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Abstract—Mission-critical networks, which for example can be
found in autonomous cars and avionics, are complex systems with
a multitude of interconnected embedded nodes and various ser-
vice demands. Their resilience against failures and attacks is a
crucial property and has to be already considered in their design
phase. In this paper, we introduce a novel approach for optimal
joint service allocation and routing, leveraging virtualized embed-
ded devices and shared backup capacity for the fault-tolerant
design of mission-critical networks. This approach operates in
phases utilizing multiple optimization models. Furthermore, we
propose a new heuristic that ensures resource efficiency and fault-
tolerance against single node and link failures as pre-requisite
for resilience. Our experiments for different application sce-
narios indicate that our heuristic achieves results close to the
optimum and provides 50% of capacity gain compared to a dedi-
cated capacity protection scheme. Moreover, our heuristic ensures
fault-tolerance against at least 90% of all potential single node
failures.

Index Terms—Mission-critical networks, embedded, resilience,
shared protection.

I. INTRODUCTION

M ISSION-CRITICAL embedded systems as used in
autonomous vehicles, airplanes, and industrial networks

have evolved to complex ecosystems. For instance, the lat-
est Tesla autopilot1 is supported by eight cameras and twelve
ultrasonic sensors for high precision and high-quality environ-
mental data. Similarly, together with Industry 4.0 intelligent
cyber-physical systems emerged that are composed of a mul-
titude of collaborating embedded devices [1], [2] that run
safety-critical services.

Moreover, we currently observe that trends from conven-
tional computer networks, like more powerful devices and
virtualization, are widely adopted in the (embedded) IoT
domain. McKinsey & Company, for example, considers the
virtualization as a key technology to satisfy the latency and
reliability requirements of the future autonomous driving [3].
Furthermore, there is ongoing standardization activities such
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as Automotive Virtual Platform Specification [4] and Future
Airborne Capability Environment (FACE) [5] that are prepar-
ing the usage of open source virtualization technologies in
critical in-vehicle and military systems. As a result and in the
future, these systems can host multiple virtualized services on
a physical node by maintaining process isolation [6], [7].

From a system design perspective, safety- or mission-critical
embedded networks host various potentially interconnected
services with specific demands, e.g., certain resource
consumption or communication with bounded delay.
Virtualization techniques helps to place those services
over the physical network and then establish their inter-
communication according to their requirements. Besides, as
especially the safety-critical services should be protected
against any disruption such as attacks or failures, the
virtualization enables dynamic failover schemes like migrat-
ing/recovering services after node failures [8], [9]. When
standard safety concepts like replicating devices and services
alone are not sufficient in the presence of sophisticated
attackers, such a flexibility in design provides resilience
against failures and attacks, maintaining availability with
graceful degradation in worst-case or full recovery again.

Eventually, services need to be deployed in the embedded
network by considering the capacity and capabilities of nodes
and their interconnection. Hence, two degrees of freedom are
the result: the service placement on nodes and the routing of
data flows in between these nodes. Meanwhile, this configu-
ration should guarantee a certain degree of resilience against
the potential malfunctions or threats. To satisfy those require-
ments, we have modeled the resilient service placement and
routing problem addressing single node failures in our prelim-
inary work [10]. Leveraging virtualized embedded devices and
virtual services, we have found alternative configurations of the
network to reserve required resources for migrating services
and flows in case of failures. From this point of view, enabling
the dynamic service deployment changes the dimension of the
resilient communication by benefiting from the flexible design
of up-to-date embedded devices [11]. However, as we also show
in[10], theresilientserviceplacementandroutingproblemisvery
complex and thus impractical to solve for larger problem sizes.

In this paper, we advance our previous work by utilizing
capacity sharing for path protection against single link failures. In
comparison to the previous approach that we allocated dedicated
backup capacity for traffic demands, we aim to further improve
the resource-efficiency by enabling shared capacity use with
proper service and demand configurations. We formulate a
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TABLE I
COMPARISON OF THE STATE-OF-THE-ART STUDIES

new optimization scheme extending the one in [10] and then
dividing it into multiple steps to reduce its complexity for the
embedding of complex inter-connected services by meeting
Quality of Service (QoS) and robustness requirements. While
our previous model can find the optimal solution for only small-
size network, our new multi-step model can scale better ensuring
the same degree of fault-tolerance against node and link failures.
Accordingly, we evaluate the new model in a more realistic
topology, which reflects the characteristics of an avionic network
architecture. The resulting system becomes resilient against
failures and attacks when it is coupled with a dynamic function
migration mechanism that realizes the configuration found by
our optimization scheme. Concerning our contributions, we

• propose three separate optimization models to solve
(i) service placement and routing, (ii) allocation of
backup paths with shared capacity use against link fail-
ures and (iii) a service migration scheme in case of
node failures. While our service allocation and routing
model finds the optimal working paths, the shared backup
capacity model results in up to 70% capacity gain in
comparison to reserving dedicated backup capacity.

• implement the column generation method to enhance our
previous model and to solve the extended problem for
larger topologies and service overlays more effectively.
The resulting model provides fault-tolerance against all
single node failures.

• design a new heuristic utilizing Steiner trees to promote
shared backup capacity use and improve resource effi-
ciency. Our heuristic results in near-optimal results for the
shared backup capacity allocation. It provides more than
90% fault-tolerance against single random node failures
that can happen on the host nodes.

The rest of the paper is organized as follows. Section II
summarizes related work. In Section III, we introduce our
service-based resilience model and the optimization models
for the resilient service deployment and routing problem under
shared backup capacity. Also, we introduce and explain our
heuristic in Section IV. Section V presents our experimental
setup and results in detail. Lastly, we summarize our solution
and findings in Section VI.

II. RELATED WORK

In this section, we shortly summarize the requirements of
our problem. Then, we summarize related work on service

allocation, network resilience, and lastly, capacity sharing for
backup protection schemes.

Table I shows the requirements for optimal resilient embed-
ded network design that we used as criteria to compare all
other studies presented in the rest of this section qualita-
tively. Resource Efficiency and Optimal Routing represent the
optimality in resource and network utilization for service
deployment and traffic engineering, respectively. Resilience is
one of the main concerns to protect networks against failures
or attacks and should be considered for an optimal design of a
mission-critical network. Inter-service Dependency represents
the relationship, e.g., hierarchy or communication, between
different services since they are interconnected having spe-
cific requirements. Lastly, Shared Protection is a concept to
use network resources more effectively and is important for the
networks that should be more compact and low cost, e.g., for
a car or airplane to be lighter and cheaper. In the rest of
this section, we discuss the related work according to those
criteria.

Service Allocation: In the domains of cloud computing,
Software-Defined Networking (SDN), and Network Function
Virtualization (NFV), a service represents a movable (or
relocatable) function of a particular type and characteristics
that is allocated to physical nodes. In cloud computing, a
service generally provides some specific content, an appli-
cation, or a platform to users under certain Service-Level
Agreements (SLAs) and by minimizing the operational costs
at the same time. It requires accurate resource orchestration
regarding where, when, and how many service instances are
deployed [31], [32]. Besides, the dependencies of services on
each other [12], service migrations [13], load-balancing [14],
and task scheduling [15] affect the costs of providers and also
impact the user experience as well.

SDN/NFV services are considered as virtual functions
to process and regulate the communication such as fire-
walls, routers, and load balancers, or provide network-wide
services such as Domain Name System (DNS) and authen-
tication, authorization, and accounting (AAA) services. The
proper allocation of those services [33], [34] is important
to, for instance, minimize operational costs [16] and physical
resource fragmentation [17] for the providers, and maximize
the service quality [16] and responsiveness [18] for the user
experience. Various other studies address the optimum ser-
vice allocation and routing problem jointly to deploy the
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services on the paths [19], [20] to utilize network resources
optimally.

Contrary to existing works, the service deployment scheme
proposed in this paper focuses on emerging virtualized embed-
ded networks. As the communication traffic is defined between
services, inter-service relationships are decisive for network
design considering both service deployment and the traffic
engineering. Therefore, it is a joint service allocation and inter-
service traffic routing problem where routing also depends on
the service allocation. Moreover, adding resilience require-
ments to such a dynamic deployment scheme renders the
problem even more challenging.

Network Resilience: Many traditional approaches leverage
graph-related properties of networks to increase their robust-
ness. Against link failures, for instance, finding primary and
redundant directed trees [21] as well as multiple disjoint
paths [22] have been proposed. Some other related studies
present the optimization problems with resilience constraints.
In [23], the authors optimize virtual cloud topologies having k
redundant instances under network constraints. Similarly, [24]
creates survivable virtual groups for each service to guarantee
their availability and formulate the deployment of the groups to
an underlying network as an optimization problem. Both stud-
ies focus on cloud service characteristics. In [25], a resource
allocation model is proposed for SDN/NFV, including fault-
tolerance constraints. The authors of [26] consider topology
synthesis, routing, and scheduling problems jointly for fault-
tolerance in Time-Sensitive Networks (TSN) without including
any resource utilization constraint.

In our preliminary work [10], we have considered the
resilience of services together with optimal resource allocation
and routing for inter-service communication but only for small
random networks, i.e., up to ten nodes and seven services.
In comparison to other studies here, our new approach can
find both the optimal and resilient communication scheme
for mission-critical embedded networks in a more resource-
efficient manner.

Shared Backup Protection: Shared backup protection
increases the resource efficiency in network design as it
enables using an amount of capacity mutually between differ-
ent flows or demands under certain conditions. It is especially
prevalent in optical networks where the backup paths can
share wavelength links when their working paths are dis-
joint [35], [36]. In [27], the authors calculate shared backup
paths to protect content-connectivity between users and opti-
cal datacenters in case of disasters. They propose an ILP
and a heuristic to minimize the total number of spectrum
slots for optical connections. Reference [28] proposes an effi-
cient shared protection scheme without increasing the length
of backups paths compared to the respective working paths
and thus promotes fast service recovery. The author for-
mulates the shared protection problem as an ILP for the
networks utilizing wavelength-division multiplexing (WDM)
and presents heuristics to solve that NP-complete problem.
In [30], the authors leverage capacity sharing for survivable
virtual network embedding in optical networks to decrease
the rejection ratio of an incoming demand due to the lack
of resources. They propose a polynomial-time heuristic to

calculate shared backup paths. Lastly, [29] utilizes shared pro-
tection for a fault-tolerant topology design against more than
one failure optimizing capacity usage with two ILP models.
Even though all of those studies offer a degree of resilience
against node and link failures via shared protection, they
assume only static demands that are predefined between cer-
tain nodes. Similar to our discussion for the service allocation
problems, one of our primary concerns is the deployment
of service instances together with working and backup paths
where the allocation of demands depends on such deploy-
ment and thus is dynamic. Additionally, we have to ensure the
resilience of the service deployment, not only the data traffic.

Consequently, in state of the art, the studies do not focus
on the problems of service allocation, routing, and resilience
jointly in a resource-efficient manner. Those problems are
highly relevant for the design of mission-critical networks,
which is an avionic network in our use case shown in
Section V-A. In that use case, we reflect the domain-specific
aspects regarding the topology and service overlay. Adding our
shared capacity scheme on top of that, we aim to reduce the
resource use and thus the cost of the system. Accordingly, we
propose heuristics that solve those problems altogether. From
those perspectives, we believe that we propose a solution to a
problem that has not been studied holistically yet. Although in
our former work [10] we addressed most of those problems,
that approach cannot find optimal solutions for networks of
reasonable size.

III. SERVICE-BASED MODEL FOR EMBEDDED NETWORKS

Our model aims to embed an overlay network of services
into an underlying physical network so that the resulting
assignment maintains the inter-service data traffic, latency,
and foremost resilience demands. In this sense, the service
overlay describes a communication scheme between service
instances having certain inter-communication demands. It can
also implicitly reflect redundancy for a service, e.g., including
multiple service instances in a distributed manner. In this sec-
tion, we propose an optimization scheme to find the optimal
embedding of a service overlay to the physical network. First,
we give an overview of the model and our optimization
approach that consists of three optimization phases. Then, we
explain each phase in more detail.

A. Overview of the Model and the Optimization Scheme

In the service-based model, a service s ∈ S is defined
as a function or virtual instance to be deployed on a phys-
ical node v ∈ V . Each Shas certain resource requirements
τs , e.g., CPU or memory, and different criticality levels,
e.g., mission-critical or best-effort. Those levels impose a
deployment constraint in which only particular nodes can host
the service instances with certain criticality, i.e., ksv = 1.
Another important term, demand d ∈ D , specifies inter-
service communication requirements in terms of the end-
to-end latency ld and the amount of data traffic hd to be
exchanged, e.g., required bandwidth. That is, a demand is
defined between two service instances and it conditions the
data communication in between.
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Fig. 1. Service overlay on top of the underlay physical network. Dashed
lines show how basic service instances are assigned to physical nodes. Grey
nodes host the service instances and directed edges show the paths that carry
the traffic demands.

Fig. 1 gives an example for the embedding of a service
overlay (black nodes) in the underlying physical network
(grey nodes). While a link between two services (an edge
between two black nodes) represents a demand, the con-
nection of two physical nodes (an edge between two grey
nodes) is a physical link e ∈ E , i.e., having a nominal band-
width capacity, in the network. A service instance can be
allocated on a single node to establish communication with
other nodes that host neighboring service instances. The over-
all deployment should be restricted by (i) the node resource
capacities, i.e., rv for node v, consumed by the services
and (ii) link capacities, i.e., ce for link e, required by the
inter-service demands. Besides, the delay induced by path
p ∈ P between two nodes hosting the communicating services
imposes a further restriction on the latency on the respective
demand.

As shown in [10], a single optimization model that reflects
optimal service deployment, optimal routing configuration,
and fault-tolerance under different failure scenarios results
in high complexity. Thus, even for small networks and few
services, it might take up to several days to find a configura-
tion with minimum communication latency and a guaranteed
resilience against single node failures. For this reason, we
split the problem into three phases and different optimization
models that need to be solved subsequently as a part of the
whole optimization scheme. Those phases that are shown in
Fig. 2 are:

1) Bootstrapping: In this phase, we find an initial config-
uration with service deployments and working paths.
For that, we formulate an integer linear problem (ILP),
namely Bootstrapping-ILP, to find the shortest working
paths within the limited node and link resources.

2) Shared Backup Protection: We establish shared backup
paths against possible link failures on the working
paths found in the phase 1. Using the solution of the
previous phase as input, we formulate another ILP,
namely Backup-ILP, to minimize the use of backup
capacity by maximizing shared protection.

3) Service Migration: We search for the backup nodes,
which communicate with other host nodes with min-
imum latency, to migrate services in the case of node
failures. In this phase, we formulate another optimization
model, namely Migration-LP.

Fig. 2. Multiple steps for the optimal configuration of a resilient virtualized
network.

Splitting the model into three phases eases the formulation
of the constraints. For instance, finding working and backup
paths, in phases 1 and 2, could also be considered as a sin-
gle phase as they are highly dependent. However, it eventually
results in complex non-linear constraints, i.e., having complex-
ity higher than quadratic equations. Apart from avoiding such
constraints to a certain extent, we also linearize the remaining
non-linear constraints to make the overall optimization scheme
easily solvable by the existing linear optimization tools. As
we solve those linearized models in our experiments, we here
introduce the original models as ILP and LP omitting fur-
ther linearization details. For that, we utilize the McCormick
envelopes [37] introducing extra variables and constraints,
whose details and complexity are extensively discussed in our
preliminary study [10].

Note that splitting the problem into the different
optimization phases results in individual optimal solutions for
each phase, not a global optimum for the whole scheme involv-
ing all constraints at once. We consider this reduction as a
trade-off to get a solution which is closer to the optimal one for
larger problem instances. Nevertheless, computing the approx-
imation ratio of the split model to a possible singular model
requires to formulate and solve such a complex model, which
is not practical as we discussed in [10].

In the following subsections, the respective optimization
models are presented. Table II briefly summarizes all terms
and definitions used in those optimization models.

B. Bootstrapping

In the bootstrapping phase, we solve the optimization
model, Bootstrapping-ILP, to find the initial configuration
where the service instances and traffic demands are placed
on the nodes and working paths. This phase constitutes a
base configuration to build further reconfigurations, i.e., ser-
vice and flow migrations, in the case of node failures and to
find backup paths against link failures. The description of all
relevant parameters is given in Table II.
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TABLE II
TERMS AND DEFINITIONS IN THE OPTIMIZATION PROBLEM. Base TYPE CONTAINS THE FUNDAMENTAL ELEMENTS OF THE OPTIMIZATION SCHEME.

ConstantS ARE NETWORK- AND SERVICE-RELATED PARAMETERS GIVEN AS INPUT. Variables REPRESENT THE PARAMETERS TO BE OPTIMIZED

Bootstrapping-ILP is given below. xdp and ysv are two
binary decision variables to indicate if demand d is assigned
to path p and if service s is deployed on node v, respectively.

min
∑

d∈D

∑

p∈P
xdp |p| (1)

∑

s∈S
ysv τs ≤ rv ∀v ∈ V (2)

∑

v∈V
ksvysv = 1 ∀s ∈ S (3)

xdp ≤ ysvytu + ytvysu ∀d ∈ D , ∀u, v ∈ V ,

∀p ∈ Puv , (s , t) ∈ d (4)
∑

d∈D

∑

p∈P ,
e∈p

xdphd ≤ ce ∀e ∈ E (5)

∑

e∈p
xdp l

∗
e ≤ ld ∀d ∈ D , ∀p ∈ P (6)

∑

p∈P
xdp = 1 ∀d ∈ D (7)

The objective function (1) minimizes the length of selected
paths, where |p| represents the path length. Minimizing the
total path length can be considered as both performance and
cost optimization. That is, allocating shorter paths enables
establishing low-latency communications, i.e., here with less
hops, and decreasing the number of occupied links, which is
especially important for mission-critical networks to reduce
the cost and the complexity of the system.

Constraint (2) and (3) ensure that vhas sufficient resources
to host s and s is deployed on exactly one node that is capa-
ble to host s (e.g., equipped with the required hardware).
Constraint (4) restricts the flow assignment in a way that d can
be deployed on p if only the source and destination nodes u, v
of p host required services s and t. Constraint (5) ensures that
each link e of p has sufficient resources, e.g., bandwidth, to
carry the traffic of d if it is assigned to p. While constraint (6)
ensures that p is selected to satisfy the maximum tolerable
latency for d, constraint (7) guarantees that d is assigned
exactly to one working path. Note that, as inferred in the latest
constraint, traffic demands are assumed to be non-bifurcated.

There are two significant uses of the bootstrapping for the
next two phases. In the shared protection phase, the boot-
strapping eases finding the optimal shared backup paths by
providing an initial configuration to (i) detect disjoint work-
ing paths that can share backup capacity and (ii) select disjoint
backup paths for the given working paths. Formulating mutual
disjoint paths, i.e., a working path which is disjoint to both its
backup path and other working paths to leverage shared capac-
ity, together with the service allocation results in a complex
optimization model (e.g., having cubic constraints). Therefore,
computing working paths in advance and then formulating the
shared backup protection problem is more convenient to be
solved by existing optimization tools. In the service migration
phase, the bootstrapping provides a basis of nodes, i.e., host
nodes, whose failures are disruptive and result in the unavail-
ability of service instances. Besides, it enables us to keep a part
of the initial deployment and to avoid the migration of services
and flows on non-failed nodes. Therefore, the bootstrapping
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Fig. 3. Example scenario of sharing the backup path capacity.

phase reduces the search space of the optimization problem,
i.e., the number of node failures to consider and the services
and flows to reconfigure.

Lastly, in Bootstrapping-ILP, as constraint (4) conforms to
both service allocation and routing restrictions, it increases the
complexity of the model in O(|D ||P ||S |2|V |2) in terms of the
number constraints. However, practically, only a limited num-
ber of such constraints are effective as (i) only the respective
services and (ii) only the paths are considered for each demand
and each pair of nodes, respectively. Moreover, as it is also a
non-linear constraint, the linearization of the multiplication of
two binary variables adds extra constraints as well. In terms of
variables, due to xdp and ysv , Bootstrapping-ILP is bounded
by O(|D ||P |+ |S ||V |) variables.

C. Shared Backup Protection

In this phase, we formulate another ILP, Backup-ILP, to
find backup paths for each demand. Providing communication
resilience using dedicated backup paths is generally costly. In
particular, if 100% of requested throughput has to be available
after a failure, the amount of resources (link capacities) needed
to set up the backup path is higher than the resources needed
for establishing the working path. To improve the resource
efficiency, the concept of sharing the link capacities assigned
to backup paths can be applied in such scenarios [38]. In gen-
eral, sharing the link capacity among several backup paths at
a given link is possible if these backup paths protect against
different failure scenarios as illustrated in Fig. 3. In the figure,
three demands are assigned to the working paths v1-v2-v3, v4-
v5-v6, and v9-v10-v11-v6, and the backup paths v1-v7-v8-v3,
v4-v1-v7-v8-v6, and v9-v3-v8-v6, respectively. Accordingly,
the shared backup capacities are reserved at links v1-v7 and
v7-v8 by the first and second backup paths, at link v3-v8 by
the first and third backup paths, and at link v6-v8 by the sec-
ond and third backup paths for the case of protection against
a single node failure as the respective working paths are dis-
joint and thus subject to different scenarios of single failures.
In particular, concerning the scenario of a single link (or a sin-
gle node) failure covering the majority of failure cases [39],

backup path sharing is possible if the respective working paths
are mutually link-disjoint (or node-disjoint) [28], [40].

As presented in detail in [28], for a demand dwith the
requested throughput hd , the respective backup path at link
ein the case of shared protection would require the allocation
of (i) no extra capacity if the amount of shareable capac-
ity c+ already allocated to backup paths at link eis at least
hd or (ii) the extra capacity of hd − c+ in all other cases.
Here, the shareable capacity can be considered as the capacity
already reserved for a backup path of another demand q that
is accepted earlier and not affected by the same link failure
affecting a working path of d. In case hq < hd , extra capac-
ity hd − hq needs to be reserved at the link even though hq
amount of capacity can be used by both q and d in case of
(different) link failures.

Our model Backup-ILP is given below. Before formulat-
ing the problem for a topology G, we update link capacities
ce to c∗e to denote the capacity not allocated for working
paths. Using the initial configuration (i.e., working paths)
as the input, we construct a set Hd for each d. It includes
demands {q1, q2 . . .} that (i) induce shareable backup capac-
ity with demand das they have disjoint working paths with
dand (ii) have larger traffic demands hq > hd . As a result,
if q ∈ Hd is assigned on link e, hd is not necessary to con-
sume extra capacity. The binary decision variables zdp and z∗de
represent whether demand dis assigned to path p ∈ Pd̄ and
link e, respectively. Here, Pd̄ is a set of disjoint paths to the
working path of d obtained from the previous phase and it is
computed beforehand. The other decision variable gde shows
if any q ∈ Hd is already assigned to link e. ¯gde is the negation
of gde .

min
∑

e∈E

∑

d∈D
z∗de ¯gdehd (8)

∑

p∈Pd̄

zdp = 1 ∀d ∈ D (9)

z∗de ≥ zdp ∀d ∈ D , ∀e ∈ E , p ∈ Pd̄ ∧ e ∈ p (10)

z∗de ≤
∑

p∈Pd̄ ,
e∈p

zdp ∀d ∈ D , ∀e ∈ E (11)

gde ≥ z∗qe ∀d , q ∈ D , ∀m ∈ Hd , ∀e ∈ E (12)

gde ≤
∑

q∈Hd

z∗qe ∀d ∈ D , ∀e ∈ E (13)

∑

d∈D
z∗de ¯gdehd ≤ c∗e ∀e ∈ E (14)

In the model, the objective function (8) minimizes the total
shared backup capacity. It aims to increase the resource-
efficiency and eventually decrease the design cost of the
system by occupying less backup resources.

Constraint (9) ensures exactly one backup path assigned
for each demand d. Constraints (10) and (11) configure z∗de
for each link echecking if p involving eis a backup path for
demand d, i.e., zdp = 1. Similarly, constraints (12) and (13)
configure gde checking if any demand q ∈ Hd is assigned
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to link e. Lastly, constraint (14) ensures that the required
resources for dwith the highest traffic demand are reserved.

As an exception, if demand d is not suitable to use
any amount of shared capacity with another demand, then
Hd = {}. In this case, gde = 0 holds strictly and the full
amount of traffic for demand dshould be assigned to the
respective links without considering any shared capacity.
Constraint (14) implicitly considers this scenario as well.

Lastly, in terms of complexity, Backup-ILP is bounded by
O(|D ||E ||P |) constraints and O(|D |(|E | + |P |)) variables
including linearized the non-linear constraint, which contains
the multiplication of z∗de and gde .

D. Service Migration

Backup paths protect traffic demands against the failures
in the intermediate nodes and links of the respective working
paths. However, the failure of one of the end nodes hosting
a service still disrupts the services and demands. In the last
phase, we formulate Migration-LP to find alternative nodes
for each service hosted by failed nodes. Defining failure sce-
narios f ∈ F/{0}, we consider the failure case of each
node that hosts a service according to the given bootstrapping
configuration.

Before formulating the problem for the topology G, we
update node and link capacities according to the deployments
in the previous phases. In Migration-LP, xdpf and ysvf are
the binary decision variables that represent whether demand
d is assigned on path p and if service Sis deployed on node
v in the failure scenario f, respectively. Each scenario f is
represented by a vector of binary variables avf that specfi-
cies whether node vis not failed in scenario f. Services can be
hosted at node vonly if avf = 1. θpf is another binary vari-
able that represents if path p is not broken, i.e., is usable, in
scenario f and is decided by the availability of the nodes on p
s.t θpf =

∏
v∈V ,
v∈p

avf . According to the service configuration

from the bootstrapping phase, the failure scenarios are defined
in such a way that each one represents the failure of a sin-
gle host node, i.e.,

∑
v∈V avf = 1. Therefore, the number of

scenarios |F | equals to the number of distinct nodes hosting
services in the initial configuration. Eventually, the resulting
configuration of Migration-LP gives an alternative deployment
to update the bootstrapping configuration in the case of the
respective failure scenarios.

Migration-LP is given below. The objective function (15)
minimizes the length of selected paths. Constraints (16)-(21)
resemble to constraints (2)-(7) in the bootstrapping phase.
Constraints (22) and (23) ensure that if the initial flow assign-
ment and service deployment are not affected by the failure
in scenario f, their configuration is kept to avoid the unneces-
sary reconfiguration of the network. Here, xdp0 and ysv0 are
given as input according to the initial configuration from the
bootstrapping phase.

min
∑

d∈D

∑

p∈P

∑

f ∈F
xdpf |p| (15)

∑

s∈S
ysvf τs ≤ r∗v ∀v ∈ V , ∀f ∈ F (16)

∑

v∈V
ksvysvf avf = 1 ∀s ∈ S , ∀f ∈ F (17)

xdpf ≤ θpf
[
ysuf ytvf + ytvf ysuf

]

∀d ∈ D , ∀u, v ∈ V , ∀f ∈ F

∀p ∈ Puv , (s , t) ∈ d (18)
∑

d∈D

∑

p∈P
xdpf θpf αpehd ≤ ce ∀e ∈ E , ∀f ∈ F (19)

∑

e∈E
xdpf αpe l

∗
e ≤ ld ∀d ∈ D , ∀p ∈ P , ∀f ∈ F (20)

∑

p∈P
xdpf θpf = 1 ∀d ∈ D , ∀f ∈ F (21)

xdpf ≥ θpf xdp0 ∀d ∈ D , ∀p ∈ P , ∀f ∈ F (22)

ysvf ≥ θpf ysv0 ∀s ∈ S , ∀v ∈ V , ∀f ∈ F (23)

Finding the optimal solution of the service migration problem
is highly complex mostly due to the introduction of multiple
failure scenarios, and it can not be easily found in a reasonable
time even for small network instances. Therefore, we apply
the column generation method in Migration-LP, adding the
candidate paths iteratively to reduce the initial number of
variables and constraints to be considered. To be able to apply
the method, we use the linear relaxation of binary variables
and thus solve the problem as an LP (rather than an ILP).

After solving an initial instance of the service migration
problem with a limited set of paths, including working and
backup paths, which are found beforehand, we add a new set
of candidate paths that possibly improve the objective value.
This process is shown as Step 3 and 4 in Fig. 2. To select a
candidate path p∗, we define the reduced cost function (24)
derived from the Langrangian function (25) of the model using
the dual variables of LP.2 As the paths with positive reduced
cost can contribute to the existing feasible solution taken from
Step 3, those are added to the used set of paths. Then, the LP
is re-solved with the extended set of paths.

cp∗f = −
⎛

⎝
∑

d∈D

∑

e∈E
αp∗eνef θp∗f hd − |p∗|

⎞

⎠ (24)

L∗
(
xdpf , η

uv
dpf , νef , ρdpf , πdpf , φe

)

= −
∑

p∈P

∑

d∈D

∑

f ∈F
xdpf |p|

+
∑

u,v∈V

∑

d∈D

∑

p∈P

∑

f ∈F
ηuvdpf

(
xdpf − ysvf ytuf θpf

)

+
∑

e∈E

∑

f ∈F
νef

⎛

⎝
∑

d∈D

∑

p∈P
xdpf θpf αpehd − ce

⎞

⎠

+
∑

d∈D

∑

p∈P

∑

f ∈F
ρdpf

(
∑

e∈E
xdpf αpe l

∗
e − ld

)

−
∑

d∈D

∑

p∈P

∑

f ∈F
πdpf

(
xdpf − θpf xdp0

)
(25)

2Further details for the column generated method, dual variables, and cost
functions can be found in many studies such as [41]–[43].
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Fig. 4. Correspondence between the steps of the heuristic and the
optimization phases.

Lastly, as Step 5 in Fig. 2, if there is no path left to include,
e.g., all remaining paths have a non-positive reduced cost,
the reduced problem is solved as an ILP (i.e., without linear
relaxation) using only the obtained set of all useful paths.

In terms of complexity, Migration-LP has the high-
est number of constraints and variables in comparison to
Bootstrapping-ILP and Backup-ILP. Solving a very similar
problem with Bootstrapping-ILP for multiple failure scenar-
ios, it is bounded by O(|D ||P ||F ||S |2|V |2) constraints and
O(|F |(|D ||P |+ |S ||V |)) variables.

IV. HEURISTIC

As described in Section III, three phases constitute the
essence of the problem: (i) Service deployment satisfying
demands, (ii) shared link protection scheme minimizing the
use of link resources, and (iii) service migration scheme for
node protection. We propose a 5-step heuristic covering those
three phases referring to our optimization scheme. Fig. 4
shows the corresponding steps of the heuristic addressing the
same objective as the optimization models. Step 1 (Service
deployment) and Step 3 (Finding working paths) correspond
to the bootstrapping phase, where the initial service deploy-
ment and assignments of working paths are performed, aiming
at minimizing the working path lengths. In Step 2 (Shared link
protection), backup paths are found for each demand in a way
to maximize the shared use of links similar to the shared pro-
tection phase. Note that the order of steps for finding working
and backup paths are different than the optimization scheme,
which is justified in more detail later on in the paper. Step 4
(Assigning remaining demands) plays a complementary role
for Steps 1-3 to ensure that the working and backup paths are
assigned for all demands with minimal path lengths and max-
imal backup capacity sharing. Lastly, Step 5 (Finding backup
nodes) is to find alternative service deployment schemes uti-
lizing the shortest available paths to set up in the case of
failures, corresponding to the service migration phase. In the
rest of this section, we describe each step in more detail.

Step 1 (Service Deployment): In this step, the services are
assigned to physical nodes with sufficient resources. As each
demand is defined between a pair of services, the locations of
host nodes are restrained by the latency and data requirements
of demands. The host nodes are selected starting from the ones
with the highest connectivity, e.g., the highest number of direct

neighbors, to ease finding disjoint working and backup paths
afterward. For each pair of services utilized by a demand, we
ensure that there is at least a path with sufficient link resources
and latency cost for the respective demand. Among the alter-
native deployments, we select the closest nodes for a better
quality of service in terms of latency and less link resource
consumption at the end.

Note that a service can be utilized by multiple demands.
In this case, only a single instance of the related service is
placed to the selected node. Accordingly, this node should
satisfy latency and data requirements of any demand utilizing
that service.

Step 2 (Shared Link Protection Scheme): When some of the
services are utilized by multiple demands as mentioned in the
previous step, they form chain of services as it is also seen in
Fig. 1. For instance, while a node hosting a service receives
data for a traffic demand, that node can send data from the
same service to another node to satisfy a different demand.
When such services are allocated at physical nodes, it is con-
venient to define a communication backbone connecting and
covering all those nodes to be shared by multiple demands in
case of failures. In this step, we utilize our Secondary Backup
Backbone (SBB) algorithm to define the chain of services
whose host nodes can also be connected sequentially to form
the backup backbone. That is, the service chain in the service
overlay is also reflected as a chain of physical nodes forming
a single backbone, i.e., a connected subgraph. In contrast to
the order of optimization phases in Section III, instead of find-
ing working paths first together with the service deployment,
we apply a shared link protection scheme before assigning
working paths. The reason is that the assignment of working
paths restricts the available links to be used in backup paths
significantly as they should be disjoint. However, when we
maximize the shared use of backup links, i.e., by decreasing
the number of used links and the total capacity, there are still
sufficient resources left to establish shorter working paths.

For each service chain, SBB constructs a modified Steiner
tree [44] on the physical network where each host node is con-
sidered as a terminal node and any intermediate node, which
belongs to the tree, is a Steiner node. A Steiner tree is defined
as a connected subgraph, e.g., a tree, including a set of given
nodes, i.e., terminal nodes. All other nodes to be used to con-
nect terminal nodes are called Steiner nodes. Generally, the
construction of a Steiner tree refers to finding a minimal sub-
graph, or the shortest tree, having all terminal nodes with a
minimum number of Steiner nodes, and it is known to be an
NP-complete problem [45]. However, according to our initial
experiments, finding the shortest tree eliminates the possible
use of shortest paths as working paths afterward. Since the
working paths are the most used ones until a failure occurs,
keeping them shorter leads to a better QoS. Therefore, we
use a simple heuristic to construct a secondary Steiner tree,
which utilizes the shortest disjoint path to the shortest path
between two nodes, i.e., the secondary shortest path, instead
of directly using the shortest one. Algorithm 1 briefly describes
those steps of SBB.

Iterating through the elements of vterminal including all
host nodes obtained from the previous step, SBB forms the
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Algorithm 1: Secondary Backup Backbone (SBB)

1 vterminal ← [v1, v2, v3...vn ]
2 vselected ← ∅

3 vSteiner ← ∅

4 v ← random node ∈ Vterminal
5 vselected ← Vselected ∪ {v}
6 vterminal ← Vterminal \ {v}
7 while vterminal 	= ∅ do
8 p∗ ←∞
9 for v1 ∈ Vterminal do

10 v2 ← vn ∈ Vselected closest to v1
11 if v2 is close enough to ∀vn ∈ Vterminal then
12 p ←

secondary shortest path between v1-v2
13 if p is shorter than p∗ then
14 p∗ ← p
15 v ← v2

16 vselected ← Vselected ∪ {v}
17 vterminal ← Vterminal \ {v}
18 vSteiner ← VSteiner ∪ {vn ∈ p∗}

secondary shortest paths between the nodes verifying that the
latency requirement for each demand is satisfied for the backup
communication through the backbone. In line 11, SBB ensures
that v2 does not violate such requirements for a demand
between the services on v2 and any other terminal nodes
in vselected. Then, the nodes in the shortest path exclud-
ing the end hosts, e.g., terminal nodes, are added to the
set vSteiner as Steiner nodes. After connecting each node in
Vselected ∪ VSteiner, SBB returns that secondary Steiner tree
satisfying demand requirements.

Step 3 (Finding Working Paths): After forming the backup
backbone in Step 2, we use the Mutually Disjoint Paths
(MDP) algorithm to calculate working paths in this step.
Algorithm 2 shows how MDP calculates the working paths
for demands whose backup paths are defined in a particular
backup backbone GSteiner.

There are three essential aspects to be considered when
calculating working paths. First, they should be mutually dis-
joint if the backup paths of the respective demands are shared.
Even though we have formed a single backbone, each demand
d ∈ D uses only a segment of the backbone GSteiner, i.e., a
path between the nodes hosting the services of that demand,
that could be shared or not. Therefore, when finding a work-
ing path, we first check if dutilizes any capacity shared with
another demand q ∈ Hd with an assigned working path wq

and ensure that they are disjoint (line 5). The second issue is,
the working path of d, pwd should be disjoint to the respective
segment of the backup backbone pbd that is used that demand
(line 6). Lastly, pwd should satisfy the latency requirements of
d (line 7). Note that similar to the optimization scheme, we
have found all paths in advance and added them to the problem
as an input. Therefore, checking the disjointness of paths is a
matter of comparison between their nodes and links.

Algorithm 2: Mutually Disjoint Paths (MDP)

1 for d ∈ D do
2 v1, v2 ← Host nodes of d
3 pwd ← Backup segment between v1− v2 ∈

GSteiner
4 for p ∈ Pd do
5 if p and {pwq |∀q ∈ Hd} disjoint then
6 if p and pbd disjoint then
7 if p satisfies ld then
8 pwd ← p

Fig. 5. Backup backbone (dashed black) with host (terminal) nodes
v1, v2, v3, Steiner nodes (dashed) v4, v5, and respective working paths
(straight purple and blue). Two demands are defined between nodes v1-v2 and
v1-v3. In this case, the links between v1-v4 and v4-v5 are shared between
those demands.

Fig. 5 shows an example construction of a backup backbone
and the respective working paths. Initially, three services are
deployed to v1, v2, and v3 where two demands are defined
between v1-v2 and v1-v3. Using additional Steiner nodes
v4 and v5, SBB constructs the backup backbone among the
nodes v1-v5. Accordingly, MDP calculates two disjoint work-
ing paths v1-v6-v7-v2 and v1-v8-v3. Note that those paths
are both mutually disjoint and concerning their relation with
the backbone. In the backbone, the links between v1-v4 and
v4-v5 are shared.

Step 4 (Assigning Remaining Demands): As a result of
Step 2 and 3, the working and backup paths are calculated
around backbones tightly for each service chain. In particular
cases such as the lack of disjoint paths and limited available
link resources, some demands may not be assigned accord-
ing to the initial service deployment in Step 1. To cope with
such scenarios, we utilize an improved version of our previous
heuristic Random Deployment with Disjoint Paths (RDDP)
in [10]. RDDP is a greedy heuristic consisting of two phases,
service deployment and routing. In the first phase, it allocates
the services to a randomly selected pair of nodes not host-
ing other services. If every node hosts at least one service,
RDDP selects the node with the highest available resources.
We improve RDDP to select the nodes whose secondary short-
est path maximizes the use of shared capacity. In the second
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phase, it allocates two node-disjoint paths for the inter-service
demand between selected nodes, one for the main use and the
other one as a redundant backup. If disjoint paths cannot be
found between those nodes, they are reselected by following
the same greedy approach.

Note that RDDP selects the feasible nodes and paths for
each demand after a limited number of trials where the pairs
of nodes are examined randomly as it is explained in [10].
The design parameter limit can be selected according to
the network size as the number of possible 2-combinations
of nodes is proportional. In our experiments, we applied
limit = 100.

Step 5 (Finding Backup Nodes): Although we have estab-
lished backup paths for protection against single link failures
so far, any failure occurring in host nodes can still disrupt
the communication as the hosted services would fail. In the
last step of the heuristic, we utilize another heuristic from
our former work, namely Backups with Secondary Redundant
Path (BSRP). It simply finds an alternative node for each host
node in the initial deployment to migrate its services in the
case of a failure.

When an alternative node is selected to host a service,
three criteria are important to satisfy the requirements of
all demands which utilize that service: The alternative node
should (i) have sufficient resource capacity to host the respec-
tive service, (ii) have required paths with sufficient capacity
in-between the nodes hosting the other services for related
demands, and (iii) be in a position to comply with the latency
requirements of all related demands. In BSRP, we search
for alternative nodes starting from the ones with the high-
est remaining resource capacity for each service. Among the
candidates, the node with the minimum total length of paths
to the other services for the respective demands utilizing the
migrated service is selected. Eventually, the alternative paths to
be used after a service migration consume network resources
minimally.

V. EVALUATION

To measure the performance of our optimization scheme
and heuristic, we considered a number of scenarios and used
a set of metrics. In this section, we present our experimental
setup and discuss our numerical results in detail.

A. Experiment Setup

In this section, we describe (i) our computational resources
and tools used to run our experiments, (ii) our topology and
service overlay generation approach, (iii) what we measured
and related parameters, and lastly (iv) the metrics we used for
the comparisons.

1) Computational Resources: The optimization models
were implemented in CPLEX 12.7.0, and all experiments were
conducted in a server with 64-core Intel Xeon 2.10GHz CPU
and 256GB RAM. The resource utilization varied for the
different phases of the optimization scheme. For the largest
instances of the problem, i.e., 35 nodes and 21 demands, phase
3 (service migration) kept the CPU utilization around the level
of 80% for all the cores and used all available RAM. As

Fig. 6. Potential in-plane topology.

TABLE III
CHARACTERISTICS OF THE SERVICES THAT ARE USED IN THE

EXPERIMENTS

we used pre-computed paths in the model, it also occupied
an amount of memory proportional to the network size and
connectivity. On the contrary, phase 1 and 2 were executed
more easily using the CPLEX branch-and-bound method and
utilizing the presolver.

2) Topology and Overlay Generation: We evaluated the
performance of the optimization models and the heuristic for
different types of topologies and service overlays. First, we
created a potential in-plane topology shown in Fig. 6 as avion-
ics is one of the key safety-critical domains to make use
of service-based flexible network design. In this topology,
we considered a cabin network that is interconnected with
the nose, tail, and wings of the plane. Note that in tradi-
tional in-plane networks, there might be tens of end-systems,
subsystems, and hundreds of signals between critical compo-
nents [46]. Here, we included the cabin also giving services
with higher traffic loads, e.g., infotainment, and combined it
with the rest of the network to have a complete model of a
connected aircraft. The entire topology has 35 nodes with dif-
ferent service-hosting capabilities and the average node degree
of 3.7. Eventually, this network can be extended to any other
mission-critical domain having varying traffic demands to be
satisfied within a bounded latency.

For the given in-plane topology, we defined a service over-
lay with certain characteristics. Tables III and IV show those
characteristics for the services and demands, respectively. In
Table III, we present three types of services concerning their
resource demand, criticality, possible position to be placed in
the topology, and their quantity. The set S1 consists of low
resource demand and high criticality, e.g., control signals, that
can be in nose, tail, and cabin. A quarter of all the services
belongs to that type. S2 represents medium resource demands
and criticality services that can be placed anywhere. Lastly, S3
consists of the services with high-resource demand and low-
criticality to be placed in cabin and half of the services are
defined in that type. We generated the exact values, e.g., traffic
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TABLE IV
CHARACTERISTICS OF THE DEMANDS THAT ARE USED IN THE

EXPERIMENTS

and latency requirements of demand, for each type of service
randomly keeping their interrelation.

We considered three types of demands shown in Table IV
utilizing the types of services from Table III. D1 consists
of demands with low data traffic and being time-sensitive,
e.g., with tight latency constraints, and defined between the
services of S1, i.e., the most critical ones. D2 represents
the demands with medium data traffic with best-effort QoS
between the services of S1, S2, and S3. Lastly, D3 represents
the high-traffic demands, mostly defined for the cabin part.
We defined half of the demands in D3 as proportional to the
number of nodes in the cabin part, and the rest of the demands
were equally distributed between D1 and D2.

Apart from a very regular in-plane topology where the
majority of the nodes have similar connectivity, we also used
random networks with the same number of nodes and similar
connectivity. As nodes do not have particular roles, e.g., either
in nose, cabin, tail, or wings, we did not restrict the position
of the services. That is, we used the same characteristics for
the service overlay, excluding the positional constraints.

3) Measurements and Parameters: For most of the experi-
ments, we measured Optimal and Heuristic values that rep-
resent the optimal and the heuristic’s results for the given
in-plane topology, Optimal-R and Heuristic-R, in contrast,
show the results for random networks of the same size.

We evaluated the models and the heuristic for the increasing
number of demands. In the end, we also show the scalability
of the heuristic for the increasing number of nodes generating
larger random topologies (50-70 nodes) with the average node
degree of 2.8. In the scalability scenarios, we used a fixed-size
service overlay with 50 demands. For each scenario, the exper-
iments were repeated 30 times and the results are given with
a 95% confidence interval. For all experiments, the optimality
gap was defined as 5%, which means the results could deviate
from the optimum at most by 5%.

4) Metrics: We used the metrics listed below to evaluate
the performance of all phases of the optimization scheme and
the heuristic.

Probability of Service Failure: It is the ratio of the number
of services that cannot be migrated to an alternative node to
all services.

Sharing Efficiency: It is the ratio of the difference between
shared and dedicated backup capacity to the dedicated backup
capacity without sharing. The latter is calculated by dis-
abling capacity-sharing and reserving dedicated capacity on
the configured backup paths. The sharing efficiency repre-
sents the capacity gain by sharing. We compare our capacity

Fig. 7. Probability of service failure in case of a single node failure.

sharing approach with the dedicated one as it is a broadly-
used approach for the redundancy in mission critical systems.
Besides, this comparison helps to emphasize the improvements
made by us following our preliminary work, where we used
the dedicated backup capacity approach.

Shared Link Ratio: It is the ratio of the shared links to
all backup links. The sharing ratio measures the efficiency
of backup capacity allocation where the backup links can be
shared only if the respective working paths are mutually dis-
joint. Any link utilized as a backup link by multiple demands
is counted as a shared link.

Total Length of Working Paths: As Bootstrapping-ILP and
Migration-LP optimize the total path length in terms of number
of hops, this metric represents the total objective value of those
two phases.

Backup Capacity Use: It is the total link capacity, i.e., band-
width, required for all the backup paths. As Backup-ILP
minimizes the use of backup capacity by utilizing shared
capacity, this metric also represents the resulting value of the
objective function.

Total Capacity Use: It is the total link capacity required for
all the paths, i.e., both working and backup paths. Especially
for the heuristic, it shows the efficiency of working path
selection.

Prolongation Factor: Prolongation factor between two paths
is the ratio of the length of one path to the other’s length. We
consider (i) backup to working path and (ii) selected backup to
the ideal backup path prolongation factors to show the balance
between backup and working paths, and the efficiency of the
selected paths, respectively.

Solution Time: It is measured for each individual phase of
the optimization scheme. As the heuristic solves the target
problem in a neglectable time, e.g., seconds to a few min-
utes, the solution time is considered for only the optimization
scheme to evaluate the increasing complexity by the number
of demands.

B. Results

In this section, we present the experiment results using the
selected metrics and scenarios for different topologies and
service overlays.

1) Fault-Tolerance: Fig. 7 shows the probability of service
failure (PoSF) during a single node failure as a function of
the number of demands. As the optimal solution guarantees
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Fig. 8. Sharing efficiency.

to find a backup path for each demand against link failures
and a backup node for each service against node failures, it
protects the network against all single link failures and any
single failure of the host nodes. Therefore, the optimal deploy-
ments at both in-plane and random topology result in 0% PoSF.
Similarly, in our experiments, our heuristic is also successful
to reserve the required capacity in backup paths for all the
demands. However, in the last stage of the heuristic, there
are some scenarios where it fails to find alternative nodes to
migrate services due to (i) insufficient amount of node resource
capacity, (ii) link capacity, or (iii) lack of suitable paths sat-
isfying the latency requirements. For the in-plane topology
and random networks, our heuristic keeps the PoSF below 5%
and 10%, respectively. As the service deployment may spread
through the network without node capability constraints and
random connectivity, Step 5 in the heuristic fails more often to
migrate all services in random networks satisfying especially
case (iii) above.

Note that some mission-critical services cannot tolerate any
failure at all and require replicated hardware or software
to ensure seamless failover in case of single failures. Our
heuristic can be considered as an additional fault-tolerance
mechanism for such cases, thus avoiding replication costs.
Furthermore, our optimization model can be used to compute
the desired level of fault-tolerance for all services. Hence, it
can be used during the network design stage to plan the whole
backup scheme despite its longer solution time.

2) Sharing Efficiency: Fig. 8 shows the sharing efficiency,
which is the gain of using the shared capacity instead of
dedicated capacity, depending on an increasing number of
demands. While the optimization scheme (only Backup-ILP)
can utilize backup paths to decrease the required backup
capacity by 50-75%, our heuristic gives steady results around
50% and 40% backup capacity savings for in-plane (Heuristic)
and random (Heuristic-R) topologies.

Similar to sharing efficiency, Fig. 9 shows the shared link
ratio to measure the effective use of backup paths for an
increased shared capacity. The optimal deployment results in
60-80% of the backup links used by several backup paths at
once. For the in-plane topology, our heuristic results in 70-85%
shared link use, which is quite similar to the results of the
optimization scheme. Note that since maximizing the shared
link ratio is not the objective of the optimization scheme, the
heuristic can give better results for small number of demands.

Fig. 9. Shared link ratio.

Fig. 10. Total backup capacity use.

Fig. 11. Total capacity use.

However, with an increasing number of demands, while the
result of the optimization scheme converges to 80% shared
link ratio, our heuristic shows a decreasing trend as it gets
harder to find Steiner trees promoting mutually disjoint work-
ing and backup paths. On the other hand, the establishment of
disjoint working paths is easier even for an increasing number
of demands in random networks as node capability constraints
are neglected, and demands can be placed more flexibly. In that
case, Heuristic-R results in 45-70% shared link ratio.

Considering Fig. 8 and Fig. 9, the number of shared links
does not have to be proportional to the sharing efficiency as
the latter also depends on the load and sharing links for small
loads may not affect the efficiency so much.

3) Objective Functions: As presented in Section III, there
are two different objectives for the three phases of our
optimization scheme: (i) Minimizing the path lengths that are
used as working paths at bootstrapping and after service migra-
tion, and (ii) minimizing the reserved resources for backup
capacity. Figs. 10 and 12 show the comparison of the optimal
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Fig. 12. Total length of bootstrapping and service migration phases.

solution and the results of our heuristic in terms of those two
objectives.

Fig. 10 shows the total backup capacity utilization refer-
ring to the objective function (8). For the in-plane topology,
our Heuristic give near-optimal results. However, for ran-
dom topology, when we removed node capability restriction,
e.g., any service can be placed to any node, the heuristic
(Heuristic-R) may tend to spread the services to the far-
ther nodes, which may result in longer Steiner trees. It is
also related to the limit parameters as we examine a lim-
ited number of node combinations among the suitable nodes,
e.g., having the capability to host a certain service, and select
the best ones. This variety in possible changes can also be
shown in the larger confidence interval in Heuristic-R. Such
difference is also reflected in Fig. 11 and our heuristic requires
a slightly higher capacity in random networks than in the more
structured in-plane topology.

Fig. 12 shows the length of all working paths represent-
ing the results of the objective functions (1) and (15) for an
increasing number of demands. For both in-plane and random
topologies, the optimal results and the one from our heuristic
scale proportionally. Even though we build secondary Steiner
trees via SBB as described in Section IV instead of the short-
est ones, some of the possible shortest paths are still used by
the backup paths in the heuristic before constructing the work-
ing paths. Moreover, longer working paths might be utilized.
However, as we embed latency requirements for demands to
both working and backup finding processes, in our heuristic,
the upper bound for the length of each working path is always
restricted to satisfy such requirements.

4) Path Selection: The differences between the length of
working and backup paths indicates the possible degradation
in the QoS in case of a failure. That is, when a backup path
is longer than the respective working path, shifting from a
working to a backup path might result in an increased commu-
nication delay. Selecting shorter backup paths may consume
resources that could be normally utilized by working paths.
Fig. 13 shows the prolongation factor for backup and working
paths (i.e., the ratio of the length of backup paths to working
paths). The optimal solution on the in-plane topology (itOp-
timal), results in backup paths that are almost constantly 2.5
times longer than the corresponding working paths. In con-
trast, in random networks, the prolongation factor stays within
2 and 3 with larger confidence intervals. The structure of the

Fig. 13. Prolongation w.r.t working paths.

Fig. 14. Prolongation w.r.t. ideal backup paths.

Fig. 15. Sharing efficiency with respect to ideal and selected backup paths.

random network seems to have a significant influence on the
results. For the heuristic, as we first obtain backup paths by
finding a backup backbone, some of the shorter paths are used
for the backup before they can be chosen as working paths.
It results in a greater number of working and backup paths
of similar length, which manifests in prolongation factors in
between one and two.

Fig. 14 shows the prolongation factor between the obtained
backup paths and the ideal backup paths. An ideal backup
path is defined as the secondary shortest path that is disjoint
to the shortest path between two nodes. In the best case, where
only a few demands exist in a large network, such a configu-
ration for working and backup paths would give the best QoS
and protect against any single link failure. As seen in Fig. 14,
the optimal configuration provides 1.2-1.3 times longer backup
paths in comparison to the ideal one. Our heuristic usually cal-
culates shorter backup paths as it utilizes the backup backbone
first. Therefore, the prolongation factor is 0.7-1.2, occasionally
below 1.0.

5) Scalability: We evaluated the scalability of our heuristic
for some of the selected metrics for an increasing topology
size. Fig. 15 shows the sharing efficiency for 50 demands
depending on the node count. Apart from calculating the total
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TABLE V
PROBLEM SIZE AND SOLUTION TIME VALUES FOR THE GIVEN TOPOLOGY FROM FIG. 6 AND THE INCREASING NUMBER OF DEMANDS

Fig. 16. Shared link ratio.

Fig. 17. Prolongation with respect to ideal backup paths and working paths.

backup load on the selected segments of the backup backbone
considering shared and dedicated backup capacity (Selected
backup path), according to our definition of sharing efficiency,
we also considered another scenario where we reserved dedi-
cated backup capacity on the ideal backup path (Ideal backup
path) as it is defined in Section V-B4. The figure shows
that our heuristic can again provide 50% capacity gain even
for larger networks similar to the results for small topolo-
gies. Moreover, our shared backup capacity scheme seems to
achieve 40-50% gain compared to a dedicated backup scheme
for the ideal paths.

Fig. 16 shows that the shared link ratio increases up to 70%
with increasing topology size implying larger set of poten-
tial backup paths. Lastly, we show the prolongation factor of
shared backup paths with respect to the ideal backup paths
and working paths combining in Fig. 17. As can be seen in
the figure, for larger networks, our heuristic can find backup
paths close to the ideal ones, i.e., with a prolongation factor of
nearly 1.0, and better working paths with a lower prolongation
factor 1.6 to 1.2 in comparison to smaller networks where this
factor goes up to 2.0.

6) Solution Time: The phases of the optimization scheme
require a considerable amount of time when increasing the

size of the service overlay. As we have summarized in the
complexity discussion of our previous work [10], finding the
optimal configuration, which is resilient to all single node fail-
ures without considering any shared capacity, might take days
as it is formulated as a single linear problem. Here, with three
improvements, namely (i) dividing the whole optimization
problem into three phases, (ii) finding disjoint backup paths
against link failures instead of finding a new configuration for
each failure and (iii) applying column generation method for
the reduced problem (i.e., a fewer number of failure scenarios
addressing only the failure of the host nodes), we improved the
solution time considerably. Table V shows the problem size
in terms of number variables and constraints and the solution
time per each optimization phase.

Eventually, the service migration phase has more constraints
and variables (when all the paths are added at the end of
the column generation) than the other phases as it finds
multiple configurations for different single node failure scenar-
ios. Therefore, it was the decisive phase for the overall solution
time with durations from 18 minutes to 11.5 hours. The over-
all solution took from 21 minutes to 14 hours, depending on
the overlay size. It is a significant improvement for three times
larger networks in comparison to our previous work [10].

VI. CONCLUSION

Mission-critical systems typically include several safety-
critical services, which require considering their resilience
against failures and attacks and already at the design stage.
In this study, we present a service-based network design
in which we embed an overlay of services and the traffic
demands as well as QoS requirements between them in a
mission-critical embedded network in a fault-tolerant man-
ner. Extending our previous work in [10], we formulate the
joint service deployment and routing problem as a series of
optimization models to obtain a resource-efficient and resilient
network model that provides fault-tolerance against single link
and node failures leveraging shared backup protection and ser-
vice migration schemes. To solve larger problem instances,
we apply the column generation method in our optimization
models. As finding the optimal solution for that joint problem
is known to be NP-hard, we also propose a heuristic. We
have evaluated the performance of the optimization scheme
and the heuristic in different scenarios with various metrics.
Our experiment results indicate that our heuristic can allocate
near-optimal backup capacity offering up to 50% capacity gain
compared to using dedicated backup capacity. Moreover, while
our optimization scheme can find service configurations that
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are completely fault-tolerant to single link and node failures,
our heuristic can tolerate the single failure of 90% of all nodes.

In the future work, we plan to extend our objectives focusing
on the different aspects of the network design, e.g., minimum
energy consumption and minimum node or link deployment, as
well as examining the impact of relevant parameters, e.g., the
optimality gap. Moreover, although we assumed a single-
failure model in this study as it is frequently considered
in the literature, we intend to address more advanced mod-
els, e.g., correlated and cascading failures, under different
assumptions such as shared risk link and node groups.
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