
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022 2333

Intrusion Prevention Through Optimal Stopping
Kim Hammar , Graduate Student Member, IEEE, and Rolf Stadler , Senior Member, IEEE

Abstract—We study automated intrusion prevention using rein-
forcement learning. Following a novel approach, we formulate the
problem of intrusion prevention as an (optimal) multiple stop-
ping problem. This formulation gives us insight into the structure
of optimal policies, which we show to have threshold proper-
ties. For most practical cases, it is not feasible to obtain an
optimal defender policy using dynamic programming. We there-
fore develop a reinforcement learning approach to approximate
an optimal threshold policy. We introduce T-SPSA, an efficient
reinforcement learning algorithm that learns threshold policies
through stochastic approximation. We show that T-SPSA out-
performs state-of-the-art algorithms for our use case. Our overall
method for learning and validating policies includes two systems:
a simulation system where defender policies are incrementally
learned and an emulation system where statistics are produced
that drive simulation runs and where learned policies are evalu-
ated. We show that this approach can produce effective defender
policies for a practical IT infrastructure.

Index Terms—Network security, automation, optimal stopping,
reinforcement learning, Markov decision process, MDP, POMDP.

I. INTRODUCTION

AN ORGANIZATION’S security strategy has tradition-
ally been defined, implemented, and updated by domain

experts [1]. Although this approach can provide basic security
for an organization’s communication and computing infras-
tructure, a growing concern is that infrastructure update cycles
become shorter and attacks increase in sophistication [2], [3].
Consequently, the security requirements become increasingly
difficult to meet. To address this challenge, significant efforts
have started to automate security frameworks and the pro-
cess of obtaining effective security policies. Examples of this
research include: automated creation of threat models [4];
computation of defender policies using dynamic program-
ming and control theory [5], [6]; computation of exploits
and corresponding defenses through evolutionary methods [7];
identification of infrastructure vulnerabilities through attack
simulations and threat intelligence [8], [9]; computation of
defender policies through game-theoretic methods [10], [11];
and use of machine learning techniques to estimate model
parameters and policies [12], [13].

Manuscript received 30 October 2021; revised 1 April 2022; accepted
16 May 2022. Date of publication 20 May 2022; date of current version
12 October 2022. This research has been supported in part by the Swedish
armed forces and was conducted at KTH Center for Cyber Defense and
Information Security (CDIS). The associate editor coordinating the review
of this article and approving it for publication was C. Fung. (Corresponding
author: Kim Hammar.)

The authors are with the Division of Network and Systems Engineering
and the KTH Center for Cyber Defense and Information Security, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden (e-mail: kimham@kth.se;
stadler@kth.se).

Digital Object Identifier 10.1109/TNSM.2022.3176781

Fig. 1. The IT infrastructure and the actors in the use case.

In this paper, we present a novel approach to automati-
cally learn defender policies. We apply this approach to an
intrusion prevention use case. Here, we use the term “intru-
sion prevention” as suggested in the literature, e.g., in [1]. It
means that a defender prevents an attacker from reaching its
goal, rather than preventing it from accessing any part of the
infrastructure.

Our use case involves the IT infrastructure of an organiza-
tion (see Fig. 1). The operator of this infrastructure, which we
call the defender, takes measures to protect it against a possi-
ble attacker while, at the same time, providing a service to a
client population. The infrastructure includes a public gateway
through which the clients access the service and which also
is open to a possible attacker. The attacker decides when to
start an intrusion and then executes a sequence of actions that
includes reconnaissance and exploits. Conversely, the defender
aims at preventing intrusions and maintaining service to its
clients. It monitors the infrastructure and can defend it by tak-
ing defensive actions, which can prevent a possible attacker
but also incur costs. What makes the task of the defender dif-
ficult is the fact that it lacks direct knowledge of the attacker’s
actions and must infer that an intrusion occurs from monitoring
data.

We study the use case within the framework of discrete-time
dynamical systems. Specifically, we formulate the problem of
finding an optimal defender policy as an (optimal) multiple
stopping problem. In this formulation, the defender can take a
finite number of stops. Each stop is associated with a defen-
sive action and the objective is to decide the optimal times

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1773-8354
https://orcid.org/0000-0001-6039-8493

2334 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

when to stop. This approach gives us insight into the structure
of optimal defender policies through the theory of dynamic
programming and optimal stopping [14], [15]. In particular,
we show that an optimal multi-threshold policy exists that can
be efficiently computed and implemented.

The structure of optimal policies in dynamical systems
is a well studied area [16], [17]. However, it has not been
considered in prior research on automated intrusion preven-
tion [12], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29]. Further, although the optimal stopping problem fre-
quently is used to formulate problems in the fields of finance
and communication systems [13], [30], [31], [32], [33], [34],
[35], [36], [37], [38], to the best of our knowledge, formulat-
ing intrusion prevention as a multiple stopping problem is a
novel approach.

Since the defender can access only a set of infrastruc-
ture metrics and does not directly observe the attacker, we
use a Partially Observed Markov Decision Process (POMDP)
to model the multiple stopping problem. An optimal policy
for a POMDP can be obtained through two main methods:
dynamic programming and reinforcement learning. In our
case, dynamic programming is not feasible due to the size
of the POMDP [39]. Therefore, we use a reinforcement learn-
ing approach to obtain the defender policy. We simulate a long
series of POMDP episodes whereby the defender continuously
updates its policy based on outcomes of previous episodes.
To update the policy, we introduce T-SPSA, a reinforce-
ment learning algorithm that exploits the threshold structure
of optimal policies. We show that T-SPSA efficiently learns a
near-optimal policy despite the high complexity of computing
optimal policies for general POMDPs [39].

Our method for learning and validating policies includes
building two systems (see Fig. 2). First, we develop an
emulation system where key functional components of the
target infrastructure are replicated. In this system, we run
attack scenarios and defender responses. These runs produce
system metrics and logs that we use to estimate empirical
distributions of infrastructure metrics, which are needed to
simulate POMDP episodes. Second, we develop a simulation
system where POMDP episodes are executed and policies are
incrementally learned. Finally, the policies are extracted and
evaluated in the emulation system and possibly implemented
in the target infrastructure (see Fig. 2). In short, the emula-
tion system is used to provide the statistics needed to simulate
the POMDP and to evaluate policies, whereas the simulation
system is used to learn policies. (A video demonstration of
our software framework that implements the emulation and
simulation systems is available in [40].)

We make three contributions with this paper. First, we for-
mulate intrusion prevention as a problem of multiple stopping.
This novel formulation allows us a) to derive properties of an
optimal defender policy using results from dynamic program-
ming and optimal stopping; and b) to approximate an optimal
policy for a non-trivial infrastructure configuration. Second,
we present a reinforcement learning approach to obtain poli-
cies in an emulated infrastructure. With this approach, we
narrow the gap between the evaluation environment and a sce-
nario playing out in a real system. We also address a limitation

Fig. 2. Our approach for finding and evaluating intrusion prevention policies.

of many related works, which rely on simulations solely to
evaluate policies [7], [12], [18], [19], [20], [21], [41]. Third,
we present T-SPSA, an efficient reinforcement learning algo-
rithm that exploits the threshold structure of optimal policies
and outperforms state-of-the-art algorithms for our use case.

We conclude this section with remarks about the context
of this research and the practical relevance of the results in
this paper. The objective of our line of research is to construct
a mathematical and conceptual framework, validated by an
experimental environment, that produces defender policies for
realistic scenarios through self-learning. We are engaged in a
program with high potential reward that will need many years
of investigation. This paper provides an important result and
milestone in this program.

From a practical point of view, the main question the paper
answers is this: at which points in time should a defender
take defensive actions given periodic but limited observa-
tional data? The paper proposes a fundamental framework to
study this question. We show theoretically and experimentally
that the optimal action times can be obtained through thresh-
olds that the framework predicts and which can be efficiently
implemented in a real system.

II. THE INTRUSION PREVENTION USE CASE

We consider an intrusion prevention use case that involves
the IT infrastructure of an organization. The operator of this
infrastructure, which we call the defender, takes measures to
protect it against an attacker while, at the same time, providing
a service to a client population (Fig. 1). The infrastructure
includes a set of servers that run the service and an intrusion
detection system (IDS) that logs events in real-time. Clients
access the service through a public gateway, which also is
open to the attacker.

We assume that the attacker intrudes into the infrastructure
through the gateway, performs reconnaissance, and exploits
found vulnerabilities, while the defender continuously moni-
tors the infrastructure through accessing and analyzing IDS
statistics and login attempts at the servers. The defender
can take a fixed number of defensive actions to prevent the
attacker. A defensive action is for example to revoke user cer-
tificates in the infrastructure, which will recover user accounts
compromised by the attacker. It is assumed that the defender

HAMMAR AND STADLER: INTRUSION PREVENTION THROUGH OPTIMAL STOPPING 2335

takes the defensive actions in a predetermined order. The final
action that the defender can take is to block all external access
to the gateway. As a consequence of this action, the service
as well as any ongoing intrusion are disrupted.

In deciding when to take defensive actions, the defender has
two objectives: (i) maintain service to its clients; and (ii), keep
a possible attacker out of the infrastructure. The optimal policy
for the defender is to monitor the infrastructure and maintain
service until the moment when the attacker enters through
the gateway, at which time the attacker must be prevented by
taking defensive actions. The challenge for the defender is to
identify the precise time when this moment occurs.

In this work, we model the attacker as an agent that starts the
intrusion at a random point in time and then takes a predefined
sequence of actions, which includes reconnaissance to explore
the infrastructure and exploits to compromise servers.

We study the use case from the defender’s perspective. The
evolution of the system state and the actions by the defender
are modeled with a discrete-time Partially Observed Markov
Decision Process (POMDP). The reward function of this pro-
cess encodes the benefit of maintaining service and the loss of
being intruded. Finding an optimal defender policy thus means
maximizing the expected reward.

III. THEORETICAL BACKGROUND

This section covers the preliminaries on Markov decision
processes, reinforcement learning, and optimal stopping.

A. Markov Decision Processes

A Markov Decision Process (MDP) models the control of
a discrete-time dynamical system and is defined by a seven-
tuple M = 〈S,A,Pat

st ,st+1
,Rat

st ,st+1
, γ, ρ1,T 〉 [14], [16]. S

denotes the set of states and A denotes the set of actions.
Pat
st ,st+1

refers to the probability of transitioning from state st
to state st+1 when taking action at (Eq. (1)), which has the
Markov property P[st+1|st] = P[st+1|s1, . . . , st]. Similarly,
Rat

st ,st+1
∈ R is the expected reward when taking action at

and transitioning from state st to state st+1 (Eq. (2)), which
is bounded, i.e., |Rat

st ,st+1
| ≤ M < ∞ for some M ∈ R. If

Pat
st ,st+1

and Rat
st ,st+1

are independent of the time-step t, the
MDP is said to be stationary and if S and A are finite, the
MDP is said to be finite. Finally, γ ∈ [0, 1] is the discount
factor, ρ1 : S → [0, 1] is the initial state distribution, and T is
the time horizon.

Pat
st ,st+1

= P[st+1|st , at] (1)

Rat
st ,st+1

= E[rt+1|at , st , st+1] (2)

The system evolves in discrete time-steps from t = 1 to t = T,
which constitute one episode of the system.

A Partially Observed Markov Decision Process (POMDP)
is an extension of an MDP [17], [42]. In contrast to an MDP,
in a POMDP the states are not directly observable. A POMDP
is defined by a nine-tupleMP = 〈S , A, Pat

st ,st+1
, Rat

st ,st+1
,γ,

ρ1, T, O, Z〉. The first seven elements define an MDP.
O denotes the set of observations and Z(ot+1, st+1, at) =
P[ot+1|st+1, at] is the observation function, where ot+1 ∈ O,

st+1 ∈ S , and at ∈ A. If O, S , and A are finite, the POMDP
is said to be finite.

The belief state bt ∈ B is defined as bt (s) = P[st = s |ht]
for all s ∈ S . bt is a sufficient statistic of the state st based
on the history ht of the initial state distribution, the actions,
and the observations: ht = (ρ1, a1, o1, . . . , at−1, ot) ∈ H.
The belief space B = Δ(S) is the unit (|S|−1)-simplex [43],
[44], where Δ(S) denotes the set of probability distributions
over S . By defining the state at time t to be the belief state
bt , a POMDP can be formulated as a continuous-state MDP:
M = 〈B,A,Pat

bt ,bt+1
,Rat

bt ,bt+1
, γ, ρ1,T 〉.

The belief state can be computed recursively as follows [17]:

bt+1(st+1)

=
Z(ot+1, st+1, at)

∑
st∈S Pat

st ,st+1
bt (st)

∑
st+1∈S Z(ot+1, st+1, at)

∑
st∈S Pat

st ,st+1bt (st)
(3)

where the denominator is independent of st+1 and makes bt+1

sum to 1.

B. The Reinforcement Learning Problem

Reinforcement learning deals with the problem of choosing
a sequence of actions for a sequentially observed state variable
to maximize a reward function [45], [46]. This problem can
be modeled with an MDP if the state space is observable, or
with a POMDP if the state space is not fully observable.

In the context of an MDP, a policy is defined as a function
π : {1, . . . ,T}×S → Δ(A), where Δ(A) denotes the set of
probability distributions over A. In the case of a POMDP, a
policy is defined as a function π : H → Δ(A), or, alternatively,
as a function π : {1, . . . ,T} × B → Δ(A). In both cases, a
policy is called stationary if it is independent of the time-step
t given the current state or belief state.

An optimal policy π∗ is a policy that maximizes the
expected discounted cumulative reward over the time horizon:

π∗ ∈ argmax
π∈Π

Eπ

[
T∑

t=1

γt−1rt

]

(4)

where Π is the policy space, γ is the discount factor, rt is the
reward at time t, and Eπ denotes the expectation under π.

Optimal deterministic policies exist for finite MDPs and
POMDPs with bounded rewards and either finite horizons or
infinite horizons with γ ∈ [0, 1) [16], [17]. If the MDPs or
POMDPs also are stationary and the horizons are either ran-
dom or infinite with γ ∈ [0, 1), optimal stationary policies
exist [16], [17].

The Bellman equations relate any optimal policy π∗ to the
two value functions V ∗ : S → R and Q∗ : S×A → R, where
S and A are state and action spaces of an MDP [47]:

V ∗(st) = max
at∈A

E[rt+1 + γV ∗(st+1)|st , at] (5)

Q∗(st , at) = E[rt+1 + γV ∗(st+1)|st , at] (6)

π∗(st) ∈ argmax
at∈A

Q∗(st , at) (7)

V ∗(st) and Q∗(st , at) denote the expected cumulative dis-
counted reward under π∗ for each state and state-action pair,
respectively. Solving Eqs. (5), (6) means computing the value

2336 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

functions from which an optimal policy can be obtained
(Eq. (7)). In the case of a POMDP, the Bellman equations
contain bt instead of st and V ∗(bt) is piecewise linear and
convex [48].

Two principal methods are used for finding an optimal pol-
icy in a finite MDP or POMDP: dynamic programming and
reinforcement learning.

First, the dynamic programming method (e.g., value
iteration [16], [47], [49]) assumes complete knowledge
of the seven-tuple MDP or the nine-tuple POMDP and
obtains an optimal policy by solving the Bellman equations
iteratively (Eq. (7)), with polynomial time-complexity per
iteration for MDPs and PSPACE-complete time-complexity
for POMDPs [39].

Second, the reinforcement learning method computes or
approximates an optimal policy without requiring complete
knowledge of the transition probabilities or observation prob-
abilities of the MDP or POMDP. Three classes of rein-
forcement learning algorithms exist: value-based algorithms,
which approximate solutions to the Bellman equations (e.g.,
Q-learning [50]); policy-based algorithms, which directly
search through policy space using gradient-based methods
(e.g., Proximal Policy Optimization (PPO) [51]); and model-
based algorithms, which learn the transition or observation
probabilities of the MDP or POMDP (e.g., Dyna-Q [46]).
The three algorithm types can also be combined, e.g., through
actor-critic algorithms, which are mixtures of value-based and
policy-based algorithms [46]. In contrast to dynamic program-
ming algorithms, reinforcement learning algorithms generally
have no guarantees to converge to an optimal policy except
for the tabular case [52], [53].

C. The Markovian Optimal Stopping Problem

Optimal stopping is a classical problem domain with a well-
developed theory [15], [16], [49], [54], [55], [56], [57], [58],
[59]. Example use cases for this theory include: asset sell-
ing [49], change detection [37], machine replacement [17],
hypothesis testing [15], gambling [56], selling decisions [35],
queue management [36], advertisement scheduling [33], indus-
trial control [60], and the secretary problem [16], [32].

Many variants of the optimal stopping problem have been
studied. For example, discrete-time and continuous-time prob-
lems, finite horizon and infinite horizon problems, problems
with fully observed and partially observed state spaces, prob-
lems with finite and infinite state spaces, Markovian and non-
Markovian problems, and single-stop and multi-stop problems.
Consequently, different solution methods for these variants
have been developed. The most commonly used methods are
the martingale approach [55], [56], [61] and the Markovian
approach [16], [49], [54], [57], [58].

In this paper, we investigate the multiple stopping problem
with L stops, a finite time horizon T, discrete-time progres-
sion, bounded rewards, a finite state space, and the Markov
property. We use the Markovian solution approach and model
the problem as a POMDP, where the system state evolves
as a discrete-time Markov process (st ,l)

T
t=1 that is partially

observed and depends on the number of stops remaining
l ∈ {1, . . . ,L}.

At each time-step t of the decision process, two actions are
available: “stop” (S) and “continue” (C). The stop action with
l stops remaining yields a reward RS

st ,st+1,lt
and if only one

of the L stops remain, the process terminates. In the case of
a continue action or a non-final stop action at , the decision
process transitions to the next state according to the transition
probabilities Pat

st ,st+1,lt
and yields a reward Rat

st ,st+1,lt
.

The stopping time with l stops remaining is a random vari-
able τl that is dependent on s1, . . . , sτl and independent of
sτl+1, . . . sT [55]:

τl = inf{t : t > τl+1, at = S}, l ∈ 1, . . . ,L, τL+1 = 0 (8)

The objective is to find a stopping policy π∗l (st)→ {S ,C}
that depends on l and maximizes the expected discounted
cumulative reward of the stopping times τL, τL−1, . . . , τ1:

π∗
l ∈ argmax

πl

Eπl

[
τL−1∑
t=1

γt−1RC
st ,st+1,L

+ γτL−1RS
sτL ,sτL+1,L + · · ·

+

τ1−1∑
t=τ2+1

γt−1RC
st ,st+1,1 + γτ1−1RS

sτ1 ,sτ1+1,1

⎤
⎦

(9)

Due to the Markov property, any policy that satisfies Eq. (9)
also satisfies the Bellman equation (Eq. (7)), which in the
partially observed case is:

π∗l (b) ∈ argmax
{S ,C}

⎡

⎢
⎢
⎢
⎣
El

[
RS

b,boS ,l
+ γV ∗

l−1(b
o
S)
]

︸ ︷︷ ︸
stop (S)

,El

[
RC

b,boC ,l + γV ∗
l (b

o
C)
]

︸ ︷︷ ︸
continue (C)

⎤

⎥
⎥
⎥
⎦

(10)

for all b ∈ B, where πl is the stopping policy with l stops
remaining, El denotes the expectation with l stops remaining,
b is the belief state, V ∗

l is the value function with l stops
remaining, boS and boC can be computed using Eq. (3), and
Ra

b,boa ,l
is the expected reward of action a ∈ {S ,C} in belief

state bt when observing o with l stops remaining.

IV. FORMALIZING THE INTRUSION PREVENTION USE

CASE AND OUR REINFORCEMENT LEARNING APPROACH

We first present a formal model of the use case described
in Section II and then we introduce our solution method.
Specifically, we first define a POMDP model of the intrusion
prevention use case. Then, we apply the theory of dynamic
programming and optimal stopping to obtain structural results
of an optimal defender policy. Lastly, we describe our rein-
forcement learning approach to approximate an optimal policy.

A. A POMDP Model of the Intrusion Prevention Use Case

We formulate the intrusion prevention use case as a multiple
stopping problem where an intrusion starts at a random time
and each stop is associated with a defensive action (Fig. 3).
We model this problem as a POMDP.

HAMMAR AND STADLER: INTRUSION PREVENTION THROUGH OPTIMAL STOPPING 2337

Fig. 3. Optimal multiple stopping formulation of intrusion prevention; the
horizontal axis represents time; T is the time horizon; the episode length is
T − 1; the dashed line shows the intrusion start time; the optimal policy is
to prevent the attacker at the time of intrusion.

Fig. 4. The cumulative distribution function (CDF) of the intrusion start
time It .

1) Actions A: The defender has two actions: “stop” (S)
and “continue” (C). The action space is thus A = {S ,C}.
We encode S with 1 and C with 0 to simplify the formal
description below.

The number of stops that the defender must execute to
prevent an intrusion is L ≥ 1, which is a predefined parameter
of our use case.

2) States S and Initial State Distribution ρ1: The system
state st ∈ {0, 1} is zero if no intrusion is occurring and st = 1
if an intrusion is ongoing. In the initial state, no intrusion is
occurring and s1 = 0. Hence, the initial state distribution is
the degenerate distribution ρ1(0) = 1. Further, we introduce
a terminal state ∅ ∈ S , which is reached after the defender
takes the final stop action or after an intrusion is prevented
(see below). The state space is thus S = {0, 1, ∅}.

3) Observations O: The defender has a partial view of
the system. If st
= ∅, the defender observes ot =
(lt ,Δxt ,Δyt ,Δzt), where lt ∈ {1, 2, . . . ,L} is the number
of stops remaining and (Δxt , Δyt , Δzt) are bounded coun-
ters that denote the number of severe IDS alerts, warning IDS
alerts, and login attempts generated during time-step t, respec-
tively. If the system is in the terminal state, the defender
observes oT = ∅. Hence, the observation space is O =
{0, . . . ,Δxmax} × {0, . . . ,Δymax} × {0, . . . ,Δzmax} ∪ ∅.

4) Transition Probabilities Pat
st ,st+1,lt

: We model the start

of an intrusion by a Bernoulli process (Qt)
T
t=1, where Qt ∼

Ber(p = 0.01) is a Bernoulli random variable. The time of
the first occurrence of Qt = 1 is the start time of the intrusion
It , which thus is geometrically distributed, i.e., It ∼ Ge(p =
0.01) (Fig. 4).

We define the time-homogeneous transition probabilities
Pat
st ,st+1,lt

= Plt [st+1|st , at] as follows:

P1[∅|·, 1] = Plt [∅|∅, ·] = 1 (11)

Plt [0|0, at] = 1− p if lt − at > 0 (12)

Fig. 5. State transition diagram of the POMDP: each circle represents a
state; an arrow represents a state transition; a label indicates the event that
triggers the state transition; an episode starts in state s1 = 0 with l1 = L.

Plt [1|0, at] = p if lt − at > 0 (13)

Plt [1|1, at] = 1 if lt − at > 0 (14)

where Plt denotes the probability with lt stops remaining. All
other state transitions occur with probability 0.

Eq. (11) defines the transition probabilities to the terminal
state ∅. The terminal state is reached when the final (lt = 1)
stop action S (at = 1) is taken. If Eq. (11) is not applicable,
i.e., if the system does not reach the terminal state, then the
transition probabilities when taking action S (at = 1) or C
(at = 0) are defined by Eqs. (12)–(14).

Eq. (12) captures the case where no intrusion occurs and
st+1 = st = 0; Eq. (13) specifies the case when the intrusion
starts where st = 0 and st+1 = 1; and Eq. (14) describes the
case where an intrusion is in progress and st+1 = st = 1.

With this definition of the transition probabilities, the evolu-
tion of the system can be understood using the state transition
diagram in Fig. 5.

5) Observation Function Z(ot+1, st+1, at): We assume
that the number of IDS alerts and login attempts generated
during one time-step are discrete random variables X ∼ fX ,
Y ∼ fY , Z ∼ fZ that depend on the state. Consequently, the
probability that Δx severe alerts, Δy warning alerts, and Δz
login attempts occur during time-step t can be expressed as
fXYZ (Δx ,Δy ,Δz |st).

We define the stationary observation function
Z(ot+1, st+1, at) = P[ot+1|st+1, at] as follows:

Z((lt ,Δx ,Δy ,Δz), st , ·) = fXYZ (Δx ,Δy ,Δz |st) (15)

Z(∅, ∅, ·) = 1. (16)

6) Reward Function Rat
st ,lt

: The objective of the intrusion
prevention use case is to maintain service on the infrastruc-
ture while, at the same time, preventing a possible intrusion.
Therefore, we define the reward function to give the maximal
reward if the defender maintains service until the intrusion
starts and then prevents the intrusion by taking L stop actions.

The reward per time-step Rat
st ,lt

is parameterized by the
reward that the defender receives for stopping an intrusion
(Rst = 50), the reward for maintaining service (Rsla = 1),
and the loss of being intruded (Rint = −10):

R·
∅,0 = 0 (17)

RS
st ,lt

= stRst/4lt st ∈ {0, 1} (18)

2338 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

RC
st ,lt

= Rsla + stRint/L st ∈ {0, 1} (19)

Eq. (17) states that the reward in the terminal state is zero.
Eq. (18) indicates that each stop incurs a cost by interrupt-
ing service and possibly a reward if it affects an ongoing
intrusion. Lastly, Eq. (19) states that the defender receives a
positive reward for maintaining service and a loss for each
time-step that it is under intrusion. (Remark: the reward func-
tion can equivalently be stated to give a cumulative reward
upon transitioning to the terminal state and zero reward
otherwise [16].)

7) Time Horizon T∅: The time horizon T∅ is a random
variable that indicates the time t when the terminal state ∅
is reached. It follows from Eqs. (11)–(14) that Eπl [T∅] < ∞
for any policy πl that is guaranteed to use L stops as t →∞.
Further, since the expected time of intrusion E[It] is finite and
the continue reward is negative when t > It (Eqs. (17)–(19)),
the optimal stopping times τ∗1 , . . . , τ∗L exist. (Remark: it is also
possible to define T∅ =∞ and let ∅ be an infinitely absorbing
state.)

8) Policy Space Πl and Objective Function J: As the
POMDP is stationary and the time horizon T∅ is not predeter-
mined, it is sufficient to consider stationary policies. Further,
since the POMDP is finite, an optimal deterministic policy
exists [16], [17]. Despite this, we consider stochastic policies
to enable smooth optimization. Specifically, we consider the
space of stationary stochastic policies Πl where πl ∈ Πl is a
policy πl : B → Δ(A), which depends on l ∈ {1, . . . ,L}.

An optimal policy π∗l ∈ Πl maximizes the expected
discounted cumulative reward over the time horizon T∅:

J (πl) = Eπl

⎡

⎣
T∅∑

t=1

γt−1Rat
st ,lt

⎤

⎦ (20)

π∗l ∈ argmax
πl∈Πl

J (πl) (21)

We set the discount factor to be γ = 1. (The objective in
Eq. (20) is upper bounded when γ = 1 since Eπl [T∅] is finite
for any policy πl ∈ Πl that is guaranteed to use L stops as
t → ∞, which is true for any optimal policy (see Lemma 1
in Appendix A).)

Eq. (20) defines an optimization problem which reflects
the objective of our use case. In the following section, we
state structural properties of an optimal policy that solves this
problem.

B. Threshold Properties of an Optimal Policy

A policy that solves the multiple stopping problem is a solu-
tion to Eqs. (20), (21). We know from the theory of dynamic
programming that this policy satisfies the Bellman equation
formulated in terms of the belief state (Eq. (10)) [17], [43].

The belief state bt is defined as bt (st) = P[st |ht] (see
Section III-A). As the state space of the POMDP is S =
{0, 1, ∅} (see Fig. 5), bt is a probability vector with two com-
ponents: bt (0) = P[st = 0|ht] and bt (1) = P[st = 1|ht],
where t = 1, . . .T∅ − 1. Further, since bt (0) = 1− bt (1), the
belief state is determined by bt (1) and the belief space B can
be described by the unit interval, i.e., B = [0, 1].

Fig. 6. Illustration of Theorem 1: there exist L thresholds α∗
1 ≥ α∗

2, . . . ,≥
α∗
L ∈ B and an optimal threshold policy π∗l that satisfies Eqs. (22)-(24).

We partition B into two sets—the stopping set S l =
{b(1) ∈ [0, 1] : π∗l (b(1)) = S}, which contains the belief
states where it is optimal to stop, and the continuation set
C l = {b(1) ∈ [0, 1] : π∗l (b(1)) = C}, which contains the
belief states where it is optimal to continue. The number of
stops remaining, l, ranges from 1 to L.

Applying the theory developed in [17], [33], [34], we obtain
the following structural result for an optimal policy.

Theorem 1: Given the POMDP in Section IV-A, let L
denote the number of stop actions, fXYZ |s the conditional
distribution of the observations, b(1) the belief state, S l the
stopping set, and C l the continuation set. The following holds:
(A)

S l−1 ⊆ S l l ∈ {1, . . .L} (22)

(B) If L = 1, there exists a value α∗ ∈ [0, 1] and an optimal
policy π∗L that satisfies:

π∗L(b(1)) = S ⇐⇒ b(1) ≥ α∗ (23)

(C) If L ≥ 1 and fXYZ |s is totally positive of order 2 (i.e.,
TP2), there exist L values α∗

1 ≥ α∗
2 ≥ · · · ≥ α∗

L ∈ [0, 1]
and an optimal policy π∗l that satisfies:

π∗l (b(1)) = S ⇐⇒ b(1) ≥ α∗
l l ∈ {1, . . . ,L}. (24)

Proof: See Appendix A.
Theorem 1.A states that the stopping sets have a nested

structure. This means that if it is optimal to stop when b(1) has
a certain value while l − 1 stops remain, then it is also optimal
to stop for the same value when l or more stops remain.

Theorem 1.B and Theorem 1.C state that there exist an
optimal policy with threshold properties (see Fig. 6). If L ≥ 1,
an additional condition applies: the probability matrix of
fXYZ |s must be TP2 (all second order minors must be non-
negative) [17, Definition 10.2.1, p. 223], [62]. This condition
is satisfied for example if fXYZ |s is stochastically monotone
in s.

Knowing that there exists optimal policies with special
structure has two benefits. First, insight into the structure of
optimal policies often leads to a concise formulation and effi-
cient implementation of the policies [11], [16]. This is obvious
in the case of threshold policies. Second, the complexity of
computing or learning an optimal policy can be reduced by
exploiting structural properties [17], [36]. In the following
section, we describe a reinforcement learning algorithm that
exploits the structural result in Theorem 1.

HAMMAR AND STADLER: INTRUSION PREVENTION THROUGH OPTIMAL STOPPING 2339

C. Our Reinforcement Learning Algorithm: T-SPSA

Theorem 1 states that under given assumptions and given
L ≥ 1 stop actions, there exists an optimal policy which uses
L thresholds α∗

1 ≥ α∗
2, · · · ,≥ α∗

L ∈ [0, 1]. We present an algo-
rithm, which we call T-SPSA, that computes these thresholds
through reinforcement learning.

We parameterize πl with a vector θ ∈ R
L. The compo-

nent θl of θ relates to the threshold with l ∈ {1, . . .L} stops
remaining. T-SPSA updates θ through stochastic gradient
ascent with the following gradient [63]:

∇θJ (θ) = Eπθ,l

⎡
⎣ T∅∑
t=1

∇θ log πθ,l (at |bt (1))
T∅∑
τ=t

Raτ
bτ ,lt

⎤
⎦ (25)

To ensure differentiability, we define πθ,l to be a smooth
stochastic policy that approximates a threshold policy:

πθ,l (S |b(1)) =
(

1 +

(
b(1)(1− σ(θl))

σ(θl)(1− b(1))

)−20
)−1

(26)

where σ(·) is the sigmoid function and σ(θ1), σ(θ2), . . .,
σ(θL) ∈ [0, 1] are the L thresholds.

We learn the threshold vector θ through simulation of
the POMDP as follows. First, we initialize θ(1) ∈ R

L ran-
domly. Second, for each iteration n ∈ {1, 2, . . .} of T-SPSA,
we perturb θ(n) to obtain θ(n) + cnΔn and θ(n) − cnΔn ,
where cn ∈ R and Δn ∈ R

L. Then, we run two
POMDP episodes where the defender takes actions accord-
ing to the two perturbed threshold vectors (Eq. (26)). We
then use the obtained episode outcomes Ĵ (θ(n) + cnΔn) and

Ĵ (θ(n)−cnΔn) to estimate the gradient in Eq. (25) using the
Simultaneous Perturbation Stochastic Approximation (SPSA)
gradient estimator [64]:

(
∇̂θ(n)J (θ(n))

)

i
=

Ĵ (θ(n)+cnΔn)−Ĵ (θ(n)−cnΔn)

2cn (Δn)i
(27)

where i ∈ {1, . . . ,L} is the component index of the gra-
dient, cn = c

nλ is the perturbation size and c and λ are
hyperparameters.

The perturbation vector Δn is defined as:

(Δn)i =

{
+1 with probability 1

2
−1 with probability 1

2

(28)

Next, we use the estimated gradient and the stochastic approx-
imation algorithm [53] to update the vector of thresholds to
maximize J (θ) (Eq. (20)):

θ(n+1) = θ(n) + an∇̂θ(n)J
(
θ(n)

)
(29)

where an = a
(n+A)ε

is the step size and A and ε are

hyperparameters [65].
This process of running two episodes and updating the

threshold vector continues until it has sufficiently converged.
The described algorithm, T-SPSA, converges to a local
maximum of J (θ) with probability one under standard con-
ditions [64]. For this reason, we run the algorithm several
times with different initial conditions. We list the pseudocode
of T-SPSA in Appendix D and give its hyperparameters
in Appendix B. Our Python implementation of T-SPSA is
available at: [66].

TABLE I
EMULATED CLIENT POPULATION; EACH CLIENT INTERACTS WITH

APPLICATION SERVERS USING A SET OF NETWORK FUNCTIONS

V. EMULATING THE TARGET INFRASTRUCTURE TO

INSTANTIATE THE SIMULATION AND TO EVALUATE THE

LEARNED POLICIES

To simulate episodes of the POMDP and to compute the
belief state we must know the distributions of alerts and login
attempts conditioned on the system state. We estimate these
distributions using measurements from the emulation system
shown in Fig. 2. Moreover, to evaluate the performance of
policies learned in the simulation system, we run episodes
in the emulation system by executing actions of an emulated
attacker and having the defender execute stop actions at times
given by the learned policies.

A. Emulating the Target Infrastructure

The emulation system executes on a cluster of machines that
runs a virtualization layer provided by Docker [67] containers
and virtual links. It implements network isolation and traf-
fic shaping on the containers using network namespaces and
the NetEm module in the Linux kernel [68]. Resource con-
straints of the containers, e.g., CPU and memory constraints,
are enforced using cgroups.

The configuration of the emulated infrastructure is given by
the topology in Fig. 1 and the configuration in Appendix C.
The system emulates the clients, the attacker, the defender,
as well as 31 physical components of the target infrastructure
(e.g., application servers and the gateway). Physical entities
are emulated and software functions are executed in Docker
containers of the emulation system. The software functions
replicate important components of the target infrastructure,
such as, Web servers, databases, and an IDS.

We emulate internal connections between servers in the
infrastructure as full-duplex loss-less connections with bit
capacities of 1000 Mbit/s in both directions and emulate exter-
nal connections between the gateway and the client population
and the attacker as full-duplex connections with bit capacities
of 100 Mbit/s with 0.1% packet loss in normal operation and
random bursts of 1% packet loss.

The client population is emulated by three Docker contain-
ers that interact with the application servers through functions
and protocols listed in Table I.

The emulation evolves in time-steps of length 30s. During
each step, the defender and the attacker can perform one action
each. The defender executes either a continue action or a stop
action. The continue action has no effect on the progression of
the emulation but the stop action has. We have implemented
L = 3 stop actions which are listed in Table II. The first stop
revokes all user certificates and recovers user accounts com-
promised by the attacker. The second and third stops update

2340 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

TABLE II
DEFENDER STOP COMMANDS IN THE EMULATION

the firewall configuration of the gateway. Specifically, the sec-
ond stop adds a rule to the firewall that drops incoming traffic
from IP addresses that have been flagged by the IDS and the
third stop blocks all incoming traffic.

We have implemented three attacker profiles:
NOVICEATTACKER, EXPERIENCEDATTACKER, and
EXPERTATTACKER, all of which execute the sequence
of actions listed in Table III, where It is the start time of the
intrusion. The actions consist of reconnaissance commands
and exploits. During each time-step, one action is executed.
The three attackers differ in the reconnaissance command
that they use and the number of stops L required to prevent
the attack (see Table IV).

NOVICEATTACKER uses brute-force attacks to exploit pass-
word vulnerabilities (e.g., SSH dictionary attacks) and uses
a TCP/UDP port scan for reconnaissance. The attack is pre-
vented if the defender takes a stop action and revokes the user
certificates.

EXPERIENCEDATTACKER uses a ping scan for reconnais-
sance and performs both brute-force attacks and more sophis-
ticated attacks, such as a command injection attack (e.g.,
CVE-2014-6271). The attack is prevented if the defender takes
two stop actions and blacklists IP addresses that have been
flagged by the IDS in addition to revoking the user certificates.

Lastly, EXPERTATTACKER only targets vulnerabilities that
can be exploited without brute-force methods and thus gen-
erates less network traffic, for example remote execution
vulnerabilities, such as, CVE-2017-7494. The attacker uses a
ping scan for reconnaissance like EXPERIENCEDATTACKER.
The attack is prevented if the defender executes three stop
actions and blocks the gateway.

Since the ping-scan generates fewer IDS alerts than
the TCP/UDP port scan, the reconnaissance actions of
EXPERIENCEDATTACKER and EXPERTATTACKER are harder
to detect than those of NOVICEATTACKER.

B. Estimating the Distributions of Alerts and Login Attempts

In this section, we describe how we collect data from the
emulation system and estimate the distributions of alerts and
login attempts.

1) At the end of every time-step, the emulation system col-
lects the metrics Δx , Δy , Δz , which contain the alerts and
login attempts that occurred during the time-step. For the eval-
uation reported in this paper we collected measurements from
21000 time-steps of 30 seconds each.

2) From the collected measurements, we compute the
empirical distribution f̂XYZ as estimate of the corresponding
distribution fXYZ in the target infrastructure. For each state
st , we obtain the conditional distribution f̂XYZ |st .

Fig. 7. Empirical distributions of severe IDS alerts Δx (top row), warning
IDS alerts Δy (middle row), and login attempts Δz (bottom row) generated
during time-steps of intrusions by different attackers as well as during time-
steps when no intrusion occurs.

Fig. 7 shows some of the empirical distributions. The
distributions related to EXPERIENCEDATTACKER are omit-
ted for better readability. The estimated distributions from
EXPERTATTACKER and EXPERIENCEDATTACKER mostly
overlap with the distributions obtained when no intrusion
occurs. However, a clear difference between the distributions
obtained during an intrusion of NOVICEATTACKER and the
distributions when no intrusion occurs can be observed. From
these empirical distributions, we note that the assumption
that the observation distribution is TP2 in Theorem 1.C is
reasonable.

C. Simulating an Episode of the POMDP

During a simulation of the POMDP, the system state evolves
according to the dynamics described in Section IV, and the
observations evolve according to the estimated distribution
f̂XYZ . In the initial state, no intrusion occurs. During an
episode, an intrusion normally occurs at a random start time.
It is also possible that the defender performs L stops before
the intrusion would start, in which case no intrusion starts.

A simulated episode evolves as follows. The episode starts
in state s1 = 0 and l1 = L. During each time-step, the sim-
ulation system samples an action from the defender policy
at ∼ πθ,l (·|bt). If the action is stop (at = 1) and lt = 1,
the episode ends. Otherwise, the number of remaining stop
actions is updated: lt+1 = lt − at . Further, if an intrusion
is in progress, the system executes an attacker action fol-
lowing Table III. It then updates the state st → st+1 and
samples Δxt+1,Δyt+1,Δzt+1 from the empirical distribu-
tion f̂XYZ |st+1

. (The activities of the clients are not simulated

but are captured by f̂XYZ .) The simulation then computes the
belief bt+1 using Eq. (3) and computes the defender reward
rt+1 using Eqs. (17)–(19). (Note that the exact reward can
be computed during training and evaluation of policies but
not when the policies are deployed in the target infrastructure
as it depends on the hidden state.) The sequence of time-
steps continues until the defender performs the final stop, after
which the episode ends. If the attacker sequence in Table III

HAMMAR AND STADLER: INTRUSION PREVENTION THROUGH OPTIMAL STOPPING 2341

TABLE III
ATTACKER ACTIONS IN THE EMULATION

TABLE IV
NUMBER OF STOPS REQUIRED TO PREVENT THE ATTACKER L AND

RECONNAISSANCE COMMANDS OF THE ATTACKER PROFILES

is completed before the defender performs the final stop, the
sequence is restarted.

D. Emulating an Episode of the POMDP

Just like a simulated episode, an emulated episode starts
with the same initial conditions, evolves in discrete time-steps,
and experiences an intrusion event at a random time. However,
an episode in the emulation system differs from an episode in
the simulation system in the following ways. First, attacker
and defender actions in the emulation system include com-
puting and networking functions with real side-effects in the
emulation environment (see Table II and Table III). Further,
the defender observations in the emulation system are not sam-
pled but are obtained through reading log files and metrics of
the emulated infrastructure. Lastly, the emulated client pop-
ulation performs requests to the emulated application servers
just like on a real infrastructure (see Section V-A). Due to
these differences, running an episode in the emulation system
takes much longer time than running a similar episode in the
simulation system.

VI. LEARNING INTRUSION PREVENTION POLICIES FOR

THE TARGET INFRASTRUCTURE

Our approach for finding effective defender policies
includes (1) extensive simulation of POMDP episodes in the
simulation system to learn the policies; and (2), evaluation
of the learned policies through running POMDP episodes in
the emulation system. This section describes our evaluation
results.

The environment for training policies and running simu-
lations is a Tesla P100 GPU. The hyperparameters for the
training algorithm are listed in Appendix B. The emulated
infrastructure is deployed on a server with a 24-core Intel
Xeon Gold 2.10GHz CPU and 768 GB RAM. We have made
available the code of our simulation system, as well as the

measurement traces used to estimate the observation distribu-
tions of the POMDP, which can be used by others to extend
and validate our results [66].

A. Evaluation Process

We train three defender policies against the NOVICE,
EXPERIENCED and EXPERT attacker until convergence. For
each attacker we run 10,000 training episodes to estimate
an optimal defender policy using the method described in
Section IV-C. After each episode we evaluate the current
defender policy.

To evaluate a defender policy, we run evaluation episodes
and compute various performance metrics. Specifically, we
run 500 evaluation episodes in the simulation system and 5
evaluation episodes in the emulation system.

The 10,000 training episodes and the evaluation described
above constitute one training run. We run five training runs
with different random seeds. A single training run takes about
4 hours of processing time on a P100 GPU to perform the
simulations and the policy-training, as well as around 12 hours
for evaluating the policies in the emulation system.

We compare the policies learned through T-SPSA with
three baseline policies. The first baseline prescribes the stop
action whenever an IDS alert occurs, i.e., whenever (Δx +
Δy) ≥ 1. The second baseline is obtained by configuring
the Snort IDS as an Intrusion Prevention System (IPS) which
drops network traffic following its internal recommendation
system (see Appendix C for the Snort configuration). To cal-
culate the reward, we define 100 dropped IP packets of the
Snort IPS to be a stop action of the defender. Lastly, the third
baseline is an ideal policy which presumes knowledge of the
exact intrusion time and performs all stop actions at exactly
that time.

We evaluate our algorithm, T-SPSA, by comparing it
with three baseline algorithms: Proximal Policy Optimization
(PPO) [51], Heuristic Search Value Iteration (HSVI) [69], and
Shiryaev’s algorithm [70]. PPO is a state-of-the-art reinforce-
ment learning algorithm, HSVI is a state-of-the-art dynamic
programming algorithm for POMDPs, and Shiryaev’s algo-
rithm is an optimal algorithm for change detection. The
main difference between T-SPSA and the first two base-
lines (PPO and HSVI) is that T-SPSA exploits the threshold
structure expressed in Theorem 1 and the main difference
in comparison with Shiryaev’s algorithm is that T-SPSA
learns L thresholds whereas Shiryaev’s algorithm uses a single

2342 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 8. Learning curves obtained during training of T-SPSA; red curves show simulation results and blue curves show emulation results; the purple, orange,
and black curves relate to baseline policies; the rows from top to bottom relate to: NOVICEATTACKER, EXPERIENCEDATTACKER, and EXPERTATTACKER; the
columns from left to right show performance metrics: episodic reward, episode length, empirical prevention probability, empirical early stopping probability,
and the time between the start of intrusion and the Lth stop action; the curves show the mean and 95% confidence interval for five training runs with different
random seeds.

predefined threshold. We set this threshold to 0.75 based on a
hyperparameter search (see Appendix B).

B. Learning Intrusion Prevention Policies

Fig. 8 shows the performance of the learned policies against
the three attacker types. The red curves represent the results
from the simulation system and the blue curves show the
results from the emulation system. The purple and orange
curves give the performance of the Snort IPS baseline and
the baseline policy that mandates a stop action whenever an
IDS alert occurs, respectively. The dashed black curves give
the performance of the baseline policy that assumes knowledge
of the exact intrusion time.

An analysis of the graphs in Fig. 8 leads us to the follow-
ing conclusions. We observe that the learning curves converge
quickly to constant mean values for all attackers and across
all investigated performance metrics. From this we conclude
that the learned policies have converged as well.

Second, we observe that the converged values of the learn-
ing curves are close to the dashed black curves, which give an
upper bound to any optimal policy. In addition, we see that the
empirical probability of preventing an intrusion of the learned
policies is close to 1 (middle column of Fig. 8) and that the
empirical probability of stopping before the intrusion starts is
close to 0 (second rightmost column of Fig. 8). This suggests
that the learned policies are close to optimal. We also observe
that all learned policies do significantly better than the Snort
IPS baseline and the baseline that stops whenever an IDS alert
occurs (leftmost column in Fig. 8).

Third, although the learned policies, as expected, perform
better in the simulation system than in the emulation system,
we are encouraged by the fact that the curves of the emulation
system are close to those of the simulation system.

We also note from Fig. 8 that the learned poli-
cies do better against NOVICEATTACKER than against
EXPERIENCEDATTACKER and EXPERTATTACKER.
For instance, the learned policies against
EXPERIENCEDATTACKER and EXPERTATTACKER are more
likely to stop before an intrusion has started (second rightmost
column of Fig. 8). This indicates that NOVICEATTACKER is
easier to detect for the defender as its actions create more
IDS alerts than those of the other attackers, as pointed out in
Section V-A.

Lastly, Fig. 9 shows a comparison between our reinforce-
ment learning algorithm (T-SPSA) and the three baseline
algorithms in the simulation system. We observe in Fig. 9
that both T-SPSA and PPO converge to close approximations
of an optimal policy within an hour of training whereas HSVI
does not converge within the measured time. The slow conver-
gence of HSVI manifests the intractability of using dynamic
programming to compute policies in large POMDPs [39]. We
also see in Fig. 9 that T-SPSA converges significantly faster
than PPO. This is expected since T-SPSA considers a smaller
space of policies than PPO. Finally, we also note in Fig. 9
that T-SPSA outperforms Shiryaev’s algorithm, which demon-
strates the benefit of using L thresholds instead of a single
threshold.

VII. RELATED WORK

Traditional approaches to intrusion prevention use packet
inspection and static rules for detection of intrusions and selec-
tion of response actions [1], [71], [72]. Their main drawback
lies in the need for domain experts to configure the rule sets.
As a consequence, much effort has been devoted to developing
methods for finding security policies in an automatic way. This

HAMMAR AND STADLER: INTRUSION PREVENTION THROUGH OPTIMAL STOPPING 2343

Fig. 9. Comparison between T-SPSA and three baseline algorithms; all curves show simulation results; red curves relate to T-SPSA; blue curves relate
to PPO; orange curves relate to HSVI; purple curves relate to Shiryaev’s algorithm with threshold α = 0.75; the columns from left to right relate to:
NOVICEATTACKER, EXPERIENCEDATTACKER, and EXPERTATTACKER; all curves show the mean and 95% confidence interval for five training runs with
different random seeds.

research uses concepts and methods from various areas, most
notably from anomaly detection (see example [73]), change-
point detection (see example [37]), statistical learning (see
examples [74], [75], [76]), control theory (see survey [6]),
game theory (see textbooks [10], [77], [78], [79]), artificial
intelligence (see survey [80]), dynamic programming (see
example [5]), reinforcement learning (see surveys [81], [82]),
evolutionary methods (see example [7]), and attack graphs (see
example [83]).

While the research reported in this paper is informed by all
the above works, we limit the following discussion to prior
work that centers around finding security policies through rein-
forcement learning, a topic area that has grown considerably
in recent years. Three seminal papers: [84], [85], and [86],
published in 2000, 2005, and 2008, respectively, analyze intru-
sion prevention use cases and evaluate traditional reinforcement
learning algorithms for this task. These papers have inspired
much follow-up research, e.g., on studying deep reinforcement
learning algorithms for intrusion prevention [12], [13], [25]
and studying new use cases, such as defense against jamming
attacks [87], mitigation of denial of service attacks [88], [89],
defense against advanced persistent threats [90], placement
of honeypots [91], botnet detection [92], [93], detection of
flip attacks [94], detection of network traffic anomalies [95],
greybox fuzzing [96], and defense against topology attacks [97].

Among the recent works that use reinforcement learning
to find security policies, many focus on intrusion prevention
use cases similar to the one we discuss in this paper [12],
[13], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [38], [41]. These works use a variety of mod-
els, including MDPs [20], [22], [24], [25], [29], Markov
games [12], [18], [23], and POMDPs [13], [26], [38], as
well as various reinforcement learning algorithms, including
Q-learning [18], [20], [22], SARSA [38], PPO [12], [13], hier-
archical reinforcement learning [24], DQN [25], Thompson
sampling [26], MuZero [23], NFQ [27], DDQN [29], and
DDPG [28].

This paper differs from the works referenced above in
two main ways. First, we formulate the intrusion prevention
problem as a multiple stopping problem. The other works for-
mulate the problem as solving a general MDP, POMDP, or
Markov game. The advantage of our approach is that we obtain
structural properties of optimal policies, which have practical
benefits (see Section IV-B).

Problem formulations based on optimal stopping theory can
be found in prior research on change detection [13], [37],
[38], [70], [94], [98]. Compared to these papers, our approach
is more general by allowing multiple stop actions within an
episode. Another difference is that we model intrusion pre-
vention rather than intrusion detection. Further, compared with
traditional change detection algorithms, e.g., CUSUM [98] and
Shiryaev’s algorithm [70], our algorithm learns thresholds and
does not assume them to be preconfigured.

Second, our solution method to find effective policies for
intrusion prevention includes using an emulation system in
addition to a simulation system. The advantage of our method
compared to the simulation-only approaches [12], [13], [18],
[19], [20], [21], [22], [24], [25], [26], [38], [41] is that the
parameters of our simulation system are determined by mea-
surements from an emulation system instead of being chosen
by a human expert. Further, the learned policies are evaluated
in the emulation system, not in the simulation system. As a
consequence, the evaluation results give higher confidence of
the obtained policies’ performance in the target infrastructure
than what simulation results would provide.

Some prior works on reinforcement learning for intrusion
prevention that make use of emulation are: [23], [27], [28],
and [29]. They emulate software-defined networks based on
Mininet [99]. The main differences between these efforts and
the work described in this paper are: (1) we develop our own
emulation system which allows for experiments with a large
variety of exploits; (2) we focus on a different intrusion pre-
vention use case; (3) we do not assume that the defender has
perfect observability; and (4), we use an underlying theoret-
ical framework to formalize the use case, derive structural
properties of optimal policies, and test these properties in an
emulation system.

Finally, [100] and [101] describe ongoing efforts in building
emulation platforms for reinforcement learning, which resem-
ble our emulation system. In contrast to these papers, our
emulation system has been built to investigate the specific use
case of intrusion prevention and forms an integral part of our
general solution method (see Fig. 2).

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel formulation of the
intrusion prevention problem based on the theory of optimal

2344 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

stopping. This formulation allowed us to derive that a thresh-
old policy based on infrastructure metrics is optimal, which
has several practical benefits.

To find and evaluate policies, we used a reinforcement
learning method that includes a simulation system and an
emulation system. In contrast to a simulation-only approach,
our method produces policies that can be executed in a target
infrastructure.

Through extensive evaluations, we showed that our
approach can produce effective defender policies for a prac-
tical configuration of an IT infrastructure (Figs. 8-9). We
also demonstrated that our reinforcement learning algorithm
(T-SPSA), which takes advantage of the threshold structure
(Theorem 1), outperforms state-of-the-art algorithms on our
use case.

We make assumptions in this paper that limit the practical
applicability of the results: the attacker follows a static pol-
icy, and the defender learns only the times of taking defensive
actions but not the types of actions. Therefore, the question
arises whether our approach can be extended so that (1) the
attacker can pursue a wide range of realistic policies and
(2) the defender learns optimal policies that express not only
when defensive actions needs to be taken but also the specific
measure to be executed.

Addressing these points is part of our research agenda. The
dynamic attacker can be studied using a game-theoretic exten-
sion of the introduced framework. The theory tells us that an
optimal solution can be found through self-play in a similar
manner as described in this paper, but further work is needed
to show that such a solution is feasible in practice. Scenarios
involving several attackers can also be studied in this context.

We also plan to extend the defender model to include the
selection of defensive actions. One possible approach is to
learn two orthogonal policies: a policy that decides when to
take a defensive action and another policy that decides which
action to take.

APPENDIX A
PROOF OF THEOREM 1

Given the POMDP introduced in Section IV-A, let L denote
the number of stop actions, fXYZ the observation distribution,
B = [0, 1] the belief space (see Section IV-B), b(1) the belief
state, S l the stopping set, and C l the continuation set.

The main idea behind the proof of Theorem 1 is to show
that the stopping sets S l have the form S l = [α∗

l , 1] ⊆ B
and that α∗

l ≥ α∗
l+1 for l ∈ {1, . . . ,L}. Towards this goal, we

state the following four lemmas.
Lemma 1: During a POMDP episode, an optimal policy π∗L

prescribes L stop actions.
Proof: The proof follows directly from the definition of the

transition probabilities (see Eqs. (11)–(14)) and the reward
function (see Eqs. (17)–(19)).

Lemma 2: S 1 is a convex subset of B.
Proof: The proof can be found in [13, p. 10, Lemma 3] and

in [17, p. 258, Th. 12.2.1].
Lemma 3: Pat

st ,st+1,lt
is TP2 and RS

b(1),lt
− RC

b(1),lt
is

increasing in b(1) for lt ∈ {1, . . . ,L}.

Proof: The transition probabilities (see Section IV-A) are
given by the following two row-stochastic matrices:

⎡

⎣

0 1 ∅
0 0.99 0.01 0
1 0 1 0
∅ 0 0 1

⎤

⎦,

⎡

⎣

0 1 ∅
0 0 0 1
1 0 0 1
∅ 0 0 1

⎤

⎦, (30)

The left matrix corresponds to the transition probabilities
when at = C , or, when at = S and lt > 1. The right
matrix represents the transition probabilities when at = S
and lt = 1. To show that Pat

st ,st+1,lt
is TP2, it is sufficient

to show that all
(3
2

)2
second order minors of both matrices

are non-negative. The second-order minors of the first matrix
are M1,2 = M1,3 = M2,3 = M3,1 = M3,2 = 0, M1,1 = 1,
M2,1 = 0.01, M2,2 = M3,3 = 0.99, where Mi ,j denotes the
determinant of the submatrix formed by deleting the ith row
and jth column. For the second matrix all second order minors
are zero. Hence, Pat

st ,st+1,lt
is TP2.

RS
b(1),lt

−RC
b(1),lt

is expanded to:

RS
b(1),lt

−RC
b(1),lt

= b(1)

(
50

4lt
+ 10/L

)

− 1 (31)

which is increasing in b(1) for all lt ∈ {1, . . . ,L}.
Lemma 4: Given two beliefs b′(1) ≥ b(1) and two obser-

vations o ≥ ō, if Pat
st ,st+1,lt

and fXYZ |s are TP2, then the
following holds for any a ∈ A, k ∈ O, and lt ∈ {1, . . . ,L}:

1) b
′,o
a (1) ≥ boa (1)

2) P[o ≥ k |b′, a] ≥ P[o ≥ k |b, a]
3) boa (1) ≥ bōa (1)

where b
′,o
a (1) and boa (1) denote the beliefs updated with

Eq. (3) after taking action a ∈ A and observing o ∈ O.
Proof: The proof is published in [17, Th. 10.3.1, pp. 225,

238]. (Remark: in the referenced proof, the monotone likeli-
hood ratio (MLR) order is considered; in our case |S \∅| = 2,
hence the MLR order reduces to the natural order b′(1) ≥
b(1).)

We now use Lemmas 1-4 to prove Theorem 1. The proof
uses the value iteration algorithm to establish structural prop-
erties of V ∗

l and π∗l [16], [17].
Let V k

l , S k
l , and C k

l , denote the value function, the
stopping set, and the continuation set at iteration k of the
value iteration algorithm, respectively. Then, limk→∞V k

l =

V ∗
l , limk→∞ S k

l = S l , and limk→∞ C k
l = C l [16],

[17]. We define V 0
l (b(1)) = 0 for all b(1) ∈ [0, 1] and

l ∈ {1, . . . ,L}.
Proof of Theorem 1.A: The proof has originally been pub-

lished in [34, Propositions 4.5-4.8, pp. 437–441]. It is also
available in a more accessible form in [33, Th. 1.C, Th. 8,
pp. 389–397]. We give our own version of the proof since the
referenced proofs assume zero reward for the continue action
and assume that rewards are independent of l.

If b(1) ∈ S l−1, the Bellman equation and the fact that
P[o|a, b] = P[o|b] = P

o
b(1) for all a ∈ A and o
= ∅ (see

Eq. (15)) implies that:

RS
b(1),l−1 −RC

b(1),l−1 (32)

HAMMAR AND STADLER: INTRUSION PREVENTION THROUGH OPTIMAL STOPPING 2345

+
∑

o∈O
P
o
b(1)

(
V ∗
l−2(b

o(1))− V ∗
l−1(b

o(1))
) ≥ 0

We show that b(1) ∈ S l follows from the above inequality.
Let W k

l (b(1)) = RS
b(1),l − RC

b(1),l + V k
l−1(b(1)) −

V k
l (b(1)). To show that b(1) ∈ S l−1 =⇒ b(1) ∈ S l , it

is sufficient to show that W k
l (b(1)) is non-decreasing in l for

all k ≥ 0. We proceed to show this statement by mathematical
induction.

For iteration k = 0 of value iteration, W 0
l (b(1)) =

V 0
l (b(1))−V 0

l−1(b(1)) = 0, which is trivially non-decreasing

in l. Assume by induction that W k−1
l (b(1)) is non-decreasing

in l for iterations k − 1, k − 2, . . . , 1. To show that W k
l (b(1))

is non-decreasing in l also for iteration k, we show that
W k

l (b(1))−W k
l−1(b(1)) ≥ 0.

There are four cases to consider:
1) If b(1) ∈ S k

l ∩S k
l−1 ∩S k

l−2, then:

W k
l (b(1))−W k

l−1(b(1))

=
∑

o∈O
P
o
b(1)

(
W k−1

l−1 (bo(1))−W k−1
l−2 (bo(1))

)
(33)

which is non-negative by the induction assumption.
2) If b(1) ∈ S k

l ∩S k
l−1 ∩ C k

l−2, then:

W k
l (b(1))−W k

l−1(b(1)) = RS
b(1),l−1 −RC

b(1),l−1

+
∑

o∈O
P
o
b(1)

(
V k−1
l−2 (bo(1))− V k−1

l−1 (bo(1))
)

(34)

which is non-negative because b(1) ∈ S k
l−1 (it is

implied by Eq. (10)).
3) If b(1) ∈ S k

l ∩ C k
l−1 ∩ C k

l−2, then:

W k
l (b(1))−W k

l−1(b(1)) = RC
b(1),l−1 −RS

b(1),l−1

+
∑

o∈O
P
o
b(1)

(
V k−1
l−1 (bo(1))− V k−1

l−2 (bo(1))
)

(35)

which is non-negative because b(1) ∈ C k
l−1 (it is

implied by Eq. (10)).
4) If b(1) ∈ C k

l ∩ C k
l−1 ∩ C k

l−2, then:

W k
l (b(1))−W k

l−1(b(1)) = (36)
∑

o∈O
P
o
b(1)

(
W k−1

l (bo(1))−W k−1
l−1 (bo(1))

)
(37)

which is non-negative by the induction assumption.
The other cases, e.g., b(1) ∈ C k

l ∩ C k
l−1 ∩ S k

l−2, can be
discarded due to the induction assumption. Hence, W k

l (b(1))
is non-decreasing in l for all k ≥ 0.

Since the left-hand side of Eq. (32) is non-decreasing in l
it follows that if Eq. (32) holds, i.e., if b(1) ∈ S l−1, then
b(1) ∈ S l .

Proof of Theorem 1.B: The proof follows the chain of
reasoning in [17, Corollary 12.2.2, p. 258].

Using Lemma 2, we know that the stopping set S 1 is a
convex subset of B = [0, 1]. That is, it has the form [α∗, β∗]
where 0 ≤ α∗ ≤ β∗ ≤ 1. We show that β∗ = 1.

If b(1) = 1, the Bellman equation (Eq. (10)) states that:

π∗1(1) ∈ argmax
{S ,C}

⎡

⎢
⎢
⎢
⎢
⎣
50 + V ∗

0 (∅)︸ ︷︷ ︸
a=S

,

−9 +
∑

o∈O
Z(o, 1,C)V ∗

1 (b
o
C (1))

︸ ︷︷ ︸
a=C

⎤

⎥
⎥
⎥
⎥
⎦

(38)

As L = 1, it follows from Lemma 1 that an optimal policy
prescribes one stop action during a POMDP episode and that
the intrusion is prevented after the first stop. Hence, V ∗

0 (∅) =
R·

∅,0 = 0. Moreover, since s = 1 is an absorbing state until
the stop, it follows from the definition of boC (Eq. (3)) that
boC (1) = 1 for all o ∈ O \ ∅. Thus, since V ∗

1 (1) ≤ 50 (see
Eqs. (17)–(19)), we get:

π∗1(1) ∈ argmax{S ,C}

⎡

⎢
⎣ 50︸︷︷︸
a=S

,−9 + V ∗
1 (1)︸ ︷︷ ︸

a=C

⎤

⎥
⎦ = S (39)

This means that β∗ = 1 and therefore S 1 = [α∗, 1].
Corollary 1: If Pat

st ,st+1,lt
and fXYZ |s are TP2, the stopping

set S l is connected for all l ∈ {1, . . . ,L}.
Proof: We adapt the proof from [33, Th. 1.B, pp. 389–397]

to our model. In contrast to the referenced proof, our
model includes non-zero rewards for the continue action and
|S \ ∅| = 2.

If b(1) ∈ S l , the Bellman equation and the fact that
P[o|a, b] = P[o|b] = P

o
b(1) for all a ∈ A and o
= ∅ (see

Eq. (15)) implies that:

RS
b(1),l −RC

b(1),l

+
∑

o∈O
P
o
b(1)

(
V ∗
l−1(b

o(1))− V ∗
l (b

o(1))
) ≥ 0 (40)

We show that the above inequality implies that b′(1) ∈ S l
for any b′(1) ≥ b(1), which means that S l is connected.

Since B = [0, 1], the beliefs are totally ordered according to
the standard ordering. Further, since fXYZ |s is TP2 by assump-
tion and Pat

st ,st+1,lt
is TP2 by Lemma 3, bo(1) is weakly

increasing in both b(1) and o ∈ O. Further, P[o ≥ k |b′, a] ≥
P[o ≥ k |b, a] for any k ∈ O (Lemma 4). Thus, since S l−1 ⊆
S l (Theorem 1.A) and S 1 = [α∗

1, 1] (Theorem 1.B), it is suf-
ficient to show that RS

b(1),l−RC
b(1),l+V ∗

l−1(b(1))−V ∗
l (b(1))

is weakly increasing in b(1). We proceed to show this by
mathematical induction.

For iteration k = 0 of value iteration, RS
b(1),l −RC

b(1),l +

V 0
l−1(b

o(1)) − V 0
l (b

o(1)) = RS
b(1),l − RC

b(1),l which is
weakly increasing in b(1) by Lemma 3. Assume by induction
that the expression is weakly increasing in b(1) for iterations
k−1, k−2, . . . , 1. We show that this implies that the induction
assumption holds also for iteration k.

Since S l−1 ⊆ S l (Theorem 1.A) and S 1 = [α∗
1, 1]

(Theorem 1.B), there are three cases to consider

2346 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

TABLE V
HYPERPARAMETERS OF THE POMDP AND THE ALGORITHMS USED FOR

EVALUATION

1) If b(1) ∈ S l ∩S l−1, then:

RS
b(1),l −RC

b(1),l + V k
l−1(b(1))− V k

l (b(1))

= RS
b(1),l−1 −RC

b(1),l−1

+
∑

o∈O
P
o
b(1)

(
V k−1
l−2 (bo(1))− V k−1

l−1 (bo(1))
)

(41)

which is weakly increasing in b(1) by the induction
assumption.

2) If b(1) ∈ S l ∩ C l−1, then:

RS
b(1),l −RC

b(1),l + V k
l−1(b(1))− V k

l (b(1))

=
∑

o∈O
P
o
b(1)

(
V k−1
l−1 (bo(1))− V k−1

l−1 (bo(1))
)
= 0

(42)

which is trivially weakly increasing in b(1).
3) If b(1) ∈ C l ∩ C l−1, then:

RS
b(1),l −RC

b(1),l + V k
l−1(b(1))− V k

l (b(1))

= RS
b(1),l −RC

b(1),l

+
∑

o∈O
P
o
b(1)

(
V k−1
l−1 (bo(1))− V k−1

l (bo(1))
)

(43)

which is weakly increasing in b(1) by the induction
assumption.

Proof of Theorem 1.C: Since B = [0, 1] (see Section IV-B),
fXYZ |s is TP2 by assumption, Pat

st ,st+1,lt
is TP2 by Lemma 3,

and RS
b(1),l − RC

b(1),l is increasing in b(1) (Lemma 3), it
follows from Corollary 1 that S l is a connected subset
of [0, 1] for l ∈ {1, . . . ,L}. Further, from Theorem 1.B
we know that S 1 = [α∗

1, 1]. Then, because S l ⊆ S l+1
for l ∈ {1, . . . ,L − 1} (Theorem 1.A), we conclude that
S l = [α∗

l , 1] for l ∈ {1, . . . ,L} and that α∗
l ≥ α∗

l+1 for
l ∈ {1, . . . ,L− 1}.

APPENDIX B
HYPERPARAMETERS

The hyperparameters used for the evaluation are listed in
Table V and were obtained through grid search.

TABLE VI
CONFIGURATION OF THE TARGET INFRASTRUCTURE (FIG. 1)

Algorithm 1 T-SPSA
Input
MP , θ(1) ∈ R

L: the POMDP, initial L thresholds
N: number of iterations
a, c, λ,A, ε: scalar coefficients
Output
θ(N+1): learned threshold vector

1: procedure T-SPSA(MP , θ(1), N, a, c, λ, A, ε)
2: for n ∈ {1, . . . ,N } do
3: an ← a

(n+A)ε
, cn ← c

nλ

4: for i ∈ {1, . . . ,L} do
5: (Δn)i ∼ U({−1, 1})
6: end for
7: Rhigh ∼ Ĵ (θ(n) + cnΔn)

8: Rlow ∼ Ĵ (θ(n) − cnΔn)
9: for i ∈ {1, . . . ,L} do

10: (∇̂θ(n)J (θ(n)))i ←
Rhigh−Rlow

2cn (Δn)i
11: end for
12: θ(n+1) ← θ(n) + an∇̂θ(n)J (θ(n))
13: end for
14: return θ(N+1)
15: end procedure

APPENDIX C
CONFIGURATION OF THE INFRASTRUCTURE IN FIG. 1

The configuration of the target infrastructure (Fig. 1) is
available in Table VI.

APPENDIX D
THE T-SPSA ALGORITHM

Algorithm 1 contains the pseudocode of T-SPSA.

ACKNOWLEDGMENT

The authors would like to thank Pontus Johnson for his
useful input to this research and Vikram Krishnamurthy for
helpful discussions. The authors are also grateful to Forough
Shahab Samani and Xiaoxuan Wang for their constructive
comments on a draft of this paper.

REFERENCES

[1] A. Fuchsberger, “Intrusion detection systems and intrusion preven-
tion systems,” Inf. Security Tech. Rep., vol. 10, no. 3, pp. 134–139,
Jan. 2005.

HAMMAR AND STADLER: INTRUSION PREVENTION THROUGH OPTIMAL STOPPING 2347

[2] K.-K. R. Choo, “The cyber threat landscape: Challenges and future
research directions,” Comput. Security, vol. 30, no. 8, pp. 719–731,
2011.

[3] E. Zouave, M. Bruce, K. Colde, M. Jaitner, I. Rodhe, and T. Gustafsson,
“Artificially intelligent cyberattacks,” Swedish Defence Res. Agency,
Stockholm, Sweden, Rep. FOI-R–4947–SE, Mar. 2020.

[4] P. Johnson, R. Lagerström, and M. Ekstedt, “A meta language for threat
modeling and attack simulations,” in Proc. 13th Int. Conf. Avail. Rel.
Security, New York, NY, USA, 2018, pp. 1–8.

[5] M. Rasouli, E. Miehling, and D. Teneketzis, “A supervisory control
approach to dynamic cyber-security,” in Decision and Game Theory
for Security. Cham, Switzerland: Springer Int., 2014, pp. 99–117.

[6] E. Miehling, M. Rasouli, and D. Teneketzis, Control-Theoretic
Approaches to Cyber-Security, Cham, Switzerland: Springer, 2019.

[7] R. Bronfman-Nadas, N. Zincir-Heywood, and J. T. Jacobs, “An artificial
arms race: Could it improve mobile malware detectors?” in Proc. Netw.
Traffic Meas. Anal. Conf. (TMA), 2018, pp. 1–8.

[8] N. Wagner et al., “Towards automated cyber decision support: A case
study on network segmentation for security,” in Proc. IEEE Symp.
Series Comput. Intell. (SSCI), 2016, pp. 1–10.

[9] C. Wagner, A. Dulaunoy, G. Wagener, and A. Iklody, “Misp: The design
and implementation of a collaborative threat intelligence sharing plat-
form,” in Proc. ACM Workshop Inf. Sharing Collaborative Security,
2016, pp. 49–56.

[10] T. Alpcan and T. Basar, Network Security: A Decision and Game-
Theoretic Approach, 1st ed. New York, NY, USA: Cambridge Univ.
Press, 2010.

[11] S. Sarıtaş, E. Shereen, H. Sandberg, and G. Dán, “Adversarial attacks
on continuous authentication security: A dynamic game approach,” in
Decision and Game Theory for Security. Cham, Switzerland: 2019,
pp. 439–458.

[12] K. Hammar and R. Stadler, “Finding effective security strategies
through reinforcement learning and self-play,” in Proc. Int. Conf. Netw.
Service Manage. (CNSM), Izmir, Turkey, 2020, pp. 1–9.

[13] K. Hammar and R. Stadler, “Learning intrusion prevention policies
through optimal stopping,” in Proc. Int. Conf. Netw. Service Manage.
(CNSM), Izmir, Turkey, 2021, pp. 509–517.

[14] R. Bellman, “A Markovian decision process,” J. Math. Mech., vol. 6,
no. 5, pp. 679–684, 1957.

[15] A. Wald, Sequential Analysis. New York, NY, USA: Wiley, 1947.
[16] M. L. Puterman, Markov Decision Processes: Discrete Stochastic

Dynamic Programming, 1st ed. New York, NY, USA: Wiley, 1994.
[17] V. Krishnamurthy, Partially Observed Markov Decision Processes:

From Filtering to Controlled Sensing. Cambridge, U.K.: Cambridge
Univ. Press, 2016.

[18] R. Elderman, L. J. J. Pater, A. S. Thie, M. M. Drugan, and M. Wiering,
“Adversarial reinforcement learning in a cyber security simulation,” in
Proc. ICAART , 2017, pp. 1–8.

[19] J. Schwartz, H. Kurniawati, and E. El-Mahassni, “POMDP +
information-decay: Incorporating defender’s behaviour in autonomous
penetration testing,” in Proc. Int. Conf. Autom. Plan. Schedul., vol. 30,
Jun. 2020, pp. 235–243.

[20] F. M. Zennaro and L. Erdodi, “Modeling penetration testing with
reinforcement learning using capture-the-flag challenges and tabular
Q-learning,” 2020, arxiv:2005.12632.

[21] W. Blum. “Gamifying Machine Learning for Stronger Security and
AI Models.” 2021. [Online]. Available: https://www.microsoft.com/
security/blog/2021/04/08/gamifying-machine-learning-for-stronger-
security-and-ai-models/

[22] A. Ridley, “Machine learning for autonomous cyber defense,” Next
Wave, vol. 22, no. 1, pp. 1–43, 2018.

[23] J. Gabirondo-López, J. Egaña, J. Miguel-Alonso, and R. O. Urrutia,
“Towards autonomous defense of SDN networks using MuZero based
intelligent agents,” IEEE Access, vol. 9, pp. 107184–107199, 2021.

[24] K. Tran et al., “Deep hierarchical reinforcement agents for automated
penetration testing,” 2021, arXiv:2109.06449.

[25] R. Gangupantulu et al., “Using cyber terrain in reinforcement learning
for penetration testing,” 2021, arxiv:2108.07124.

[26] Z. Hu, M. Zhu, and P. Liu, “Adaptive cyber defense against multi-stage
attacks using learning-based pomdp,” ACM Trans. Privacy Security,
vol. 24, no. 1, pp. 1–26, Feb. 2021.

[27] I. Akbari, E. Tahoun, M. A. Salahuddin, N. Limam, and R. Boutaba,
“ATMoS: Autonomous threat mitigation in SDN using reinforcement
learning,” in Proc. IEEE/IFIP Netw. Oper. Manage. Symp., 2020,
pp. 1–9.

[28] Y. Liu, M. Dong, K. Ota, J. Li, and J. Wu, “Deep reinforcement
learning based smart mitigation of ddos flooding in software-defined
networks,” in Proc. IEEE 23rd Int. Workshop Comput. Aided Model.
Design Commun. Links Netw. (CAMAD), 2018, pp. 1–6.

[29] T. V. Phan and T. Bauschert, “DeepAir: Deep reinforcement learn-
ing for adaptive intrusion response in software-defined networks,”
IEEE Trans. Netw. Service Manag., early access, Mar. 2022,
doi: 10.1109/TNSM.2022.3158468.

[30] G. Sofronov, J. Keith, and D. Kroese, “An optimal sequential procedure
for a buying-selling problem with independent observations,” J. Appl.
Probab., vol. 43, no. 2, pp. 454–462, 2006.

[31] R. Carmona and N. Touzi, “Optimal multiple stopping and valuation
of swing options,” Math. Finan., vol. 18, pp. 239–268, Apr. 2008.

[32] R. Kleinberg, “A multiple-choice secretary algorithm with applica-
tions to online auctions,” in Proc. 16th Annu. ACM-SIAM Symp. Discr.
Algorithms, 2005, pp. 630–631.

[33] V. Krishnamurthy, A. Aprem, and S. Bhatt, “Multiple stopping time
POMDPs: Structural results & application in interactive advertising on
social media,” Automatica, vol. 95, pp. 385–398, Sep. 2018.

[34] T. Nakai, “The problem of optimal stopping in a partially observable
Markov chain,” J. Optim. Theory Appl., vol. 45, no. 3, pp. 425–442,
Mar. 1985.

[35] J. du Toit and G. Peskir, “Selling a stock at the ultimate maximum,”
Ann. Appl. Probab., vol. 19, no. 3, pp. 983–1014, Jun. 2009.

[36] A. Roy, V. S. Borkar, A. Karandikar, and P. Chaporkar, “Online rein-
forcement learning of optimal threshold policies for Markov decision
processes,” 2019, arxiv:1912.10325.

[37] A. G. Tartakovsky, B. L. Rozovskii, R. B. Blaˇ̄dek, and H. Kim,
“Detection of intrusions in information systems by sequential change-
point methods,” Stat. Methodol., vol. 3, no. 3, pp. 252–293, 2006.

[38] M. N. Kurt, O. Ogundijo, C. Li, and X. Wang, “Online cyber-attack
detection in smart grid: A reinforcement learning approach,” IEEE
Trans. Smart Grid, vol. 10, no. 5, pp. 5174–5185, Sep. 2019.

[39] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov
decision processes,” Math. Oper. Res., vol. 12, pp. 441–450, Aug. 1987.

[40] K. Hammar and R. Stadler. A Software Framework for Building Self-
Learning Security Systems. (Apr. 14, 2022). [Online Video]. Available:
https://www.youtube.com/watch?v=18P7MjPKNDg

[41] M. Zhu, Z. Hu, and P. Liu, “Reinforcement learning algorithms for
adaptive cyber defense against heartbleed,” in Proc. 1st ACM Workshop
Moving Target Defense, 2014, pp. 51–58.

[42] R. A. Howard, Dynamic Programming and Markov Processes.
Cambridge, MA, USA: MIT Press, 1960.

[43] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and act-
ing in partially observable stochastic domains,” Artif. Intell., vol. 101,
no. 1, 1998.

[44] K. J. Åström, “Optimal control of Markov processes with incomplete
state information,” J. Math. Anal. Appl., vol. 10, no. 1, pp. 174–205,
1965.

[45] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA, USA: Athena Sci., 1996.

[46] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[47] R. Bellman, Dynamic Programming. Mineola, NY, USA: Dover Publ.,
1957.

[48] E. J. Sondik, “The optimal control of partially observable markov
processes over the infinite horizon: Discounted costs,” Oper. Res.,
vol. 26, no. 2, pp. 282–304, 1978.

[49] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1,
3rd ed. Belmont, MA, USA: Athena Sci., 2005.

[50] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
King’s College, London, U.K., 1989.

[51] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[52] T. Jaakkola, M. Jordan, and S. Singh, “Convergence of stochastic
iterative dynamic programming algorithms,” in Advances in Neural
Information Processing Systems, vol. 6. Red Hook, NY, USA: Curran
Assoc., 1994.

[53] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Stat., vol. 22, no. 3, pp. 400–407, 1951.

[54] A. N. Shirayev, Optimal Stopping Rules. Berlin, Germany: Springer-
Verlag, 2007.

[55] G. Peskir and A. Shiryaev, Optimal Stopping and Free-Boundary
Problems (Lectures in Mathematics. ETH Zürich). Basel, Switzerland:
Springer, 2006.

[56] Y. Chow, H. Robbins, and D. Siegmund, Great Expectations: The
Theory of Optimal Stopping. Boston, MA, USA: Houghton Mifflin,
1971.

[57] S. M. Ross, Introduction to Stochastic Dynamic Programming:
Probability and Mathematical. San Diego, CA, USA: Academic, 1983.

[58] J. Bather, Decision Theory: An Introduction to Dynamic Programming
and Sequential Decisions. Sussex, NJ, USA: Wiley, 2000.

[59] H. V. Poor and O. Hadjiliadis, Quickest Detection. Cambridge, U.K.:
Cambridge Univ. Press, 2008.

http://dx.doi.org/10.1109/TNSM.2022.3158468

2348 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

[60] M. Rabi and K. H. Johansson, “Event-triggered strategies for industrial
control over wireless networks,” in Proc. 4th Annu. Int. Conf. Wireless
Internet, 2008, pp. 1–7.

[61] J. L. Snell, “Applications of martingale system theorems,” Trans. Amer.
Math. Soc., vol. 73, no. 2, pp. 293–312, 1952.

[62] S. Karlin, “Total positivity, absorption probabilities and applications,”
Trans. Amer. Math. Soc., vol. 111, no. 1, pp. 105–108, 1964.

[63] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems. Red Hook, NY,
USA: Curran Assoc., 1999.

[64] J. C. Spall, “Multivariate stochastic approximation using a simultane-
ous perturbation gradient approximation,” IEEE Trans. Autom. Control,
vol. 37, no. 3, pp. 332–341, Mar. 1992.

[65] J. C. Spall, “Implementation of the simultaneous perturbation algo-
rithm for stochastic optimization,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 34, no. 3, pp. 817–823, Jul. 1998.

[66] K. Hammar and R. Stadler. “Gym-Optimal-Intrusion-Response.”
2021. [Online]. Available: https://github.com/Limmen/gym-optimal-
intrusion-response

[67] D. Merkel, “Docker: lightweight linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, p. 2, 2014.

[68] S. Hemminger, “Network emulation with NetEm,” in Proc. Linux Conf.,
2005, pp. 1–9.

[69] T. Smith and R. Simmons, “Heuristic search value iteration for
POMDPs,” in Proc. 20th Conf. Uncertainty Artif. Intell., Arlington,
TX, USA, 2004, pp. 520–527.

[70] A. N. Shiryaev, “On optimum methods in quickest detection problems,”
Theory Probab. Appl., vol. 8, no. 1, pp. 22–46, 1963.

[71] M. Roesch, “Snort—Lightweight intrusion detection for networks,” in
Proc. 13th USENIX Conf. Syst. Admin., 1999, pp. 229–238.

[72] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: Techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, p. 20, 2019.

[73] J. Dromard, G. Roudière, and P. Owezarski, “Online and scalable
unsupervised network anomaly detection method,” IEEE Trans. Netw.
Service Manag., vol. 14, no. 1, pp. 34–47, Mar. 2017.

[74] C. J. Fung, J. Zhang, and R. Boutaba, “Effective acquaintance man-
agement based on bayesian learning for distributed intrusion detec-
tion networks,” IEEE Trans. Netw. Service Manag., vol. 9, no. 3,
pp. 320–332, Sep. 2012.

[75] C. J. Fung, J. Zhang, I. Aib, and R. Boutaba, “Dirichlet-based trust
management for effective collaborative intrusion detection networks,”
IEEE Trans. Netw. Service Manag., vol. 8, no. 2, pp. 79–91, Jun. 2011.

[76] S. Huang et al., “HitAnomaly: Hierarchical transformers for anomaly
detection in system log,” IEEE Trans. Netw. Service Manag., vol. 17,
no. 4, pp. 2064–2076, Dec. 2020.

[77] M. Tambe, Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned, 1st ed. New York, NY, USA: Cambridge Univ. Press,
2011.

[78] C. J. Fung and R. Boutaba, Intrusion Detection Networks—A Key to
Collaborative Security. Boca Raton, FL, USA: CRC Press, 2013.

[79] L. Buttyan and J.-P. Hubaux, Security and Cooperation in Wireless
Networks: Thwarting Malicious and Selfish Behavior in the Age of
Ubiquitous Computing. New York, NY, USA: Cambridge Univ. Press,
2007.

[80] N. Dhir, H. Hoeltgebaum, N. Adams, M. Briers, A. Burke, and P. Jones,
“Prospective artificial intelligence approaches for active cyber defence,”
2021, arxiv:2104.09981.

[81] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for cyber
security,” 2019, arxiv:1906.05799.

[82] ****** Y. Huang, L. Huang, and Q. Zhu, “Reinforcement learn-
ing for feedback-enabled cyber resilience,” Annu. Rev. Control, to be
published.

[83] E. Miehling, M. Rasouli, and D. Teneketzis, “A POMDP approach to
the dynamic defense of large-scale cyber networks,” IEEE Trans. Inf.
Forensics Security, vol. 13, pp. 2490–2505, 2018.

[84] J. C. Georgia, “Next generation intrusion detection: Autonomous rein-
forcement learning of network attacks,” in Proc. 23rd Nat. Inf. Syst.
Secuity Conf., 2000, pp. 1–12.

[85] X. Xu and T. Xie, “A reinforcement learning approach for host-based
intrusion detection using sequences of system calls,” in Advances in
Intelligent Computing. Heidelberg, Germany: Springer, 2005, pp. 995–
1003.

[86] A. Servin and D. Kudenko, “Multi-agent reinforcement learning for
intrusion detection,” in Adaptive Agents and Multi-Agent Systems III.
Adaptation and Multi-Agent Learning. Heidelberg, Germany: Springer,
2008.

[87] N. I. Mowla, N. H. Tran, I. Doh, and K. Chae, “AFRL: Adaptive
federated reinforcement learning for intelligent jamming defense in
FANET,” J. Commun. Netw., vol. 22, no. 3, pp. 244–258, Jun. 2020.

[88] K. Malialis and D. Kudenko, “Multiagent router throttling:
Decentralized coordinated response against DDoS attacks,” in Proc.
IAAI, 2013, pp. 1551–1556.

[89] K. A. Simpson, S. Rogers, and D. P. Pezaros, “Per-host DDoS mit-
igation by direct-control reinforcement learning,” IEEE Trans. Netw.
Service Manag., vol. 17, no. 1, pp. 103–117, Mar. 2020.

[90] B. Ning and L. Xiao, “Defense against advanced persistent threats in
smart grids: A reinforcement learning approach,” in Proc. 40th Chin.
Control Conf. (CCC), 2021, pp. 8598–8603.

[91] L. Huang and Q. Zhu, “Adaptive honeypot engagement through rein-
forcement learning of semi-Markov decision processes,” in Decision
and Game Theory for Security. Cham, Switzerland: Springer, 2019,
pp. 196–216.

[92] M. Alauthman, N. Aslam, M. Al-kasassbeh, S. Khan, A. Al-Qerem,
and K. K. R. Choo, “An efficient reinforcement learning-based Botnet
detection approach,” J. Netw. Comput. Appl., vol. 150, Jan. 2020,
Art. no. 102479.

[93] G. Apruzzese et al., “Deep reinforcement adversarial learning against
botnet evasion attacks,” IEEE Trans. Netw. Service Manag., vol. 17,
no. 4, pp. 1975–1987, Dec. 2020.

[94] H. Liu, Y. Li, J. Mårtensson, L. Xie, and K. H. Johansson,
“Reinforcement learning based approach for flip attack detection,” in
Proc. 59th IEEE Conf. Decis. Control (CDC), 2020, pp. 3212–3217.

[95] S. Dong, Y. Xia, and T. Peng, “Network abnormal traffic detection
model based on semi-supervised deep reinforcement learning,” IEEE
Trans. Netw. Service Manag., vol. 18, no. 4, pp. 4197–4212, Dec. 2021.

[96] J. Wang, C. Song, and H. Yin, “Reinforcement learning-based hier-
archical seed scheduling for greybox fuzzing,” in Proc. NDSS, 2021,
pp. 1–17.

[97] J. Yan, H. He, X. Zhong, and Y. Tang, “Q-learning-based vulnerability
analysis of smart grid against sequential topology attacks,” IEEE Trans.
Inf. Forensics Security, vol. 12, pp. 200–210, 2017.

[98] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41,
nos. 1–2, pp. 100–115, 1954.

[99] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proc. 9th ACM
SIGCOMM Workshop Hot Topics Netw., 2010, pp. 1–6.

[100] M. Standen, M. Lucas, D. Bowman, T. J. Richer, J. Kim, and
D. Marriott, “CybORG: A gym for the development of autonomous
cyber agents,” 2021, arXiv:2108.09118.

[101] A. Molina-Markham, C. Miniter, B. Powell, and A. Ridley,
“Network environment design for autonomous cyberdefense,” 2021,
arxiv:2103.07583.

Kim Hammar (Graduate Student Member, IEEE)
received the B.Sc. and M.Sc. degrees in computer
engineering in distributed systems from the KTH
Royal Institute of Technology, Stockholm, Sweden,
in 2016 and 2018, respectively, where he is cur-
rently pursuing the Ph.D. degree with the Division
of Network and Systems Engineering. He has also
held engineering positions with Ericsson, Allstate,
Logical Clocks AB, MIC Nordic, and Tele 2. His
research interests are in the intersection between
decision theory, machine learning, and large-scale

systems, focusing on networking and security applications.

Rolf Stadler (Senior Member, IEEE) received the
M.Sc. degree in mathematics and the Ph.D. degree
in computer science from the University of Zurich.
He is a Professor with the KTH Royal Institute of
Technology, Stockholm, Sweden, and the Head of
the Division of Network and Systems Engineering.
Before joining KTH in 2001, he held positions
with the IBM Zurich Research Laboratory, Columbia
University, and ETH Zürich. His group made con-
tributions to real-time monitoring, resource man-
agement, and automation for large-scale networked

systems. His current interests include data-driven methods for network engi-
neering and management, as well as AI techniques for cybersecurity. He was
the Editor-in-Chief of IEEE TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT from 2014 to 2017.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

