2382

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Automating Mitigation of Amplification
Attacks in NFV Services

Matteo Repetto™, Gianmarco Bruno™, Jalolliddin Yusupov

, Guerino Lamanna™, Benjamin Ert]™,

and Alessandro Carrega™, Member, IEEE

Abstract—The combination of virtualization techniques with
capillary computing and storage resources allows the instan-
tiation of Virtual Network Functions throughout the network
infrastructure, which brings more agility in the development and
operation of network services. Beside forwarding and routing,
this can be also used for additional functions, e.g., for security
purposes. In this paper, we present a framework to systemati-
cally create security analytics for virtualized network services,
specifically targeting the detection of cyber-attacks. Our frame-
work largely automates the deployment of security sidecars into
existing service templates and their interconnection to an exter-
nal analytics platform. Notably, it leverages code augmentation
techniques to dynamically inject and remove inspection probes
without affecting service operation. We describe the implementa-
tion of a use case for the detection of DNS amplification attacks
in virtualized 5G networks, and provide extensive evaluation of
our innovative inspection and detection mechanisms. Our results
demonstrate better efficiency with respect to existing network
monitoring tools in terms of CPU usage, as well as good accuracy
in detecting attacks even with variable traffic patterns.

Index Terms—Amplification attacks, DDoS, ARIMA, eBPF,
NFY, 5G.

I. INTRODUCTION

ETWORK Function Virtualization (NFV) has repre-
N sented a ground-breaking innovation in the rather static
domain of Telco operation, bringing unprecedented opportu-
nities for agile development and provisioning of virtualized
Network Services (NSs). Beside the mere virtualization of
network functions, automation has been a key driver since

Manuscript received 16 November 2021; revised 8 March 2022; accepted
28 April 2022. Date of publication 5 May 2022; date of current ver-
sion 12 October 2022. This work has received funding from the European
Commission, Grant Numbers: 786922 (ASTRID) and 833456 (GUARD). The
associate editor coordinating the review of this article and approving it for
publication was C. Hesselman. (Corresponding author: Matteo Repetto.)

Matteo Repetto is with the IMATI Institute, National Research Council of
Italy (CNR), 16149 Genoa, Italy (e-mail: matteo.repetto @ ge.imati.cnr.it).

Gianmarco Bruno is with the Product Development Unit OSS,
Ericsson Telecomunicazioni, 16151 Genoa, Italy (e-mail: gianmarco.bruno@
ericsson.com).

Jalolliddin Yusupov is with the Department of Automatic Control and
Computer Engineering, Turin Polytechnic University, Tashkent 100095,
Uzbekistan (e-mail: jaloliddin.yusupov@polito.uz).

Guerino Lamanna is with the Research and Development Department,
Infocom Srl, 16121 Genoa, Italy (e-mail: guerino.lamanna@
infocomgenova.it).

Benjamin Ertl is with Agentscape AG, 14199 Berlin, Germany (e-mail:
b.ertl@agentscape.de).

Alessandro Carrega is with SSN Lab, Italian National Inter-University
Consortium for Telecommunications (CNIT), 16145 Genoa, Italy (e-mail:
alessandro.carrega@cnit.it).

Digital Object Identifier 10.1109/TNSM.2022.3172880

the beginning, pursuing policy-driven management and control
of NSs.

Notably, the scope for NFV has not been restricted to packet
forwarding and routing, but has also looked for new forms
of functions that could be more effectively implemented in
the network than in end devices [1], also including detection
and mitigation of cyberattacks [2]. Indeed, several kinds of
attacks, especially those concerning Denial of Service (DoS)
can be mitigated in a more effective and efficient way by
Telco providers on behalf of their customers. Even if detec-
tion and reaction capability could be easily integrated in the
design of any NS, we argue that this approach would pro-
vide a quite static and rigid solution, and lack the necessary
agility to adapt to the continuously evolving network threat
landscape [3]. Therefore, we designed the ASTRID! frame-
work for creating tailored detection and mitigation processes
for virtualized NSs. It allows to augment descriptive service
templates with security agents, to connect them to analytics
platforms for analysis and correlation, and to define reaction
and mitigation policies that automate response to cyberattacks.

In this paper, we describe the architecture of the ASTRID
framework and demonstrate our solution for a specific use
case, namely mitigation of Distributed DoS (DDoS) attacks.
Specifically, our investigation focuses on amplification attacks
originated by compromised botnets attached to 5G networks
and the mechanisms to detect and stop them at the edge. The
main innovations of our work with respect to existing State of
the Art include:

o the use of security sidecars for monitoring and inspection,
which preserve the integrity of software images of Virtual
Network Functions (VNFs);

o the decoupling of security processes from service man-
agement by a dedicated security Dashboard, which allows
better separation of concerns between different teams
(devops and security staff);

o the development of inspection and enforcement programs
in the eBPF framework, including a generic control plane
(Dynmon) that allows to load and remove them at runtime
without affecting service continuity;

o the Analytics ToolKit (ATk), which is a detection tool that
combines coarse and fine grained measurements to prop-
erly balance the effectiveness of Deep Packet Inspection
(DPI) with the efficiency of simple protocol counters.

lAddreSsing Threats for viRtuallseD services, https://www.astrid-
project.eu/.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-8478-2633
https://orcid.org/0000-0001-7231-6301
https://orcid.org/0000-0003-3973-4266
https://orcid.org/0000-0002-6930-4227
https://orcid.org/0000-0002-9232-6811
https://orcid.org/0000-0002-5944-7582

REPETTO et al.: AUTOMATING MITIGATION OF AMPLIFICATION ATTACKS IN NFV SERVICES

Attacker

Flood the

Victim yjctim Internet servers

Fig. 1. Typical attack pattern for volumetric DDoS with amplification.

Remarkably, our approach addresses the most recent chal-
lenges in NFV, which is currently moving towards Platform-
as-a-Service environments. The possibility to run different
eBPF programs with a common agent goes in the direction
of truly agentless systems, which could be further extended to
serverless environments as well.

In a preliminary paper [4], we already described moni-
toring and detection of amplification attacks at the network
edge. Here, we extend our previous work by i) automating the
deployment and configuration of security agents; ii) extending
the scope to mitigation of the attack; iii) performing extensive
performance analysis on effectiveness and efficiency aspects,
which encompasses the quality of the detection, overhead of
security agents, and response latency. Our results show that the
ATk can distinguish between periodic fluctuations of requests
and anomalies. The overhead for collecting the measurements
is also quite limited, and the overall framework does not
introduce relevant delays in the detection process.

The rest of this paper is organized as follows. We dis-
cuss the problem of amplification attacks in Section II, which
includes existing mitigation techniques and prospective usage
of NFV for this purpose. We then describe the architec-
ture, scope, and workflows of the ASTRID framework in
Section III. The implementation of the use case is described
in Section IV, including the details of the deployed agents,
the analytics engine, and the response policies. We report
numerical results from our performance analysis in Section V,
which includes comparison with alternative monitoring tools.
We revise related work in Section VI. Finally, we give our
conclusion in Section VII.

II. AMPLIFICATION ATTACKS

DDoS attacks still represent one of the most challeng-
ing security threat for global organizations; indeed, the vast
increases in data traffic expected from 5G and the growing
number of (vulnerable) [oT devices give attackers better oppor-
tunity for launching larger attacks [5], [6]. Volumetric DDoS
are able to saturate the Internet pipe of even the largest orga-
nizations (e.g., GitHub).> To reach the necessary amount of
traffic, they combine two complementary techniques, namely
distributed generation of traffic from a huge number of com-
promised devices and amplification of the volume by hundreds
or thousands of buggy or misconfigured servers on the Internet.

The typical attack pattern is shown in Fig. 1. An attacker
usually uses a botnet of compromised nodes. These nodes

2https://www.wired.com/story/github—cldos—memcached/

2383

query a large number of servers, while spoofing the IP
address of the victim. As a result, such servers flood the
victim with responses that are much larger in size than the
original requests, hence generating the amplification effect.
Well-known examples of vulnerable protocols include the
Network Time Protocol (NTP) and the Domain Name System
(DNS). Beside these examples, the problem extends to other
servers and protocols as well (Memcache, SIP, LDAP, RIP,
SNMP). The relevant parameter to size the impact of the
attack is the “amplification factor,” namely how many times
the response is bigger than the original query; it may range
from a few to thousand times [4].

A. Existing Mitigation Strategies

The detection of volumetric amplification attacks is trivial,
because a single server or an entire network are flooded by
an anomalous amount of traffic. However, mitigation is more
challenging, because packets come from legitimate sources and
carry valid data. There are currently two different approaches
for this purpose: inline solutions and scrubbing centers.

Inline solutions work at the boundary of the victim’s
network. The detection is usually more accurate, because
deep packet inspection is used to identify known attack pat-
terns, whereas scrubbing centers usually consider aggregate
statistics. However, they prevent a single server or the entire
network to become flooded, but cannot avoid the access link
to saturate. Moreover, large investment (usually in inflexible
hardware) is requested by each organization, which remains
underutilized for long periods of time.

Diversion of suspicious traffic towards scrubbing centers
prevents access links to become saturated [7]. This solution
limits the impact of the attack to the time needed to detect the
saturation and to divert packets; the latter is typically done by
changing BGP routing or DNS resolution and usually requires a
few dozens of minutes at most. However, there are non-negligible
effectiveness and efficiency issues for scrubbing centers. The
capacity of the scrubbing center must be sized some times
more than the biggest expected attack (e.g., four to ten), and
it should be continuously increased as attackers increase the
maximum volume of their attacks.> Additionally, scrubbing
center solutions typically sample the traffic flows and make
aggregate statistics, hence detecting general patterns that may
lead to over-blocking legitimate traffic users. Definitely, even
this approach is largely inefficient and partially ineffective,
because the overall Telco’s infrastructure is still overwhelmed
by large volumes of malicious traffic, scrubbing centers must
be largely overdimensioned, and the duration of the denial of
service experienced by the victim is not negligible.

B. Mitigation in NFV

The most effective defensive mechanism against DDoS
would be to detect and mitigate it at the origin. Stopping

3Less than two years after the unprecedented 1.35 Tbps DDoS attack
experienced by GitHub, AWS reported to have defended against a 2.3 Tbps
attack in February 2020, which almost doubled the previous volume. During
the same period, Imperva reported one of its client to have experienced a
500 million packets-per-second attack, which represents the most intensive
DDoS attack against network infrastructure in the history of the Internet.

2384

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

ASTRID Dashboard

Virtualization

Manifest
files

]

Environment

Kubernetes API

X

\.

¥
e
Controller Manager | LcP
Control plane
Detection plane
Elasticsearch Logstash Business
ASTRID Logic

Kafka J Agent(s)

ASTRID Security)

Platform Analytics] ASTRID sidecar

/

\.

Cloud/physical infrastructure

Fig. 2. The ASTRID framework.

amplification attacks before they are amplified would be pos-
sible, in theory, by applying safe configurations to servers,
blocking unnecessary ports, activating anti-spoofing filters;
however, this is difficult to achieve in practice, because
it depends on each organization that connects servers and
devices to the Internet. An even more efficient yet challeng-
ing approach would be to block DDoS as close as possible
to its root, namely at the boundary of Telco’s infrastructures.
Unfortunately, the implementation of detection and mitigation
mechanisms by Telco providers on behalf of their customers
has been historically hindered by the lack of computing
resources at the network edge and the prohibitive cost to
deploy security appliances in a capillary way.

With the advent of NFV these obstacles can be easily over-
come. The availability of computing and storage resources
throughout the network allows the implementation of flexi-
ble monitoring, inspection, detection and enforcement tasks
that were not possible with legacy hardware appliances. NFV
can therefore provide scalable DDoS solutions close to the
network edge, which are able to stop attacks close to their
root. This makes inline DDoS detection and mitigation faster,
more accurate, less expensive and keeps harmful traffic from
getting past the edge into the core of the Telco network.

III. THE ASTRID FRAMEWORK

Even if detection and reaction capability could be eas-
ily integrated in the design of any NS, we argue that this
approach would provide a quite static and rigid solution,
and lack the necessary agility to adapt to the continuously
evolving network threat landscape [3]. Therefore, we designed
the ASTRID framework to implement detection and analyt-
ics processes on virtualized NSs. The main purpose is to
simplify the instrumentation of VNFs with the necessary set
of security agents, and to automate as much as possible
the collection of data and the implementation of response
actions. The implementation explicitly targets containerized
applications, orchestrated by Kubernetes. This addresses the
growing interest in Platform-as-a-Service (PaaS) virtualization,
which has proven to be more efficient and agile than Virtual
Machines in Infrastructure-as-a-Service environments [8]. This
also allows to deploy security agents as sidecar containers, and
even to leverage code augmentation as we did in ASTRID (see
Section IV).

Cloud infrastructure

Fig. 2 shows the overall architecture of the ASTRID frame-
work. It is made of a centralized platform (on the left side) and
a security sidecar (right side) co-located in the same pod as the
main business logic of the VNFs. In this architecture, security
analytics are implemented in a common centralized platform,
whereas the sidecars only includes monitoring and inspection
tasks. The reasons behind centralized detection include the
following considerations:

o The possibility to correlate data and events from multiple
sources, which improves the detection accuracy.

The design of lightweight monitoring and inspection
functions that do not bring excessive overhead to
PaaS/serverless environments.

The need for persistent storage in virtualized environ-
ments already requires to collect data in a common
location.

Both the centralized platform and the sidecars are split into
a Control plane, which is responsible for configuration and
control, and a Detection plane, which implements concrete
monitoring and detection tasks. Differently from existing solu-
tions, ASTRID is not conceived as a standalone cybersecurity
tool per se; rather, it can be viewed as a sort of middleware
for implementing many complementary detection processes
for virtualized services. The detection of amplification attacks
is just an example, which leverages ASTRID capabilities to
extend existing NSs.

The main capabilities implemented by ASTRID include:

o definition of security processes for an existing NS, under-

taken through the Dashboard;

e automatic configuration and response in the Control
plane, managed by the Context Manager (CM) and the
Security Controller (SC);

e security analytics in the Detection plane that analyze and
correlate data, and create notifications and alerts.

In the following, we describe these capabilities in detail with
reference to the relevant components in the platform.

A. Definition of Detection Processes

The first capability of the ASTRID framework concerns the
definition of Security Analytics Pipelines (SAPs) which define
three main elements chained to implement a detection service:

o the selection of security agents to be co-located with

VNFs;

REPETTO et al.: AUTOMATING MITIGATION OF AMPLIFICATION ATTACKS IN NFV SERVICES

polycube

polycube

Fig. 3. Example of service topology visualized in the ASTRID Dashboard.

o the selection of analytics for data processing and

correlation;

o the identification of response actions to be triggered by

alerts sent by analytics.

The ASTRID Dashboard allows the definition of SAPs in a
graphical way. This process starts by loading an existing NS,
given by a Kubernetes manifest file. The Dashboard represents
the service as a graph, where nodes corresponds to service
pods and links to logical relationships between Kubernetes
services, deployments, pods and containers (see Fig. 3). This
graph is then enriched with security agents, which are linked
to every pod that must be monitored. An analytics engine is
then selected that will be fed with data collected from agents.
The different types of security agents, as well as available
analytics, are dynamically loaded from the Context Manager
(see Section III-B). Finally, a set of response policies automate
the behavior of the system in case of alarms and other relevant
events. Response policies are user-defined set of rules that
can be directly edited in the Dashboard or loaded from an
existing file.

The outcome of the SAP definition process is an enriched
manifest file, where security agents are embedded in a dedi-
cated ASTRID sidecar. The sidecar is an additional container
co-located in the same VNF pod as the function to be mon-
itored. The modification of a Kubernetes manifest file is not
trivial, because this often requires to share resources among
containers (e.g., to read log files in the container hosting the
main business logic). The current implementation mostly sup-
ports network probes for packet inspection. This is the most
interesting features, because other data (e.g., logs) can already
be collected by Kubernetes API and does not strictly require
additional agents.

The ASTRID sidecar always contains a special kind of
agent, named Local Control Plane (LCP), which acts as com-
mon control point to change the configuration of monitoring
and enforcement agents. The LCP supports different config-
uration methods (YAML files, REST APIs, command line),
which cover most of existing agents. As regard to security
agents, a few “Beats” from the Elastic Stack have been inte-
grated, although the main goal is to support code augmentation

2385

for instrumenting the Kernel (namely, the possibility to inject
eBPF code, as described in Section IV). It is worth noting
that log collection is already provided by Kubernetes; how-
ever, the availability of agents for this purpose fully decouples
the framework from the underlying infrastructure, and makes
it more portable to multi- and cross-cloud deployments.

Once the enriched template is available, the Dashboard
can start service deployment, which is done by conventional
Kubernetes API. After deployment, the Dashboard collects
runtime parameters (e.g., [P addresses), which are necessary
to configure security agents in the next step. The Dashboard
therefore hands over configuration to the SC, by passing the
SAP and runtime parameters. It is important to note that
all software deployment and lifecycle management is per-
formed by the Dashboard through Kubernetes API, whereas
the SC only takes care of configuration matters. This pro-
vides separation of concerns between service management and
security processes, preventing possible conflicts in software
deployment between devops and security teams.

B. Automatic Configuration and Response

The smart core of the ASTRID platform is the Security
Controller (SC), which automatically undertakes configuration
and response actions. Configuration is triggered by the recep-
tion of a SAP descriptor from the Dashboard. It entails the
configuration of security agents, security analytics, the other
components of the data handling pipeline in the Detection
plane (see Section III-C), and the SC itself (by loading the
set of response policies).

The implementation of the SC is based on the Drools busi-
ness rules management framework. Drools engine is in charge
of simultaneously satisfying policies based on the Rete algo-
rithm. For its functioning, Drools is based on the available
data (which are called facts) and on the rules that have been
defined; there is a rules engine which, upon the occurrence of
certain conditions that correspond to imposed rules, launches
the corresponding action. It is also possible to automatically
generate the source file from decision tables that can be writ-
ten, for example, in Microsoft Excel, thus further facilitating
the work of non-technical personnel. This provides separation
between the application logic and business rules: the rules on
which the program works are completely separate from the
code of the program itself, in this way the maintainability of
the software is greater and without the risk of manipulating
business rules.

The ASTRID Security Controller is developed using Spring
Boot framework. The SC implements the following interfaces:
o REST APIs for interacting with ASTRID components;

o Kafka API to receive notifications.

The definition of response policies follows an Event-
Condition-Action pattern, where one or more response actions
are triggered when an event occurs, if some context conditions
are satisfied. Events are generated by the security analytics,
whereas conditions may include the current time, agent con-
figuration, service topology. The scope of the actions includes
both changes in the configuration of ASTRID agents as well as
management requests to the external Kubernetes orchestrator.

2386

The first type of response is useful for mitigation of DDoS
attacks, and it is therefore implemented in our use case. The
second type can be used in case compromised software must
be replaced, or to find a different location for migration in
case of attacks to the underlying infrastructure.

The Context Manager (CM) provides an abstraction of the
virtual service, in order to decouple the ASTRID platform
from the implementation of security agents. This abstraction
includes the topology of the service, and suitable models for
both the description of the execution environments (Virtual
Machines, containers, lambda functions) and security agents
that capture their capabilities (i.e., what data they provide
and how) rather than their concrete software implementation.
Internally, the CM translates the high-level agent model into
concrete configuration actions, which are then applied locally
through the LCP agent. This approach allows to change the
implementation and interface of security agents without affect-
ing the rest of the ASTRID platform. The CM exposes a
uniform REST interface for changing the configuration of local
agents and security analytics, independent of specific protocols
and syntax.

C. Attack Detection

The whole detection process is implemented by a data han-
dling pipeline which collects data from agents and delivers it
to the ASTRID platform, where they are indexed and stored
in a NoSQL database (Elasticsearch). In addition, data can
also be directly delivered to one or more engines for security
analytics, hence following a programming model that supports
both streaming and off-line analysis.

The architecture of the ASTRID platform builds on and
extends the well-known and proven Elastic Stack, by collecting
events and measurements on a Kafka bus. The architecture
also includes the possibility to run Logstash filters for data
transformation, encoding, indexing, and so on.

Security analytics include any algorithm that processes, cor-
relates, and analyzes data for the sake of detecting attacks.
Their output is represented by informative events and alarms,
which are shared with the Dashboard (for representation to
users), and the SC (to trigger response); they are also stored
for offline processing and forensics purposes.

IV. DETECTION AND MITIGATION OF
AMPLIFICATION ATTACKS

We use the ASTRID framework to detect and mitigate
amplification attacks in an NFV service. We already discussed
in Section II that the best mitigation strategy for DDoS attacks
consists in blocking them at their origin, before they get ampli-
fied by vulnerable servers in the Internet. In this respect, a very
common scenario is to block malicious flows at the boundary
of a 5G network. Indeed, the advent of the Internet of Things
(IoT) is expected to drastically increase the number of con-
nected devices to the Internet. Coupled with their typical weak
security posture, this makes them the ideal target for attackers
that aim at building huge botnets. In this Section we briefly
review the layout of a virtualized 5G service and describe the
ASTRID components to implement DDoS protection.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

NSSF NEF NRF PCF UDM AF
Nnssf Nnef Nnrf Npcf Nudm Naf

Namf Nsmf
AUSF AMF SMF
T T Control plane
/ \ User plane
NI N2 N4 ser plane
—] \
I 1
| UE —— (RAN i—N3~| UPF |~N6
L 1 L 1

L xo

Fig. 4. ETSI architecture for the 5G core (5GC). The UE and AN are shown
for reference, but they are not part of the SGC.

A. Virtualized 5G Service

The 5G architecture maintains the distinction between the
Access Network (AN) and the 5G Core (5GC), similar to
previous models [9]. However, the new standard reflects the
main advances in software-defined networking and moves to
a cloud-native approach for the 5GC, where each functional
entity is now modeled as a (virtual) Network Function (NF).
This evolution is not limited to the nomenclature and the deliv-
ery of software instances instead of hardware appliances, but
it also encompasses a sharper distinction between the control
and user plane and a large transition from reference points
(N[0-9]) towards service-based interfaces (Nxxx), at least in
the control plane (see Fig. 4).

The service-based architecture facilitates both planning and
management of the whole infrastructure. On the one hand,
it allows more flexibility in placing NFs across centralized
offices and computing/storage resources at the edge, with bet-
ter support for latency-sensitive applications and user mobility.
On the other hand, multiple NF instances can be deployed
to create different network “slices,” dedicated to wvertical
applications or user groups.

The 5GC architecture facilitates its implementation as NFV
service, and indeed there are already both commercial and
open-source implementations available. For our work, we
selected the Open5GS project,* which can be deployed in
conventional servers, virtual machines, and even Docker con-
tainers; specifically, Kubernetes manifest files are available,
which makes it a perfect example for demonstrating the
ASTRID framework.

For what concerns DDoS protection, the relevant part of
the 5GC is the user plane, and in particular the User Plane
Function (UPF), which bears the user traffic. In the 5GC archi-
tecture, the user plane carries Packet Data Units (PDUs) —
Ethernet, IPv4 or IPv6 frames — from the User Equipment
(UE) to an external Data Network (DN), and viceversa. The
UPF is therefore the outermost NF in the SGC that processes
IP packets generated from or intended to the UE; it is mostly
conceived for packet steering to/from multiple data networks,
for anchoring in case of mobility, and for QoS and traffic
policies enforcement.

4https://openS gs.org/

REPETTO et al.: AUTOMATING MITIGATION OF AMPLIFICATION ATTACKS IN NFV SERVICES

B. Threat Model

We address DDoS attacks that can be detected at their origin
(namely, at the outermost edge of our 5GC) by anomalies in
protocol usage. The 5G core indirectly bears the attack, but
it is neither its origin, nor target. Therefore, in this paper we
assume the 5GC a trusted and safe infrastructure to deploy our
monitoring probes.

DDoS attacks are composed of a huge number of many
small “rivulets” generated by compromised devices in a bot-
net, usually scattered over a large area. In these conditions,
the volume of traffic at each site cannot be used as Indicator
of Compromise in a reliable way, because it may be confused
with periodical fluctuations. We therefore focus on detecting
usage patterns that are known to trigger amplification. In our
use case, we specifically analyzed two protocols, namely NTP
and DNS. They are representative of the largest amplification
factors and number of vulnerable servers, respectively. The
simpler form of detection only considers anomalies in a sin-
gle UPF, but correlation of data from multiple UPFs is also
possible to spot the most distributed attacks.

The Network Time Protocol (NTP) has one of the largest
amplification factors and a huge number of public servers;
indeed, NTP is among the top emerging network attack vec-
tors.” The NTP attack is based on sending a command called
monlist to an NTP server; the server returns the addresses of up
to the last 600 machines that it has interacted with. The request
packet is only 234 bytes long, but the response may sum up
to several dozens of kilobytes, depending on the number of
returned addresses.

The Domain Name System (DNS) is one of the main
pillars of the Internet, with a huge number of public and pri-
vate servers deployed worldwide. Indeed, according to recent
reports from cybersecurity vendors, amplification attacks
account for more than one third of DNS issues experienced
by enterprises [5]. These attacks aim at triggering the largest
volume of DNS data in the response, usually by sending a
query for “ANY” record, which retrieves all the available types
for a given name. Alternatively, to elude security controls by
some providers that already deprecated this meta-query, “SOA”
or other types or record may be requested, but with a lower
amplification factor.

C. Security Agents and Enrichment

According to the general description of the ASTRID frame-
work given in Section III, the first step to define a SAP for
DDoS detection is the enrichment of the NFV service with
the necessary monitoring and inspection agents. In our use
case, the UPF is the only function which processes user traf-
fic, so security agents must be placed there (see Fig. 5). UPFs
are software functions that can be easily replicated for scala-
bility, therefore they probably represent the only point in the
5GC (and also the Internet) where packets can be inspected
with fine granularity. Indeed, the far edge of a 5G archi-
tecture is the RAN, which would represent an even better
location for inspection and enforcement; it would also lead to

5See https://blog.cloudflare.com/network-layer-ddos-attack-trends-for-q3-
2020.

2387

DNS/NTP servers

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

§ Victim

g 0

Fig. 5. Security agents are placed at the far edge of the SGC.

more scalability, because of the lower amount of aggregated
traffic. However, this part is not included in the 5GC imple-
mentation selected for our work, because this element can be
shared by multiple network instances operated by different
telco providers.

There are several tools that can be used to monitor network
flows and inspect packets. However, they are usually designed
to run in physical servers or Virtual Machines, and do not fit
well PaaS and serverless environments. Furthermore, in the
telecommunication domains there is still a prevailing attitude
towards proprietary and closed-source solutions, which are
usually delivered as immutable and certified software images;
this is mostly necessary to preserve their integrity and to
ensure telco-grade performance are not compromised by third
party’s software.

To effectively address ever-evolving attack patterns with-
out breaking the immutable infrastructure mindset, we pursue
an agentless approach that instruments the underlying kernel
without the need to change the container images. In this
respect, we leverage the extended Berkeley Packet Filter
(eBPF), a Linux native technology for instrumenting the kernel
at run-time. eBPF programs follow the same development
process of userspace applications and can be created inde-
pendently from the kernel development process. They are
dynamically injected into the kernel, hence they allow the
creation of inspection tasks that are tailored to the actual
requirements of external security analytics, as opposed to
static kernel implementations. The kernel provides a run-time
verifier that analyzes all possible execution branches of an
eBPF program before loading it. eBPF programs are rather
limited in terms of memory access and available functions;
indeed, operations outside the eBPF environment are carried
out only through specific “helper” functions that further limit
the likelihood of introducing faulty programs.

One major limitation of eBPF programs is that they require
a specific userland counterpart to take care of control and
management. For example, Suricata is currently able to load
custom eBPF programs, but they are limited to a few opera-
tions (filtering, bypass, load balancing) and must comply with
specific programming patterns.®

6https://suricata.rcaclthedocs.io/en/latest/capture—hardware/ebpf—
xdp.html#setup-ebpf-bypass

2388

We addressed this issue by using Dynmon,” a transparent
service that allows the dynamic injection of eBPF code in the
Linux kernel, enabling the monitoring of the network traffic
and the collection and exportation of custom metrics. It is
part of Polycube, a framework conceived for developers of
network functions in the NFV world [10]. If a NS is built
with Polycube, it is already a fully agentless system; otherwise,
Polycube can be deployed as additional security sidecar, as in
our use case.

The remarkable aspect of our approach is that exactly the
same userland utility (namely, the Dynmon service) is used to
load and run programs that generate different metrics, without
specific constraints on the data structure.® A large number of
eBPF map types is currently supported, including plain and
per-cpu hash, LRU hash, array, queue and stack. Finally, it
also supports atomic eBPF maps content read thanks to an
advanced map swap technique, and maps content deletion
when read.

The possibility to run custom code brings unprecedented
flexibility in defining inspection rules, which are no more
bounded to pre-defined patterns, as it happens in signature-
based detection tools as Suricata, or events, as in Zeek, and are
also more efficient than regular expressions or similar logic.
In fact, the Dynmon programming model is looser than what
required by Suricata, allowing a larger degree of extensibility
(even if the scope of the two tools is rather different). Both
Suricata and Zeek give access to a large number of protocol
fields;” the Zeek script language is far more powerful than
Suricata rules, but they are interpreted at run-time and not
suitable for high packet rates.

We developed three eBPF programs for each protocol in our
use case with the following functionalities:

e coarse-grained measurement of the total number of pack-

ets bearing DNS/NTP data;

o fine-grained deep packet inspection that counts the pack-
ets with potentially harmful requests (i.e., the monlist
command for NTP and “ANY” query for DNS);

o fine-grained measures and dropping of packets that carry
the potentially harmful requests.

The first type of programs gives a raw indication of anoma-
lous conditions, which may be due to attacks or deviations
from common usage patterns. The second type of programs
is more suited for the purpose of detecting the amplification
attack; however, it implies deep packet inspection and that
usually slows processing down.!® The last type of programs
is used for enforcement: in our implementation we drop all
potentially harmful requests, based on the consideration that

7https://polycube—network.readthedocs.io/en/VO.9.0—rc/services/pcn—
dynmon/dynmon.html

8The main limitation is that structs and unions types are not supported.
This is mostly due to the export formats (JSON and OpenMetrics), because
OpenMetrics does not support complex data structures.

9See, for instance, the list of available keywords for Suricata rules:
https://suricata.readthedocs.io/en/latest/rules/index.html, and the list of proto-
col analyzers for Zeek: https://docs.zeek.org/en/master/script-reference/proto-
analyzers.html#zeek-dns.

10The number of DNS/NTP packets can be easily computed by hardware
appliances based on the destination port of UDP packets. The detection of
monlist packets and “ANY” queries requires a software approach, since it
cannot be generalized for any protocol.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

)
ATk =
RN i Stat
. Esti . t ate St
MaChine

Fig. 6. Architecture for security analytics.

they are not usually necessary for licit operation and this
behavior is already implemented by some providers.!!

D. Context Manager and eBPF Abstraction

The eBPF programs described in Section IV-C are mod-
eled as standalone agents in the Context Manager. Differently
from conventional agents (e.g., Elastic beats) that must nec-
essarily be instantiated at deployment time, eBPF programs
can be loaded at runtime through the Dynmon service without
breaking service continuity. This means that additional pro-
grams can be developed and loaded to inspect other vulnerable
protocols beyond DNS and NTP, without any change to the
running instance of the 5SGC.

The model for an eBPF agent includes its source code and
the description of the metrics it provides. The source code is
necessary because the program must be compiled for each
specific environment by Dynmon before being loaded into
the kernel. It is also used to parse maps structures and to
instantiate them. The description of the metrics is again used
by Dynmon to map eBPF maps to OpenMetrics names and
metadata; this simplifies the necessary parsing inside security
analytics.

E. Analytics ToolKit

We implemented a general-purpose Analytics ToolKit (ATk)
that can be applied to detect a plurality of attacks. In the fol-
lowing, for the sake of brevity, we only refer to the DNS use
case, for which we report numerical evaluation in Section V,
but we have fully implemented and tested the necessary
software for NTP amplification attacks too.

The ATk analyzes quasi real-time data, performing esti-
mations based on historical time-series, and finds anomalies
in the input pattern. The architecture of the ATk is shown
in Fig. 6. It aggregates the data published asynchronously
by each monitoring agent j (probe) located in the set of
network nodes A at each time instant 7: coarse grained mea-
surements (namely, volume of DNS packets) denoted by ftj ,
and fine-grained measurements (namely, volume of “ANY”
query) denoted by df. In general, f/ and d] can be arrays,
though in this use-case they are scalars. Nodes are grouped
into a set of A areas A;, based on their geographical location

(A; CWN, UAZ»:N Vi=1,...,A).

(2
Internally, a proxy service (not shown in the schematic archi-
tecture of Fig. 6) consumes the measurements and dispatches

11 https://blog.cloudflare.com/deprecating-dns-any-meta-query-type/

REPETTO et al.: AUTOMATING MITIGATION OF AMPLIFICATION ATTACKS IN NFV SERVICES

@ >0 Va5 >p
Vi=1t1t—1 - H

@26 v
Vi=tt—1,....t—h
h<H

4l > 8 > p

& <d N|di 28 <p

Fig. 7.

ATk state diagram.

them to a battery of N = |N| estimators, each one process-
ing the data from a different node. In this architecture, the
number of estimators, which are the most computationally
heavy functions, can scale horizontally with the number of
nodes and/or use-cases to keep the ATk responsive without
consuming unnecessary resources. From a practical perspec-
tive, a small group of estimators (nine in our setup) is deployed
in a separate Kubernetes pod. This ensures scalability of the
ATk as the number of UPF nodes and measures increases. The
proxy is also located in a separate pod; it represents a poten-
tial bottleneck for the system, but our experiments showed that
it introduces a negligible load and latency for the considered
use-cases.)

Each estimator j is responsible to predict the value ftj
expected at time ¢, by using the previous 7T values (from
t — 1 downto t — T). Their implementation use standard
ARIMA (AutoRegressive Integrated Moving Average) models.
The larger T, the more daily and weekly patterns are captured
by the estimators. ARIMA was selected because it can be
continuously trained during operation, as explained in detail
in the following, hence removing the need for large seasonal
datasets.

Both measures and predictions from the N estimators drive
the ATk state machine, which is shown in Fig. 7. There
are three states, corresponding to normal (BAU), suspicious
(WARN) and attack conditions (ALARM). The state machine
is re-evaluated every At, by comparing the current measure-
ment f/ with the estimation f{ computed from the previous
T values. Both the current status and correlations (see below)
are collected by the proxy and published on the Kafka bus.

The ATk persists in BAU as long as |(f} — f{)/f]| < &,
where dy is the forecast threshold (calculated as percentage of
the forecast value), otherwise it switches to the WARN state.
To start the process, a time-series with 7 “clean” measure-
ments must be available, i.e., coming from nodes which are
not under attack, in order to learn the periodic behavior. During
operation, the new measurements ftj are continuously added
to the time-series to continue training; however, real values
are replaced by their estimation ft] when the state is not BAU,
to prevent overfitting. }

In the WARN state, fine-grained measurements di are also
collected to improve the accuracy of the detection. These val-
ues are compared with two fixed detection thresholds §,; and
62 that account for individual deviations and correlated varia-
tions in area A;, respectively. The ATk switches and remains
in the ALARM state when either one node exceeds the thresh-
old 04 or p nodes in the same area A; exceed the threshold %,

2389

in both cases this should happen for H consecutive evaluations.
This can be formally described as:

FeN:d =64 Vv
A (i=1,...,A): |{He A} dl >8> p
Vi=tt—1,...,t—H (1)

The first equation allows to identify attacks that go through a
single node; the second equation is more suitable for very dis-
tributed attacks, that affect a plurality of nodes of the same area
with smaller deviations. All performance evaluations presented
in this paper have been made considering attacks through
a single node: detection performance in case of correlated
variations are left for further study.

F. Response and Mitigation

In order to respond to attacks, a number of response policies
in the form of Drool rules are loaded in the SC as part of the
SAP. These rules define specific actions to be triggered for
each state of the ATk (BAU, WARN, ALARM). The structure
of the rules is basically the same for each state, and includes
the following list of actions:

e previous eBPF programs are removed via CM,;

o the eBPF program corresponding to the current state is

loaded through the CB.

The different eBPF programs have been already described
in Section IV-C. Specifically, the program for coarse-grained
measures is loaded in BAU state, the program for fine-grained
measure is loaded in WARN state, and the program for
enforcement is loaded in the ALARM state.

G. Security Analytics Pipeline

According to the description of the ASTRID framework, a
SAP must be setup for bearing data from monitoring agents to
the detection algorithm. For the specific case of amplification
attacks, the ASTRID sidecar includes a Logstash agent that
periodically polls the Dynmon service in Polycube to get the
current measurements (i.e., total number of DNS packets and
number of “ANY” queries seen, when available). The same
agent publishes this data on the Kafka bus.

The SC configures a common Kafka topic for both Logstash
and the ATk when the SAP is instantiated. This avoids the
need for filtering relevant data at the ATk, and also prevents
flooding other detection algorithms that might be running on
the same platform. In the ATk, a proxy is then responsible to
deliver data from each UPF to the corresponding estimator, as
described in Section I'V-E.

V. NUMERICAL EVALUATION

We carried out numerical evaluation of the proposed frame-
work. The analysis focused on the main innovations aspects
of our approach, namely i) inspection of network packets with
eBPF programs; ii) anomaly detection via network analyt-
ics implemented in the ATk; and iii) response time to start
mitigation when an alarm is received.

2390

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

NSSFM NRF M PCF N UDR }

UDM M AUSF MAMF N SMF }

ASTRID Platform

[ASTRID Dashboard j

Context Broker

* Context Manager
Kafka T
Logstash | (Elasticsearch | [:

. Security
‘ Gl } E Controller }

Node 1

Node 2

Node 3

Fig. 8. Experimental setup of a virtualized 5GC monitored by ASTRID.

A. Experimental Testbed

For the purpose of evaluation, we set up an experimental
testbed that replicates all the elements present in a 5G installa-
tion. Fig. 8 shows the structure of our testbed. It is composed
of the ASTRID framework, 2 OpenSGS service, RAN emula-
tion. Grayed boxes correspond to Kubernetes pods, and white
boxes to internal containers. The dashed boxes group pods that
logically belong to the same service.

The 5G network is made of 9 UPFs and a common con-
trol plane. Each UPF has its own standalone Data Network
(which is not connected to any other component), hence resem-
bling the typical structure for edge computing. In addition
to the 5GC, an access network is also emulated by software
(hence without real hardware and radio transmission); the nec-
essary components are taken from the UERANSIM project!3
and include both a gNodeB (namely, the virtual RAN) and a
virtual UE.

Traffic Generators (TG) are included in the UE to emulate
local applications or IoT devices that make traffic towards the
5G network. They have been implemented with the Python
Scapy library that enables the user to send, sniff and dissect
and forge network packets. Scapy allows to define a set of
packet templates, to send them, and to receive the correspond-
ing responses. It also allows to match requests with responses
and returns both a list of packet pairs (request, response) and a
list of unmatched packets. The main advantage with respect to
other tools like nmap or hping is that Scapy returns the whole
packet, instead of the plain indication of open/closed/filtered
port.

A single RAN gives connectivity to 9 UEs. These nodes
are grouped into 3 non-overlapping areas. In our configura-
tion, each UE-X generates traffic (DNS/NTP packets) towards
the corresponding UPF-X. This is achieved by associating each
user to a different DN, and each DN to a different UPF in the
SMF. We argue that this structure is not representative of a
realistic setup, because usually at most one UPF is associated
to each RAN. However, we kept the setup simple for those

12https://github.com/astrid—project/astrid—framework
1 3https:// github.com/aligungr/UERANSIM

elements that are not involved in the evaluation of our mon-
itoring and detection mechanisms. All protocols and tunnels
envisioned by the 5G architecture are used to deliver the traffic
from the TGs to the UPFs.

The TGs have been effectively used to generate synthetic
attack data applying the network traffic profiles disclosed and
analyzed in the literature [11], [12] and verified by a three-
months test campaign conducted by Ericsson on field involving
a customer telco operator. These profiles follow a sinusoidal
pattern, which is representative of typical daily variations. The
ATk is always initially trained with this profile, but additional
variance is added during the measurements to account for
inaccurate data and short-term variations.

The testbed is deployed in a 3-nodes Kubernetes clusters.
Each node has 2 Intel Xeon CPU E5-2660 v4@2.00GHz with
14 cores and hyperthreading enabled, 128 GB RAM, 64 GB
SSD storage; they are interconnected by a Gigabit Ethernet
network. Demonstration of this setup is available as external
material.'#

B. Enrichment and Deployment

The transition to NFV is largely motivated by more agility
and reduced development times for NSs. In this respect, secu-
rity processes must not slow down the main devops workflow,
and this directly applies to the design and deployment of SAPs
in our framework.

The time to design a pipeline depends on the complexity
of the pipeline, the number of agents that need to be inserted
and configured, and the user expertise. The dashboard pro-
vides a graphical pipeline editor that allows to easily add and
configure agents to the service graph by pointing and click-
ing within a couple of seconds. Moreover, in case of large
graphs where the same agent(s) must be deployed in many
components, the enrichment process can be executed program-
matically by providing code to rewrite and enrich the original
manifest file.

The time to deploy a NS with Kubernetes depends on sev-
eral factors. This includes, for instance, the size of the graph,

14https://WWW.youtube.com/watch?V:ZdeUZ6ysz

REPETTO et al.: AUTOMATING MITIGATION OF AMPLIFICATION ATTACKS IN NFV SERVICES

—e— Knowledge base creation

28 " .+ APIcalls

2.6
2.4

o

g

1.8
1.6
1.4
1.2

Execution time [s]

0.8
0.6
0.4
0.2

1 10 100
Number of rules

Fi

g. 9. Breakdown of the latency of the SC.

the availability of container images in the local caches, and the
current workload of the Kubernetes node(s). However, there is
no notable difference between a deployment with or without
security agents in our case and, therefore, the impact of the
enrichment process can be neglected.

After deployment, the SC is expected to configure the SAP.
This includes i) the creation of the corresponding knowledge
base (namely, rules, processes, functions, type models), ii) exe-
cution time of API calls. Fig. 9 reports the measures for
different number of rules in the policy database, starting with 1
rule execution and until 100 event message execution in order
to detect attacks. As it can be seen from the graph, the most
time consuming operation is the creation of the knowledge
base. In fact, 2 seconds are required to initiate the knowledge
base for 100 rules. Instead API calls to other components is a
less time consuming task, in the order of milliseconds, which
does not increase with the number of rules.

C. Inspection

The implementation of DPI raises the issue of scalabil-
ity in case of high traffic load. The target is to achieve the
same performance of the “baseline” scenario, namely when
no inspection process is run, for the traffic volume forward-
able in a pure software environment. This is enough for most
use cases, as higher traffic volumes are usually managed by
multiple UPF instances. Since we do not expect meaning-
ful differences in the behavior of our system with different
protocols, we only investigate DNS in our experiments.

To evaluate performance of the security agents, we con-
sidered both their impact on packet processing (e.g., delay
introduced in network flows) and resource consumption in
terms of CPU/memory usage. This answers the question
whether the inspection mechanism is really transparent to
network operation and PaaS deployment.

We also demonstrate the advance with respect to existing
technology by comparison with a well-known and widespread
network monitoring tool, namely Zeek. The choice was moti-
vated by the fact that this tool performs a similar role than
ASTRID agents, namely it provides raw measurements and

2391

100000 -
= Baseline
mmmm BPF raw
BPF deep
Zeek
10000
o'
2 1000
Q
S
£
s
° 100
a
A I I
1 '
10 100 1000 10000 100000
Packet rate [pps]
Fig. 10. Latency experienced by packets across the UPF, while increasing

the packet rate. Log scale is used for the y axis.

delegates the detection to external processes. Zeek parses
network packets and generates events, which contain relevant
fields extracted from the messages and are then processed by a
powerful scripting language. We therefore developed a simple
script that counts the total number of DNS requests and the
number of occurrences with a query type of ANY (all relevant
packet fields are always included in the corresponding event).

To perform extensive tests that are not affected by other
parts of the setup (namely, the UE and RAN), we directly
streamed DNS packets through a single UPF, hence bypass-
ing the access network. In our experiments we replicated two
kinds of real-word DNS packets: a simple query for an A-
type record (which requests the translation of a name into an
IPv4 address), and a potentially rogue query of type ANY.
To get meaningful results, each test was run for at least 30
seconds (tests with lower packet rate were run longer to get a
larger number of samples). Our evaluation considered variable
packet rates of 10, 100, 1000, 10,000 and 100,000 packets per
second.

1) Impact on Network Traffic: The first evaluation consid-
ers the impact of the inspection agents on IP traffic. Our
main finding was that we were able to receive packets at the
full transmission rate, without packet loss. We only observed
0.42% lost packets for Zeek with the highest transmission rate.
We therefore conclude that either inspection technologies does
not affect packet transmission.

2) Forwarding Delay: Even in the absence of packet loss,
the deployment of an inspection probe may increase the pro-
cessing time, which turns into larger forwarding latency. We
therefore considered the overall latency experienced by pack-
ets across the UPF. To this aim, we measured the difference
in the timestamps recorder by tcpdump for each packet on the
ingress and egress interface.

Fig. 10 compares the latency introduced by our programs
and Zeek with a baseline scenario; the latter corresponds to the
situation when no probe is applied. For our eBPF programs,
“raw” indicates the simple packet counter and “deep” indicates
the counter of packets with the ANY query.

With lower packet rates (namely, below 10,000 packets per
second), the impact of the considered inspection agents is

2392
1000
mmmmm BPF raw (A query)
mmmm BPF raw (ANY query)
BPF deep (A query)
BPF deep (ANY query)
‘o
=
| I | |
[
a
10 I I
10 100 1000 10000 100000
Load [pps]
Fig. 11. Execution times for eBPF programs, when processing A and ANY

queries. The log scale is used.

rather low. Indeed, even if the logarithmic scale largely hides
the effect, the agents introduce up to 50% additional latency
with respect to the baseline scenario. However, the overall
latency is always below 100 ps, which is anyway more than
acceptable for Internet traffic.

In some cases, Zeek seems to perform better than eBPF pro-
grams. However, while eBPF programs are really extensions
to the operation of the in-kernel network stack, Zeek captures
packets with a raw socket and then the inspection happens in
parallel to forwarding operations implemented by the kernel.
Overall, achieving close results to Zeek means that the impact
on standard kernel operations is rather low. In addition, we
remark that results may slightly vary for different realizations
of the experiment, hence we can consider the performance
almost equivalent.

Rather unexpectedly, the latency was lower at the rate of
10,000 packets per second. We repeated the experiments sev-
eral times, and got the same results. One possible reason is
better efficiency with this rate in the reception process (namely,
fewer hardware interrupts are generated); in any case, since our
objective is only to compare the tools, we did not investigate
in detail the cause of this behavior.

With the largest packet rate, the gain with respect to Zeek
largely increases. In this case, the latency introduced by Zeek
almost doubles with respect to eBPF programs (note that
Fig. 10 uses the log scale). Overall, the difference between
raw and deep inspection is rather limited.

3) Processing Delay: We already pointed out in the
previous Section that eBPF programs are de-facto extensions
to the operation of the kernel. So it is interesting to look at the
time to execute such programs. Even if this measurement is not
trivial to perform, we provide a reasonable estimation by mea-
suring the elapsed time from within the same program (namely,
timestamps are taken at the entry/exit point). Of course, this
does not account for the overhead to invoke and run the eBPF
function.

Fig. 11 shows the execution times measured under different
conditions. This time, we also considered the potential impact
of different types of queries, namely A and ANY. We note

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

50
Youser 1
45 %nice .
%system
40 |- = %jowait 4
mm— %steal
35 q
=
= 30 - il
(o]
()]
& 25 il
=
z 20 8
(&)
15 .
10 .
5 [} -
0 L L L . B . ey L [| e
P AT A A A A A AT AT P AT A A A A A A AT A
vY YRRl YR v
X2 (222 (22 (2X)
° ° ° °
Baseline BPF-raw BPF-deep Zeek
Packet rate [pps]
Fig. 12. Cumulative CPU in the UPF, while varying the transmission rate

of DNS packets.

the impact of the different types of programs, namely for raw
and deep packet inspection. The latter requires more time,
as expected, because of the larger number of operations to
be performed to parse the packet. However, the differences
when measuring or inspecting A and ANY queries can be
only ascribed to normal variability of different realizations.
Overall, the processing time is always well below 1 us, hence
confirming the high efficiency of this inspection method.

Similarly to the previous experiment, shorter processing
times are measured for the highest packet rates. Again, the
same behavior was observed for different realizations and we
do not have an explanation for this behavior beyond the intu-
ition of a better management of interrupts; however, it is worth
being deeper investigated in the future.

4) Resource Usage: Finally, we consider resource usage,
by investigate CPU utilization and memory allocation.

Fig. 12 shows the cumulative CPU usage for the differ-
ent types of eBPF programs and Zeek, broken down into the
usual components reported by common CPU monitoring tools.
In this case, in addition to the packet rates already used for
previous experiments, we also considered the fastest rate we
were able to send packets (which is almost the same that can be
achieved with 100,000 pps), indicated as “top.” Even if the fig-
ures cannot be ascribed to the monitoring tools only, it is clear
that the impact of Zeek on CPU usage is more than an order
of magniture greater than Polycube. In the case of Polycube,
we note an increment of system CPU usage with higher trans-
mission rates, due to eBPF operation in kernel-space, whereas
there is no dependency for the user space, because Dynmon
only collects data with the same rate. Instead, Zeek splits
operation between kernel-space (for capturing and duplicat-
ing packets) and user-space (for packet inspection), and this
is reflected in the increment of both shares of CPU usage.
The computing overhead of Zeek rises up from 10,000 packets
onward, which are the likelihood conditions for a large-scale
attack.

Finally, Fig. 13 shows an analysis of memory allocation.
We consider the Virtual Memory Size (VMS), the Resident
Set Size (RSS), the Proportional Set Size (PSS), and the

REPETTO et al.: AUTOMATING MITIGATION OF AMPLIFICATION ATTACKS IN NFV SERVICES

1200
= heap
mmmm stack g
| === unmappe
1000 vdso
proc
o vvar
s 800 - mmmm |ib
© mm socket
o
©
2 600 [
>
2
4 L.
g 00
P - -]|
15855 %55 0, g s R8s e, Mg RSs o,
Polycube (BPF raw) Polycube (BPF deep) Zeek
Memory types
Fig. 13. Memory allocation for the different tools.

Anonymous share (Anon). The first corresponds to the overall
address space allocated by the program, the second is the real
size of physical memory allocated (including shared libraries),
the third is again the physical memory but with proportional
attribution of shared libraries (namely, their memory alloca-
tion is divided by the number of programs that use them),
and the forth is memory mappings not backed by a file.
The amount of memory is further broken down according
to the corresponding mapping type (e.g., file, library, stack,
heap, process, socket, etc.), to give a more accurate picture of
memory usage. Not surprisingly, the VMS of Zeek is far larger
than Polycube, because the program is in general more com-
plex. It is also rather intuitive that the eBPF programs does
not impact memory allocation for Polycube. Also the RSS
and PSS of Zeek are higher than Polycube, even if propor-
tionally less than the VMS. Indeed, RSS and PSS are almost
equivalent in our setup, because libraries are not shared with
other processes inside the docker container. Zeek allocates less
memory to the process itself and shared libraries (“proc” and
“lib” slices, respectively) than Polycube, but it has around the
same heap size. Remarkably, a large slice of memory indicated
as “socket” is used for capturing packets.

D. Detection

For what concerns attack detection, we investigated the
accuracy of the ATk and how it behaves in different conditions.
For the sake of simplicity, we focus our analysis on a single
UPF, by generating a variable traffic profile, as described in
Section V-A. The internal estimators use ARIMA (5, 0, 0).
The volume of DNS messages is always referred to the mea-
surements from the probes, hence it is expressed as number
of packets in the polling interval, which is set to 15 minutes.
The thresholds are set to 6y = 10, 64 = 50 (packets/interval),
unless differently indicated.

First of all, we tested the capacity of the ATk to correctly
follow a profile that changes after the initial training. For this
purpose, we initially trained the ATk with a traffic profile
ranging from 50 to 300 packets/interval. Then, we gradually
amplified the traffic profile up to 550 packets/interval during
one week, to emulate a sort of seasonal periodicity (which

2393

— No. DNS pkts —— No. ANY queries--- ATk forecast —— ATK status
Avlv%%ﬁﬁ Iﬂﬂ Hlﬂ Iﬂﬂ Ilﬂ Ilﬂ | Iﬂ L1
E 600 5
£ A
5 2 TR AN
@ o PR |7 S L W
£ PSS |V U Lot A 0 Y A
= SAPAR 7 Y |V Y Ak W N Y SO T S
o BN UL T
g e
e S S A O A O AN Y N I A
wolf Ll W W
ool WE N W
50 mnonon v AN AL AR AR AR
0 I\I\IHH\HHI\I\HIH\IHHH HIH\IHH\HH WANANANATATARAVATAIR!
R O R R kR R D I R PRl M I A E VIO IN
Time [h]
Fig. 14. ATk status during one-week simulation, with increasing traffic
profile.

—— No. DNS pkts —— No. ANY queries--- ATk forecast —— ATK status

Traffic volume [pkts/s]
n w
g 8
>’_
el

X

CRARZR R R R AR R R R SRR R

Time [h]

Fig. 15. ATk status during a two-day simulation, with a single attack during
peak hours.

was not used in the training phase). We also generated 5 small
attacks (75 packets/interval, corresponding to the peaks of the
fine-grained measurements) that could potentially deceive the
learning process. Despite of the adverse conditions, Fig. 14
shows that the ATk continuously learns the traffic profile in a
correct way, and its estimations accurately follow the real mea-
surements. Indeed, neither the increasingly volume of DNS
packets nor the attacks trigger false positives. Unfortunately,
in these conditions, the ATk largely fails the detection, because
of relatively small size of the attack.

Fig. 15 shows the evolution of the ATk during two days
of simulation. This time, a single larger attack is generated
during peak hours (100 packets/interval); this is the most
challenging situation, because the relative size of the attack
with respect to licit traffic is smaller than in other hours.
To make the evaluation more realistic, we introduced some
variance (10 packets/interval, Gaussian distribution) to the traf-
fic profile used for training. The ATk correctly detects the
attack, by switching to the WARN state first, and then going
to in ALARM. Of course, due to the transition through the
WARN state, the detection is delayed. To mitigate this latency,
measures can be collected more frequently, since their trans-
mission has a negligible overhead. Notably, there are a lot
of transitions to the WARN state, due to the inaccuracy of

2394

30 , — — 100
—— No. warnings (10) P

o7 L --=-- False negatives (10) -~ BEAS— 0]
—=— No. warnings (50) ! -

--o-- False negatives (50) " . -.----""% .]
24‘\ gatives (50) * 5 80
21 o 70

18 . S 60
15 \.\ s 50
12 \ 40
9 g ’ \ 30
' : \\:&‘%, 20

6
3 10
0

No. warnings
[%] seaneboau asje4

T T T R R SO R B

1 n.'l—’f 0
4567 8 9101112131415161718192021222324
Forecast threshold [%]

Fig. 16. Tradeoff between inspection overhead and detection accuracy, while
varying the forecast threshold § £

using coarse grained measurements only. These transitions
have a cost for the system, because they activate DPI in the
probes (see Section V-C), hence it is important to reduce their
number.

We therefore investigated the tradeoff between inspection
overhead and detection accuracy, by carrying on a sensitivity
analysis to the value of the forecast threshold. A single attack
was again simulated during one day. Its volume was about
1/3 of the maximum daily volume of licit traffic and placed in
the most unfavorable time, namely during the peak hours. All
simulations were repeated ten times, and again a variance of 10
packets/interval was added to the original training profile. We
measured the number of “warnings,” which entail changes in
the eBPF code, and lead to instability of the ATk status. Based
on ATk state machine described in Section IV-E, the minimum
possible number of warnings is equal to the hysteresis between
WARN and ALARM states, which is 3.

Fig. 16 shows the results from the experiments. We con-
sidered different values of the forecast threshold, expressed
as percentage with respect to the maximum size of the attack
(this way we can set the absolute value of the threshold based
on the attack size that we can tolerate), and two values for
the detection thresholds (10 and 50 packets/interval). Overall,
the number of transitions to the WARN state ranges from 25
for §; = 4% down to a minimum of 5 for §; = 24%. It
smoothly decreases as the forecast threshold increases, but
it does not depend on the detection threshold because the
commutation between BAU and WARN is only governed by
the forecast threshold. Correspondingly, the number of False
Negatives increases for larger values of the detection thresh-
old; it is systematically higher for larger values of the detection
threshold, as expected. From this analysis, we can select the
best forecast threshold based on the maximum number of False
Negatives that we are willing to tolerate (e.g., 5%). In general,
it would be convenient to select the lower detection thresh-
old, because it corresponds to minimal number of published
warnings. Finally, we argue that unfortunately the detection
threshold cannot be arbitrarily low, to avoid the detection of
False Positives.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

—— Rule execution

0.9

0.8
0.7

0.6

0.5

0.4
0.3]
//

Execution time [s]

02 e

0.1

O 1
1 10 100
Number of rules

Fig. 17. Execution time of SC’s rules.
TABLE I
BREAKDOWN OF THE DELAY (IN SECONDS) TO PUSH AN EBPF PROGRAM
TO THE NETWORK AGENT

Operation CM Polycube Total
Add coarse-grained meas. 0.0221 2.3792 2.4013
Remove coarse-grained meas. 0.1628 0.0296 0.1924
Add fine-grained meas. 0.0502 2.4033 2.4535
Remove fine-grained meas. 0.1726 0.0302 0.2028

E. Response and Mitigation

In the response phase, events generated by the ATk triggers
rules in the SC. The execution time of the Drools engine is
directly proportional to the number of rules in the policy, as
shown in Fig. 17. For the testbed considered in this paper, the
number of rules in the database does not exceed 20. Hence,
it requires on average 0.2 seconds to start response actions.
For instance, to switch between BAU, WARN, and ALARM
states it takes 0.192 seconds.

However, the time required to finalize the response depends
on other components that are involved in the action. We there-
fore investigated in details the composition of this delay, by
splitting it into two components: processing introduced by the
CM and configuration of the local agent (Polycube). Table I
shows that the delay is rather limited, around a couple of sec-
onds, and have a marginal impact on the timescale of the ATk.
Overall, the major impact is due to loading the eBPF program
into the kernel, because this operation implies compilation and
code verification. Oddly, the CM is slower in the removal pro-
cess; this is due to the internal implementation that stores the
current configuration in Elasticsearch and needs more time to
remove an element.

VI. RELATED WORK

After the amplification DDoS attacks hit the head-
lines around 10 years ago, several researchers have started
investigating the pattern and impact over the global
Internet [12], [13]. Due to the difficulty to monitor the pub-
lic Internet, the interest has often focused on the prevention

REPETTO et al.: AUTOMATING MITIGATION OF AMPLIFICATION ATTACKS IN NFV SERVICES

of these attacks [14]. However, some authors tried to identify
relevant features in historical data [15].

More recently, the advent of Software-Defined Networking
has revived the interest in detection, especially by applying
machine learning techniques that use generic network fea-
tures like the size of packets, duration of the connection,
etc. [16]-[20]. Since the training is not trivial with real traffic,
reinforcement learning was also investigated by authors [21]
that observes the pattern directly from the traffic. Some authors
also explicitly considered the geographical dimension of the
problem [22]. However, we argue that SDN is not capil-
lary used in practice, especially in larger telco’s networks.
Overall, we argue that SDN cyberdefence applications provide
a scalable and flexible solution for physical infrastructures, but
cannot be seamlessly integrated with generic VNFs.

Several authors already proposed to leverage NFV to
replace rigid and expensive hardware cybersecurity appliances
with software instances [2], [23], [24]. Differently from our
approach, these authors build standalone detection systems,
which are not integrated with NSs. Additionally, they mostly
focus on the implementation of the internal detection and miti-
gation mechanisms but does not address implementation issues
and applicability to modern virtualization paradigms.

Beyond the analysis of network traffic, there are also authors
that consider logs for the configuration of firewall rules [25].
It is important to note that SHIELD [26] also exploits NFV
for adaptive monitoring of an IT infrastructure and for feed-
ing the data to an analytics engine to detect attacks in real
time. One of the key novelties of the ASTRID project in
contrast to SHIELD is the use of eBPF modules. However,
SHIELD provides the protection of the modules inside the
framework.

VII. CONCLUSION

In this paper, we have described a framework to create secu-
rity analytics over virtualized NFV services. Our approach
enriches existing service templates with security agents and
connects them to additional elements for data collection and
attack detection and response. We applied this framework
to a common use case, namely the detection of distributed
amplification attacks in a virtualized 5G Core.

Our solution extends the original NS template with sidecar
security agents, without the need to change service images; in
addition, we leverage the eBPF framework to load inspection
and enforcement programs in the running kernel, which does
not disrupt service operation. By analyzing data coming from
the edge of the 5G Core, we can detect anomalies with respect
to the expected behavior; we also perform continuous learning
so to follow changes in usage patterns.

Performance analysis has shown that packet inspection
has negligible impact on forwarding operations, and that our
implementation is more efficient than existing general-purpose
tools for collecting specific measures. However, further inves-
tigation is needed to understand if this still holds with a larger
number of measures. About the accuracy of the detection, we
can correctly identify DDoS attacks before they get amplified,
and our implementation is quite robust to periodic fluctuations.

2395

Future work will consider better integration of the mon-
itoring framework in PaaS environments, to become truly
agentless. In addition, correlation of data from multiple areas
will be considered, to detect even lower attack volumes.

REFERENCES

[1] D. Montero et al., “Virtualized security at the network edge: A user-
centric approach,” IEEE Commun. Mag., vol. 53, no. 4, pp. 176-186,
Apr. 2015.

[2] B. Rashidi, C. Fung, and E. Bertino, “A collaborative DDoS defence
framework using network function virtualization,” IEEE Trans. Inf.
Forensics Security, vol. 12, pp. 2483-2497, 2017.

[3] A. Carrega et al., “Situational awareness in virtual networks: The
ASTRID approach,” in Proc. IEEE 7th Int. Conf. Cloud Netw.
(CloudNet), Tokyo, Japan, Oct. 2018, pp. 1-6.

[4] M. Repetto et al., “Leveraging the 5G architecture to mitigate amplifi-
cation attacks,” in Proc. IEEE Int. Conf. Netw. Softwarization, Tokyo,
Japan, Jun. 2021, pp. 443-449.

[5] “The Trust Factor—Cybersecurity’s Role in Sustaining Business
Momentum; 2018-2019 Global Application & Network Security
Report.” Radware. 2019. [Online]. Available: https://blog.radware.com/
wp-content/uploads/2019/09/ERT-Report-2018-2019.pdf

[6] “Quarterly DDoS and Application Attack Report.” Radware, Oct. 2021.
[Online]. Available: https://discover.radware.com/aaf9f19d-33da-5747-
b631-97a2f1ba0f92

[7] “Cloud DDoS Protection Service: Attack Lifecycle Under the Hood;
Technology Overview Whitepaper.” Radware. 2016. [Online]. Available:
https://www.radware.com/assets/0/314/6442477977/2c6454b4-403b-
45b1-ac58-dc628bc210b3.pdf

[8] N. MacDonald and T. Croll, “Market guide for cloud workload pro-
tection platforms,” Gartner, Stamford, CT, USA, Rep. G00716192, Apr.
2020.

[91 “5G; system architecture for the 5G system; version 15.3.0, release 15,”
3GPP, Sophia Antipolis, France, Rep. ETSI TS 123 501, Sep. 2018.

[10] S. Miano, F. Risso, M. V. Bernal, M. Bertrone, and Y. Lu, “A framework
for eBPF-based network functions in an era of microservices,” IEEE
Trans. Netw. Service Manage., vol. 18, no. 1, pp. 133-151, Mar. 2021.

[11] R. Bolla, R. Bruschi, A. Cianfrani, and M. Listanti, “Enabling backbone
networks to sleep,” IEEE Netw., vol. 25, no. 2, pp. 26-31, Mar./Apr.
2011.

[12] J. Czyz, M. G. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. D. Bailey,
and M. Karir, “Taming the 800 pound gorilla: The rise and decline
of NTP DDoS attacks,” in Proc. Conf. Internet Meas. Conf. (IMC),
Vancouver, BC, Canada, Nov. 2014, pp. 435-448.

[13] A. Wang, W. Chang, S. Chen, and A. Mohaisen, “Delving into Internet
DDoS attacks by botnets: Characterization and analysis,” IEEE/ACM
Trans. Netw., vol. 26, no. 6, pp. 2843-2855, Dec. 2018.

[14] C. Rossow, “Amplification hell: Revisiting network protocols for
DDoS abuse,” in Proc. Netw. Distrib. System Security Symp. (NDSS),
San Diego, CA, USA, Feb., 2014, pp. 1-15.

[15] L. Cai, Y. Feng, J. Kawamoto, and K. Sakurai, “A behavior-based
method for detecting DNS amplification attacks,” in Proc. 10th Int.
Conf. Innovative Mobile Internet Services Ubiquitous Comput. (IMIS),
Fukuoka, Japan, Jul. 2016, pp. 608-613.

[16] M. E. Ahmed, H. Kim, and M. Park, “Mitigating DNS query-based
DDoS attacks with machine learning on software-defined networking,”
in Proc. IEEE Military Commun. Conf. (MILCOM), Baltimore, MD,
USA, 2017, pp. 11-16.

[17] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for network intrusion detection in software
defined networking,” in Proc. Int. Conf. Wireless Netw. Mobile Commun.
(WINCOM), 2016, pp. 258-263.

[18] Y. Zhauniarovich and P. Dodia, “Sorting the garbage: Filtering
out DRDoS amplification traffic in ISP networks,” in Proc. IEEE
Conf. Netw. Softwarization (NetSoft), Paris, France, Jun. 2019,
pp. 142-150.

[19] M. Han, T. N. Canh, S. C. Noh, J. Yi, and M.
“DAAD: DNS amplification attack defender in SDN,” in
Int. Conf. Inf. Commun. Technol. Converg. (ICTC), Oct.
pp. 372-374.

[20] K. Ozdinger and H. A. Mantar, “SDN-based detection and mitiga-
tion system for DNS amplification attacks,” in Proc. 3rd Int. Symp.
Multidiscipl. Stud. Innovative Technol. (ISMSIT), Ankara, Turkey,
Oct./Nov. 2019, pp. 1-7.

Park,
Proc.
2019,

2396

[21] Y. Zhang and Y. Cheng, “An amplification DDoS attack defence
mechanism using reinforcement learning,” in Proc. IEEE SmartWorld
Ubiquitous Intell. Comput. Adv. Trusted Comput. Scalable Comput.
Commun. Cloud Big Data Comput. Internet People Smart City Innov.
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, U.K.,
Aug. 2019, pp. 634-639.

V. Gupta and E. Sharma, “Mitigating DNS amplification attacks using
a set of geographically distributed SDN routers,” in Proc. Int. Conf.
Adv. Comput., Commun. Inform. (ICACCI), Bangalore, India, Sep. 2018,
pp. 392-400.

V. F. Garcia, G. de Freitas Gaiardo, L. da Cruz Marcuzzo, R. C. Nunes,
and C. R. P. dos Santos, “DeMONS: A DDoS mitigation NFV solution,”
in Proc. IEEE 32nd Int. Conf. Adv. Inf. Netw. Appl. (AINA), Krakow,
Poland, May 2018, pp. 769-776.

S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible and
elastic DDoS defense,” in Proc. 24th USENIX Security Symp. (USENIX
Security), Washington, DC, USA, Aug. 2015, pp. 817-832.

A. S. Jose and A. Binu, “Automatic detection and rectification of DNS
reflection amplification attacks with Hadoop MapReduce and Chukwa,”
in Proc. 4th Int. Conf. Adv. Comput. Commun., Cochin, India, 2014,
pp. 195-198.

A. Lioy et al., “NFV-based network protection: The SHIELD approach,”
in Proc. IEEE Conf. Netw. Function Virtualization Softw. Defined Netw.
(NFV-SDN), 2017, pp. 1-2.

[22]

[23]

[24]

[25]

[26]

Matteo Repetto received the Ph.D. degree in elec-
tronics and informatics from the University of Genoa
in 2004, where he was a Postdoctoral Fellow from
2004 to 2009. From 2010 to 2019, he was a
Research Associate with CNIT. Since 2019, he has
been a Research Scientist with the Institute for
Applied Mathematics and Information Technologies,
National Research Council of Italy. He has been
involved in many different national and European
research projects in the networking area funded by
the EC, the Italian MIUR and private organizations,
both as researchers and principal investigator. He was the Scientific and
Technical Coordinator of the projects “AddreSsing Threats for viRtuallzeD
services” (ASTRID - call H2020-DS-2016-2017, grant no. 786922) and “A
cybersecurity framework to GUArantee Reliability and trust for Digital service
chains” (GUARD - call H2020-SU-ICT-2018, grant no. 833456). He has coau-
thored over 50 scientific publications in international journals and conference
proceedings. His research interests include mobility in data networks, virtu-
alization and cloud computing, network functions virtualization and service
functions chaining, network, and service security.

Gianmarco Bruno received the Laurea degree
in electronics engineering from the University of
Genoa, Italy, in 1999. In 2000, he joined Marconi
where he worked in the system design, transmis-
sion modeling, and network optimization of opti-
cal transport systems for worldwide deployments.
Since 2007, he has been working with Ericsson
and has been involved in various projects, includ-
ing the development of high speed optical transport
systems and multilayer hierarchical software defined
networking (SDN) controllers. He has contributed as
Ericsson delegate to ITU-T SG15 and IETF CCAMP standardization bodies.
He has been involved in joint industry-academia research projects and in
the H2020 AddreSsing ThReats for virtuallseD services (ASTRID) Project.
He is currently working in the software development of the Ericsson cloud-
native solution for Service Management and Orchestration. He has published
in scientific journals, such as Journal of Lightwave Technology (IEEE) and
technical conferences (OFC, ECOC, and ONDM). He is a (co)inventor of 24
U.S. granted patents in the fields of optical communications and SDN. His
research interests are in the area of network modeling and automation.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Jalolliddin Yusupov received the M.S. and
Ph.D. degrees in computer engineering from
the Politecnico di Torino, Italy, in 2016 and
2020, respectively. He is currently the Head of

& the Academic and Research Department, Turin
g — Polytechnic University in Tashkent (TTPU),
M Uzbekistan, where he is an Assistant Professor with

the Automatic Control and Computer Engineering

Department. His primary research interests include

formal verification of security policies in automated
network orchestration. His other research interests
include modeling, cyber—physical systems, and cloud computing systems.

Guerino Lamanna received the bachelor’s degree

in computer engineering and the master’s degree

in computer engineering from the Department
of Computer, Communications and Systems

Science (DIST), currently Department of Electrical,

Electronic and Telecommunications Engineering,

and Naval Architecture (DITEN), Faculty of

Engineering, University of Genoa in 2005 and

2008, respectively. He is currently a Software

Engineer with Infocom, that is part of the Scientific

Research and Development Services Industry. He

took part in different European research projects in collaboration with

international partners. From these cooperations derived many research papers
of which he has coauthored. He is also involved in participation with many

industries. His main area of interest is networking, virtualization architecture
technology, and cybersecurity.

Benjamin Ertl received the B.Sc. degree in com-
puter science from the Technical University of
Munich, the M.Sc. degree from the University of
Copenhagen, and the Doctoral degree (Dr.-Ing.)
from the Karlsruhe Institute of Technology. He is
currently working as a Senior Software Developer
for cloud platform services and support special-
ist for technical and user support with Agentscape
AG (AGE). As an SME, Agentscape develops and
markets basic technology for intelligent software
agents and operates managed cloud-native solutions
for enterprise customers. AGE further participates in several EU projects,
responsible for developing core security and privacy micro-services, context-
awareness, and knowledge-centered security-and privacy policy management
services.

Alessandro Carrega (Member, IEEE) received the
B.S. and M.S. degrees in computer engineering
and the Ph.D. degree in green networking from
the University of Genoa (UniGe), Genoa, Italy,
in 2005, 2007, and 2013, respectively. He is a
Software and Network Engineer. He is currently
a Researcher with UniGe. He is also a Member
of the National Inter-University Consortium for
Telecommunications (CNIT) in the Genoa Resource
Unit (RU), Italy. He took part in the activities of
many national and European projects (e.g., H2020
ASTRID, GUARD, ARCADIA, and INPUT, FP7 IP ECONET, PRIN
EFFICIENT, FIRB GreenNet, and FI-Core). He is an active reviewer for
many different international journals and conferences (IEEE and ACM).
He has coauthored several papers in international conference proceedings.
In 2011, he was a Visiting Ph.D. Scholar with PSU, Portland, OR, USA,
under the supervisor of Prof. S. Singh as an active member of the FINE2
Italy—USA collaboration project. Finally, he is involved in collaboration with
many industries, such as TIM, Broadcom, Nokia, Ericsson, and Huawei,
and industrial fora, like GeSI. His research is on networking (energy-aware,
performance optimization, and virtualization), software routers, NFV and
SDN (OpenFlow), container-orchestration system for automating computer
application deployment, scaling, and management (Kubernetes) and cloud
computing platforms (Openstack). In 2010, he won the best paper award at
the 3rd International Workshop on GreenCom 2010 co-located with the IEEE
GLOBECOM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

