

[33] S. Khanchi, A. Vahdat, M. I. Heywood, and A. N. Zincir-Heywood,
“On botnet detection with genetic programming under streaming data
label budgets and class imbalance,” Swarm Evol. Comput., vol. 39,
pp. 123–140, Apr. 2018.

[34] R. S. Villaça and R. Stadler, “Online learning under resource con-
straints,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manag. (IM), 2021,
pp. 134–142.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[36] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

[37] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, 2014.

[38] J. Li et al., “Feature selection: A data perspective,” ACM Comput.
Surveys, vol. 50, no. 6, pp. 1–45, 2017.

[39] S. Solorio-Fernández, J. A. Carrasco-Ochoa, and J. F. Martínez-Trinidad,
“A review of unsupervised feature selection methods,” Artif. Intell. Rev.,
vol. 53, no. 2, pp. 907–948, 2020.

[40] M. Di Mauro, G. Galatro, G. Fortino, and A. Liotta, “Supervised feature
selection techniques in network intrusion detection: A critical review,”
Eng. Appl. Artif. Intell., vol. 101, May 2021, Art. no. 104216.

[41] J. Taghia, F. Moradi, H. Larsson, X. Lan, M. Ebrahimi, and
A. Johnsson, “Policy-induced unsupervised feature selection: A
networking case study,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., 2022. [Online]. Available: https://infocom2022.ieee-infocom.
org/program/accepted-paper-list-main-conference

[42] P. Zhou, X. Hu, P. Li, and X. Wu, “Online feature selection for
high-dimensional class-imbalanced data,” Knowl.-Based Syst., vol. 136,
pp. 187–199, Nov. 2017.

[43] N. AlNuaimi, M. M. Masud, M. A. Serhani, and N. Zaki, “Streaming
feature selection algorithms for big data: A survey,” Appl. Comput.
Inform., vol. 18, nos. 1–2, pp. 113–135, 2019.

[44] X. Wu, K. Yu, W. Ding, H. Wang, and X. Zhu, “Online feature selec-
tion with streaming features,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 5, pp. 1178–1192, May 2013.

2898 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

[45] S. Perkins and J. Theiler, “Online feature selection using grafting,” in
Proc. 20th Int. Conf. Mach. Learn. (ICML), 2003, pp. 592–599.

[46] S. C. Hoi, J. Wang, P. Zhao, and R. Jin, “Online feature selection
for mining big data,” in Proc. 1st Int. Workshop Big Data, Streams
Heterogeneous Source Min. Algorithms Syst. Program. Models Appl.,
2012, pp. 93–100.

[47] S. Y. Sekeh, M. R. Ganesh, S. Banerjee, J. J. Corso, and A. O. Hero,
“A geometric approach to online streaming feature selection,” 2019,
arXiv:1910.01182.

[48] J. Wang, P. Zhao, S. C. Hoi, and R. Jin, “Online feature selection
and its applications,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 3,
pp. 698–710, Mar. 2014.

[49] W. Shao, L. He, C.-T. Lu, X. Wei, and S. Y. Philip, “Online unsupervised
multi-view feature selection,” in Proc. IEEE 16th Int. Conf. Data Min.
(ICDM), 2016, pp. 1203–1208.

[50] U. M. Khaire and R. Dhanalakshmi, “Stability of feature selection algo-
rithm: A review,” J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 4,
pp. 1060–1073, 2022.

Xiaoxuan Wang (Graduate Student Member, IEEE)
received the M.Sc. degree in communication systems
from the KTH Royal Institute of Technology,
Stockholm, Sweden, in 2020, where she is currently
pursuing the Ph.D. degree. Before starting her Ph.D.,
she worked as a Research Engineer with KTH for
one year. Her main research interests include online
learning, feature, and sample selection.

Rolf Stadler (Senior Member, IEEE) received the
M.Sc. degree in mathematics and the Ph.D. degree
in computer science from the University of Zurich.
He is a Professor with the KTH Royal Institute of
Technology, Stockholm, Sweden, and the Head of
the Division of Network and Systems Engineering.
Before joining KTH in 2001, he held positions
with the IBM Zurich Research Laboratory, Columbia
University, and ETH Zürich. His group made con-
tributions to real-time monitoring, resource man-
agement, and automation for large-scale networked

systems. His current interests include data-driven methods for network engi-
neering and management, as well as AI techniques for cybersecurity. He was
the Editor-in-Chief of IEEE TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT from 2014 to 2017.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

