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Abstract—The increasing trend of the traffic demand from
mobile users and the presence of limited resources creates a
challenge for network resource management. Understanding the
data usage pattern and traffic demand of mobile users is a way
forward to enable data-driven network resource management.
However, due to the complex nature of mobile networks, under-
standing and characterizing data usage pattern of mobile users
is a daunting task. In this work, we investigate and characterize
data usage patterns and behavior of users in mobile networks.
We leverage a dataset (∼340 M records) collected through a
crowd-based mobile network measurement platform – Netradar
– across six countries. We elucidate different network factors and
study how they affect the data usage patterns by taking mobile
users in Finland as a use case. We perform a comparison on
data usage patterns of mobile users across six countries by con-
sidering total data consumption, network access, the number of
sessions created per user, throughput, and user satisfaction level
on services. We show that data usage behavior of users over a
mobile network is primarily driven by user mobility, the type of
data subscription plan marketed by Mobile Network Operators
(MNOs), network congestion, and network coverage. Besides, the
data usage patterns over different network technologies (e.g., pre-
ferring cellular over WiFi) and the percentage of users accessing
congested networks vary by country; mostly due to the market
pricing strategy and radio coverage. However, the overall data
consumption (cellular and WiFi) is comparatively similar in most
of the countries we studied.

Index Terms—Network performance, cellular network, mobile
user behavior, data usage patterns, SLS, user satisfaction.

I. INTRODUCTION

THE ADVANCEMENTS in mobile technologies and the
need for ubiquitous communication by mobile users bring

with them an increased growth in mobile data traffic. Mobile
users regularly use data-intensive applications (video stream-
ing and gaming) from their devices on the mobile network.
Reports show that a significant share of Internet traffic gener-
ated from mobile devices increasingly consists of multimedia
content [1], [2], [3], [4]. According to a report by Ericsson,
in 2018, video content solely generated 60% of the mobile
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data traffic and is expected to cover 74% of the traffic by
2024 [5]. Furthermore, the projection shows that in 2022 the
global mobile data traffic will be twelve times more than that
of 2018 [6].

The mobile network is becoming a complex system to
keep up with the ever-increasing demand for mobile traf-
fic [7]. The increase in the traffic demand, the complexity
of the network, and the number of connected users create
a challenge for network resource management. The growth
of mobile users and traffic demand also brings a chal-
lenge in understanding data usage patterns of mobile users
for content providers. Service providers need to efficiently
manage available resources based on data usage behavior
of their customers. Studies also show that data usage pat-
terns of different applications have a significant impact on
energy consumption of mobile devices [4]. Understanding the
data usage patterns and behavior of mobile users at differ-
ent locations and market-places are paramount for service
and content providers, and end-users. Mobile network oper-
ators can utilize the information to manage the increasing
demand for mobile data usage [8], to plan and to optimize
telecommunication resources [9], [10]. It can also be used to
develop different data plan products [11] by targeting poten-
tial users. Similarly, policymakers and content providers will
have more information to improve the quality of services,
to understand urban dynamics [12] for improved urban
planning [13].

In this article, we characterize the data usage patterns and
behavior of mobile users across six countries. We further
investigate how data usage patterns vary by different factors
including time of the day, user mobility, location, the device
model, network performance (e.g., throughput and latency),
and the coverage of radio technologies.

There are previous studies that investigate mobile user data
usage behavior and have focussed on user location and user
mobility patterns [14], [15], temporal dynamics [16], and
Quality of Experience (QoE) [17], [18], [19]. However, most
of the previous studies are either limited to a single opera-
tor [20], only target a specific city and location [21], study
data usage behaviour targeting application types accessed by
users [22], [23], [24], [25], or consider only a few measure-
ment data and user spaces [26]. Unlike these studies, our work
uses a large crowd-based dataset collected using Netradar [27]
– a mobile network measurement platform. The dataset covers
a wide range of geographical areas, Mobile Network Operators
(MNOs), and mobile users.
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This article starts by laying the foundation for understanding
the basic mobile network features related to data usage patterns
of mobile users and their behavior. This includes investigating
the relationship between data consumption (volume), session
duration, user mobility, and the ratio of data consumption over
WiFi versus cellular. This article also provides a comprehen-
sive view of the data usage pattern of mobile users in Finland
in comparison with five other countries. Using a large-scale
dataset (∼340 million records) collected from six countries,
this article presents the following main findings –

First, we show that stationary users consume more data and
are more likely to run into network congestion than users on
the move. We observe that users with the latest device models
have created more sessions, which is an indicator of active
interaction of the users with their device. On the other hand,
new devices with the latest Operating System (OS) version
have relatively fewer total downloaded bytes when compared
with devices that have older OS versions. This is due to fre-
quently accessed content that is likely to be cached locally
on newer devices with relatively better hardware specification
such as higher memory capacity and processing power.

Second, we show that network throughput has a strong cor-
relation with overall user data consumption. We also observe
that different MNOs in the same country have an impact on
the total data consumption of mobile users, as the network
coverage and the maximum achievable speed could be limited.

Third, we investigate and compare user satisfaction levels
on mobile network performance across six countries. If the
data subscription plan is priced by data usage, then it is more
likely that users reserve themselves from using applications
that consume high data traffic. Service Level Score (SLS) is
a method that measures satisfaction level of the mobile users.
It considers the ratio of the number of times that users have
received what they need from the network. The different value
of SLS score across countries reveals that user satisfaction
score can be higher if mobile users are conservative on how
they use their mobile data. On the other hand, observing the
total data consumption on both cellular and WiFi networks,
we observe that mobile users across countries have a closely
similar data consumption trend.

The goal of this article is not to propose a new mining
algorithm, but to study data usage patterns of mobile users
across different locations using existing statistical algorithms.
This article is structured as follows. Section II presents the
measurement platform and the dataset used for the analysis.
Section III presents the study of individual network features
contributing to the data usage pattern and behavior. Section IV
investigates the relationship between network performance and
data usage patterns of mobile users. Section V studies the
data usage behavior of mobile users in six different countries.
Finally, Section VI discusses related work, and Section VII
concludes this article. To encourage reproducibility [28], the
dataset and scripts used in the analysis are publicly released
to the community [29].

II. METHODOLOGY

A. Measurement Platform

Netradar [30] is a crowdsourced mobile measurement plat-
form. It measures the link capacity of cellular networks using

a hybrid of Probe Gap Model (PGM) and Probe Rate Model
(PRM) [31] probe-based measurement methodologies. PGM
and PRM utilize packet pair [32] probes to estimate the avail-
able bandwidth. For a detailed description of the measurement
platform and its validation, we refer the reader to [33]. Going
forward, we present a brief description of the measurement
platform and the dataset relevant to this study.

The Netradar measurement platform passively listens on the
ingress and egress traffic at the client side without imposing
any synthetic traffic of its own. The application on the client
device runs in the background until it is triggered when a user
starts sending or receiving data. The application then starts
sampling the traffic rate of the ingress and egress traffic (e.g.,
on Android using Android traffic Stat API [34]).

The measurement is recorded based on sessions. A session
refers to the continuous traffic flow of content between a user
device and a remote server. A given session has a duration,
within which different ingress (and egress) traffic can flow, but
the application does not have any visibility on the type of its
content. A session duration is defined as the interval between
the starting time of the sampling phase until the traffic stops.
The session starts when there is enough traffic flow in either
the uplink or downlink direction and ends when the traffic
rate goes below half of the threshold for two seconds. The
threshold for starting the session is 100 Kbps and 200 Kbps
for uplink and downlink direction respectively. The duration
of the session can be from milliseconds to minutes long, while
sessions that have very few bytes transferred are not recorded.

The platform also records unconstrained and constrained
speeds of the network. An unconstrained speed is the speed
that the user needs from the network to use mobile apps, but
at the same time also does not hit the maximum speed of the
network during the session. On the contrary, the constrained
speed is the maximum speed recorded when the network was
a limiting factor. It is inferred based on the queuing delay of
packets, the available bandwidth, and latency. The constrained
speed is not recorded when there is no latency information, or
when a user never hits the maximum speed of the network.

A given session may have only uplink or downlink data
recorded. For instance, if the user is watching a video on
YouTube, most of the sessions are on the downlink. As such,
there are few traffic flows that are not statistically significant
to keep records related to the uplink information. On the other
hand, when a user is uploading a picture to Facebook, then
most traffic flows are in the uplink direction instead.

Every session has a unique identifier with its own starting
and ending time and other metadata information related to the
session. Each measurement session consists of the following
meta information: device information, MNO of the subscriber,
location, user velocity, and installation (user) ID. The metadata
also records information about network type (WiFi or cellu-
lar) and accessed radio technologies (2G, 3G, 4G) with radio
Quality of Service (QoS) values such as Reference Signal
Received Power (RSRP) that help to decide handover or cell
re-selection. The constrained and unconstrained speeds for
both download and upload with respective session length are
also recorded. Besides, every session also contains the aver-
age download and upload speed, total uploaded bytes, total
downloaded bytes, latency, battery level, signal strength, and
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TABLE I
NUMBER OF USERS AND SESSIONS CREATED IN THE CELLULAR AND

WIFI NETWORK SEPARATED BY COUNTRY

information about the base station (e.g., cell ID, area code,
radio frequency channel number). Every session has associ-
ated tile information (e.g., tile-ID, country, city, population
density, postal code), where the tile-ID is the area coverage of
100 by 100 square meter.

B. Dataset

The dataset used in the analysis has been collected using
Netradar from the devices of mobile users in six different
countries (Finland, Germany, the United Kingdom, Japan,
Brazil, and India) for one month (recorded in July 2018).
Mobile users are assigned to the respective countries based on
the Mobile Network Code (MNC) and Mobile Country Code
(MCC) values. In other words, a user in a given country has to
be a subscriber of one of the MNOs in that country and should
access the network from within the same country. In this study
we do not consider roaming [35] users. Table I summarizes the
number of users and sessions created per respective countries
in both cellular and WiFi networks.

Note, unless specified by the name, 4G refers to all
releases of Long Term Evolution (LTE) radio technology.
3G refers to all other releases of radio technologies prior to
LTE (including High Speed Packet Access (HSPA), Evolved
High Speed Packet Access (HSPA+), and Universal Mobile
Telecommunications System (UMTS)). 2G refers to releases
before UMTS (such as General Packet Radio Service (GPRS),
and Enhanced Data rates for GSM Evolution (EDGE)). As
such, cellular network stands for all of the aforementioned
cellular radio technologies. WiFi refers Internet connectivity
through Wireless Local Area Network (WLAN) including the
variants of IEEE 802.11 protocol standard.

In Sections III and IV, we present analysis based on mea-
surement data collected from Finland. We choose Finland as
we have sufficient measurement samples and we understand
the mobile market in Finland better than in other countries.
As such, Finland is first presented as a case study to inves-
tigate features with respect to data usage patterns in mobile
networks. Later, in Section V, based on our previous obser-
vations, we compare the data usage patterns of mobile users
across six countries by considering various features related to
mobile networks.

III. DATA USAGE BEHAVIOR IN FINLAND

We investigate data usage patterns of mobile users in terms
of the number of created sessions, average session duration,

Fig. 1. Monthly and daily download amount (MB) per user. Mobile users
in Finland consume more data over cellular network than WiFi.

and amount of traffic flows in both cellular and WiFi networks.
We also study the association of temporal dynamics, users
mobility, and device models to data usage behavior.

A. Data Volume and Sessions

As shown in Table I, during a month-long measurement
period in Finland, there are more than 61M sessions created
from ∼22.7K users that were accessing cellular and WiFi
networks. Out of these, ∼35.1M and ∼26M of the sessions are
created when the users were accessing the Internet over cellu-
lar and WiFi networks respectively. From all the cellular-based
dataset collected in Finland, 80% of the sessions were estab-
lished over LTE; 16% over HSPA+, and the remaining 4% of
the sessions were created over other radio technologies.

Data volume: The intensity of data consumption by mobile
users can be indicated by considering the total traffic flow (of
bytes) through individual devices. Fig. 1 shows the monthly
(total) and the daily (average) consumed bytes per user in
Finland over cellular and WiFi networks. Observing at the
95th percentile, monthly data consumption of cellular and
WiFi users is less than 42.5 GB and 19.6 GB, respectively.
For mobile users in Finland, the total data consumption over
cellular networks is about two times more than that over the
WiFi network. For instance, considering the median daily case,
cellular users consumed more data (3999 MB) than WiFi users
(2406 MB). We compare the numbers of unique users that
downloaded more than 10 GB in a month under each cellu-
lar and WiFi network. We found that 27.5% and 14.5% of the
users that have accessed cellular networks and WiFi networks,
respectively have consumed more than 10 GB. The daily aver-
age download data consumptions per user over cellular and
WiFi networks show a similar trend as the monthly total down-
load consumption, as shown in Fig. 1 (b). For instance, the
median daily consumption in a cellular and WiFi network is
195.2 MB and 110.6 MB, respectively.

The higher data consumption over a cellular network than
over a WiFi network shows that mobile users in Finland
mostly prefer to access the Internet over a cellular network
and thereby tend to consume more data over a cellular network
than over a WiFi network. A possible reason for this observa-
tion can be related to the availability of good mobile network
coverage and the flat-rate data subscription plans at an afford-
able price [36]. This likely encourages mobile users to access
the Internet over the cellular networks for most aspects and
they tend to remain connected to the Internet over cellular for
a longer time [37]. According to the survey taken from 2011
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Fig. 2. Distribution of session duration and number of sessions as observed
per user. The vertical line refers median value. Both the session duration and
the number of sessions created over cellular and WiFi network has only a
marginal difference.

to 2017 in Finland [38], the number of mobile data subscrip-
tions with unlimited data plans have increased while all other
data subscription types have decreased during the given time
frame. For instance, in 2017, the number of users with unlim-
ited data was around 71.2%, while all other data subscription
types covered only 28.8% of mobile users.

Sessions: The number of sessions created per user and their
session duration can both be used as an indicator for data
usage activity and interaction of users with their devices.

To observe the average session duration per user, we
grouped every session by user and calculated the average ses-
sion duration. Fig. 2 (a) shows the distribution of the average
session duration per user over cellular and WiFi networks.
We observe that in the median case, cellular and WiFi-based
measurements have a marginal difference in the length of the
sessions. The median session duration is ∼7 seconds in cellu-
lar and 6.0 seconds in WiFi networks. The variance in session
duration is higher over cellular network (variance (v) = 46.2
seconds2, mean (m) = 8.4 seconds and standard deviations
(Std. dev.) = 6.8 seconds) than WiFi (v = 31.4 seconds2,
m = 7.2 seconds and Std. dev. = 5.6 seconds). The higher
variation in session duration of users in the cellular network
reflects bursty arrival pattern of packets [39] and also the range
of different (from heavy to light traffic demanding) application
types that users could use. In both cellular and WiFi networks,
the life span of majority of the sessions are relatively shorter.
For instance, considering the 95th percentile, the session dura-
tion in cellular and WiFi networks are 16.4 seconds and 14
seconds, respectively. This result is in line with the previous
study [40]. The authors showed that in more than 90% of the
cases, the sessions generated from Facebook and WhatsApp
apps for both multimedia and text content are less than a
minute.

We also study the number of sessions created per user.
Fig. 2 (b) shows the distribution of the number of sessions cre-
ated per user in a month for both cellular and WiFi network.
The daily median number of sessions per user is 120 and 116
in cellular and WiFi networks, respectively. The total amount
of bytes downloaded, the number of sessions created per user,
and the session duration confirm that mobile users in Finland
prefer a cellular network for most of their Internet activity
over the WiFi network.

Furthermore, we study the relationship between the total
download bytes and the number of sessions created per user.

Fig. 3. Total consumed bytes compared with the number of session per
user per hour. There is a strong relationship between users’ interaction with
their device (the number of sessions created per user) and the total data
consumption.

Fig. 4. Inter-session gap compared with # of sessions (b) and total download
bytes (a) per user. Users with lower inter-session gaps have higher number of
sessions and data volume.

Fig. 3 shows the total downloaded bytes compared to the num-
ber of sessions created per user for both cellular and WiFi
networks. We observe that there is a strong positive rela-
tionship between the total downloaded bytes and the number
of sessions created per user (Pearson correlation coefficient
(r) = 0.69 and r = 0.801 over cellular and WiFi networks,
respectively. On the other hand, there is a moderately positive
correlation between the total download bytes and the session
duration (Pearson r = 0.312 and r = 0.401) in cellular and
WiFi networks, respectively). Note that, in all of Pearson’s
correlation coefficient, the p-value was significantly lower than
0.05. We observe a similar trend in the relationship between
total uploaded bytes and the number of sessions created per
user (not shown in the plot).

When investigating the session duration and the total down-
loaded bytes per user, we observe that cellular users in Finland
have bursty usage (median 21.3 Mbps) which lasts from
0.2 seconds to 6.5 seconds. About 4.7% of users continuously
access the network (median 12 Mbps) for a session duration
of more than a minute. Only 0.35% of the sessions have a
duration longer than two minutes, of which the majority of
these sessions (∼68%) were accessing the cellular network.

Fig. 4 shows the scatter plot of inter-session time gaps
compared to the number of sessions and total downloaded
bytes per user. We observe that inter-session time has a strong
negative relationship with both the number of sessions and
total download bytes per user (Spearman correlation coeffi-
cient (r) = − 0.524, p-value = 0). As defined earlier, a session
creation starts when there is a flow of at least five IP pack-
ets and stops when there is no traffic flow for two seconds
in either uplink or downlink direction. The inter-session gap
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Fig. 5. Heatmap of total downloaded bytes per user over cellular network.
High volume of data consumption is observed during “off-duty” time for most
of the days.

per user indicates the regularity of such sessions and data
transferring behavior of applications. Some video streaming
applications download a chunk of content every few seconds,
where the length of the download depends on how much con-
tent is needed to fill the players buffer size [41]. A study on
Netflix streaming by Adhikari et al. [42] shows that once the
player buffer has filled, the subsequent download events hap-
pen at about every four seconds interval. Siekkinen et al. [41]
also identified that YouTube player in Galaxy SIII device has
an “off” period of 60 seconds after it fills the players’ buffer.
Similarly, let us assume that a streaming application schedules
the download for every x seconds, for x greater than the two
seconds idle time. In that case, if there is no other active traffic
during the x second scheduled time, the session will stop as it
would pass the two seconds ideal time. Immediately after the
scheduled time is over, new traffic will show up at the ingress,
and a new session will start recording. As a result, such cat-
egory of applications will have shorter inter-session gaps, but
higher download bytes and number of sessions.

B. Temporal Dynamics

We study how mobile data usage of individual users varies
over time of the day. Understanding the temporal dynamics of
data usage patterns can be a useful input for efficient network
resource management such as for energy saving. For instance,
MNOs can utilize temporal usage pattern of peak or off-peak
hours and temporarily turn off some of the transceivers or even
the entire base stations to save energy [43], [44]. In addition,
application developers and maintainers can also adjust the time
of app updates (e.g., for apps where the auto-update option is
enabled) during a period of low traffic.

Fig. 5 shows the total downloaded bytes per hour by users
every day of the week. The color bar on the right side shows
the total bytes downloaded by all users at every hour in the
given day. We can observe that especially during day time
(from 8:00 to 22:00), there is more data consumption in most
of the weekdays. Whereas, after midnight the total download
bytes are scaled-down, as people go to bed. We study the
hourly (total) downloaded bytes per user over 24 hours in a
month for mobile users in Finland and observe that mobile
users preferred cellular networks over WiFi in 100% and

Fig. 6. Number of sessions in a cellular network. Monday and Tuesday show
the highest user activity, following a similar trend with data consumption of
users.

Fig. 7. Data consumption by days of the week. Over the cellular network,
weekdays appear similar to weekends, while data consumption during week-
ends is relatively higher (to weekdays) over the WiFi networks.

83% of the time for uploading and downloading, respectively.
For mobile users that prefer WiFi over cellular, the majority
accessed WiFi networks during the working hours (14:00 to
17:00) than during off-working hours (at home).

Fig. 6 shows the total number of sessions created by users
(as a heat map) per time of a day in every week day. The
sessions were created while users were accessing a cellu-
lar network. The higher number of sessions during peak
hours suggest that users were frequently interacting with their
devices (especially on) Monday, and Tuesday.

The (total) downloaded bytes during the weekdays have a
closer similarity to the weekends over cellular networks as
shown in Fig. 7. However, downloaded data consumption per
user during weekends is comparatively higher than during
weekdays over the WiFi networks. For instance, Sundays have
a higher (total) download consumption over WiFi at most of
the times of the day. We suspect that during weekdays, users
maybe spend most of their time indoors and tend to use WiFi
more often than the cellular network.

We also explore whether users prefer downloading or
uploading content over a certain time of the day. To do this
end, for every user, we calculate the hourly average values
of the total downloaded (and uploaded) bytes transferred dur-
ing the month. We then calculate the difference between the
total download and upload bytes over time of a day, i.e.,
ΔBytes(MB) = TotalDownload−TotalUpload . We observe
that about ∼6% of the time, the total upload is greater than
the total download bytes. During night time (from 3:00 AM to
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Fig. 8. Distribution of total downloaded bytes per user. Stationary users
consume more data than users on the move.

5:00 AM) the difference between download and upload bytes
are marginal (50% of the time, the difference is close to 0).
On the other hand, during the day time, the difference between
download to upload over the time of the day follows a similar
trend. For instance, from 12:00 to 23:00, about 25% of the
measurement have less than 1MB difference.

C. User Mobility and Data Usage

We further study under which mobility conditions (when
stationary, walking or commuting in a train for instance) users
usually consume data. We focus on the measurement sessions
conducted only over cellular networks due to their increased
availability in such mobility scenarios.

We use the velocity of a user (in m/s) over the ground
inferred from the OS of the device. We filtered data that has
a GPS location accuracy of less than 100 meters. As the loca-
tion accuracy relates to the deviation in meters, the lower the
number, the better the accuracy of the location and the veloc-
ity [45]. Since the current maximum commuting velocity in
Finland is ∼220 km/h, the data is filtered further such that the
maximum velocity is not over 220 km/h. We then divide the
dataset into mobile and stationary users based on the veloc-
ity value. In our case, mobile users are users whose velocity
is greater than or equal to 1 m/s. Stationary users are users
whose velocity is precisely 0 m/s. Here, to avoid variance, we
do not consider measurements where the velocity is unknown.
After filtering the data, users accessing their device on the
move have the median velocity of 41.8 km/h, while only 5%
of the values are above 88.2 km/h.

Fig. 8 shows the total downloaded bytes per user for sta-
tionary and mobile users. We observe that the ratios of cellular
users at a stationary location are almost about 1.5 times greater
than users that were moving from place to place (20 K users
at a stationary location vs. 13 K users on the move). We
also compared the median download speed that the users get
when they are moving and when the are stationary. We found
that stationary users get higher download speed (twice faster)
than users on the move. Similarly, stationary users consume
more data (median download is ∼76 MB) than moving users
(median download is ∼6 MB).

Fig. 9 shows the relationship between user mobility (based
on velocity) and the average session duration (a), the num-
ber of sessions created (b), and the total download bytes
consumed per user (c). The number of sessions created by
users and the velocity has a positive correlation (Spearman

Fig. 9. User velocity (m/s) compared with the number of sessions, the
average session duration, and total download bytes. There is a moderately
positive relationship between velocity and the number of sessions created by
users.

r = 0.57, p-value = 0.0). This indicates that users in a com-
muting train, tram, bus or as passengers in a moving vehicle,
etc. spend most of their time interacting with their smart-
phone. Note that, the positive relation might not directly infer
the quality of the network (e.g., throughput) users are get-
ting while on the move. Instead, the relation is indicative
of how often users are engaged with their device. We found
that throughput and velocity are negatively related (Spearman
r = − 0.29, p-value = 9.059e-204). This has also been noted
in previous studies such that as velocity increases the through-
put could degrade due to reasons such as frequent handovers,
delays in connection establishment, packet loss, and signal
interruption [46], [47]. The positive relationship between num-
ber of sessions and velocity values also indicate that users
walking on foot or riding a bicycle are less likely to use their
smartphone. On the other hand, as long-distance trains and
metros move at high-speed, mobile users on such a commute
will spend more time using the Internet with their devices;
although the throughput might decline as mobility increases.
As the number of sessions created per user is strongly related
to the total download bytes (see: Section III-A), the velocity
should also have a positive relationship with total download
bytes (Spearman r = 0.42, p-value = 0.0). When we consider
measurements with a velocity greater than 0 m/s, users sitting
in a commuting train or a bus (with relatively higher velocity
but in a comfortable position) will interact with their mobile
device more often than users walking or bicycling (with rel-
atively with lower velocity). In terms of total download and
data consumption, we have observed high data volume even
in the lower tail of velocity. This could be related to the type
of application users might have accessed; for instance, users
might stream music while walking or bicycling.

On the other hand, session duration and velocity are neg-
atively related (Spearman r = − 0.17, p-value = 8.69e-202).
Similarly, the average session duration and the number of ses-
sions created per user are also negatively related (Spearman
r = − 0.26, p-value = 8.69e-202). This can be associated with
the presence of frequent handovers as users are on the move.
At a higher velocity, users are most likely forced to leave the
current serving cell and join the next target base station. As
a result, it is possible to observe several number of sessions
with a shorter life span.

User mobility can also be inferred from the number of base
stations visited per user. The typical coverage of a cellular base
station tower is in the range from 200 m to 1km in urban areas
and from 1 km to 5 km outside of the city areas [48]. In our
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Fig. 10. Unique number of base stations visited by users. Note the scale
difference on y and x axis. About 28% of the users remain within a single
base station coverage per day.

case, the base station is identified as a combination of MCC,
MNC, Location Area Code (LAC), and Cell ID (CID) [49].
The number of different base stations visited by users in a
given time interval can be used to infer how far users travel
from one place to another location. For instance, if the user
travels from home to the working place every day, there is
a high probability that this user is going to visit more than
one base stations. We consider the frequency of unique base
stations visited by the mobile users per given time to estimate
how often the users are moving from one place to another
place. This is useful to understand how many times the mobile
users move outside the coverage area of a given base station
and to investigate the relation it has with data usage patterns.
Knowing the patterns of the dynamics of mobile users and
the associated peak/off-peak traffic hours can be useful input.
For instance, operators could dynamically configure the cov-
erage area of the cell based on the traffic demand and data
consumption patterns. In addition, operators can utilize such
type of information to adjust the transmission power of the
base station during the off-peak hour to save energy [50].

Fig. 10 (a and b) shows the number of unique base sta-
tions visited by users at each day and hour, respectively. This
shows the mobility of users per day while accessing cellular
networks. Observing the total distribution of the measurement
data, in most of the days, user mobility while accessing cellular
networks is relatively limited to certain locations. For instance,
in the median case, users visited not more than three differ-
ent unique base stations per day. We observe that ∼35.6% of
users visited more than one base station per day, of which,
15.4% users had only a single location change. On the other
hand, observing the daily and hourly change of base stations,
∼28.5% and ∼61.3% of the users, respectively, stay within the
coverage of a single base station. Users who visited more than
one base station per day have an average downlink speed of
130.2 KBps. Users who stayed at the same base station per day
have an average downlink 133 KBps, which asserts that sta-
tionary users have a chance to get higher download speeds than
movable users. Fig. 10 (c) shows the number of unique base
stations visited by mobile users in Finland and its relation to
the total downloaded bytes while accessing cellular networks.
We observe that although there are few positively skewed dis-
tributions, majority of the mobile users who download content
from their devices are stationary users.

Previous studies, such as [51], have designed an algorithm
to detect homes and working places using a dataset collected
from an MNO. Tagging user location as “home” and “work-
place” can also be achieved by observing frequent patterns of

TABLE II
DEVICE GROUP USED IN FI BASED ON MARKET PRICE

users’ location and time of the day [14], [15]. Considering
the nature of our dataset, we follow a similar approach to
tag the location of mobile users as home and in the work-
place. For each user working location is the most frequently
visited address (base station) during the working hours. For
each user, “working” location is the most frequently visited
address (base station) during the working hours (9 AM to
4 PM). While, “home” location is the most frequently visited
base station during the night time, as people would likely stay
at their home during off working hours. We consider only mea-
surements conducted at the stationary location. Accordingly,
we found that in the median case, users at home consume the
highest amount of data from their phone (51.7 MB) than users
at their working place (40.2 MB).

D. Device Model Types and OS Versions

We further ask whether the choice of the device model
impacts the data usage pattern of the users. Device manufac-
turers set the market price based on the device specification
and their target user groups. However, the price of the devices
might vary in different markets and usually decline over time.
Knowing the release year of the devices to the market and their
market-price value can be an indicator to identify potential user
groups. By considering the device model, the OS version, and
the year of release of the devices, we study whether the ses-
sion length, the number of sessions, and the amount of data
transferred vary per device used by the users.

We began by grouping device models by their brand name.
Then, for every brand family, each specific model was mapped
to the year of release and average market-price of the device.
The device model, year of release and the average market-price
of each device was extracted using the GSMA arena [52] ser-
vice. Note that, the device model and the OS version of devices
have already been inferred programmatically during the mea-
surement. After filtering the dataset, we follow a heuristic
approach to determine the price range. We found a total of
295 different device models in our measurement dataset from
Finland. As shown in Table II, we categorized the device by
price range. The table shows the number of users, the number
of sessions, and the number of device models belonging to
each category.

By considering the price range of the devices, we investi-
gate three different groups of devices and the corresponding
total downloaded bytes per user. We found that users with a
high-end device model consume data twice more than mid-
end and low-end device model users as shown in Fig. 11 (a).
The total downloaded bytes for high-end, mid-end, and low-
end devices in the median case is 50.3 MB, 26.3 MB, and
21.8 MB, respectively. This is possibly explained by the type
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Fig. 11. Total downloaded bytes per user categorized by price level (a), and
price level per year of release of the devices (b) and OS version name (c).
The data consumption over high-end device models is twice more than that
of mid-end and low-end device models.

Fig. 12. Number of sessions created by user per Android OS version for
Samsung and Sony mobile phones. The color shows the year of release of
the devices to the market. Users with recent device models have created more
number of sessions.

of applications installed and the data usage behavior of the
user. For instance, users with a high-end device might tend
to use “heavy apps” that consume a lot of data. One rea-
son for this observation could be that the economic status of
users might allow them to have a good data subscription plan.
Besides, high-end devices usually have a larger screen size.
As a result, users might use their smartphone for most of their
daily activities on the Internet.

Fig. 12 shows the number of sessions created by users
per Android OS version type for Samsung and Sony mod-
els. We observe that for Samsung models and under the same
Android OS version, users who own recently released devices
have more interaction with their smartphone than previously
released device models. For instance, for Android version 8.0,
device models released in 2018 have created the highest num-
ber of sessions compared with device models released in 2017
and 2016. The observation is consistent in most of the OS ver-
sions for Samsung devices but not for Sony, except for version
8.0. This inconsistency between the two devices models could
be related to the background traffic generated by the device
and the corresponding utilities.

We witness that the recent Android OS versions have rela-
tively smaller total downloaded bytes per user than older OS
versions. As shown in Fig. 13 (a), Oreo Android OS version
has total downloaded bytes of 167.7 MB per user. Oreo1 was
the recent Android OS release compared to the other two ver-
sions in our measurement. On the other hand, devices based

1Using the associated name of Android OS release versions, we map the
version number with the corresponding name based on the information [53].
Accordingly, release versions from 6.0 to 6.0.1 are known as Android
Marshmallow, and versions from 7.0 to 7.1 named as Android Nougat and
versions from 8.0 to Android 8.1 known as Android Oreo. There are other
Android versions in our measurement. However, we select these three versions
since we have more than 4M measurements for each of these OS versions.

Fig. 13. Total downloaded bytes per user categorized by Android OS version
and year of release of the devices (LTE network). New devices with the latest
Android OS have relatively less total downloaded bytes than similar device
models (based on year of release) but with older OS version.

on Nougat and Marshmallow versions in the median case have
177.9 MB, 303.3 MB total download bytes, respectively. A
possible reason for the latest OS version to have the least
total downloaded bytes per user is that the OS might come
with an improved and an optimized mechanism to avoid bulky
downloads from the server for every content the user requests.
Similarly, new devices come with higher memory size, storage
capacity, and processing power. As a result, some frequently
accessed pieces of information can be cached locally to min-
imize the size of the content to be downloaded directly from
the servers. This can be observed in Fig. 13 (b), where latest
devices (based on the year of release) with the latest Android
OS version have relatively smaller total download bytes than
older devices with the latest Android OS version. For instance,
devices released from 2016 to 2018 and running Oreo ver-
sion has smaller total downloaded bytes per user than models
released before the year 2016.

Takeaway: Mobile users in Finland prefer cellular networks
over WiFi due to good network coverage and flat-rate sub-
scription prices. Stationary users and users at home consume
more data than users on the move and users at work. Over the
cellular network, data consumption in Finland over weekdays
appears similar to weekends, while data consumption during
weekends is relatively higher over the WiFi networks. Users
with high-end devices (based on price range) have the highest
total downloaded bytes and users with recent devices (based on
year of release) have more interaction with their devices. High-
end devices with the latest Android OS version have smaller
total downloaded bytes than similar device models but with
older Android OS version. Such high-end devices come with
an improved hardware capacity to cache frequently accessed
content reducing bulky downloads whenever possible.

IV. NETWORK PERFORMANCE AND USER BEHAVIOR

In this section, we investigate the impact of network conges-
tion and performance such as throughput [54] and latency [55]
on mobile data usage patterns.

A. Network Congestion and Data Usage Patterns

The platform records constrained and unconstrained speeds
(see: Section II for definitions) indicating presence of possi-
ble congestion [56] and non-congested networks, respectively.
If there is a latency value recorded during the session, it is
possible to isolate the congestion events (if any). As such, we
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Fig. 14. The constrained speed (which is related to the maximum network
speed and created when the network is a limiting factor) is higher than
unconstrained speed (when the network was not a limiting factor).

only consider the sessions that have the latency data recorded.
Fig. 14 shows the average daily download speed per user when
they access the network with constrained and unconstrained
conditions over the LTE network in the Helsinki area. The
presence of constrained speed in a session is related to the
existence of congestion in the network. Note that the idea of
whether network congestion happened during measurement or
not is loosely defined. In this case, the network was a lim-
iting factor. Hence, the throughput demand of a given user
is beyond what the current network can offer. Unconstrained
speeds are all throughput values under normal network condi-
tion. Constrained speed is always recorded for the highest peak
bit-rate, where the network is a limiting factor. As a result, the
average download speed recorded during constrained network
is always higher than the unconstrained network.

On the contrary, unconstrained speed is related to the nor-
mal usage of mobile users without demanding more than or
closer to the maximum network speed. This is because users
often need lower download speed than what the network can
provide, and they usually get the speed they require from
the network (as shown in the blue line). For users access-
ing the network with unconstrained speed, the base station
was not a limiting factor for poor user experience (if there is
any). However, the user might be limited by servers or by the
quality of the application in use. Users under the constrained
speed network (red in the plot) hit the maximum speed of the
network. This is because since such users are mostly trans-
mitting more data traffic, there is a high probability that these
users require more bandwidth than what the network can pro-
vide. We also observe that the constrained download speed
(which indicates presence of congestion on the network) has
higher variance than the unconstrained download speed (when
users are not limited by the network).

For instance, the total downloaded bytes per user between
three major MNOs in Finland have a median difference from
0.4 MB to 1 MB. The one-way ANOVA (F-statistic = 71.35
and the p-value = 1.03e-31) confirms that there is an over-
all significant difference among MNOs. The effect of MNOs
on the total download (under the same radio technology) can
be explained by the data subscription plan users have and the
available network coverage (i.e., how good the infrastructure
of a given MNO is). Since we do not have information regard-
ing the data subscription plan of the mobile users, inferring
a conclusion in this direction is difficult. We, therefore, study
how network availability and coverage impacts the number of

Fig. 15. Number of congested sessions by stationary and mobile users.
Stationary users are more likely to access the network under congestion than
users on the move.

Fig. 16. The relationships between download speed with the total download
(a); and the median upload speed with the total upload bytes per user (b).

total downloaded bytes per user and the SLS values. Note that,
SLS is a measure for user satisfaction level when they access
the network (see: Section V-C for more details). We notice
that the availability of network coverage (e.g., 4G network) at
different locations also varies by MNO. We observe that users
subscribed to a given MNO with higher 4G availability, have
higher SLS and total downloaded bytes than the MNOs with
lower 4G coverage (plot not shown). This indicates that users
subscribed to different network operators have different data
usage experience and traffic demand.

Fig. 15 (a) shows the downloaded bytes versus the number
of sessions with constrained speed per mobile user. The plot
depicts that the presence of constrained speed (with possible
congestion) limits the total downloaded bytes users could get,
irrespective of the number of times the users are interacting
with their device (the bottom of the x-axis). On the other hand,
as the number of sessions increase the maximum amount of
downloaded bytes are observed. This indicates that users are
hitting the maximum network speed as they aggressively use
the network. We also study the probability of users running
under congestion when they move around versus when they are
stationed at a single place during the measurement period. We
observe that stationary users access a mobile network under
congestion more than users on the move as shown in Fig. 15 (b).
This result is in-line with the high amount of data consumption
by stationary users (see: Section III-C). In Section V, we present
more detailed analysis on the impact of congestion on the data
usage pattern and its distribution by country.

B. Network Throughput

We study whether throughput affects the total data con-
sumption (both download and upload) by taking the average
throughput per user. Fig. 16 shows the correlation between
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total downloaded and uploaded bytes with download (a)
and upload (b) speeds, respectively. The values represent
the median value per user. We observe that both the total
downloaded and uploaded bytes are positively correlated with
download and upload speeds, respectively. For instance, eval-
uating the Pearson and Spearman correlation coefficient, the
total download consumption per user and downloading speed
(Pearson r = 0.43, Spearman r = 0.9 with p-value = 0.0) and
the total upload consumption per user and uploading speed
(Pearson r = 0.66, Spearman r = 0.8 with p-value = 0.0)
are strongly correlated. This indicates that network through-
put contributes to higher data consumption trends, especially
for countries such as Finland, where unlimited data plan sub-
scription is widely adopted [38]. We also observe that the
median throughput has a slightly positive relationship with the
number of sessions created per user (Spearman r = 0.13, p-
value = 1.48e-82), but does not have a meaningful relationship
with the session duration.

Takeaway: The network throughput has a strong correlation
with total downloaded bytes. Throughput is weakly corre-
lated with the number of sessions created per user but has no
meaningful relationship with the session duration. Stationary
users have more probability of experiencing congestion in the
network than users on the move. The constrained speed which
is the maximum network speed recorded when the network
was a limiting factor indicates possible presence of congestion.
Such a condition indicates that users need more throughput
than what the network can provide. When the network is con-
strained, the highest download speeds are recorded. However,
as the mobile network is a limiting factor, the total downloaded
bytes is limited to a certain extent, even if the users were able
to reach the maximum network speed. This is because down-
loading with the highest download speed might sustain only
for a short period of time.

V. MOBILE DATA USAGE PATTERNS ACROSS COUNTRIES

We further investigate the data usage patterns of geograph-
ically diverse mobile users across six countries: Finland (FI),
Germany (DE), the United Kingdom (U.K.), Japan (JP), Brazil
(BR), and India (IN). These countries are selected based on the
geographical difference and the sufficient amount of measure-
ment data collected from each country, as shown in Table I.
Note that our focus is on highlighting similarities and differ-
ences in data usage and the traffic demand of mobile users in
these six countries.

A. Session and Data Volume

Fig. 17 shows the distribution of download consumption
per user over cellular and WiFi networks across the six coun-
tries. We observe that, except for users in Finland, mobile
users in the other countries prefer WiFi networks for both
uploading to (the plot not shown) and downloading content
from the Internet. Moreover, we observe that the average daily
download (unconstrained) speeds over cellular networks vary
per country. For instance, in Japan, the average daily down-
load speed over cellular is 5.6 Mbps, while in Finland it is
∼8 Mbps. This indicates that mobile users in Finland mostly

Fig. 17. Total downloaded bytes per mobile users over WiFi and cellular
networks in six countries. Mobile users (except in FI) prefer using WiFi for
downloading content.

use heavy applications that demand high data traffic than
mobile users in Japan. The flat-rate based data subscription
plan in Finland (see: Section III) could be one of the factors
for users to use cellular networks for most of their activities
on the Internet. The average daily download speed over cel-
lular in the U.K., BR, and IN are 6.3 Mbps, 4.2 Mbps, and
4.0 Mbps, respectively.

We observe that the overall download consumption of users
per country in the six countries (irrespective of whether users
access cellular or WiFi networks) has a similar pattern. This
indicates that mobile users in different countries mostly access
the Internet from their devices in a similar fashion. However,
in terms of the network technology type mobile users prefer to
access the Internet on their device varies across countries. This
might be due to different reasons such as network coverage
and market price of subscription.

B. Ratio of Using WiFi and Cellular Networks

We also study the trend of mobile users on accessing con-
tent from cellular or WiFi networks over the time of the day
in the aforementioned countries. To this end, we only focus
on the set of users that have been accessing both cellular and
WiFi networks during the measurement period. For every user,
we calculated the total download bytes transferred over cellu-
lar and WiFi networks over the time of a day. Fig. 18 shows
the trend of total download bytes per user at every hour during
the month in the six countries. The trend of downloading con-
tent over WiFi and cellular network follows similar patterns.
We observe that except for Japan, mobile users in other five
countries follow relatively similar patterns. For instance, there
is an increasing trend for downloading traffic volume during
the evening hours (typically 16:00 to 20:00). In the afternoons,
the number of users who start downloading content over WiFi
increase more than the number of users downloading over cel-
lular networks (e.g., in the U.K. and Germany, after 16:00).
This might indicate that when users are at home or off-work
time they prefer accessing Internet over WiFi. It might also
indicate that users start accessing heavy traffic demanding apps
over WiFi during that period. For instance, for the mobile user
in Germany, hourly total download bytes per user over cellu-
lar and WiFi networks at 4:00 AM is 24 MB and 158 MB,
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Fig. 18. Median of hourly total download bytes per user between cellular
and WiFi networks over the time of the day in six countries. Note the scale
difference on Y-axis.

respectively. Observing at 20:00 hours, it has 58 MB over
cellular and 277 MB over the WiFi networks.

C. Network Congestion and Service Level Score (SLS)

We study how the network coverage, especially the avail-
ability of the 4G network varies across different countries and
how this aspect is associated with the service satisfaction level
(i.e., SLS) of mobile users. Mobile users in Japan rank highest
by reporting access to the 4G network in more than 97% of
measurement samples. While, mobile users in Finland access
the 4G network 83.4% of the time with users in India reporting
4G access in 72% of the measurement samples.

The measurement platform identifies whether the created
sessions were constrained (see: Section IV-A) in the mobile
network. The network can be a bottleneck due to several rea-
sons. For one, the session can be constrained in situations
where congestion occurs at the base station. We study the
number of such constrained sessions created by users per coun-
try. For instance, in India, ∼22% of the user sessions were
under constrained conditions, while in Japan only ∼9.4% of
the sessions were created as constrained sessions.

We consider the U.K. and Finland users as a sample to
compare the detailed distribution of different radio technolo-
gies. In the U.K., about 75% of the cellular data sessions were
accessed over the LTE network and about 9.5% over HSPA+
networks. Other network technologies also take a share with
High Speed Uplink Packet Access (HSUPA) 5.2%, IWLAN
(3.3%), HSPA(3.3%), EDGE (1.4%). Note that multiple mea-
surement sessions can be collected from a single user who
accessed the LTE network. As a result, the highest percentage
value per session of the LTE network does not directly reflect
the number of users accessing the LTE network. Considering
the unique number of users accessing the LTE and 3G
networks, users accessing the 3G networks were higher than
users accessing the LTE networks (about 3% difference). This
implies that users in the U.K. have more frequently connected
to 3G networks than the LTE networks. However, we also find

Fig. 19. SLS distribution over time of the day in six countries. Note, the
higher the percentage, the better the SLS score. The SLS score in most of
the countries follows a diurnal pattern where poor SLS scores are observed
during peak times.

that users accessing the LTE networks consume higher median
and the total downloaded bytes.

While in Finland, about 80% of the sessions created by
the users were over the LTE network. About 16% of the ses-
sions were over the HSPA+ radio network. The rest were over
HSUPA (1.6%), ∼1% over HSPA, and only 0.3% over the
EDGE network. In Finland, the number of sessions and the
number of users accessing the LTE network is higher than that
of users accessing the 3G network.

Service Level Score (SLS): SLS measures user satisfaction
level based on the number of times that the users have got
what they ask from the network. It is the ratio of the difference
between the number of unconstrained and constrained sessions
to the number of unconstrained sessions, for every user, as
shown in Eq. (1); where α is the number of unconstrained
sessions and β is the number of constrained sessions.

SLS =
α− β

α
× 100 (1)

Based on user activity and application type, some times of
the day tend to be more active in traffic flow than others. We
observe the temporal traffic dynamics and the service level
score of mobile users by time of the day. Fig. 19 shows the
hourly SLS values in a cellular network across the six coun-
tries. The box plot in black shows the distribution of SLS over
the time of a day for the whole dataset. The orange lines are
median values per user for every hour. We observe that SLS
values start to deteriorate during peak (e.g., starting from 4:00)
hours of the day.

We also study the daily distribution of the SLS score per
user across six countries. Fig. 20 depicts the daily distribution
of SLS score per mobile users across the six countries. It can
be seen that the daily average SLS score for each country is
FI (66.52%), U.K. (75.75%), JP (76.78%), DE (74.22%), IN
(54.73%), and BR (67.74%). Considering the daily median
SLS value for every user, we found that mobile users in the
U.K. have the highest SLS score (90%), while mobile users in
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Fig. 20. CDF of SLS values in cellular network for six countries. Mobile
users in U.K. have higher SLS score.

India have the lowest SLS score (62%). Mobile users in the
Germany and Japan have median SLS score of 87% and 84%
per user per day, respectively. On the other hand mobile users
in Brazil and India have relatively lower SLS score, 71% and
62%, respectively. Relatively, the daily median SLS score per
user in Finland (FI) is also low (79%). This is because mobile
users in Finland use the cellular network on their devices a lot
for most of their Internet activities as shown in Fig. 17. On
the other hand, mobile users in the U.K. and Germany (DE)
have high SLS score since they might avoid consuming a lot
of data over cellular networks. Note that, we understand that
SLS can not be used as a universal metric for representing the
Key Performance Indicators (KPIs) for various mobile appli-
cations and services. However, it can serve as a good first-hand
approximation of the satisfaction level of mobile users as SLS
takes into consideration the speed of the mobile network and
its constraints and bottlenecks.

Takeaway: Most mobile users in the countries we have stud-
ied consume the highest data volume over WiFi networks than
over cellular networks. Mobile users in Finland are an excep-
tion consuming the highest data volume over cellular networks
instead. Mobile users in Finland also exhibit lower Service
Level Score (SLS) than users in some other countries such as
the U.K. and Germany. This indicates that the SLS score can
be higher when mobile users are conservative on cellular data
usage (e.g., if their subscription plan is priced per data usage).
The availability of good network coverage and flat-rate market
price are some of the reasons for mobile users to prefer using
cellular over WiFi or vice versa. We also observe that the
total data consumption across the countries (considering both
cellular and WiFi networks together) of mobile users is com-
parable. This indicates that mobile users across countries have
a similar trend of data usage, although there is a difference in
network technology that is available for access.

VI. RELATED WORK

There are several studies on data usage patterns and behav-
ior of mobile users (see [57] for a recent survey) whereby the
studies can generally be grouped into the following areas.

Mobility and location related patterns: Paul et al. [58],
study the pattern of mobility and temporal activity as well

as how the radio resources are utilized by different applica-
tions using a dataset collected at the core of a 3G network.
The authors show that the distribution of traffic consumption
across subscribers is uneven, such that 90% of traffic loads
in the 3G network is generated by 10% of the subscribers.
Similarly, Yang et al. [59], characterize behavior of mobile
users in terms of mobility patterns, application usage based
on the data collected at 2G and 3G core networks in China.
They show that about 1% of users frequently use different
applications and consume the highest data volume. They also
indicate that the user mobility per day is limited to a few
unique (not more than 10) cells of base stations. Other studies
such as [60], [61], and [62] investigate human mobility and
behavior in mobile networks using measurements. These stud-
ies show that user mobility exhibits patterns over time of the
day and location.

Application usage patterns: Previous work [63], [64] has
studied mobile application usage behavior by considering dif-
ferent application activities (e.g., installing, uninstalling, and
updating) and network usage. Yu et al. [25] show that appli-
cation usage behavior of users and dynamics at a given
location can be predicted by using the point of interest (POI)
information of that location. Authors in [24], [65] study
application usage pattern of smartphone users and distin-
guish different groups of mobile users. Canneyt et al. [66]
study application usage behavior of users by investigating
engagement patterns of users with their applications. They
use a dataset collected using Flurry [67]. The authors show
that users application usage activity and disruption patterns
are correlated with major events such as sports and political
events.

Several other studies [10], [68], [69], [70] have focussed
on mobile application usage behavior and retention patterns.
Silva et al. [10] study mobile application usage patterns using
an year-long dataset collected from devices of mobile users
in Brazil. They investigate mobile application usage patterns
in terms of temporal and location differences. They show
that social networking applications such as Facebook and
WhatsApp have the highest data exchange. The authors pro-
pose a model that predicts the next application based on
synthetically generated datasets of mobile application usage.
Wu et al. [70] study application usage of mobile users in com-
bination with the temporal patterns and identified six group of
users. The authors also propose a model (based on Wavelet-
ARMA) that predicts the traffic demand of mobile users for
different applications. Ben-Gal et al. [69] study mobility pat-
terns of users and propose a clustering model that identifies
group of users with a “shared lifestyle” irrespective of their
location.

Patterns based on traffic size and flows: Oliveira et al. [21]
study and characterize data traffic and usage behavior of
mobile users based on a dataset collected from a 3G
network in Mexico. The authors profile mobile users into
three classes (light, medium, and heavy users) by using the
number of sessions, traffic volume, and inter-arrival times.
Zhang and Arvidsson [39] study the characteristics of cellular
data based on HTTP-based traffic traces collected from cellular
and fixed-line networks. They investigate different applications
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using packet, flow and session level traffic metrics in compar-
ison with cellular and fixed-line networks. They show that
cellular networks have multiple short flows [55] than fixed-
line networks. The authors cluster different applications based
on similarity patterns on the traffic metrics (flow and session
size, and inter-packet gap). They show that the inter-packet
gap between different applications have significant variations
and suggest application-specific optimization methods.

Device access patterns and device model types:
Shafiq et al. [2] model traffic dynamics on mobile devices
using a week-long trace collected from the core network
of a cellular operator. They study traffic dynamics and
characteristics of applications on three different mobile device
brand families. They show that the type of device attributes
to different traffic behavior. Falaki et al. [26] studied traffic
generated from 255 mobile users along with the interaction
with their smartphones. The authors show that user interaction
with the device contributes to a higher battery consumption.

Compared to related work, the data usage pattern and behav-
ior of mobile users is not explored very well. This is because
previous analysis on data usage patterns of mobile users is
either limited to one city or country [21]; considers lim-
ited sample of users [26]; is based on data from a single
cellular core operator and area [71] or focusses on specific
application types [72]. Unlike the previous studies, our work
instead focuses on an extensive analysis of data usage pat-
tern and behavior analysis of mobile users based on ∼340 M
records (measurement sessions) collected from the end-user
devices. The dataset covers vast geography of users encom-
passing six countries. We consider several essential features
that determine data usage patterns of mobile users. Some of
the features we studied include device models, geographical
location of users, application categories installed on mobile
device, and the impact of different subscription markets on
the data consumption of mobile users.

VII. CONCLUSION

We presented an analysis of data usage patterns and behav-
ior of mobile users. To this end, we used a month-long dataset
with more than 340 million measurement sessions (recorded in
July 2018) from six countries. We investigated the behavioral
pattern of mobile users by considering different factors such as
time of the day, user mobility, location, and the frequency of
users accessing the data traffic over cellular or WiFi network.
We also studied how data usage patterns and the Service Level
Score (SLS) of mobile users varies across the six countries.

We showed that data usage patterns of mobile users are cor-
related with multiple factors. The factors include user mobility,
the accessed network type (cellular and WiFi), the choice of
the device model, the type of radio technology (such as 3G
and 4G), and user mobility. We showed that mobile users at a
stationary position consume higher volumes of data than users
on the move. Furthermore, pricing strategy of Mobile Network
Operators (MNOs) and the availability of good network cov-
erage can shape the data usage behavior of mobile users.
Especially which network type (cellular or WiFi) users prefer

to access the Internet using their mobile device is often sub-
ject to their data subscription plans. We showed that mobile
users in Finland tend to use heavier applications over a cel-
lular network than in the rest of the countries we studied as
flat-rate pricing is dominant in Finland.

To further encourage reproducibility of our results, the mea-
surement dataset and scripts used in the analysis are made
publicly available [29].
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