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Abstract—The growing interest in agentless and server-
less environments for the implementation of virtual/container
network functions makes monitoring and inspection of network
services challenging tasks. A major requirement concerns the
agility of deploying security agents at runtime, especially to effec-
tively address emerging and advanced attack patterns. This work
investigates a framework leveraging the extended Berkeley Packet
Filter to create ad-hoc security layers in virtualized architec-
tures without the need of embedding additional agents. To prove
the effectiveness of the approach, we focus on the detection of
network covert channels, i.e., hidden/parasitic network conver-
sations difficult to spot with legacy mechanisms. Experimental
results demonstrate that different types of covert channels can
be revealed with a good accuracy while using limited resources
compared to existing cybersecurity tools (i.e., Zeek and libpcap).

Index Terms—Code layering, network covert channels, eBPF,
detection, agentless systems.

I. INTRODUCTION

FOLLOWING the ground-breaking innovation wave that
has led to the network function virtualization era, the

telecommunication industry now requires the agility to rapidly
deliver new services and reduce their time-to-market. In
this respect, the growing interest in “cloud-native” solutions
pushes the evolution from Physical Network Functions to
Virtual Network Functions (VNFs) and Container Network
Functions (CNFs) [1]. This trend has been observed in
recent open-source platforms, including CORD, OSM, ONAP
and SONATA, not to mention the transition from traditional
function-reference points to service-oriented architectures in
the control plane of the 5G core [2]. Unfortunately, moving
network functions from physical hardware to virtual machines
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is easier than containerizing the software (e.g., due to the lack
of kernel acceleration). Monitoring and inspection for security
purposes is more difficult as well, especially for immutable
software images that cannot be modified at runtime.

Cloud-native cybersecurity platforms usually provide proac-
tive controls at deployment time on the integrity and safety
of the software. Yet, monitoring, inspection, and tracing
remain three crucial requirements for telco-grade transition to
Platform-as-a-Service (PaaS), especially to detect and miti-
gate attacks at the network boundary [3]. To this aim, in this
paper we explore the concept of code layering to instrument
VNF/CNF entities with monitoring and inspection capabili-
ties. We leverage the extended Berkeley Packet Filter (eBPF),
a framework that allows the run-time injection of code in the
Linux kernel. Though it was originally conceived for monitor-
ing system performance, eBPF has been increasingly adopted
to build network functions [4] and gain network insights. The
framework has also been ported to Windows, and it is cur-
rently supported by Facebook, Google, Isolavent, Microsoft,
and Netflix.1

To meet the typical demand for safe, immutable, and cer-
tified software images for telco-grade services, we propose
a framework for the management of a broad class of eBPF
programs. Our approach goes in the direction of agentless
systems in order to guarantee the ability to address challeng-
ing and emerging security threats. As a paradigmatic example,
we investigate the detection of network covert channels, i.e.,
parasitic communications cloaked in innocent-looking network
activities [5], [6]. For instance, covert channels can be used
to exfiltrate personal information, orchestrate nodes of a bot-
net, or implement multi-stage loading architectures to extend
malware functionalities [7]. Since modern intrusion detection
systems have major drawbacks when handling IPv6 traffic and
seldom can detect covert channels out of the box [13], [14],
assessing such a class of threats is of prime importance.
Besides, the widespread adoption of IoT and industrial control
systems requires flexible mechanisms against timing chan-
nels [15]. Unfortunately, embedding detection capabilities in
resource-constrained devices is extremely challenging, there-
fore suggesting to address them within VNFs.

There are virtually unlimited opportunities to implement
covert channels by altering protocol headers or packet tim-
ings, thus making their detection an open research question

1https://netflixtechblog.com/how-netflix-uses-ebpf-flow-logs-at-scale-for-
network-insight-e3ea997dca96
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[5], [7]–[10]. Specifically, a comprehensive and general solu-
tion to address covert channels would require to continuously
adapt inspection processes to new protocols and hiding pat-
terns, which is almost unfeasible with static agents in a
conventional security framework. Our framework allows to run
a rich set of eBPF programs for gathering condensed statistics
on header fields and timings that can be further processed and
combined with additional data to spot the presence of covert
channels.

In this perspective, the contributions of this work are:
• a framework for the inspection of virtualized systems

without the need of instrumenting VNF/CNF images or
deploying additional sidecar containers;

• a scalable and privacy-preserving method to spot covert
communications in protocol headers, with specific focus
on IPv6;

• an analysis of code-layering schemes to detect timing
channels via well-known techniques [12];

• an extensive vis-à-vis comparison among the proposed
code layering approach and de-facto standard tools, i.e.,
Zeek and libpcap.

We also point out that our investigation utilizes real traffic
traces, differently from other works only focusing on theo-
retical analysis or data obtained in experimental setups (see,
e.g., [14] and [16]).

Compared to the preliminary work [11], this paper has the
following improvements: a broader scope, which also includes
timing channels in addition to storage channels; extensive sen-
sitivity and performance analyses to evaluate the detection, the
resource consumption and the impact on packet processing;
comparisons with de-facto standard tools for network monitor-
ing; an architecture for monitoring services exploiting network
virtualization in PaaS/serverless environments.

The rest of the paper is structured as follows. Section II
showcases the reference architecture, Section III introduces the
threat model and covert channels, while Section IV describes
the experimental setup. Section V discusses the detection of
storage covert channels, whereas Section VI considers tim-
ing channels. Section VII evaluates the performance of our
approach compared to other tools and Section VIII reviews
the related literature. Lastly, Section IX concludes the work.

II. REFERENCE ARCHITECTURE

Code layering is a technique that stratifies the software into
a number of functional layers, which can be modified in an
independent manner. This allows to perform changes without
having to re-build and re-deploy the whole software infrastruc-
ture. Such a property is highly desirable, since the disruption
of a running service is an unacceptable practice for telco-
grade operations. To this aim, our approach exploits the eBPF
technology to implement low-level inspection and tracing
operations at run-time both in conventional or PaaS/serverless
environments, with negligible impact on service continuity.

Figure 1 depicts the reference layered architecture of the
proposed framework for monitoring and detection purposes.

The Inspection Layer is located in kernel space and con-
tains various eBPF programs implementing simple monitoring

Fig. 1. Reference layered architecture for the agentless monitoring and
detection of various threats.

and inspection tasks. It is explicitly designed to run multiple
eBPF programs without the need of changing the guest OS.
The Inspection Layer offers functionalities for parsing protocol
headers, recording inter-arrival times, as well as for creat-
ing custom statistics. In general, an eBPF program should
be simple and with a reduced footprint, especially in terms
of maximum number of instructions. Moreover, it should be
“safe”, e.g., it must be loop-free and not accessing memory out
of bounds. In fact, for the case of inspecting network traffic, an
eBPF program is triggered at the reception of each packet, thus
resource-intensive behaviors could lead to hangs or scalability
issues. Therefore, eBPF programs are preliminary verified and
then executed via a virtual machine implemented as a part of
the eBPF Runtime. Interaction with eBPF programs (including
management operations and data exchange) is possible through
a specific Kernel API.

The Management Layer runs in user space and represents
a sort of middleware entity responsible for loading/unloading
eBPF programs and collecting their data. To support the broad-
est range of inspection and monitoring tasks without having
to perform changes, it should be loosely-coupled with the
data structures used by eBPF programs to collect and store
information. Indeed, the Management Layer is the most crit-
ical block for building an agentless system, because it is
expected to collect generic data without any a-priori knowl-
edge of their structure. For instance, tools using eBPF such
as Cilium and Suricata put tight constraints on data struc-
tures, hence jeopardizing the possibility to shape the inspection
tasks to evolving threats and attacks. Notwithstanding, there
are also some examples of monitoring services that allow the
collection and creation of custom metrics from generic eBPF
programs, see, e.g., the dynamic network monitoring service
of Polycube.2 Such a design choice allows to include this
layer in closed-source, verified, and certified software images
of VNFs/CNFs or hosting infrastructure without precluding
the possibility to collect additional or different measures at
run-time. As said, interactions with eBPF programs can be car-
ried out through the Kernel API. However, it is also possible

2https://polycube-network.readthedocs.io/en/latest/services/pcn-dynmon/
dynmon.html.
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Fig. 2. Different types of network covert channels considered in this work.

to exploit higher-layer eBPF libraries, which can include
bindings for many languages, e.g., C, Python, Go, and Lua.

Finally, the Detection Layer entails specific algorithms run-
ning in user space to reveal and mitigate various threats
and attacks. Algorithms implemented in this layer are not
strictly part of standard security agents, since most secu-
rity information and event management architectures deploy
them in a remote centralized location. The Detection Layer
can be used to engineer a wide range of security tasks.
As possible examples of services using eBPF, we mention:
tracking traffic with a per-flow granularity with a reduced
footprint [18], identification of processes or nodes contacting
malicious servers without degrading the performance of the
inspected traffic/processes [19], and support of deep packet
inspection operations [3]. For the case of hidden communica-
tions, this layer can be used to detect network covert channels
as well as processes or threads locally leaking data [17].

III. THREAT MODEL

The threat model considered in this work deals with two
endpoints trying to remotely communicate in a cloaked man-
ner. This template is usually exploited by an attacker wanting
to exchange data from the host/device of the victim towards
a remote Command & Control (C&C) server while avoiding
detection or blockages. The attacker can inoculate a malware
(e.g., via phishing) and then use the covert channel to exfiltrate
sensitive information, orchestrate nodes of a botnet, implement
multi-stage loading architectures to extend at runtime offensive
functionalities, or bypass firewalls or filtering rules [7], [20].
To this aim, the covert sender hides information by altering an
overt traffic flow and creates a cloaked communication path.
By pre-sharing a hiding mechanism, the covert receiver can
then extract the secret data. The overt traffic flow could be
generated directly by the attacker co-located within the end
node(s) or altered in a Man-in-the-Middle fashion. The pro-
cess of hiding data should not disrupt the overt traffic or cause
(too many) visible alterations, otherwise the hidden commu-
nication attempts would be spotted. The properties of a covert
channel are usually tightly coupled. For instance, the higher
the throughput of the covert communication, the higher the
chance of revealing its presence due to alterations [9]. Two
major classes of network covert channels exist as depicted in
Figure 2 (see, [8] for a fine-grained taxonomy).

The first group consists of storage channels, which are cre-
ated by directly hiding information in header fields, altering

the structure of the packet, overwriting padding bits, or by
re-arranging optional fields, just to mention the most popu-
lar techniques. Literature abounds in works exploring how to
inject secret data in the TCP/IP suite [5], [8]. However, the
use of IPv6 has been partially neglected and, with its increas-
ing diffusion, it is expected to become a major target for
covert communications in the future [17]. Therefore, in this
work we consider the most effective storage network covert
channels exploiting IPv6 traffic, especially those targeting the
Traffic Class, Flow Label, and Hop Limit [16].
For the case of Traffic Class and Flow Label, we
consider an attacker directly writing data within such fields.
Instead, for the case of the Hop Limit, the secret is encoded
by introducing a pre-shared offset between two consecutive
values to encode ‘1’ or ‘0’. In Section V we will mostly con-
centrate on revealing channels in the Flow Label since it
offers more space to embed secrets (i.e., 20 bits compared
to the 8 bits of the Traffic Class and 1 bit of the Hop
Limit value modulation). Moreover, Quality of Service is
often enforced in border routers causing the disruption of the
secret hidden in the Traffic Class as well as its detection
owing to the presence of anomalous values. Similar considera-
tions can be drawn for the case of the Hop Limit, especially
for modern networks engineered via fewer but longer links,
thus reducing the range of values for the field and making
the presence of arbitrary values easier to spot. Therefore, the
Traffic Class and Hop Limit will be briefly addressed
in Section V-C.

The second group of covert channels consists of timing
channels, which are created by encoding secret data through
suitable alterations of the temporal evolution of network traf-
fic. Possible encoding schemes are based upon the alteration
of the throughput, introduction of statistical signatures in the
jitter or the manipulation of the inter-packet time. Usually, tim-
ing channels are protocol-agnostic and mainly implemented
at the network layer or by altering the error rates charac-
terizing the data link [12], [21]. Since we are interested in
covert channels with an Internet-wide scope, in Section VI
we will address timing channels exploiting the alteration of
the time gap between consecutive datagrams. Compared to
storage channels, the detection of timing channels is more
coherent and investigated [5], [21]. Thus, we will resort to
a known approach instead of proposing novel mechanisms.

IV. EXPERIMENTAL SETUP

For the sake of evaluating code layering for the detec-
tion of network covert channels, we developed the reference
implementation depicted in Figure 3, which is composed as
follows:

• Inspection Layer: it contains a set of eBPF programs
that can create statistics on the usage of header fields
and packet inter-arrival times for both IPv4/v6 traffic.
Programs3 collecting data to address storage channels are
based on a modified version of bccstego, i.e., a suite
of tools able to generate filters for inspecting network
and higher-level protocols like TCP/UDP [22]. Instead,

3https://github.com/mattereppe/bccstego
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Fig. 3. Experimental setup leveraging run-time code augmentation for the
detection of covert channels.

to address timing channels, we created a novel eBPF pro-
gram4 collecting time information and implementing the
approach presented in [12] within the kernel;

• Management Layer: to load and unload eBPF programs
as well as to collect measures, we implemented ad-hoc
scripts and user-land utilities taking advantage of the
BPF Compiler Collection (BCC) library.5 This layer also
includes functionalities for setting runtime parameters;

• Detection Layer: to spot storage covert channels, we
developed a method based on “condensed” statistical
indicators, e.g., the frequency/number of values for a
specific field provided by the Inspection Layer. Instead,
for the case of timing channels, we simply consider
regularity metrics presented in [12]. Details on the detec-
tion methodology will be provided in Section V and
Section VI, respectively.

Concerning the threat model, we considered malicious
endpoints communicating through several types of network
covert channels in different scenarios targeting large traf-
fic aggregates. To run tests, the communicating peers have
been implemented via two virtual machines running Debian
GNU/Linux 10 (kernel 4.20.9), with 1 virtual core and 4 GB
of RAM. A third virtual machine with the same characteris-
tics has been deployed to route and inspect traffic as well as to
implement the code layering approach depicted in Figure 3. In
our trials, the various eBPF programs have been attached to the
output queue, thus inspecting the egress traffic. However, this
does not lead to a loss of generality, since our implementation
can also handle programs attached to the input queue without
any meaningful difference in terms of performances. For the
sake of comparison, the intermediate node has been also used
to run a modified version of Zeek6 and a pure user-space tool
for gathering data with libpcap. To run the virtual machines, a
host with a 3.60 GHz Intel i9-9900KF CPU, 32 GB of RAM
and Ubuntu 20.4 (Linux kernel 5.8.0) has been used. In all
trials, to quantify the footprints in terms of CPU and memory,
we used pidstat, which is part of the sysstat collection.7

4https://github.com/Ocram95/cabuk_eBPF
5BPF Compiler Collection. Available: https://github.com/iovisor/bcc.
6The modification consists in a patch for inspecting IPv4/v6 headers.

Available: https://github.com/mattereppe/zeek-stego
7http://sebastien.godard.pagesperso-orange.fr/index.html

Apart eBPF programs written in ANSI C, we used Python to
implement loading functionalities, the various user-space dae-
mons as well as supporting tools for gathering and analyzing
obtained data.

To conduct tests in realistic network conditions, we used
traffic collected on an OC192 link in different condi-
tions/periods made available by the Center for Applied Internet
Data Analysis (CAIDA).8 Without loss of generality and to
prevent burdening our trials, we removed packets with a
Flow Label value equal to 0, ICMPv6 traffic, and single-
datagram UDP conversations. In our experiments, we used
the slice captured on March 15, 2018 from 14:00 to 15:00
CET between Sao Paulo and New York. After processing, we
obtained a 30-minute long dataset composed of ∼15,000 TCP
and UDP conversations. To implement storage covert chan-
nels, we directly injected various secret messages in the dumps
provided by CAIDA [23]. Instead, for the case of timing chan-
nels, we used iPerf39 to generate ad-hoc flows. The approach
in [23] has been used again to modulate inter-packet times and
encode the secret information. Traffic generated via iPerf3 has
been also used to compare the performance of the proposed
agentless approach against Zeek and libpcap.

As it will be detailed later, the detection of storage covert
channels can also take advantage of other network monitor-
ing tools. To this aim, in our trials we adopted nProbe
Enterprise M v. 9.5.21071510 to inspect the traffic in real-
time and compute the number of active IPv6 flows. According
to preliminary tests, the number of active flows reported by
nProbe is insensitive to the presence of IPv6 covert channels.
This further supports the need of teaming up with a specific
solution when such channels have to be detected.

V. DETECTION OF STORAGE COVERT CHANNELS

This section showcases the detection of storage covert chan-
nels targeting IPv6 conversations. As a paradigmatic example,
we will discuss the case of the Flow Label, since it requires
to handle a 20-bit space leading to a significantly higher band-
width compared to other fields. Thus, for the Hop Limit and
the Traffic Class we limit to a simpler analysis. We
point out that the proposed mechanisms could be further
extended to tackle channels targeting other fields/protocols.

A. Detection of Channels Targeting the Flow Label

The detection of storage channels targeting the Flow
Label is based on the coarse-grained estimation of the num-
ber of IPv6 conversations. Since each IPv6 conversation is
identified via a fixed, unique Flow Label value generated
according to a uniform distribution [24], this can provide a
rough estimation of the number of flows. The resulting met-
ric can be then compared against measurements collected by
network monitoring tools or used to “reinforce” indicators
provided by standard firewalls or intrusion detection systems.

8The CAIDA Anonymized Internet Traces Dataset (April 2008 - January
2019) - Available online: https://www.caida.org/data/monitors/passive-
equinix-nyc.xml.

9https://iperf.fr/
10https://www.ntop.org/products/netflow/nprobe/
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Fig. 4. Detection of a covert channel targeting the Flow Label when transmitting 21.25 kbytes of secret data. The red area denotes when the covert
communication is present.

Without loss of generality, we assume to have periodical mea-
surements on the number of active IPv6 flows in the network,
denoted as F, which is commonly provided by tools for
network monitoring.

To compute such an estimation, we engineered a lightweight
packet inspection mechanism suitable for being implemented
with eBPF. In essence, the kernel has been extended to count
the occurrence of Flow Label values by setting a hook
point in the tc queue management. To guarantee privacy and
scalability requirements as well as to prevent performance
degradation for large traffic volumes, the 20-bit space of
possible values is mapped into a bin-based data structure com-
posed of B equally-capable bins. Accordingly, each bin has
a size of 220/B values. The mapping is based on the first
log2 B bits of the Flow Label, which are used to index the
array of bins. Data is then periodically collected by a user-
space utility every Δt seconds and the bin-based structure
is emptied to avoid saturation: this is ruled via a time win-
dow with a duration denoted with T seconds. Parameters Δt
and T allow to adjust the proposed approach to “follow” the
dynamic of birth/death of covert communications and match
measurements/feedback information provided by external tools
with different timings, respectively. Therefore, the number of
“dirty” bins, i.e., bins with a non-zero value, provides an esti-
mate of the number of IPv6 conversations, denoted in the
following with N. This is only an approximation: if differ-
ent Flow Label values share the same bin, this will cause
a collision. Greater values of B reduce such a probability and
improve the precision, but at the price of a higher memory bur-
den. As an example, let us consider the case of B = 212 bins
with a size of 28 values. If a packet with a Flow Label value
equal to 337 (i.e., 0x00151) is observed, the second bin is
flagged since it is the one containing values in the 256 − 511
range (indexed by the 0x001 prefix). Accordingly, N is
incremented by 1.

The presence of a covert communication could be revealed
by comparing N and F, e.g., to understand if the relation
N > F holds. However this could be inaccurate, especially
due to the saturation of a bin and the coalescing of entries
caused by a limited value of B. For this reason, we introduced

a scale factor denoted with α to balance the flow/bin propor-
tion. The resulting detection relationship is then αN > F .
Unfortunately, using only a threshold could lead to an unsta-
ble behavior, that is, the detector over/under reacts when in
the presence of minimal fluctuations in the number of flows.
For this reason, we added a hysteresis parameter ξ.

For the sake of illustrating the proposed detection mecha-
nism, Figure 4 showcases an example considering the exfil-
tration of 21.25 kbytes of data. In more detail, Figure 4(a)
depicts the outcome of the detection for different values of B
when α = 0.9 and T = 30 seconds. As shown, smaller bins
(i.e., when B increases) allow to better spot the covert chan-
nel but at the price of more false positives. On the contrary,
coarse-grained bins (e.g., for B = 212) tend to underesti-
mate the presence of an hidden communication. A possible
workaround could exploit a trade-off between the number of
bins and the “frequency” of measures. Figure 4(b) reports the
results for T = 15 seconds. As shown, smaller timeframes
cause a more frequent “reset” of the bin-based scheme leading
to an underestimation of the number of active IPv6 conversa-
tions. Thus, it is not possible to directly compare N with the
measurement F provided by nProbe. The parameter α can
correct this mismatch by “magnifying” the obtained values
but at the price of errors leading to false positives. In general,
the “optimal” matching between the observed traffic and the
number of bins is critical since it influences both the “stabil-
ity” and the performance of the detection. Thus, Section V-B
discusses in detail the design of the various parameters.

B. Sensitivity Analysis

Detecting storage covert channels is subject to many trade-
offs. For the case of the Flow Label, there is the need of
balancing the granularity of the gathering phase (i.e., Δt , T
and B), the quality of the estimation (i.e., N and α), as well as
the resources required to run additional logic. Therefore, this
round of tests aims at performing a sensitivity analysis of the
framework.

For the sake of considering a wide-range of use cases,
we designed three different attack scenarios. Specifically,
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TABLE I
COMBINED CPU AND MEMORY USAGE FOR DIFFERENT VALUES OF B AND Δt

Fig. 5. Accuracy of the bin-based detection mechanism with different values of B for all the considered scenarios.

Scenario 1 considers an exfiltration attempt modeled via the
transmission of a file requiring to target 8,500 IPv6 packets
(i.e., 21.25 kbytes). The used overt IPv6 conversation had an
average bitrate of 12 kbit/s leading to an exfiltration time of
∼10 minutes. Scenario 2 models different channels alternat-
ing in time, as it happens in the case of the orchestration of a
botnet [20]. To this aim, we used three different covert chan-
nels activating in a timeframe of 15 minutes to exchange data
requiring 2,500, 6,000, and 7,500 IPv6 packets (i.e., 6.25, 15,
18.75 kbytes, respectively) within overt flows of 12 kbit/s,
1,600 kbit/s, and 100 kbit/s, respectively. Lastly, Scenario 3
considers an APT targeting a datacenter or a subnetwork, thus
producing multiple covert channels towards a C&C server. In
this case, we used 10 concurrent covert communications tar-
geting each one of 800 IPv6 packets (i.e., 2 kbytes). After
10 minutes the number of connections is halved, for instance,
due to reboots or crashes/shutdowns of compromised nodes.

As a first step, we evaluated the impact of the number of
bins B and the sampling time Δt ruling the kernel-to-user-
space copy of collected values to elaborate on constraints
of the granularity of the detection process. To this aim, we
replayed the considered traffic trace towards the node run-
ning the eBPF framework. The related CPU and memory
usage have been collected with a granularity of 10 samples
per minute and average values have been computed. Table I
shows the obtained results. To avoid burdening the table, we
report values for B = 28 (as they represent the case of mea-
suring the Hop Limit and Traffic Class), B = 212

for an intermediate reference, and for B > 216. As shown, the

footprint of the user-space program collecting results increases
with the “precision” of the data gathering (i.e., B and Δt).
Despite the absence of configurations leading to an unbounded
utilization of resources, a major bottleneck is caused by the
operations needed to copy data from the kernel space to user-
land. This is especially true for B = 220: in fact the copy
requires ∼14 seconds, thus causing a “misalignment” from
real Flow Label values and those collected in the mean-
time. Indeed, also the granularity of Δt is subject to careful
design choices. Even if a precise tracking of the abused flow is
desirable, this should be impeded by difficulties in gathering
data in a fine-grained manner. For instance, a typical time-
frame for computing analytics of large-scale links/networks
is in the range of 30−90s, thus relaxing tight constraints on
Δt (see, e.g., [25] for timing constraints for scalable classifi-
cation). Therefore, for the sake of brevity, in the rest of the
paper we will limit our analysis to Δt = T = 30 s.

Concerning the possible tradeoff among B and the abil-
ity of spotting hidden communications within the bulk of
traffic, Figure 5(d) provides a comprehensive overview for
the impact of B on the accuracy. In general, as shown in
Figure 5(a), best results are achieved for Scenario 1 mainly
owing to the presence of a unique covert communication lead-
ing to a non-negligible volume of artificial Flow Label
values. Instead, when in the presence of hidden transfers char-
acterized by ON/OFF or “fading” behaviors, the accuracy
decreases accordingly, as reported in Figures 5(b) and 5(c).
Even if higher values of B typically lead to a better accu-
racy, the proposed approach is able to capture the presence
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TABLE II
IMPACT OF B AND ξ OVER THE ACCURACY OF THE DETECTION (ACC), THE TRUE POSITIVE RATE (TPR), AND THE TRUE NEGATIVE RATE (TNR)

of storage covert channels also with a reduced number of
bins (see Figure 5(d) for the case of B = 214). This can
be ascribed to the parameter α, which can compensate the
under/overestimation of the observed values of the Flow
Label used to flag the various bins.

The accuracy may not be sufficient to capture the
performance of the proposed approach in terms of false/true
positive/negative events. Therefore, Table II reports the true
positive rate (TPR) and the true negative rate (TNR) col-
lected when using various values of B for α∗ = 0.9, i.e.,
the “optimal” α leading to the best performance. Moreover,
as depicted in Figure 4, the presence of a threshold-based rule
may lead to an unstable behavior of the detection. To mitigate
such an issue, we also investigate the impact of ξ implement-
ing a sort of hysteresis for the comparator rule αN > F ,
i.e., the outcome of the detection changes according to +ξ
and −ξ switching thresholds à-la Schmitt. Specifically, it is a
lower/upper bound considering F ± ξ with ξ = 1%, 5%, and
10% of its current value. For the sake of brevity, we limit our
analysis to B > 215.

As shown, for the case of Scenario 1, the parameter ξ
allows to improve the overall detection, especially in terms
of TNR. However, greater values of ξ may cause a decay of
the accuracy as they make harder to switch the outcome of
the detector, thus remaining in a “wrong” state. For the case
of Scenario 2, the poor performance of the TPR affects the
accuracy, despite the various B and ξ. This can be ascribed to
the presence of a low-throughput channel reducing the effec-
tiveness of the detection mechanism, i.e., the TPR remains
in the 45.45 − 68.18 range. A similar behavior characterizes

Scenario 3: again, ξ improves the TNR. Yet, the presence of
many covert channels halving their activity influences the TPR
and the accuracy mainly due to the reduced volume of altered
Flow Label. Similarly for the case of Scenario 1, higher
values of ξ prevent to switch from positive to negative (and
viceversa) when the throughput of covert data changes in time.

C. Channels Targeting Other IPv6 Fields

When handling less capacious fields, the bin-based approach
can still be used to implement simpler yet effective counters
to reveal hidden communications. Specifically, for the case
of the Traffic Class and Hop Limit, by creating a
structure with B = 28, it is possible to perform a one-to-
one map between observed values and “dirty” bins. To this
aim, we performed an experimental campaign considering the
same background traffic used for trials in Section V-B. For the
Traffic Class, we considered a threat embedding a mali-
cious command of 512 bytes as used by the Silence Trojan to
download and execute a PowerShell script within a flow with
the average throughput of 750 bytes/s. Instead, for the Hop
Limit, we assumed an attacker wanting to deliver a stage
of the Emotet malware11 of 964 bytes within a flow with the
average throughput of 1.5 Mbytes/s. The bits 0 and 1 have
been encoded by modulating the Hop Limit with values 10
and 250, respectively.

11The used malicious payloads are part of the Fileless Command Lines
public collection available online at: https://github.com/chenerlich/FCL/blob/
master/Malwares/Silence.md.
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Fig. 6. Number of “dirty” bins observed when inspecting the Traffic
Class and Hop Limit.

Figure 6 depicts the collected results. Specifically,
Figure 6(a) deals with a covert channel built by embedding
secrets in the Traffic Class. As shown, the number of
non-empty bins varies according to the different Traffic
Class values within the bulk of traffic. When the targeted
IPv6 conversation is active, the number of bins is higher due
to the presence of the secret, leading to a sort of “signature”.
On the contrary, for the case of Hop Limit (see Figure 6(b)),
this is less evident, especially due to the used hiding strategy
not directly storing the secret. Hence, a more sophisticated
approach is needed: this is part of our ongoing research.

VI. DETECTION OF TIMING CHANNELS

This section investigates how the proposed agentless
approach can be used to reveal the presence of timing covert
channels. Specifically, we are interested in understanding
whether the detection logic can be partially embedded within
eBPF mainly to avoid the need of further moving and pro-
cessing data in user space. To this aim, we implemented
a de-facto standard algorithm borrowed from the literature.
Originally introduced in [12], the idea is to compute a measure
of regularity for a set of variances built by grouping pack-
ets to make pattern-like behaviors emerge. Patterns can then
be used to reveal the presence of hidden information causing
“anomalous” inter-packet times. In essence, for each window
composed of W packets, the algorithm in [12] calculates the

standard deviation σ of the related inter-packet time values.
Then, it computes the pairwise differences between σi and
σj , for each pair i, j. The final regularity measure is given by
computing the overall standard deviation for all the pairwise
differences. Unlike the original version, our implementation
checks the regularity metric on-line, i.e., a flow is evaluated
on a semi-continuous basis. Unfortunately, due to eBPF limi-
tations in terms of stack size and number of instructions, the
regularity measure has been approximated (e.g., the lack of
sqrt() and other mathematical operations required to imple-
ment approximate counterparts). Moreover, to tame memory
consumption, the regularity indicator is periodically reported
to prevent the need of “unrolling” too many operations. In the
following, we define such a “control” parameter as Q, i.e., the
number of values for σ considered for each computation of
the regularity metric.

A. Numerical Results

To evaluate our code layering mechanism when used to
detect timing channels, we performed trials with hidden con-
versations nested within the inter-packet time of a ∼7,000
datagrams flow. To make our investigation more comprehen-
sive, we present results obtained with IPv4 traffic: similar
results have been obtained with IPv6. To test the covert chan-
nel, we sent a malicious command of 304 bytes used by the
GZipDe malware. According to [12], to encode the value 1,
we inflated the inter-packet time for two adjacent datagrams
by 0.06 seconds, which ensures a character accuracy of 98%.
Instead, the 0 value is encoded by maintaining the original
timing of the overt traffic. To evaluate the impact of the in-
kernel detection algorithm, we measured the CPU and the
memory usage, as well as the packet loss and the jitter of
the processed traffic. For each trial, we considered flows with
various bitrates, i.e., 10 kbit/s, 100 kbit/s, and 1 Mbit/s. We
also evaluated the impact of the number of packets W used to
compute the standard deviation, which somewhat constitutes
the granularity of the approach. Specifically, we considered
W = 100 and W = 250 as suggested in [12]. Results indicate
that our agentless approach does not introduce further delay
or packet loss on the inspected traffic. Indeed, the low bitrate
characterizing timing channels plays a major role, especially
it does not require tight computational constraints. This is fur-
ther supported by CPU and memory consumptions, which are
limited to ∼0% and ∼114 Mbytes, respectively, throughout
all the trials.

To understand the ability of the eBPF-based code layer-
ing approach to handle large traffic volumes, we performed
an additional round of tests considering different packet sizes
and higher traffic rates. Specifically, we considered datagrams
ranging from 16 to 65,507 bytes, in order to consider both
worst and best cases in terms of packet processing. Although
the fragility of timing channels limits the allotted throughput,
the proposed approach could be deployed to monitor Internet-
scale deployments (e.g., a datacenter). In this perspective, we
also investigated the impact of W and Q to assess the scal-
ability of the proposed agentless implementation. Table III
contains the CPU utilization. In more detail, the code layering
mechanism does not account for major overheads. Concerning
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TABLE III
CPU USAGE FOR VARIOUS TRAFFIC RATES, W, Q, AND DIFFERENT PACKET SIZE

the overall memory consumption, it is always bounded to
∼110 Mbytes and almost constant. This is due to the limited
amount of memory needed to store the Q standard deviations
and the W inter-packet times. Lastly, we also measured the
delay and jitter of the traffic processed with the eBPF code.
Overheads caused by the inspection are almost negligible for
all the considered configurations.

VII. PERFORMANCE COMPARISON

A main goal of our framework is to run agentless detection
processes without relevant performance degradation. Hence,
this section presents a comparative analysis with well-known
monitoring tools and technologies for network inspection.
Specifically, we compared our agentless approach against
implementations of the bin-based technique with Zeek and
ANSI-C/libpcap. For the sake of comparison, we also con-
sidered a reference scenario, denoted as “baseline” in the
following, where no traffic inspection is performed (i.e., no
tools were running) in order to have a lower bound. Indeed,
monitoring network traffic could interfere with the overall
Quality of Service/Experience (especially by impacting on the
packet loss, bitrate, and latency of delay-sensitive applications)
or require non-negligible computing and storage resources.
Therefore, we considered the impact of the packet size and
transmission rate for UDP flows as well as the Maximum
Segment Size (MSS) for TCP streams. For the packet, we
considered four different values: 16 bytes modeling tiny and
fragmented traffic, 1,470 bytes modeling a full utilization of
the Ethernet frame, 8,192 bytes modeling IPv6 jumbo frames,
and 65,507 bytes modeling maximum size allowed by UDP
and representing the “best” condition for forwarding.12 For the
MSS, we selected four different values as well, by doing sim-
ilar considerations for the case of UDP, i.e., we used 88 bytes,
536 bytes which is the the minimum value that should be used
on IP links, 1,460 bytes for the full Ethernet utilization, and
9,216 bytes.

Concerning the transmission rates, we considered traffic
loads ranging from 10 kbit/s to 10 Gbit/s. However, it turned
out that our testbed was not able to sustain rates higher
than 3 Gbit/s. This has to be ascribed to a limitation of

12The maximum size of 65,507 bytes is only feasible on loopback
interfaces. Yet, it is of interest since is often used by virtual machines running
on the same host.

our softwarized implementation but does not represent a con-
straint. In fact, production-quality deployments usually rely
upon some form of acceleration that can sustain more than
10 Gbit/s of traffic [26].

For the sake of brevity and to avoid burdening results, in
the following we only report and discuss the case of gathering
information for the Flow Label when B = 212 and for
loads up to 1 Gbit/s. Yet, similar results have been observed
for the case of the Traffic Class and Hop Limit.

A. Impact on Packet Transmission

Figure 7 investigates how the inspection process behaves
in the presence of different packet sizes and bitrates. In more
detail, Figure 7(a) shows that the proposed method has a very
limited impact on the transmission rate, for the whole range of
relevant parameters. Specifically, libpcap-based tools duplicate
packets via raw sockets, hence decoupling additional process-
ing from forwarding operations (i.e., inspection is done on a
copy of the packet). However, even if eBPF programs act on
the forwarding path, the impact is limited, thus the resulting
behavior does not deviate from the considered baseline condi-
tion. Figure 7(b) depicts results for the packet loss, which is
affected by the bitrate, as expected. In general, the causes of
the losses are due to tiny packets causing a major overhead,
and limitations of our setup to handle rates in the 1 Gbit/s
range. For the sake of brevity, we omit results concerning
the jitter. The measured variation for the inter-packet delay is
∼0.1 ms for all the considered tools, thus making our approach
feasible also to search for covert channels in multimedia or
time-sensitive flows.

Finally, Figure 8 showcases the performances in terms of
rates achieved when using the TCP/IPv6 traffic. Coherently,
higher bitrates are possible with larger MSS especially due to a
beneficial impact on the TCP flow control mechanism. Again,
our approach performs similar to the case of Zeek and libp-
cap. Thus, our eBPF-based mechanism does not affect packet
transmission in a significant way.

B. CPU and Memory Usage

CPU and memory utilizations are important to understand
the footprint of the various frameworks used for the detec-
tion of network covert channels. Figure 9 reports a detailed
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Fig. 7. Characteristics of the UDP flow after the inspection (the graph is in
log scale).

Fig. 8. Measured bitrate for a TCP flow after the inspection (the graph is
in log scale).

breakdown of the used CPU. Our eBPF-based approach
accounts for a small overhead with respect to the baseline.
Both the libpcap-based tool and Zeek require more CPU at
higher bitrates, whereas our framework has a more “stable”
demand. Similar considerations hold for the case of TCP as
reported in Figure 10. Even if the Python language is not the
best option in terms of processing speed, our agentless mech-
anism performs better than the other tools and limits the used
CPU compared to the baseline.

Concerning the used memory, in our trials we investi-
gated the overall memory utilization including the Virtual
Memory Size (VMS), the Resident Set Size (RSS) representing

the size of physical memory including shared libraries, the
Proportional Set Size (PSS) capturing the size of physical
memory with proportional attribution to shared libraries, and
the Anonymous utilization (Anon) containing the stack and
other allocations. Figure 11 depicts the obtained results. As
shown, Zeek has a larger memory footprint, but only a minimal
part is allocated to the RAM. The memory allocated for our
eBPF-based approach is larger because of the many libraries
needed by the Python runtime. Instead, the ANSI-C implemen-
tation based on libpcap has a negligible memory requirement
owing to the efficient nature of the library and the use of a
very minimal fraction of other calls, mainly for I/O operations.

VIII. RELATED WORK

Even if eBPF is a relatively novel technology, it has been
already considered for a variety of security-related tasks or to
improve various software components. As an example, [19]
investigates how to extend the ntopng network monitor-
ing tool with events generated by the libebpfflow, which
allows to enrich network-layer data with system metadata (e.g.,
source/destination IP addresses are matched against source
and destination processes and system users). The goal is to
support the definition of custom policies to drop unwanted
connections. Besides, eBPF can be used to break up the con-
ventional packet filtering model in Linux. This can be achieved
by moving the inspection process in the eXpress Data Path,
where ingress traffic can be processed before the allocation
of kernel data structures, thus leading to performance bene-
fits [27]. This paradigm can be used to provide a “first line of
defense” against unwanted traffic such as flows with spoofed
addresses or DoS/DDoS attacks [28].

In the context of network tracing, [29] proposes a framework
where a master node translates user inputs into configuration
files to feed eBPF agents for monitoring network packets of
specific connections at given tracepoints (e.g., virtual network
interfaces). Obtained measurements are then collected and
analyzed in a centralized manner. In [30], the authors pro-
pose an eBPF-based implementation for monitoring the traffic
exchanged between virtual machines without the need of spe-
cific hardware appliances. Results indicated that duplicating
packets with an eBPF program attached to a hook in the
tc achieves better throughput than native port mirroring of
Open vSwitch, especially for large data units. The idea clos-
est to our approach is presented in [31] showcasing a system
for deploying eBPF programs and collecting their measure-
ments in containerized user-space applications. To this aim,
the framework exploits tools like Prometheus, Performance
Co-Pilot, and Vector, as well as specific eBPF programs
and various userland counterparts. However, differently from
our work, [31] does not consider covert communications or
manipulations of network artifacts. Rather, it focuses on mon-
itoring the garbage collector, identifying HTTP traffic, and
implementing IP whitelisting.

In general, detecting a network covert channel requires
to develop protocol- and method-dependent metrics [5].
Therefore, a vast part of the literature focuses on specific
injection mechanisms or protocols. Owing to its ubiquitous
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Fig. 9. Cumulative CPU usage of the intermediate node for various packet sizes and bitrates when inspecting a UDP flow.

Fig. 10. Cumulative CPU usage for a TCP flow.

availability and multiple exploitable behaviors, many works
address the problem of revealing hidden communication nested
within the TCP. For instance, [32] proposes a statistical model
to spot data injected in the Initial Sequence Number field
used to synchronize peers. For similar reasons, the mitiga-
tion of channels exploiting the DNS has been largely studied
as well, especially due to its wide adoption in data exfil-
tration campaigns or botnet orchestration (see [33] and the
references therein for a discussion on the real-time detec-
tion of end-to-end DNS covert channels). Even if there is
no evidence of real-world attacks using Internet telephony to
covertly exfiltrate data, a relevant amount of works investigated
how to mitigate covert channels targeting VoIP conversations.
As a possible example, [34] deals with the Session Initiation

Fig. 11. Memory allocation for the different tools.

Protocol when exploited to move secret data and highlights
the need of performing protocol-dependent parsing to spot
the anomalous information. For the case of voice traffic, the
work [35] reviews a plethora of mechanisms to tame covert
communications within VoIP conversations, e.g., analyzing
audio artifacts to spot data embedded in voice samples, search
for anomalous traffic features to reveal encoding scheme using
packet losses or manipulations of the delays, as well as
deploy nodes buffering and padding traffic to disrupt para-
sitic information in a blind manner. Recent surveys [7], [10]
highlighted the need of shifting towards more general indi-
cators or exploiting features that can bring together different
protocols, such as anomalous energy usages or signatures in
the execution of processes running in end nodes.
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For the specific case of detecting IPv6 covert chan-
nels, the literature already offers some previous attempts.
In more detail, [36] proposes a machine-learning technique:
unfortunately, this requires suitable datasets for training the
detector. The work [13] deals with the leakage of hidden
information through the manipulation of v4/v6 transitional
mechanisms, which is definitely outside the scope of our work.
Additionally, [17] and [14] provide preliminary assessment of
mechanisms to detect IPv6 covert channels and also empha-
size the inadequacy of standard network intrusion detection
tools to handle such threat out of the box.

Lastly, the protocol-agnostic nature of timing channels leads
to a more coherent and homogenous literature. Despite the
wide-array of used methodologies (e.g., AI-capable frame-
work or ad-hoc metrics), the problem of revealing hidden or
parasitic conversations within timing feature has been better
investigated compared to other type of channels, see [21] for
a comprehensive survey on the topic.

Compared to previous approaches, our idea allows to con-
sider different covert channels within a unique framework.
Owing to the flexibility of eBPF in handling various traffic
features, the inspection process can be extended or adapted to
consider different types of storage covert channels. Differently
from past works available in the literature only addressing a
single protocol or pursuing generalization via AI and data-
intensive approaches, our bin-based data structures prevents to
store and process sensitive details even with a per-flow gran-
ularity. This design allows to guarantee privacy requirements,
while taming the computational burden. For what concerns
the detection, revealing a class of channels only accounts for
the creation of a simple detection rule, which can also take
advantage of measurements already provided by network mon-
itoring tools commonly deployed in medium- and large-sized
scenarios.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented a code layering frame-
work for the detection of storage and timing covert channels.
Specifically, we engineered an agentless monitoring architec-
ture and developed various eBPF programs to gather data, map
obtained values in suitable data structures, and implement a
reference detection mechanism. Collected results indicate that
code layering can be effectively and efficiently used to imple-
ment monitoring mechanisms in PaaS/serverless environments,
as well as to implement a complete detection “pipeline” for
covert channels. Moreover, the required resources make the
use of eBPF a convenient choice, especially if compared with
tools like Zeek or libpcap.

Future works aim at using the proposed approach to con-
sider other channels and different threats (e.g., DDoS or
cryptojacking campaigns). A part of our ongoing research con-
cerns the utilization of eBPF for actively manipulating traffic,
e.g., to sanitize flows and disrupt the channels by overwrit-
ing fields or restoring them to a standard value. To remove
some limitations of the detection scheme, we are investigat-
ing the use of AI to face more sophisticated threats (e.g.,
modulation of values in the Hop Limit), also to reduce the

dependance on parameters requiring a suitable design (e.g., α
and ξ). Concerning the technological viewpoint, future devel-
opments aim at refining the engineering and implementation
of the agentless framework, especially for its deployment in
production-quality environments. Obtained performance sug-
gested the possibility to rewrite part of the framework in
ANSI-C and take advantage of libbpf to prevent possible
performance bottlenecks.
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