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Cooperative Multi-Agent Deep Reinforcement
Learning for Dynamic Virtual Network
Allocation With Traffic Fluctuations

Akito Suzuki

Abstract—Network traffic and computing demand have been
changing dramatically due to the growth of various types of
network services, e.g., high-quality video delivery and operat-
ing system (OS) updates. To maximize the utilization efficiency
of limited network resources, network resource control technol-
ogy is required for smooth and quick operation when network
demands change. Therefore, we propose a dynamic virtual
network (VN) allocation method based on cooperative multi-
agent deep reinforcement learning (Coop-MADRL). This method
can quickly optimize network resources even while network
demands are drastically changing by learning the relationship
between network demand patterns and optimal allocation by
using deep reinforcement learning (DRL) in advance. The key
idea is to use a multi-agent technique for a reinforcement learn-
ing (RL) based dynamic VN allocation method, which can reduce
the number of candidate actions per agent and can improve the
performance for VN allocation. Moreover, a cooperation tech-
nique improves the efficiency of VN allocation. From results of a
simulation evaluation, Coop-MADRL can calculate effective allo-
cation within 1 s, which reduces the maximum server and link
utilization and drastically reduces the constraint violations com-
pared with that of the static VN allocation method. Furthermore,
we revealed that the learning with various mixed traffic models
could achieve a high generalization performance for all traffic
patterns.

Index Terms—Network functions virtualization, Reinforcement
Learning, Network Control, Dynamic Resource Allocation.

I. INTRODUCTION

ETWORK functions virtualization (NFV) [2] is one
Nof the key technologies of future networks. NFV has
emerged as an innovative network paradigm that abstracts
the network functions from hardware. NFV is closely related
to other emerging technologies, such as Software Defined
Networking (SDN) [3]. SDN is a networking technology that
decouples the control plane from the underlying data plane and
allows programmatic and centralized resource management
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of network functions. Combining SDN and NFV will enable
to provide the complex network services in next-generation
networks through centralized network management by SDN
and specific abstraction and isolation mechanisms by NFV.

NFV enables multiple virtual network (VN) requests to be
shared on the same physical network. A VN is represented by
a set of virtual nodes and virtual links. A virtual node indi-
cates the server resource requirements such as the required
number of central processing units (CPUs) and amount of ran-
dom access memory (RAM) and is often treated as a unit of a
virtual machine (VM). A virtual link indicates the network
resource requirements such as the required bandwidth and
delay between virtual nodes. To maximize the resource utiliza-
tion efficiency of limited physical resources, the mapping of
VN requirements to a physical network needs to be optimized.
The optimal mapping refers to the allocation that maximizes
the objective function (e.g., resource utilization) while satis-
fying constraints (e.g., resource capacity). The performance
of VN allocation algorithms determines the efficiency of the
overall network resources, making it a critical part of NFV
technology.

The problem of finding an optimal VN allocation is known
as the virtual network embedding (VNE) problem. Most exist-
ing approaches [4]-[6] only focus on static VN allocation,
where the amount of VN demand for resources is unchanged
over time. When a VN is embedded at once in the physi-
cal network, the VN requests will hold fixed resources until
the end of their lifetime in the static embedding process.
However, since network traffic and computing demand have
been changing dramatically due to the various types of network
services, e.g., high-quality video delivery and operating system
(OS) updates, the VN demands are dynamically changing and
fluctuating. In the above situation, the static VN allocation
leads to resources being inefficiently utilized and/or networks
becoming congested, so the dynamic VN allocation for time-
varying demand becomes more important. To more efficiently
utilize resources, this paper attempts to solve the dynamic
VN allocation problem. Although the dynamic VN alloca-
tion problem has been studied for more than a decade, the
following difficulty remains unresolved.

The difficulty in optimizing dynamic VN allocation is the
need to simultaneously allocate VNs efficiently and immedi-
ately, even though efficiency and immediacy are in a trade-off
relationship. Dynamic VN allocation needs to increase the
computation time to increase the efficiency of VN allocation.
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The increase in computation time directly causes an increase
in the control period. Alternatively, dynamic VN allocation
requires a short control period to keep up with changes in
demand. That is, increasing the efficiency leads to decreas-
ing the immediacy. Similarly, since allocation performance
decreases when the control period is limited, increasing
immediacy leads to decreasing efficiency. Therefore, many
methods have failed to simultaneously achieve efficiency and
immediacy.

Several studies have addressed this problem [7]-[14].
Specifically, reinforcement learning (RL) [15], [16] has been
focused on as a solution [7]-[12]. RL solves the decision
problem of what action an agent should take by observing the
current state within a certain environment. An agent receives
a reward from the environment depending on the selected
action and learns a policy (i.e., strategy) that maximizes the
received reward through a series of selected actions. RL is
expected to be able to immediately output a close-to-optimal
VN allocation even as the network resource demand drasti-
cally changes by learning the relationship between resource
demand patterns and optimal VN allocation in advance.

The main challenge in applying RL to dynamic VN allo-
cation is related to the number of candidate actions when
solving the combinatorial optimization problem by RL. The
RL approach relies on exploring all available actions suffi-
ciently to compute a policy close to the optimal. Since the
number of ways a VN can be embedded is combinatorial,
the candidate actions of VN allocation exponentially increase
as the number of nodes and the number of links increase.
Therefore, the RL approach potentially requires a huge num-
ber of actions to derive an appropriate solution, which could
lead to a prohibitively long convergence time for the learn-
ing process [17]. It was also reported that the performance
of RL drastically worsens as the number of candidate actions
increases [18]. Thus, the action space of the VNE problem
needs to be shrunk.

We propose a dynamic VN allocation algorithm based on
cooperative multi-agent deep reinforcement learning (Coop-
MADRL). The key idea is to use a multi-agent technique
for an RL-based dynamic VN allocation method. We prepare
each agent for each VN allocation control, which can reduce
the action space. However, when training decentralized inde-
pendent agents to optimize for the team reward, each agent is
faced with a non-stationary learning problem, i.e., the dynam-
ics of its environment change as other agents change their
behaviors through learning [19]. An example of such a non-
stationary problem is that when each agent independently acts
at the same time, all VMs will be allocated on the smallest load
server, resulting in server overload. Therefore, we introduce a
cooperative element in which several agents jointly optimize
a single reward through centralized training and decentralized
execution, which can improve the efficiency of VN allocation.
Previous methods [10]-[12] avoid the problem of exponen-
tially increasing action space by restricting the agents’ actions
at each step or compressing the number of actions by hand-
crafted features (see Section II for details). The proposed
method directly treats all candidate actions at each step with-
out restricting agent actions or modeling and compressing
handcrafted features for states and actions. This cooperation
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can avoid conflicts of control between agents and improve the
performance of VN allocation. Moreover, it can take the hassle
out of problem-specific feature design.

The main contributions can be summarized as follows.

¢ We formulate the dynamic VN allocation problem to find
an optimal VN allocation for time-varying VN demands.
This problem aims to find the optimal allocation consist-
ing of VM allocations and the routing between users and
VMs. Here, we define the optimal allocation as a solu-
tion that maximizes server and link resource utilization
efficiency and minimizes the number of migrated VMs
while satisfying server and link capacity constraints.

e We propose a dynamic VN allocation algorithm based on
Coop-MADRL. We introduce a cooperative multi-agent
technique for a deep RL (DRL)-based dynamic VN allo-
cation method. This technique can avoid control conflicts
between agents and improve the performance of VN allo-
cation without restricting agent actions or modeling and
compressing handcrafted features for states and actions.

e We evaluated the effectiveness of the proposed method
through simulations in terms of performance, computa-
tion time, and scalability for the number of VNs and
network topology size. Simulations revealed that our
method can reduce the maximum server and link uti-
lization and drastically reduce the constraint violations
compared with a static VN allocation method under
practical-network conditions.

e We also evaluated the generalization performance for
unknown traffic patterns. The results showed that the
agent training with mixed various traffic models could
achieve a high generalization performance for all traf-
fic models. To the best of our knowledge, this is the first
paper to evaluate the generalization performance of traffic
patterns for the RL-based network control method.

This journal paper is an extension of the conference ver-
sion [1]. The main extension in this journal version is a
comprehensive evaluation of the proposed method. In partic-
ular, we evaluate the generalization performance for various
traffic demand patterns. We also extend the penalty function of
VM migration in such a way that the function depends on the
number of VMs migrated each time, which allows for more
realistic allocation.

The rest of the paper is organized as follows. Section II
describes related work. Section III defines the dynamic
VN allocation problem. Section IV briefly reviews RL,
and Section V describes the Coop-MADRL-based dynamic
VN allocation method and its modeling and formulation.
Section VI evaluates its performance, and Section VII con-
cludes the paper.

II. RELATED WORK

There have been several studies on dynamic VN allocation
(RL-based [7]-[12] and heuristic [13], [14]).

A. RL-Based Dynamic VN Allocation

Mijumbi et al. [7]-[9] proposed a multi-agent RL-based
dynamic bandwidth control method under the decentralized
resource management system, which prepares the agents for
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each physical node and physical link. They [7] applied a
Q-learning based RL agent. They [8] also used an artificial
network to make resource reallocation decisions and train
the network with a Q-table. They [9] also proposed an RL-
based neuro-fuzzy algorithm. However, it controls only the
buffer size of virtual nodes and the bandwidth of virtual links
and does not reallocate virtual nodes. Therefore, it cannot
cope with demand changes for server resources. Moreover,
to prevent the number of actions from exponentially increas-
ing, all the demands passing through each node and link are
controlled by uniform parameters. Therefore, the bandwidth
for all users is limited regardless of the demand of each user.

With the breakthrough of DRL in human-level control
applications [16], the DRL-based VNE algorithm has been
increasingly studied. Studies have mentioned the problem of
the RL-based approach: the candidate actions of VN allo-
cation exponentially increase as the number of nodes and
the number of links increase [10]-[12]. Dolati et al. [10]
attempted to shrink the action space of the VNE problem
to provide sufficient flexibility for exploring different VN
mappings while retaining the efficiency of the learning pro-
cess. They adopted a convolutional neural network (CNN)
for a DRL approach in solving VNE problems. Dolati et al.
assumed that networks have grid-like typologies to make the
image representation easier to obtain, but this is not true in
many other situations. Yan et al. [11] decompose a VNE pro-
cess into a sequence of virtual node embedding to shrink the
action space, and the learning agent only focuses on one vir-
tual node of the current VN request at every single step. We
previously proposed a MADRL-based dynamic VN alloca-
tion method [12]. We divided the VN demands into groups,
and each agent is prepared for each group, which can shrink
the action space per agent. We also restricted the agents
that could act at each time to avoid conflicts among agents.
However, the shrinking action space and the restriction on the
agent’s action decrease the performance of VNE. Moreover,
this restriction increases the number of steps required for VN
reallocation and may delay the response to dynamic demand
changes. Conversely, this paper adds a cooperative element
to our previous method, which can avoid conflicts of con-
trol between agents and improve the performance of VN
allocation.

In conclusion, we summarize the shortcoming of exist-
ing methods and the strengths of our method. As mentioned
above, the problem of RL-based approaches is that the number
of candidate actions for VN allocation increases exponen-
tially as the number of nodes and links increases. Existing
methods introduce the multi-agent technique to prevent the
exponential increase of actions. However, existing methods
restrict the agent’s actions at each step or compress the
action space using handcrafted features, which degrades the
performance of VN allocation. On the other hand, we addi-
tively introduce a cooperative technique for a multi-agent
DRL-based dynamic VN allocation method. This technique
can improve the performance of VN allocation without restrict-
ing agent actions or compressing actions. Furthermore, we
aim to optimize the routing between users and VMs for time-
varying traffic demands. We also evaluate the generalization
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performance of traffic patterns. These perspectives are not
considered in existing methods.

B. Heuristic Dynamic VN Allocation

Zheng et al. [13] proposed a dynamic VNE algorithm based
on a radial basis function (RBF) neural network to learn and
predict the dynamic changes of resources, and users dynam-
ically adjust and allocate resources by the predicted results.
Although these proactive control methods based on predicting
the dynamic changes are effective for near-stationary resource
demand, they sometimes fail since drastic demand changes
cannot be predicted. On the other hand, our approach uses the
almost real-time demand for control by drastically reducing
the computation time and control interval, not minimizing the
prediction error.

Dehury and Sahoo [14] proposed a dynamic VN allocation
method that combines online and offline allocation algorithms.
The VN demand is accepted and allocated immediately by the
online algorithm, then VN demand is periodically reallocated
by the offline algorithm. By combining the two algorithms,
they simultaneously achieved immediate demand acceptance
and optimal demand allocation. However, they assumed only
adding and deleting virtual links and not the change in virtual
link bandwidths. Therefore, their method cannot be applied
for time-varying traffic demand.

III. DYNAMIC VIRTUAL NETWORK ALLOCATION
A. Problem Definition

This paper addresses the dynamic VN allocation for time-
varying demand. Each VN consists of server demands as
virtual nodes and traffic demands as virtual links. In this paper,
dynamic VN is defined as the time-varying resource require-
ment of virtual nodes and virtual links, and dynamic VN
allocation is defined as the resource allocation for time-varying
VN demands. In static allocation, each user estimates the max-
imum amount of demand during their lifetime in advance and
pays a fixed fee based on the estimated amount. The service
provider allocates the resources for the demands to maximize
the VNE acceptance rate. Once accepted, the allocation is fixed
until the end of the service. This provision may not be optimal
when demand fluctuates. In contrast, in dynamic allocation,
each user pays a minimal fee corresponding to the resources
consumed at each time. The service provider dynamically real-
locates the resources in accordance with the demand at each
time to maximize resource utilization efficiency, which can
decrease the service cost per user and minimize the negative
effect of network congestion and server overload. Moreover,
the dynamic allocation is made robust to sudden changes in
demands by maintaining high utilization efficiency each time.

Figure 1 describes an overview of dynamic VN allocation.
For an example of a use case, we consider providing a cloud
computing service in a physical network consisting of a wide-
area network (WAN) and data centers (DCs). To provide such
a service, each user requests a VN demand, which consists
of server demands as VMs and traffic demands between the
user and VMs, and each VN demand needs to be allocated to a
physical network. For simplicity, Fig. 1 describes a case where
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Fig. 1. Overview of Dynamic VN Allocation.

the number of VNs is 1, and a VN consists of one user, one
VM, and the links between them. A physical network consists
of 4 nodes including 2 user nodes and 2 server nodes. Here, the
nodes connected to the user and server are called user nodes
and server nodes, respectively. Some nodes can perform as
both user and server nodes. We consider a discrete time-step
t and assume the VN demands change at each ¢. As shown in
the graph in Fig. 1, we assume that the two kinds of demands
are time-varying, and an unexpected heavy demand suddenly
emerged at time ¢, thereby causing the link congestion and the
overload on server A. In dynamic allocation, after observing
the current demands and calculating the next allocation, the
VN is reallocated at ¢ 4 1. In this example, the VM is migrated
to server B, and the route is switched from a blue one to a
red one.

This paper focuses on immediately calculating a close-
to-optimal VN allocation every t. We use the offline VN
allocation, where all VN demands are given at the beginning
of each r. We consider K VN demands and assume that K is
constant during a series of steps. When the number of VNs
are changed during a series of steps, the maximum number of
VN is regarded as K. Here, a series of steps refers to the steps
until the number of VNs exceeds K. When the actual num-
ber of VNs exceeds K, the RL agent needs to be retrained.
At the beginning of each ¢, the VN demands are observed.
On the basis of the observation, our method calculates the
next VN allocation for the next r 4+ 1. Note that this next
allocation is calculated on the basis of the current observa-
tion and does not directly predict the next r + 1 observation.
Since our method responsively allocates the demands after
observation, it must immediately calculate a close-to-optimal
allocation to follow the change, e.g., within 1 s. This target
computation time is very challenging and different from those
of existing methods. Next, if necessary, controllers update the
routing information and migrate each VM. After the update is
complete, our method proceeds to the next r + 1.

Note that we assume the migration process is ideal, which
means that the VM can be migrated in a short time without
interrupting the running service. The way to accomplish the
ideal migration is out of the scope of this paper and may
be considered in future research. In related work, the live
migration of VM has been widely studied [20]. Moreover,
the development of lightweight VMs has notably progressed.
Firecracker [21], an open-source virtualization technology,
enables us to deploy workloads in lightweight VMs, called
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TABLE I
SYMBOL DESCRIPTIONS FOR PHYSICAL NETWORK

Symbols H Definitions

G(N,L) Network graph

neN Node

seS Server

link (i, j) € L Link from node i to node j

cis Server capacity of server i

ci'“/. Link capacity of link (i, j)

Z = {zi j} User placement (user i, node j)

TABLE II
SYMBOL DESCRIPTIONS FOR VN DEMANDS

H Definitions

Time-step (T: Total time steps)
Number of VNs

Traffic demands of i VN at step 7
VM demands of i VN at step ¢

microVMs. It can boot application code within 125 ms with
a memory overhead of less than 5 MB per container and has
been commonly used in cloud computing. We assume that,
as virtual network functions (VNFs) evolve into cloud-native
network functions (CNFs) in the future, nearly ideal migration
will be made possible by utilizing these techniques.

B. Problem Formulation

Table I summarizes the definitions of the physical network
variables. We assumed that the physical network graph G(%V,
L) consists of a physical node set N and a physical link set
L. Each node connected to the user and server is called user
nodes and server nodes, respectively. For example, the nodes
directly connected to the data center are called server nodes,
and the nodes directly connected to the access network are
called user nodes. Some nodes can perform as both user and
server nodes. Each server node has a server connected to it. We
denote the server as s € § C N. All servers and links have the
capacities c and ¢k i which indicate the limit of computing
resources and bandwidth resources. Each user connects to the
nearest user node through the access network, which is not
included in G(N, L) in this paper. User placement is defined
as Z = {z;}, in which z; is 1 if the i user is connected to
the jth node; otherwise, 0. Here, Z is assumed to be constant
during the VN demand lifetime.

Table II summarizes the definitions of the VN demand vari-
ables. A VN demand consists of one origin (i.e., user) and
one destination (i.e., VM), user placement Z, traffic demand

¢ == {b!}, and VM demand D; := {d}}. The i" traffic
demand b} indicates the bandwidth between the user and VM
at £, and the i VM demand dti indicates the processing power
of the VM request at ¢ such as the number of CPU cores. When
each VN demand is accepted, the amount of link and server
resources consumed depend on the traffic and VM demand.
If an origin-destination (i.e., user-VM) pair is allocated in the
same server, the traffic demand between the user and VM on
the physical network is regarded as 0.
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TABLE III
SYMBOL DESCRIPTIONS FOR CONTROL VARIABLES

Symbols H Definitions
X, = {xfiqt} Proportion of passed 777 on link (i, j)
Y, = {y[j,,} VM allocation at step ¢ (VM i, server j)

TABLE IV
SYMBOL DESCRIPTIONS FOR DYNAMIC VN ALLOCATION

Symbols H Definitions

wew User

veV VM

T = {Ttp q} Traffic matrix from node p to node g
P; Penalty Function of VM migration
uiL}. . (i, j) link utilization at step ¢

u?, i™ server utilization at step 7

UtL = max;; (uﬁ t) Maximum link utilization at step ¢
U;S = max; (uf t) Maximum server utilization at step ¢
RL = {rb z} (i, j) residual link resources at step #
R;S = {rltgt} i" residual server resources at step ¢

We mainly adopted the VN demand model consisting of
one origin and one destination. The problem formulation can
be extended to the VN demand model with multiple origins
and destinations. In this case, we newly define B; := {BZJ }
as the traffic demands between i user and /M VM at step 7,
and defined D¢ == {d}} as the VM sizes of i VM at step
t. The problem formulation and proposed method can be used
directly by replacing B and D; with B, and D;.

Note that, though the VN model in this paper is assumed
to consist of a single VM, it can be extended to more com-
plex VN models consisting of a graph with multiple VMs and
virtual link(s) by using an extendable NFV-integrated control
architecture [22]. They [22] define 12 types of VN models
and describe how to extend the formulation of the RL-based
VN allocation algorithm when changing the VN model from
one model to the other models. For example, they describe
how to extend the VN model consisting of one VM to the
VN model consisting of the chain of multiple VMs assumed
in the use case of service function chaining (SFC) (see [22]
for details). Though this formulation can be extended to more
complex VN models in principle, its performance has not been
evaluated yet, and its evaluation is one of the future works.

For the above physical network graph and VN demand, we
formulate the dynamic VN allocation problem. Table III sum-
marizes the definitions of the control variables. The goal of
this problem is to find an optimal VN allocation consisting of
X and Y every . Here, X, := {x;";} shows the propor-
tion of traffic 7/? from origin node p to destination node ¢
passing through link (7, j), and Y'; := {;; +} shows the VM
allocation in which y;; ¢ is 1 if the i" VM is assigned to the
jth server; otherwise, 0.

Table IV summarizes the definitions of the variables of the
dynamic VN allocation problem. We introduce an objective
function:

min : S (U5 + UE +aP,), (1)

teT
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where U7 and U/ show the maximum server utilization and
maximum link utilization at ¢, and P; shows the penalty of
VM migration. Here, « is a positive value and determines the
degree of VM migration. We set the penalty to depend on the
number of migrated VMs, which is formulated as follows.

P = % S Nl — vige—1]|

i€V jes

2

Equation (2) calculates the sum of the absolute value of the
difference between current Y; and previous Y ;_j. Since
Yi5,¢ and y;; ;1 are binary numbers, the sum of the absolute
values of these differences indicates the number of migrated
VMs at . We also impose two constraints: link capacity and
server capacity, i.e., s.t. : UtS < 1 and UtL < 1. To formulate
this, a VM allocation variable y;; ¢ is formulated to minimize
the server utilization Uts while satisfying the constraints as
follows.

st.r Y yge=1(VieV) 3)
jES
N diygi < US (VieS) )
eV
vyt € 10,1} )
0< U <1 (6)

Equation (3) shows the VM conservation law. In other words,
it shows that each VM must be allocated to any server.
Equation (4) shows the constraint of server capacity, and
Egs. (5)-(6) show the range of variables. In addition, a rout-
ing variable atg?t is formulated to minimize the link utilization

UtL while satisfying the constraints as follows.

sty abl = > a2l =0 @)

ji(ij)EL ji(j,i)eL
(Vp,g € N,i#p,i#q)

> oo Y o=t @
ji(ij)EL j:(j,i)€L
(Vp,q€ N,i=p)

> el < ey UF ©)
p,qeEN
(¥(4,5) € L,¥p,q € N)
0< xg.‘ft <1(V(i,j) € L,¥p,g€ N)  (10)
0< Ul <1 (11

Equations (7)—(8) show the traffic flow conservation law.
Equation (7) shows that the traffic flowing into a node equals
the traffic flowing out of the node except the source node
p and destination node g. Equation (8) shows that the net
flow out of the source node p is 1. The traffic flow con-
servation law at the destination node ¢ is guaranteed when
Egs. (7)-(8) are satisfied, which is proved in [23]. Equation (9)
shows the constraint of link capacity, and Eqs. (10)—(11)
show the range of variables. Since traffic demands between
nodes Ttp 7 in Eq. (9) are determined by the traffic demands
By, user placements Z, and VM allocation Y, the rela-
tional equations between both constraints can be formulated
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as follows.
1.=Z B Y,
=" zipbiyjes (12)
ieW jeV

Here, we define a traffic matrix as ¢ :== {7/?} and each 7/
is a positive real number. Equation (12) converts the VN traffic
demands into the traffic matrix of the physical network.

The dynamic VN allocation problem is formulated to min-
imize Eq. (1) and the constraints Egs. (3)—(12). This problem
is NP-hard [24] and categorized mixed-integer nonlinear prob-
lems. Since the optimal solution takes a long time to calculate,
most previous studies have targeted small-scale or static VN
demands. Conversely, in this paper, we use RL to solve the
problem. Whereas the methods not based on RL take a long
time to find the optimal solution each time, RL can instantly
output the close-to-optimal solution by learning the rela-
tionship between resource demand patterns and optimal VN
allocation in advance. However, RL needs to efficiently learn
the optimal allocation for a wide variety of demand patterns
to improve performance. Therefore, we develop a cooperative
multi-agent technique for an RL-based method to prevent VN
allocation decisions from exponentially increasing.

IV. REINFORCEMENT LEARNING
A. Single-Agent Reinforcement Learning

Single-agent RL considers a sequential decision-making
problem in which an agent interacts with an environment. The
agent observes state s € S in which S is the state space, takes
action a € A where A is the action space, and executes it
in the environment to receive reward r and transfer to the
new state s’ € S. The goal of the agent is to determine a
policy that maximizes the long-term reward. The policy is a
map 7 : S — P(A), where P is the transition probability
among the states. Q-learning [15], a widely used RL algo-
rithm, learns the relationship of (s, a,r,s’) to maximize the
action value Q(s, a), which is defined as the expectation of
the sum of rewards obtained in the future when action a is
selected in state s. The agent receives a reward r and updates
the Q-function in accordance with the following equation.

Q(s,a) + (1 —a)Q(s,a) + 7’+vglg§{é2(8’7 a)l, (13)

where « is a learning rate and ~y is a discount factor.

DRL [16], [18] dramatically improves the generalization
and scalability of traditional RL algorithms and can handle
continuous and high-dimensional state space by approximat-
ing the QO(s, a) with a deep neural network (DNN). Deep
Q-network (DQN) [16] uses a replay memory to store the
transition tuple (s, a,r,s’). DNN parameters # are learned
by sampling batches b of transitions from the replay memory
and minimizing the squared error:

b 2
£(6) = Z[(yPQN - Q(s,0:0)) ] (14)
i=1
yPQN — r+’yglé1;<{ Q(s',d;07), (15)
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where 0~ are the parameters of a farget network that are peri-
odically copied from 6 and kept constant for several iterations.
It was reported that the performance of RL algorithms dras-
tically worsens as the number of candidate actions increases
due to the decrease in the sampling efficiency of (s, a,r,s’)
and increase in the error of the DNN [18]. Therefore, stable
DRL becomes difficult as the number of actions increases.

B. Multi-Agent Reinforcement Learning

Multi-Agent RL (MARL) is a system of multiple agents
interacting within a common environment. Each agent decides
each time-step and works together with the other agent(s) to
achieve a given goal. It is used for learning a complex envi-
ronment by dividing a single task into multiple sub-tasks. The
learning cost of each agent can be reduced by assigning each
agent to each task. Due to the complexities of the environments
and the combinatorial nature of the problem, most MARL
problems are categorized as NP-hard problems [25].

A cooperative multi-agent environment can be described
as a decentralized partially observable Markov decision pro-
cess (Dec-POMDP) [26] consisting of (K,S, A, R, P,0,7),
in which K is the number of agents, S is state space,
A = {ﬂl,...,ﬂK} is the set of actions for all agents, P
is the transition probability among the states, R is the reward
function, and O = {O', ..., 0%} is the set of observations for
all agents. In a cooperative multi-agent problem in which the
environment can be fully observed, the i agent at time-step
t observes the global state s;, takes action ag (a; = {af}),
and receives reward 7. If the agents cannot observe the global
state, each agent only accesses its own local observation oti.
The state s; needs to contain all information required to
uniquely represent the current environment’s status. Whereas
the observation 0% is a part of state s¢, and it needs to con-
tain the information required to uniquely represent i agent’s
current status.

Each agent has an observation-action history h* € h, where
the history indicates a series of past observations and h is the
observation-action history of all agents. The joint policy is
amap m: h — P(A), and the joint policy 7 has a joint
action-value function:

o
Q"(ht,ar) =E|> +/ri | b a
j=0

(16)

Since the dynamic VN allocation deals with discrete actions,
we describe a representative method of a value function factor-
ization based MARL algorithm with discrete actions [27], and
our Coop-MADRL algorithm is based on these algorithms.

1) Independent Q-Learning: The most naive approach to
solve the multi-agent RL problem is to treat each agent
independently. This idea is formalized in an independent
Q-learning (IQL) algorithm [28], [29], which decomposes a
multi-agent problem into a collection of simultaneous single-
agent problems that share the same environment. Each agent
runs Q-learning [15] or DQN [16]. IQL is scalable from the
viewpoint of implementation while increasing the number of
agents, and each agent only needs its local history of obser-
vations during the training. In this paper, IQL is trained to
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minimize the loss:

b K
,L(e)::jijj{:[(yf~— Qk(hk7ak§9k>)2}a (17)
i=1k=1
where b is the batch size of transitions sampled from the replay
memory, @y, is the k™ agent’s Q-value function, and y* is the
kM agent’s yPN as in Eq. (15).

2) Value Decomposition Networks: Value decomposition
networks (VDNs) [30] aim to learn a joint action-value func-
tion Qit(h, a). It is assumed that the joint action-value
function Qto¢ can be additively decomposed into K Q-value
functions for K agents, in which each Q-value function Q);
only relies on the local state-action history:

K
Quot(h.a) = 3 Qs(n', a's0"). (18)

i=1
Therefore, each agent observes its local state, obtains the
Q-values for its action, and selects an action, and then the sum
of Q-values for the selected action of all agents provides the
total Q-value of the problem. By using the shared reward and
the total Q-value, the loss is calculated and then the gradients
are back-propagated into the networks of all agents. Because
each agent’s DNN is updated on the basis of the total Q-
value, each agent learns the best behavior for all agents, i.e.,
they learn cooperative behavior. The loss function for VDN is
as follows:

b
-E(e) = Z [(yf‘)t — Qtot(h, a; 9))2} )

i=1

19)

where b is the batch size, 3! = r+ymaxgy Qot(h', a’;07)
and O~ are the parameters of a target network as in DQN.
3) OMIX: QMIX [31] extends VDN to address a broader
class of environments. To represent a more complex factoriza-
tion, a mixing network with trainable parameters is introduced
to compute the total Q-value on the basis of each agent’s
state-action value function. As mentioned above, VDN adds
restrictions to have the additivity of the Q-value and further
shares the action-value function during the training. QMIX
also shares the action-value function during the training.
Besides, QMIX adds the below constraint to the problem:

0Q1ot
0Q;
which enforces positive weights on the mixer network, and as
a result, QMIX can guarantee monotonic improvement. QMIX
is trained to minimize the DQN loss, and the gradient is back-
propagated to the individual Q-values, similarly to VDN.

>0, Vi, (20)

V. PROPOSED METHOD
A. Concept of Coop-MADRL-Based VN Allocation

In the RL-based dynamic VN allocation method, an
agent observes the current VN demands and physical
network states and learns how to change the VN alloca-
tion to more efficiently use network resources. By applying
DRL to agent learning, the agent can handle continu-
ous traffic demand and high-dimensional network states.
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Fig. 2. Three types of DRL architectures: (a) single-agent, (b) independent
multi-agent, and (c) cooperative multi-agent.
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Fig. 3. Overview of VN allocation in a simple network topology.
Furthermore, to reduce the action space, we developed coop-
erative multi-agent techniques to be used with the proposed
method.

Figure 2 shows three types of DRL architectures: single-
agent, independent multi-agent, and cooperative multi-agent.
To simplify the discussion, we assume the number of agents
is set to 2 in this figure. In the single-agent case, an agent
outputs Q(s, a) with the global state s as input, where state s
includes all information of a physical network and VNs. The
dimension of output is equal to the action space |A| and is
determined by the combination of all VN allocations. When
assuming there are | S| servers, K VN demands, and the short-
est path from the origin to destination is chosen, the number
of candidate actions |A| = |S|%. Moreover, as |S| and K
increase, |A| increases exponentially. In the multi-agent case,
each VN allocation control is assigned to each agent. The k'
agent outputs Q, (0", a¥) with its own local observation o
as input, where observation ok is part of the global state s and
is related to a physical network and k" VN information. The
dimension of output is equal to the action space |ﬂk|, which
is determined only by k™ VN allocation, i.e., .?{k| drastically
decreases to |S].

We describe the multi-agent behavior in a simple exam-
ple. Figure 3 shows the VN allocation for a simple network
topology consisting of only two servers. Since the path is
uniquely determined, each VN allocation is determined from
two choices; the VM is assigned to server A or server B.
In the single-agent case, if K = 4, the agent should find the
optimal allocation from |A| = 24 actions. However, if K = 10,
the agent should find the optimal allocation from 210 actions.
The multi-agent technique reduces the number of candidate
actions per agent. We prepared K agents for K VN demands,
and each agent decides each VN allocation. In the multi-agent
case, whether K = 4 or K = 10, k™ agent only finds the
optimal allocation of k™ VN from the |A¥| = 2 actions. In
other words, each agent only decides whether it is better to
assign each VM to server A or server B.
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TABLE V
SYMBOL DESCRIPTIONS FOR COOP-MADRL

Symbols H Definitions

ecE Episode (E: Total episodes)

G :={gr} Agent set (1 < k < K)

st €S State at step ¢ (S: State space)

0 = {0%} Observation sets for all agents

o:" € Ok Observation for agent g at step ¢

0; = {of } All observation at step ¢

A = {AKY Action sets for all agents (AX: Action space)
af" e Ak Action for agent gy at step ¢

a; = {al‘} All action at step ¢

Tt Reward for agent g at step ¢
O (of . af)
Orot (01, a;)
M

Action-value function for agent k

Joint action-value function for all agent
Replay memory

hieh observation-action history

h observation-action history of all agents

When each agent is independent, the non-stationary learning
problem described in the Introduction arises. In the cooperative
multi-agent case, a mixed layer that calculates a joint action-
value function Q¢ from each action-value function Q) is
added to cooperate with each agent. In the training phase, the
loss of DNN is calculated by the shared reward and the joint
action value @y, thereby solving the non-stationary learning
problem between agents and improving performance. It cor-
responds to centralized training. In the actual control phase,
each agent can determine the best action on the basis of each
observation 0¥ and each action value @y, because the forward
network of each agent DNN learns to output () to minimize
Qtot during the training phase. In other words, agents can
output globally optimal action by only calculating the forward
network of their DNNs without a mixed network calculation.
It corresponds to decentralized execution without other agent
information.

B. Modeling

Table V summarizes the definitions of the variables of Coop-
MADRL. We introduce K agents equal to the number of VNs.
Each VN control is assigned to each agent, and the k™ agent
learns how to optimize VN allocation for the k™ VN.

A state is defined as s; = [By, Dy, ng Rf], where B; and
D; are the traffic and VM demands at ¢, and RtL and R; are

the residual resources of each link and server at r. Each Tii ¢ is
calculated by Tz‘?,t =1- cz% “z‘%,t’ and each rft is similar. An

observation for agent g, is defined as of = [bf7 d{ﬂ Rf, Rf]
The state represents fully observed global information, and
the observation represents agent-dependent information. Here,
each VN demand such as bf and dj shows local information,
and a physical resource such as R/} and RtS shows global
information. By including the residual resources in agents’
observation, each agent can take into account not only its
demand information but also network-wide information. The
action set A¥ is defined as a set of allocation combinations
included in agent gz, (|A*| = |S|). To design rewards, we give
a large negative value if the constraints are not satisfied; other-
wise, a positive value depends on the objective function value.
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Algorithm 1 Centralized Training of Coop-MADRL

1: initialize: agent parameters

2: while t < T do

3: generate training-traffic sequences for all VNs
4 initialize: environment parameters

5 for e = 0, E do

6: for each g, € G do

7: o; + observation

8 af < select epsilon greedy action(o,{C )

9: 0441 + update environment(o¢, a;) by Alg. 3
10: r¢ — calculate 1revva1rd(o,57 ag, 0t+1) by Alg. 4
11: if r < —1 then
12: terminate episode: e < E
13: t+t+1
14: store episodic transition (0, a;,7;),Vj € episode steps
15: train all agents G by random episodic transition

A certain negative value is also given when VN allocation is
changed to avoid unnecessary VN reallocation.

C. Formulation

The Coop-MADRL-based dynamic VN allocation method
consists of two phases: centralized training and decentralized
execution. The decentralized agents continually execute the
dynamic VN allocation control after centralized training.

Algorithm 1 shows the centralized training of Coop-
MADRL. Line 1 shows the initialization of agent parameters.
A series of procedures (lines 2—15) is repeatedly executed until
learning is complete. Lines 3—4 show the generation of the
training-traffic sequences and the initialization of environment
parameters and observation. A series of actions is called an
episode, and each episode (lines 5-13) is repeatedly executed.
In each episode, agents collect learning samples that are com-
binations of (0¢, a¢, r¢, 04+1). Each agent executes lines 6-8
in parallel. Line 7 shows the observation of of from the VN
environment. Line 8 means the action selected on the basis of
the strategy that a random action is selected with probability ¢;
otherwise, an action a that maximizes Qj(of, a’) is selected
(ie., argmax ¢ qr Qx(oF, a’)) with probability 1 — e. This
is to avoid convergence to a local optimum solution. In line 9,
VN allocation is updated in accordance with a; by Alg. 3
and returns the o;41. Line 10 shows the reward calculation.
Lines 11-12 mean the termination condition of agent learning.
In this algorithm, r; < —1 is the termination condition, i.e.,
the state that does not satisfy at least one constraint. Line 14
shows stores in replay memory M. The reason for storing the
samples once in replay memory is to eliminate the time depen-
dence of collecting training samples [16]. In line 15, all agents
G are trained by the history of episodic transition, which is
randomly taken from M.

We describe the DNN architecture of Coop-MADRL. As
shown in Fig. 2, DNN architecture consists of each agent’s
DNN layer and a mixed layer. For each agent’s DNN layer, we
introduced deep recurrent Q-networks (DRQN) [32] to handle
time-series data as input, which incorporates recurrent neural
networks (RNN) into DQN. We used a three-layer NN con-
sisting of two fully connected layers and the gated recurrent
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Algorithm 2 Dynamic VN Allocation Using Coop-MADRL

Algorithm 4 Reward Calculation

Qx (0k7 a¥
while True do

1: ) < train all agents G by Alg. 1
2:
3: for each g, € G do
4-
5

o; + observation

k k 1
a; < arg a{rg;{(k Qp (Ot ,a )

a

0441 + update environment(o¢, a;) by Alg. 3
t<t+1

~

Algorithm 3 Update Environment

1: Dyyq, B4 < update VN demand(t)

2: Y441 < calculate next VM allocation(ay, Y¢)

3: 74 + convert traffic demands(Dyy1, Y41, Z)

4: RtL_H, UtL 1 ¢ calculate next link utilization(zy)

5. Ry, 1, Up 1 + calculate next server utilization(Dy, Y'¢)
6: ofyy = [diy 1 bfy 1 RYy R ), VE

7: return o4y = [0#_1, ooy 0411]

unit (GRU) layer [33]. We adopted Double-DQN [18] as the
DRL algorithm. For the mixed layer, we use a mixed layer of
VDN and QMIX as it is.

Algorithm 2 shows dynamic VN allocation using the Coop-
MADRL algorithm. Lines 1 show the pre-training of G by
using Alg. 1 and calculation of Qj(0*,a¥). Next, this algo-
rithm continually repeats lines 2—7 at every fixed ¢. In line 5,
each agent selects an af that maximizes Qj (o, a®).

D. Update Environment

In this formulation, the action sets that are changed by
candidate VN allocation are determined only from the VM
allocation, and the routes between users and VMs are uniquely
determined in the environment update. We update the environ-
ment on the basis of the extendable NFV-integrated control
architecture [22] that coordinates multiple control algorithms
specified for individual metrics. We use the route-optimization
algorithm as the specified optimization algorithm. By using
this architecture, the routes between users and VMs are
uniquely determined when the destination server is deter-
mined. The route-optimization calculates a routing variable
xf’ft to minimize the link utilization U} while satisfying the
constraints in Eqgs. (7)—(11). Since the routing variable :cip-?t isa
continuous value within 0-1 as shown in Eq. (11), this problem
class is classified as a linear programming (LP) problem. If
the routing variable xg?t is changed to a binary variable, it is
classified as a mixed-integer programming (MIP) problem.

Algorithm 3 shows the procedure of the update environ-
ment. Line 1 shows the observation of the next demands. In
line 2, the next VM allocation is calculated from a; and cur-
rent VM allocation. Line 3 means the calculation of the traffic
matrix 74 from the origin node, destination server, and VN
traffic demands B;. The origin node is determined by the
user placement Z, and the destination server is determined by
the VM allocation Y ;. Lines 4-5 show the calculation of next
link and server utilization. Finally, Algorithm 3 returns o¢1.

ry Effg'Ut[jH) + B (U51)
if Yt 7& t+1 then
re < 1 — Py

e

return max(—5, min(1, 7))

E. Reward Calculation

We design the reward function on the basis of the objec-
tive function Eq. (1). Algorithm 4 shows the procedure of the
reward calculation for G. The G learns how to maximize the
reward. The term Eff(x) in Alg. 4 shows the efficiency function
and is defined as follows:

0.5 (z <04)
) —z+09 (04<2<09)
Bf(#) =3 20 +18 (09<z<1) @h
—z—05 (1<uz).

This function returns a positive value depending on x if
x < 0.9; otherwise it returns a negative value. We designed a
handcrafted efficiency function so that the efficiency decreases
as x increases. The decrease of efficiency doubles when x is
more than 0.9, and the values of 0.5 indicate the upper limit
of this function. We also designed the function to drastically
decrease efficiency when x > 1, i.e., when the constraints
are not satisfied. Note that this design is just one exam-
ple that our method performed suitably, and there is still
room for improvement in the design of the efficient function.
Elucidating the relationship between reward function and VN
allocation performance remains one of our future challenges.

Line 1 show the Eff (x) calculation. In lines 2-3, it adds
—aPy as a penalty shown in Eq. (2) if the Y; is changed.
Finally, it returns a clipped reward within —5 < r; < 1. The
reason for clipping the reward is to increase the stability of
agent learning [16].

VI. EVALUATION

We evaluated the effectiveness of the proposed method
through simulations in terms of performance, computation
time, and scalability for the number of VNs and network topol-
ogy size. We also evaluated the generalization performance
for unknown traffic patterns. We prepared two environments
and five comparison methods. We implemented the DRL
algorithm based PyTorch [34] and PyMARL [35] and route-
optimization algorithm using the GNU Linear Programming
Kit (GLPK) [36].

A. Evaluation Conditions

We set the number of VNs to K = 20 as the default settings.
In evaluating scalability, we increased the K from 20 to 60 and
increased link capacity and server capacity in proportion to K.
We also set total time steps to 7 = 3.0x 10° and total episodes
to E = 200, and the weight of the penalty function of VM
migration to o = 0.01 for all evaluations.

For the VN-demand conditions, the Z is randomly generated
and fixed for all evaluations. The D; is randomly generated
integer values within 1-5 and is reset at the beginning of each
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Fig. 4. Simple Network Topology.

Fig. 5. Practical Network Topology.

episode. The B; is 200-step time-series sequences randomly
generated by various traffic models at the beginning of each
episode. After generating traffic sequences, all the traffic data
were normalized so that the average traffic volume was 1 Gbps
and the minimum traffic volume was 0. We generated the B
for training and evaluation. The details of each model are
described in Section VI-B.

For the physical-network conditions, we prepared simple
and practical networks. Figures 4 and 5 show the network
topology for the simple and practical networks, respectively.
We assumed that all users and VMs are placed in the user
node and server node, respectively. The values in these figures
show the server capacity and link capacity when K = 20.
When K increases, server capacity and link capacity increase
in proportion to K. All evaluations except for the scalability
evaluation for the network topology size are on the basis of
these two topologies. We prepared other topologies to evaluate
scalability for the topology size (See Section VI-H in detail).

1) Simple-Network Conditions: We used the 3-node topol-
ogy, which consists of 1 user node and 2 server nodes.
When K = 20, the number of candidate VM allocations was
220 ~ 1.0x 106, and that of the candidate actions of g; was 2.

2) Practical-Network Conditions: We used the 9-node
topology based on Internet2 [37], which consists of 5 user
nodes and 4 server nodes as shown in Fig. 5, and all users and
all VMs are allocated in user nodes and server nodes, respec-
tively. When K = 20, the number of candidate VM allocations
was 420 ~ 1.1 x 1012, and that of the candidate actions of Jk
was 4.

B. Traffic Models

Figure 6 shows the six types of generated traffic sequences
used in this evaluation. It shows the generated samples of
traffic sequences normalized within 0-2 Gbps after gener-
ating them. To evaluate the performance of the proposed
method under various traffic patterns, we prepared five dif-
ferent models to generate time-series traffic sequences and
one option to modify the generated traffic sequences. This
option can apply to all traffic models, which assumes the case
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when unexpected heavy traffic demand suddenly emerges. We
describe the models and option as follows.

1) ARMA Model: Figure 6(a) shows the traffic sequences
generated by the autoregressive moving average (ARMA)
model. This model assumes general traffic patterns, such as
aggregated broadband traffic. The (p, g)-order ARMA model
is formulated as follows.

p q
F@) =i+ ¢if(t—i)+ > bies, (22)
1=1 =1

where f(f) is the time-series data at time-step ¢, p is the order
of AR(p), g is the order of MA(qg), ¢; are AR(p) model
parameters, 6; are MA(g) model parameters, and ¢; is the
distributed error at time-step t. We set p = 2, ¢ = 50, and
et ~ N(0,1). Here, N(0,1) is the normal distribution with
a mean of 0 and variance of 1. We also set hyper-parameters
¢1 =0.9, 2 = —0.1, and 0; = 0.95 (Vi,1 < ¢ < 50). These
hyper-parameters were set to represent long-term fluctuations.

2) ARMA Model With Other Parameters: Figure 6(b)
shows the traffic sequences generated by the ARMA model
when changing the hyper-parameters from Fig. 6(a). We set
p =2, q =5 for Eq. (22) in this model. We also set hyper-
parameters ¢1 = 0.5, ¢ = —0.1, and 6; = 0.15 (Vi,1 < i <
5). These hyper-parameters were set to represent short-term
fluctuations. We changed ¢ and 6; from (1) ARMA model,
which is equivalent to weakening the effect of MA factors.

3) SARIMA Model: Figure 6(c) shows the traffic sequences
generated by the seasonal autoregressive integrated moving
average (Seasonal ARIMA; SARIMA) model. This model
assumes periodical traffic patterns, such as daily traffic trends.
The (p, d, q) x (P, D, Q)m—order SARIMA model is formu-
lated as follows.

¢p(B)2p(B)(1 = B)(1 = B™Pf(t) = 04(B)O(B)et,
(23)

where f(¢) is the time-series data at time-step ¢, B is the back-
ward shift operator and is defined as B¥f(t) := f(t—k). The
¢p(B) and ®p(B) are called AR operators, and the 6,(B)
and © o (B) are called MA operators. Each operator is defined
as follows.

¢p(B) :=1—¢1B — ¢p2B> — - — ¢, BP (24)
04(B)=1—61B—0B>—-..—0,BY (25)
®p(B):=1—®B™ — ®yB*™ —... —dpB'™  (26)
0g(B) =1-01B™ —©yB?™ —... —QoBYI" (27

Here, (p, d, g) and (P, D, Q) show the order of the ARIMA
model, and m shows the period of time-serial sequences. We
set (p, d, q) = (2,0,5), (P, D, Q) = (1,0, 1), and m = 50.
We also set hyper-parameters ¢; = 0.9, ¢2 = —0.1, §; =
1-01x1 (Vi,1 < i <5)and &1 = ©; = 0.9. These
hyper-parameters were set to represent periodical fluctuations
based on (2) ARMA model with other parameters.

4) Poisson Model: Figure 6(d) shows the traffic sequences
generated by the Poisson process. This model assumes traf-
fic patterns for Internet of Things (IoT) applications. The
traffic model for IoT applications is often described by peri-
odic patterns from asynchronous sources. This superposition
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Fig. 6. Various traffic models.
. . TABLE VI
of IoT traffic streams can be approximated by the Poisson SUMMARY OF OUR METHODS AND COMPARISON METHODS
process [38]. The Poisson model is formulated as follows.
\ Y Methods H Methodology | Dynamic | Cooperation
e
f(t) — UPt, Py~ Pr(X:k; )\) — , QMIX (Ours) Coop-MADRL N v
k! VDN (Ours) Coop-MADRL v v
where P, is the Poisson distribution, the parameter A is the IQL ) MADRL v :
number of IoT devices per unit time, and the v is the average Static Allocation (SA) Heuristic ) )
p ’ g Exhaustive Search (ES) Meta-Heuristic v -

traffic volume per IoT device.

5) Random Model: Figure 6(e) shows the traffic sequences
generated by white noise. We set the traffic volume at each
time-step to a random value in the range of 0-1.

6) With Anomaly Option: Figure 6(f) shows the traffic
sequences with the anomaly option applied to the ARMA
model. We randomly injected 5 steps between 0-200 steps
as anomaly steps. We set the traffic volume of an anomaly
step to 2 Gbps on the assumption that unexpected heavy traffic
demand would emerge. After the anomaly traffic was injected,
we normalized the average traffic to 1 Gbps. This normaliza-
tion reduces the average traffic volume for the step that does
not inject an anomaly since we set the average traffic volume
that includes anomaly traffic to 1 Gbps. We apply this option
to ARMA, SARIMA, Poisson, and Random models in this
evaluation.

7) Mixed Model: We define a mixed model consisting of
five traffic models and four traffic models with the anomaly
option mentioned above. At the beginning of each episode,
each user randomly selects one of the nine traffic patterns.

C. Comparative Methods

Table VI summarizes our methods and the comparison
methods. QMIX and VDN indicate the Coop-MADRL-based
dynamic VN allocation method shown in Alg. 2, which each

use QMIX and VDN in a mixed network and use Eq. (19) for
end-to-end training. IQL indicates the MADRL-based method
without cooperation, i.e., each agent learns on the basis of their
reward and Eq. (17) is used for end-to-end training. IQL does
not impose any restrictions on an agent’s action at each time.
Note that our previous method [12] restricted one agent that
could act at each time, and it is different from IQL. Also note
that single-agent DRL was not evaluated because learning is
clearly unsuccessful due to requirements for huge training iter-
ations until the Q-values for all actions are sufficiently close to
the optimal. When a single agent trains in a practical network,
it is estimated that at least 10'2 training steps will be required
even if the agent learned each action once.

Static Allocation (SA) is the heuristic method where VM
allocation is fixed to minimize the sum of UOL and UOS for
an average amount of past demands, and routes were dynami-
cally changed as with other methods. Since finding the initial
VM allocation for SA is also NP-hard, in this evaluation, we
sequentially decided on the best VM allocation that minimizes
the sum of UOL and qu for average VN demands consisting
of 1 Gbps traffic demand and VM size of 3. By comparing SA
and other methods, we expect to determine the effectiveness
of dynamic allocation.
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Exhaustive Search (ES) is the meta-heuristic method where
the action that maximizes the reward r; is selected from all
candidate actions A at z. ES finds the best action by exhaus-
tively calculating each reward one by one for all candidate
actions at #, which is equivalent to solving an optimization
problem every r. The objective of ES is to maximize the
immediate reward, which is the reward obtained in the present.
Alternatively, the objective of RL is to maximize the delayed
reward, which is the expectation of the total rewards to be
obtained in the future. By comparing ES and other MADRL-
based methods, we expect to evaluate the difference in
performance between the two types of rewards. Note that the
solution of ES is different from the global optimal solution
because the global optimal allocation is defined as the solu-
tion that maximizes the sum of the rewards at each time, as
shown in Eq. (1). To find the global optimal solution, it is nec-
essary to perfectly predict all future demands and calculate the
optimal allocation that maximizes the sum of the rewards at
each time. Therefore, the global optimal solution is challeng-
ing to calculate within a realistic computation time, even for
the simple-network condition.

D. Evaluation: Training Curve

Figure 7 shows the training curves tracking the agent’s total
return under simple- and practical-network conditions. The
total return is defined as the sum of rewards at each time
until the end of the episode. We carried out 5 evaluations for
every 1 x 10% steps with random initial conditions. The width
of each bar indicates the standard deviation (o). We adopted
a mixed model for traffic patterns in training and evaluation.

Figure 7(a) shows that the average total return of the three
MADRL-based methods increased as the training progressed.
It also shows that the curves of the total return of the three
methods are almost the same. Figure 7(b) shows that the aver-
age total return of the Coop-MADRL (QMIX and VDN) based
methods increased as the training progresses, while that of the
non-Coop-MADRL (IQL) does not increase. This means that
IQL cannot learn the suitable allocation that maximizes the
objective function while satisfying constraints. We discuss the
performance details in Section VI-E.

E. Evaluation: Performance

Figure 8 shows the average performance of each method
under simple- and practical-network conditions. We carried
out 20 calculations with random initial conditions and set the
same random seeds for all evaluations. The width of each bar
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indicates the standard deviation (+0). We used agents trained
with the mixed model as described in Fig. 7. We also used the
mixed model for the traffic model in this evaluation. The mixed
model includes large demand fluctuations by the Random and
Poisson models. The performance of each method can roughly
be compared with the average reward. We also investigate
the details of performance as shown in the 2-5™ metrics in
Figs. 8(a) and 8(b). That is, the performance metrics are the
average maximum server utilization UtS , average maximum
link utilization UtL, total constraint violation, and total VM
migration. The server and link utilization usually take a value
in the range of 0-1 if all constraints are satisfied. On the other
hand, if constraint violations occur at ¢, the server and link
utilization at ¢+ may take a value greater than 1 depending on
the amount of exceeded resources. When £k VMs migrate at a
certain time, the total VM migration adds k.

In summary, Coop-MADRL reduced the maximum server
and link utilization and drastically reduced the total con-
straint violations compared with SA. Therefore, our method
is effective for simple- and practical-network conditions.

1) Performance on Simple Network: We first compare SA
and the other four dynamic allocation methods. Figure 8(a)
shows that the four dynamic methods performed better than
SA. The reason is that the dynamic allocation methods can
prevent constraint violations by changing the VN allocation
in accordance with the demand change. This also indicates
that three MADRL methods performed better than SA and
that reducing the action space by using the multi-agent tech-
nique is effective. In particular, even IQL performed better
than SA. MADRL can reduce the constraint violations with-
out information of the next demand because the RL agent
indirectly predicts the next demand and learns the effective
VN allocation change through the relationship between the
network state and network efficiency. However, since MADRL
calculates rewards on the basis of the current demand and
not the next-step demand, constraint violations cannot be
absolutely eliminated.

We next compare ES and the other three MADRL-based
methods. ES performed slightly lower than three MADRL-
based methods. In addition, the number of total VM migra-
tions is notable in ES, even though ES also considers a
VM migration penalty described in Eq. (2) as well as
other MADRL-based methods. The reason is that, since ES
calculates the solution that maximizes the reward for the
current demand, not for the next demand as described in
Section VI-C, the optimal action for ES is frequently changed
when the VN demand fluctuates. As a result, VM migration
is increased, and its performance worsens. On the other hand,
the MADRL-based methods learn a policy that maximizes the
expected value of the cumulative reward obtained in the future.
Thus, the MADRL-based methods can reduce VM migra-
tions and improve the average reward. The result shows that
the optimization for immediate rewards does not necessarily
maximize the average reward, and the optimization of delayed
reward by RL is effective when demand is fluctuating.

Finally, we compare three MADRL-based methods.
Figure 8(a) shows that the performance of the three MADRL-
based methods was almost the same. It assumes that the
performance of the three methods is saturated because this
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condition is too simple. This can be seen from the training
curves in Fig. 7. Although QMIX and VDN perform roughly
the same, they differ in terms of total VM migration. We
consider that QMIX can simultaneously reduce the constraint
violations and unnecessary VM migrations since agents of
QMIX acquired a higher level of cooperation knowledge than
those of VDN.

2) Performance on Practical Network: Figure 8(b) shows
the average performance of four of the methods under practical-
network conditions. Note that SA changed routes calculated
with the route-optimization algorithm at each ¢, and ES could
not evaluate within a practical time because its computation time
dramatically increased. Also, note that the average reward was
higher for the practical network than for the simple network,
which is due to the difference in evaluation conditions, and
both reward values are not directly comparable.

Similar to the simple-network condition, three dynamic
methods performed better than SA. Comparing its performance
under simple- and practical-network conditions, both Coop-
MADRL-based methods (QMIX and VDN) performed better
than non-Coop-MADRL (IQL) based methods because the
degree of freedom of allocation and cooperation improved as
the numbers of nodes and links increased. In particular, both
cooperative methods were able to reduce the number of total
constraint violations drastically. Since each agent in IQL only
considers its action without other agents’ actions, the agents
concentrate on lightly loaded resources in some cases, and this
causes violations. On the other hand, QMIX and VDN have
higher maximum server utilization than SA. The reason is that
agents chose the action that maximized the average reward
and minimized the constraint violations even if the maximum
server utilization was increased.

F. Evaluation: Computation Time

Table VII shows the average computation time per ¢ of each
method, which includes the time to decide the action, update

TABLE VII
AVERAGE COMPUTATION TIME PER STEP FOR K = 20

Methods H Simple Network Practical Network
QMIX (Ours) 2.3 ms 75 ms
VDN (Ours) 2.3 ms 75 ms
IQL 2.3 ms 75 ms
Static Allocation (SA) 1.8 ms 74 ms
Exhaustive Search (ES) 69s (estimate) 7.2 x 107 s

the next state, and evaluate the performance. We used Intel
core 19-9980HK for the evaluation. In the evaluation phase, the
computational complexity is the same for the three MADRL
methods because the three methods only calculate the forward
network of their DNNs without a mixed network calculation
in a decentralized manner as described in Section V-A. Under
the simple-network conditions, the computation time per ¢ of
four methods except ES was less than a few milliseconds,
and that of ES drastically increased. MADRL took less than
1 ms for an agent to decide the next action. Though ES was
the best method from the viewpoint of performance, it was
not effective due to the huge computation time. Under the
practical-network conditions, the computation time per ¢ of
all methods other than ES was less than 1 s. The computa-
tion times of the four methods except ES were almost equal
because the time of the route-optimization calculation became
dominant. The computation time of ES is estimated from the
computational quantities of iteration since it was difficult to
find in conventional time. The optimal solution may be found
faster by improving the search algorithm, but it would be
difficult to achieve the same speed as MADRL. Finally, we
revealed that our method is also useful as a dynamic VM
allocation method in terms of computation time.

We also mention the computation time of training agents.
For the simple network, QMIX took about 100 minutes and
VDN and IQL took about 70 minutes to finish the training
of the total time steps T = 3.0 x 10°. For the practical
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TABLE VIII
SCALABILITY EVALUATION RESULTS FOR THE NUMBER OF VNS IN
PRACTICAL NETWORK (QMIX, TRAINING BY ARMA MODEL)

Number of VNs H Ave. Reward

20 0.57 £0.10
40 0.47 £0.07
50 0.34 £0.08
55 0.20 +0.24
60 -5.0+0.02

network, QMIX and VDN took about 7.1 hours and IQL took
about 6.5 hours to finish the training of the total time steps
T = 3.0 x 10°. This indicates that our method can learn the
optimal VN allocation in less than half a day for networks of
the scale used in the evaluation.

G. Evaluation: Scalability for Number of VNs

Table VIII shows the scalability of QMIX for the number of
VNs K under practical-network conditions. We carried out 20
calculations with random initial conditions and calculated the
mean value and the standard deviation of rewards. We used the
ARMA model for the traffic model in training and evaluation.
We increased the number of VNs K until the performance
decreased. We also increased link capacity and server capacity
in proportion to K, keeping the average traffic demands and
average VM size constant.

As a result, the average reward rapidly decreased when the
number of VNs exceeded 60 VNs, and our method was effec-
tive up to about 50 VNs. RL should heuristically discover
actions that improve the reward and satisfy all constraints in
the early learning steps when the agent acts randomly. It seems
that scalability could be improved by supporting the initial
learning process by providing correct training data by a person.
Our method is as scalable as the previous methods [10]-[12]
because they simultaneously handled less than 50 VNs at each
time step. In this paper, a VN is assumed to be a resource-
isolated network slice provided by each service provider and
shared by many users or IoT devices. We believe that our
method is sufficiently scalable considering the number of
services handled by today’s networks.

H. Evaluation: Network Topology Dependency

To verify the effectiveness of the proposed method for
larger physical network topologies, we evaluate the computa-
tion time and performance of the proposed method for various
network topologies. The network topology used in the evalua-
tion refers to SNDLib [39], which is a library of test instances
of survivable fixed telecommunication network design. In all
evaluations, we used QMIX as the learning algorithm and the
ARMA model as the traffic model, and we set the number of
VNs to K = 20. We also randomly set user nodes and server
nodes for all topologies. Other conditions are the same as in
the above evaluation.

Table IX shows the computation time for various physical
network topologies. The execution time shows the computation
time required to select the agent’s action, update the VN allo-
cation, and calculate the reward in each execution step, which
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Fig. 9. Training curves tracking the agent’s total return in Atlanta network.

corresponds to lines 3—7 in Alg. 2. The LP time shows the
computation time required to calculate the route-optimization
algorithm in each execution step, which is a part of execution
time and corresponds to line 4 in Alg. 3. The training time
shows the computation time required for the agents to com-
plete the training of the total time steps 7 = 3 x 10°. The
result shows that all computation times drastically increase
as the number of topology nodes increases. The result also
shows that most of the execution and training time is spent
solving the route-optimization problem. Due to the drastic
increase in computation time, we estimated the training time
for large topologies based on the execution time and the total
training steps. Here, we assume that the total training steps
T =3 x 10’ are sufficient for all topologies, but larger ones
may require more training steps.

We consider the practical limits of topology size in terms
of computation time. The execution time determines the VN
allocation control interval. For example, when the execution
time takes 5 minutes, the control interval cannot be shorter
than 5 minutes. If we aim to keep the control interval under
1 minute, the limit of the number of nodes can be estimated to
be about 30 nodes. Similarly, if we aim for a control interval
of 5 minutes or less, the limit can be estimated to be about 50
nodes. As for the training time, assuming that the reasonable
training time is less than one week, the limit of the number of
nodes can be estimated to be about 20 nodes. In conclusion,
unless speeding up the computation time, we can estimate that
the upper limit of the number of nodes to which the proposed
method can be applied is about 20. Parallelization is one of
the promising candidates for speedup the proposed method.
Existing studies have reported that a distributed DRL can dra-
matically speed up the agent training process. For example,
Espeholt et al. [40] developed a distributed DRL architecture
that scales up to thousands of machines without sacrificing
data efficiency or resource utilization. The proposed method
may be applied to up to 30 nodes by parallelizing the agent
training process.

To verify the effectiveness of the proposed method for
network topologies within 20 nodes, we evaluated the
performance of the proposed method on Atlanta network with
15 nodes and 22 links. Figure 9 shows the training curves
tracking the agent’s total return for Atlanta network. As in
the practical-network condition, we set each server capacity
to 30 and each link capacity to 3.6 Gbps. The result shows
that the average total return of QMIX increased as the train-
ing progressed. Table X shows the average performance of
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TABLE IX
COMPUTATION TIME FOR VARIOUS PHYSICAL NETWORK TOPOLOGIES

Topology H # of Nodes | # of Links | Execution Time | LP Time | Training time
Internet2 9 13 0.06 s 0.05 s 0.30 day
Abilene 12 15 0.17 s 0.15 s 0.83 day
Atlanta 15 22 043 s 0.39 s 1.6 day
Geant 22 36 3s 2.7s 10 day*
France 25 45 53s 49 s 18 day*
India35 35 80 21s 20 s 73 day*
Germany50 50 88 96 s 89s | 3.3x10% day*
Ta2 65 108 305 s 286's | 1.0x 103 day*
*Estimated value
TABLE X

PERFORMANCE EVALUATION RESULTS IN ATLANTA NETWORK (TRAINING BY ARMA MODEL)

Methods H Ave. Reward  Ave. Max. Server Util. Ave. Max. Link Util.  Constraint Violation = Total VM Migration

QMIX (Ours) 0.43+0.14 0.97 +0.39 1.1+0.21 9.5+12 189 + 62

Static Allocation (SA) 0.37 +0.11 0.50 +0.07 1.1+0.07 14+13 0.00 0.0
TABLE XI

COMPUTATION TIME FOR VARIOUS PHYSICAL NETWORK TOPOLOGIES (WITH SHORTEST PATH)

Topology H # of Nodes | # of Links | Execution Time [ Training time
Geant 22 36 1.6 ms 81h
France 25 45 1.8 ms 169 h
India35 35 80 2.0 ms 119 h
Germany50 50 88 3.0 ms 10.3 h
Ta2 65 108 3.9 ms 19.8 h

QMIX and SA. Note that, as described in Section VI-C, SA
also dynamically selects an optimal routes calculated with the
route-optimization algorithm at each ¢. The result shows that
QMIX performed better than SA because QMIX can prevent
constraint violations by changing the VN allocation by the
demand change. Although we can confirm the effectiveness of
QMIX, we found that the relative performance improvement
decreases compared to the result of Fig. 8(b). We consider
two reasons for the decrease in the performance difference
between the two methods. First, we suppose that the larger
network topology makes dynamic routing more effective, and
the dynamic routing improved the performance of VN alloca-
tion regardless of VM placement. In other words, the dynamic
routing could compensate for the performance degradation of
SA caused by the inefficient VM placement. Next, we also
suppose that the larger network topology has increased the
required training steps. If so, we can improve the performance
of QMIX by increasing the training steps.

Next, based on the above results, we discuss applying the
proposed method for larger network topologies by drastically
reducing computation time. Since most of the computation
time is spent solving the route-optimization problem as shown
in Table IX, relaxing the route-optimization problem and
replacing dynamic path allocation with static path allocation
is an effective way of speeding up the method. Specifically,
we replace the optimal path by LP with the shortest path by
Dijkstra’s algorithm, which corresponds to line 4 in Alg. 3.
We then evaluate the computation time and performance for
various network topologies. Finally, we show that the proposed
method using the shortest path is adequate for practical
topology size.
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Fig. 10. Training curves tracking the agent’s total return with the proposed
method using the shortest path.

Table XI shows the computation time in the proposed
method using the shortest path for various physical network
topologies. To ensure sufficient training, we increased the total
time steps to T = 2 x 10°. The results show that all com-
putation times are drastically faster than those estimated in
Table IX. For all conditions, the execution time is less than one
second, and the training time is less than one day. Moreover,
since Ta2 network is the largest topology that mimics the core
network in SNDLib, we conclude that the proposed method
using the shortest path has no limitation on the number of
nodes in the range of practical network topologies. The result
also shows that the training time does not depend on the
number of nodes. The reason is that other parameters, e.g.,
physical network and VN request parameters, are more domi-
nant factors in determining the training time than the number
of nodes.

Figure 10 shows the training curves tracking the agent’s total
return for India35 network and German50 network. We set
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TABLE XII
PERFORMANCE EVALUATION RESULTS IN INDIA35 NETWORK (TRAINING BY ARMA MODEL, WITH SHORTEST PATH)

Methods H Ave. Reward  Ave. Max. Server Util. Ave. Max. Link Util.  Constraint Violation = Total VM Migration

QMIX (Ours) 0.56 +0.08 0.90 £ 0.16 0.94 +0.28 0.70+ 1.9 263 +29

Static Allocation (SA) —-0.40 £ 0.33 0.45 +0.07 1.3+0.08 102 +38 0.00 £ 0.0
TABLE XIII

PERFORMANCE EVALUATION RESULTS IN GERMANY50 NETWORK (TRAINING BY ARMA MODEL, WITH SHORTEST PATH)

Methods H Ave. Reward Ave. Max. Server Util. Ave. Max. Link Util.  Constraint Violation = Total VM Migration

QMIX (Ours) 0.68 + 0.06 0.84 +0.26 0.87 +0.27 0.10+0.45 118 +32

Static Allocation (SA) -0.78 £0.22 0.45 +0.07 1.5+0.12 142 +27 0.00 £ 0.0
TABLE XIV

PERFORMANCE EVALUATION RESULTS IN TA2 NETWORK (TRAINING BY ARMA MODEL, WITH SHORTEST PATH)

Methods H Ave. Reward  Ave. Max. Server Util. Ave. Max. Link Util.  Constraint Violation = Total VM Migration

QMIX (Ours) 0.53 £0.26 0.87 £0.32 1.1+£0.67 2.8x10 174 + 44

Static Allocation (SA) -1.3+0.19 0.45 +£0.07 1.9+£0.19 181 £ 16 0.00 £ 0.0
TABLE XV

EVALUATION OF AVERAGE REWARDS FOR VARIOUS TRAFFIC MODELS IN SIMPLE NETWORK (TRAINING BY MIXED MODEL)

Traffic Models [ QMIX, Mix VDN, Mix _ IQL, Mix _ Static Allocation (SA)
ARMA 0.46£0.11 0.46+0.12 0.15+0.77 —-0.22 +£0.68
ARMA with other parameters 0.44+£0.12 0.43+0.15 0.36+0.41 -0.32+0.71
SARIMA 0.43+0.11 0.42+0.11 0.35+0.25 -0.30 +£0.73
Poisson 0.36 £0.11  0.35+0.12 0.35+0.14 -0.41+0.73
Random 0.23+0.82 0.23+0.74 0.31+0.55 -0.26 £0.73
ARMA with anomaly 0.39+0.13  0.38+0.13 0.32+0.43 -0.36 £0.72
SARIMA with anomaly 0.45+0.09 0.44+0.09 0.43+0.11 -0.38 £0.75
Poisson with anomaly 0.46+0.11 0.44+0.15 0.34+0.53 —-0.10 £ 0.60
Random with anomaly 0.39+0.13 0.38+0.13 0.32+0.43 -0.36 £0.72
Mix All Traffic 0.44+£0.10 0.42+0.11 0.43+0.11 -0.32+0.70
Ave. All Traffic Models 0.41+0.28 0.40+0.26 0.34+0.42 -0.30 £ 0.70
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each server capacity to 30 and each link capacity to 5.0 Gbps.
We increased link capacities because the shortest path con-
centrates the traffic load on some links. The result shows that
the average total return of QMIX increased as the training
progressed. Tables XII-XIV show the average performance of
QMIX and SA. Both QMIX and SA used the shortest path
for route calculation, since solving LP at each step is difficult
for both methods due to the computation time. The results
show that QMIX performed significantly better than SA. This
performance difference is since QMIX dynamically changes
the placement of VMs or not. In particular, the performance of
SA dramatically decreased due to static routing. The reason is
that, as mentioned before, the performance of SA was strongly
dependent on dynamic routing. In conclusion, we revealed
that the proposed method using the shortest path performs
sufficiently in large network topologies.

In summary, we revealed that the proposed method could be
applied to network topologies with less than 65 nodes. More
precisely, the proposed method with route-optimization could
be applied to network topologies with less than 20 nodes.
The proposed method that uses the shortest path for route cal-
culation could be applied regardless of the topology size. In
addition, we revealed that the proposed method outperforms
SA in terms of performance regardless of the topology size.

L. Evaluation: Generalization Performance

The generalization performance is a measure of how accu-
rately an algorithm is able to perform outcomes for previously
unseen data. To evaluate the generalization performance for
traffic demands, we evaluated the average reward using various
traffic models that were different from those during training.
Tables XV and XVI show the average rewards of each method
when evaluated with various traffic models under simple- and
practical-network conditions. We carried out 20 calculations
with random initial conditions and set the same random seeds
for all evaluations. We used agents trained with the mixed
model as described in Fig. 7. We also used 10 types of various
traffic models for evaluation as described in the first columns
of Tables XV and XVI. The row “Mix all Traffic” corresponds
to the results in Fig. 8. The row “Ave. all traffic models” means
the average results of 10 types of traffic models.

For simple-network conditions, QMIX and VDN performed
better than IQL for the average of all traffic models. SA
also performed lower than other dynamic allocation methods.
In QMIX and VDN, since the mixed model’s performance
and the average of all model’s performance are approximately
equal, training with the mixed model was effective for many
traffic patterns. Moreover, the performance of QMIX and VDN
does not decrease even for traffic models with the anomaly.
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TABLE XVI

Traffic Models H QMIX, Mix VDN, Mix IQL, Mix Static Allocation (SA)
ARMA 0.67+0.07 0.58+0.08 0.20+0.32 0.20 £ 0.21
ARMA with other parameters 0.70+0.04 0.61+0.06 0.23+0.24 0.31+0.14
SARIMA 0.67+0.05 0.60+0.07 0.19+0.20 0.16 £ 0.20
Poisson 0.66 £0.05 0.58+0.05 0.11+0.32 0.08 £0.13
Random 0.67+0.05 0.58+0.07 0.15+0.36 0.13£0.12
ARMA with anomaly 0.66 £0.04 0.57+0.05 0.22+0.15 0.07 £0.10
SARIMA with anomaly 0.69+0.05 0.61+0.06 0.22+0.16 0.13+0.19
Poisson with anomaly 0.72+0.06 0.63+0.06 0.30+0.18 0.27+0.14
Random with anomaly 0.66 £0.04 0.57+0.05 0.22+0.15 0.07 £0.10
Mix All Traffic 0.68 £0.06 0.60+0.06 0.26+0.15 0.15+0.12
Ave. All Traffic Models 0.68+0.06 0.59+0.06 0.21+0.24 0.16 +0.17
TABLE XVII

EVALUATION OF AVERAGE REWARDS FOR VARIOUS TRAFFIC MODELS IN PRACTICAL NETWORK (TRAINING BY MIXED MODEL)

EVALUATION OF AVERAGE REWARDS FOR VARIOUS TRAFFIC MODELS IN PRACTICAL NETWORK (TRAINING BY EACH MODEL)

Traffic Models QMIX, ARMA  QMIX, ARMA w/ ano. QMIX, Poisson QMIX, Random QMIX, Mix
ARMA 0.57 +0.10 0.58 £0.13 0.69 +0.06 0.63 +0.07 0.67 +£0.07
ARMA with other parameters 0.59 £0.08 0.65 +0.08 0.72 £0.07 0.67 +0.06 0.70 £ 0.04
SARIMA 0.56 +0.09 0.62 £0.11 0.69 £ 0.05 0.65 +0.06 0.67 +0.05
Poisson 0.43 £0.13 0.56 +0.14 0.65 +0.06 0.60 + 0.05 0.66 +0.05
Random 0.42 +0.09 0.59 +£0.13 0.67 +£0.07 0.62 +0.07 0.67 +0.05
ARMA with anomaly 0.44 £ 0.08 0.60 +0.10 0.67 +£0.04 0.62 +0.06 0.66 + 0.04
SARIMA with anomaly 0.55+0.08 0.62 +0.08 0.69 +0.06 0.64 +0.05 0.69 +0.05
Poisson with anomaly 0.59 £ 0.05 0.64 £0.12 0.73 £0.05 0.69 +0.05 0.72 +0.06
Random with anomaly 0.44 +0.08 0.60 +0.10 0.67 £0.04 0.62 +0.06 0.66 + 0.04
Mix All Traffic 0.52 £ 0.05 0.58 £0.12 0.69 £ 0.05 0.65 +0.05 0.68 +0.06
Ave. All Traffic Models 0.51 £0.11 0.60 £ 0.11 0.69 +0.06 0.64 + 0.06 0.68 + 0.06

Therefore, QMIX and VDN training with the mixed model
obtains a generalization performance for traffic demands. In
contrast, QMIX and VDN underperformed in the Poisson and
Random models because these models include the traffic pat-
terns which were not experienced. IQL sufficiently performed
on the mixed traffic model but unsuccessfully performed on
other traffic models. This shows that QMIX and VDN learn
more superior policies through cooperative learning.

For practical-network conditions, the results are mostly the
same as those under simple-network conditions. As mentioned
in Section VI-E, though the average reward for the practi-
cal network was higher than that for the simple network,
both reward values are not directly comparable. Comparing
their performances under simple- and practical-network con-
ditions, QMIX and VDN for the Poisson and Random models
improved. We consider that, since freedom of allocation
improved as the numbers of nodes and links increased in
the practical network, more flexible allocation has become
possible even when traffic fluctuates.

Next, we comprehensively analyzed the relationship
between the generalization performance for traffic demands
and the traffic models used during training. This evaluation
can determine the best traffic models used during training for
obtaining a generalization performance for traffic demands.
Table XVII shows the average rewards of QMIX when we
used various traffic models for training and evaluation under
practical-network conditions. We adopted five types of traf-
fic models for training: ARMA, ARMA with the anomaly,
Poisson, Random, and Mixed model. As in the evaluation in

Table XVI, we carried out 20 calculations with random initial
conditions and set the same random seeds for all evaluations.

When the ARMA model was used for training, the
performance of QMIX did not decrease with the ARMA
model with other parameters and the SARIMA model. The
performance for some models with the anomaly option was
not decreased because of the normalization in the traffic
generation process as described in Section VI-B. However,
the performance decreased with unknown traffic, such as the
Poisson model, the Random model, and models with anomaly
options.

When the ARMA model with an anomaly was used for
training, all traffic models performed better than when the
ARMA model was used for training. This is because agents
experience more traffic changes and learn how to act to avoid
congestion when anomaly traffic occurs in advance.

When the Poisson, Random, and mixed models were used
for training, QMIX performed outstandingly in all evaluation
conditions. Moreover, when the ARMA model was used for
evaluation in the first row of Table XVII, the average reward
for training with the mixed model was higher than that for
training with the ARMA model. Therefore, we conclude that
training with the mixed model is suitable for obtaining high
generalization performance for traffic demands. We consider
that the reason is that the mixed model contains various traf-
fic fluctuation patterns. While the mixed model performs well,
each traffic model needs to be prepared so that it is composed
of a part of a mixed model and assumes user traffic patterns
when a mixed model for training is generated. On the other
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hand, interestingly, the Poisson model for training performed
equal to or better than the mixed model. We assume the rea-
son to be that this model also contains various traffic changes.
Since the Poisson model is easy to generate, training with this
model will always be beneficial if it leads to a high gener-
alization performance for various traffic demands. To analyze
the results in more detail, it is necessary to solve the inter-
pretability problem of DRL, which is an unsolved challenge
in machine learning theory and is a future work of this paper.

J. Discussion

We discuss the future work of the proposed method. We
revealed the effectiveness of the proposed method, but there
are still important challenges that should be researched for
applying our method in a commercial environment.

A major challenge is the generalization of agent training,
i.e., an agent trained in one environment might not per-
form in other environments not experienced during training.
For example, when changing user placement, the number of
VNs, and the physical network topology, or when observing
new traffic patterns, the agent should retrain from the begin-
ning. This is a general challenge in machine learning, not
unique to DRL-based dynamic allocation. As mentioned in
Section VI-F, since the proposed method takes a long time
to train agents, such as a few hours or a day, the re-training
could be a significant problem when the network conditions
are frequently changed. While we show that training by the
mixed or Poisson model achieves generalization performance
for traffic demands, whole new traffic patterns will possibly
emerge with the development of 5G and other technologies
in the future. One potential solution is grouping VNs, which
can keep the number of VN groups constant (e.g., using [12]).
This grouping will also lead to improving scalability. Another
solution is aggregating all traffic to a small number of flows
and handling only predictable flow patterns (e.g., using [41]).
Although these grouping and aggregation are effective to limit
the demand patterns, the performance of allocation will be
decreased due to coarseAARgrained allocation. The other solu-
tion is transfer learning, which focuses on storing knowledge
gained while solving one domain and applying it to a different
domain so that it can be learned efficiently.

We also discuss the challenge of interpretability of machine
learning related to the challenge of generalization of machine
learning. Since the DNN model included in the DRL is a
black box, it is difficult to explain why the DNN outputs the
results. For example, in this paper, it is impossible to under-
stand why the Poisson model achieved the best performance.
When applying these DRL-based techniques in actual network
operations, the challenge also arises that the operator cannot
trust the agents’ outputs.

The other challenge is the ideal migration. As mentioned in
Section III-A, the proposed method assumes ideal VM migra-
tion, i.e., the system can immediately reallocate VM with-
out interrupting the running service. Note that the proposed
method can be applied even if the migration takes a long time.
However, when migration becomes a bottleneck, the dynamic
allocation has difficulty following the demand fluctuations.

1999

One possible solution that a control algorithm can contribute
is developing a more realistic penalty function of VM migra-
tion taking into account the availability and sustainability of
the service (e.g., using [42]).

VII. CONCLUSION

We proposed a dynamic virtual network (VN) allocation
method based on cooperative multi-agent deep reinforcement
learning (Coop-MADRL). This method can quickly optimize
the network resources even when traffic demands change dras-
tically by applying MADRL for dynamic VN allocation. It can
also reduce the agents’ constraint violations such as network
congestion and server overload and reduce the reallocation
such as virtual machine (VM) migration by introducing a
cooperative element for MADRL. Simulations revealed that
the proposed dynamic VN allocation method can reduce the
maximum server and link utilization and drastically reduce the
constraint violations compared with that of a static VN allo-
cation method under practical-network conditions. In contrast,
the evaluation also revealed that the Exhaustive Search (ES)
that maximizes the reward at each time does not necessarily
maximize the average rewards when the traffic demands fluc-
tuate. Moreover, the computation time of the proposed method
was less than 1 s, which is significantly shorter than that of ES.
As a result, we revealed that the proposed method simultane-
ously enables efficient and immediate dynamic VN allocation.
Finally, we evaluated the generalization performance for var-
ious traffic demands. The results revealed that the agent
training with mixed various traffic models could achieve a
high generalization performance for all traffic models.

For future work, we plan to evaluate the performance of
the proposed method in more complicated use-cases, e.g.,
SFC, in real-world demands and applications, and a test-
bed environment. We also plan to improve the interpretability
of DRL by analyzing the relationship between the network
state, the agent’s actions, and the allocation results in detail.
Moreover, we plan to evaluate the methods involving the
approach described in Section VI-J.
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