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Abstract—Many enterprises are under threat of targeted
attacks aiming at data exfiltration. To launch such attacks, in
recent years, attackers with their malware have exploited a covert
channel that abuses the domain name system (DNS) named DNS
tunneling. Although several research efforts have been made to
detect DNS tunneling, the existing methods rely on features that
advanced tunneling techniques can easily obfuscate by mimick-
ing legitimate DNS clients. Such obfuscation would result in data
leakage. To tackle this problem, we focused on a “trace” left by
DNS tunneling that cannot be easily hidden. In the context of data
exfiltration by DNS tunneling, the malware connects directly to
the DNS cache server and the generated DNS tunneling queries
produce cache misses with absolute certainty. In this study, we
propose a DNS tunneling detection method based on the cache-
property-aware features. Our experiments show that one of the
proposed features can efficiently characterize the DNS tunnel-
ing traffic. Furthermore, we introduce a rule-based filter and a
long short-term memory (LSTM)-based filter using this proposed
feature. The rule-based filter achieves a higher rate of DNS tun-
neling attack detection than the LSTM one, which instead detects
the attack more quickly, while both maintain a low misdetection
rate.

Index Terms—Cache-property-aware features, data exfiltra-
tion, DNS tunneling, targeted attacks.

I. INTRODUCTION

VARIOUS protocols exist on the Internet, and by exploit-
ing their vulnerabilities, attackers using their malware

launch targeted attacks that cause data exfiltration [2], [3].
One of the ways attackers can exfiltrate data from an enter-
prise network commences with sending emails that include the

Manuscript received October 30, 2020; revised March 18, 2021 and April
28, 2021; accepted May 4, 2021. Date of publication May 10, 2021; date of
current version June 10, 2021. This project has received funding from JSPS
KAKENHI, Grant Number JP19K24351, the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement No. 739578 and
the Government of the Republic of Cyprus through the Deputy Ministry of
Research, Innovation and Digital Policy. This article was presented in part
at the ICIN [1]. The associate editor coordinating the review of this arti-
cle and approving it for publication was C. Fung. (Corresponding author:
Daishi Kondo.)

Naotake Ishikura and Daishi Kondo are with Department of Computer
Science and Intelligent Systems, Osaka Prefecture University, Sakai 599-8531,
Japan (e-mail: ishikura@com.cs.osakafu-u.ac.jp; daishi.kondo@cs.osakafu-
u.ac.jp).

Vassilis Vassiliades is with the CYENS Centre of Excellence, 1500 Nicosia,
Cyprus (e-mail: v.vassiliades@cyens.org.cy).

Iordan Iordanov is with Corpy & Co., Tokyo 113-0033, Japan (e-mail:
iordan@corpy.co.jp).

Hideki Tode is with the Department of Computer Science and Intelligent
Systems, Osaka Prefecture University, Sakai 599-8531, Japan (e-mail:
tode@cs.osakafu-u.ac.jp).

Digital Object Identifier 10.1109/TNSM.2021.3078428

malware as seemingly harmless attachments to the employees
of targeted enterprises. By opening these malicious emails, the
employees unfortunately infect their computers with malware.
This mistake establishes communication channels between the
attackers and their malware. Then, the attackers can remotely
control the malware and steal confidential information from
the infected enterprises. This data leakage puts enterprises at
a great disadvantage and affects profitability drastically.

In recent years, attackers with malware have launched this
form of attack by exploiting a covert channel that abuses the
domain name system (DNS) known as DNS tunneling [4].
DNS tunneling is a security threat used to tunnel data and com-
mands by exploiting a domain name in DNS queries and the
corresponding DNS responses. It is one of the top DNS-based
attacks [5]. Between April and September 2014, the attack-
ers stole 56 million debit and credit card numbers from the
American retailer, Home Depot [6], and several attacks were
launched against a Middle Eastern government organization in
August 2018 [7]. In general, enterprises enforce access control
of ports and protocols that are not usually utilized (e.g., peer-
to-peer (P2P) file sharing such as BitTorrent) for employees. In
addition, in a quarantine network that installs trusted middle-
boxes, end-to-end encrypted communications can be decrypted
and inspected by middleboxes [8] that can identify malicious
activities. However, because DNS is an indispensable protocol
for implementing many services, such as content distribution,
its use is not restricted and is poorly managed. Therefore,
the DNS operation unfortunately provides attackers with mal-
ware an opportunity to realize targeted attacks through DNS
tunneling.

To detect DNS tunneling, several countermeasures have
been proposed [9]–[24]. Indeed, these methods are effective
for detecting tunneling traffic from malware, such as Morto
worm [25], or DNS tunneling tools such as dnscat2 [26].
However, these countermeasures are built using features that
can be easily obfuscated by advanced DNS tunneling tech-
niques. For instance, steganography can hide leaked data in the
fully qualified domain name (FQDN) of the tunneling query,
which makes the FQDN look legitimate and invalidates filters
relying on its features. Thus, this obfuscation would result in
data leakage.

To address this problem, we focus on the nature of DNS tun-
neling. To successfully exfiltrate data attached to the domain
name of a DNS query, the DNS cache server to which the
malware connects directly must avoid producing a cache hit
in the server; otherwise, the data cannot be leaked outside of
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Fig. 1. An overview of DNS tunneling.

the enterprises. In other words, leaking data through DNS tun-
neling would trigger a cache miss on the DNS cache server.
However, cache servers exist to exploit the natural tendency
of humans to request the same information multiple times.
We hypothesize that the number of queries satisfies Zipf’s
law [27]. Based on this hypothesis, DNS tunneling violates
normal human behavior because it requires the cache to be
bypassed, a clear indication that cache misses are the actual
footprint of a DNS tunneling attack. Therefore, we believe that
this cache property is more tolerant than the features used in
conventional methods to counter feature obfuscation.

Considering the above facts, we propose three features
derived from the cache property: cache hit ratio, access hit
ratio, and access miss count. Through extensive experiments,
we demonstrate that the access miss count addresses some
shortcomings of the hit ratios of both the cache and access
and clearly characterizes DNS tunneling traffic. Therefore, it
is useful for designing and implementing a solid DNS firewall
against DNS tunneling. Based on this knowledge, we introduce
a rule-based filter and a long short-term memory (LSTM) [28]-
based filter using the proposed feature. The rule-based filter
achieves a higher detection rate of DNS tunneling attack than
the LSTM filter, which instead detects the attack faster, while
both maintain a low misdetection rate.

To the best of our knowledge, our previous work [1] was the
first to analyze cache-property-aware features, and this paper
is an extended version. We extend the previous work with the
following contributions.

• performing a comprehensive survey of DNS tunneling
research in terms of attack and detection methods,

• introducing a new cache-property-aware feature, access
miss count, and comparing this feature with the cache
hit ratio and access hit ratio,

• proposing a rule-based filter and an LSTM filter based
on the access miss count against DNS tunneling, and

• evaluating the performance of the filters created by
a large legitimate training dataset composed of more
than 350,000 DNS queries on the test dataset including
legitimate queries and DNS tunneling ones.

The remainder of this paper is organized as follows.
Section II is the summary of the basics of DNS tunneling and
several existing studies on the attack and detection methods
of DNS tunneling. Section III proposes cache-property-aware
features for DNS tunneling detection while Section IV per-
forms monitoring and analysis of these features. Using one

of the features of DNS tunneling, a rule-based filter and an
LSTM filter are proposed in Section V. The performance of
the filters is evaluated in Section VI. We discuss our findings
in Section VII and conclude the paper in Section VIII.

II. BACKGROUND

A. DNS Tunneling Basics

DNS tunneling bypasses firewalls to send and receive data
by exploiting the domain names included in the DNS query
and the corresponding DNS response. The data and commands
are tunneled between the malware and the attacker in the
context of targeted attacks causing data exfiltration (Fig. 1).
Assuming a domain name attacker.com is shared to cre-
ate a covert channel between the attacker and the malware
that has infiltrated the enterprise network, to obtain a com-
mand from the attacker to search confidential information
in the enterprise network, the malware generates an FQDN
(get_command).attacker.com and sends it as a DNS
query to the DNS cache server in the enterprise network
(Step 1). Following the usual process of resolving an FQDN,
the DNS cache server iteratively queries the root (Steps 2
and 3), the com (Steps 4 and 5), and the attacker.com
DNS server (Step 6). Then, the attacker.com DNS server
obtains the request (get_command) and replies with a suitable
DNS response containing the command to the malware via
the DNS cache server (Steps 7 and 8). After repeating the
process of obtaining a new command and sending an answer
to the command, the malware eventually leaks the confiden-
tial information collected by the attacker in the same manner
(i.e., by including the information to be leaked in the domain
name).

When a DNS client resolves the domain name by sending
the DNS query, the query first reaches the DNS cache server.
If the corresponding DNS response is cached in the server, it
is a cache hit, that is, the response is directly returned from the
server; otherwise, it is a cache miss, that is, the DNS query
is forwarded to the upstream DNS servers (Fig. 2). For the
malware to send malicious DNS queries to the attacker effec-
tively, the queries must not cause a cache hit on the DNS cache
server; this is a fundamental characteristic of DNS tunneling.
In this study, we assumed that the exfiltrated data are simi-
lar to credit card information (such an attack scenario is also
considered in [18], [21], [23]), and all the FQDNs generated
to leak such data are unique.



ISHIKURA et al.: DNS TUNNELING DETECTION BY CACHE-PROPERTY-AWARE FEATURES 1205

Fig. 2. Structure of DNS cache.

TABLE I
DNS TUNNELING TOOLS AND MALWARE DATASET

Some researchers [29]–[31] have evaluated the performance
(e.g., throughput) of DNS tunneling tools such as
iodine [32] and dns2tcp [33]. Raman et al. [34]
proposed a DNS tunneling method and measured the
maximal throughput.

B. Conventional Attack Methods

The existing DNS tunneling tools and malware datasets
examined in related works [9]–[24] are summarized in Table I.
In the attacks detected and evaluated in these related works,
the time interval between consecutive tunneling queries was
sometimes short; furthermore, in some of the works, anoma-
lous/malware datasets were presented without description. For
instance, Ellens et al. [10] customized iodine and performed
a simulation to generate 36,389 flows of Command & Control
(C&C) communication in 1.55h, or more than 6.5 C&C flows
per second. In addition, some of the attacks examined produce
encrypted FQDNs that were longer than average. These char-
acteristics make it easy to detect the existing DNS tunneling.
However, it is questionable whether conventional detection
methods are effective against stealthy DNS tunneling attacks
with low throughput and legitimate-looking FQDNs.

Meanwhile, several researchers have discussed DNS tunnel-
ing produces queries slowly and does not exhibit characteris-
tics such as encryption. Xu et al. [13] converted commands for
C&C communication in anomalous FQDNs to seemingly legit-
imate labels used in general services (e.g., www, mail, and
ftp that correspond to the commands). Such an attack method
can achieve C&C communication by obfuscating the features
related to the FQDN used to detect attacks, as described in
Section II-C. Paxson et al. [11] embedded one-bit information

TABLE II
CLASSIFIERS

in an FQDN (e.g., www.attacker.com transfers 0 and
mail.attacker.com transfers 1 at an interval of one
query per day). This method can obfuscate the features derived
from the time interval and FQDN for detecting the attack, as
described in Section II-C. Then, data exfiltration can be real-
ized by adding the sequence number replaced with a general
character string to the above FQDN. It is difficult to distinguish
these DNS tunneling attacks using the existing methods.

C. Conventional Detection Methods

DNS tunneling is detected using classifiers and features. A
summary of the classifiers used in the related works [9]–[24]
is presented in Table II. The most common method is rule-
based detection based on a defined threshold for a certain
feature. However, rule-based models can neither create com-
plicated rules nor deal with tunneling tools designed to bypass
the defined rules. In conventional research, machine learn-
ing techniques are often adopted as classifiers. In the case
of supervised learning, the detection method is effective only
for specific malware and DNS tunneling tools, which limits
the versatility of the models. In recent years, unsupervised
learning has been adopted to detect DNS tunneling, as it is sig-
nificantly more suitable for anomaly detection than supervised
learning because the training process requires only legiti-
mate data and it is applicable to a wider range of problems.
However, DNS tunneling cannot be detected without using a
feature that can distinguish anomalous traffic from legitimate
ones because unsupervised learning only detects the outliers
for legitimate traffic.

The features (the inputs for the classifiers) proposed in the
related works [9]–[24] are summarized in Table III. In general,
there are two types of analyses for DNS tunneling detection:
payload analysis and traffic analysis. The payload analysis is
an evaluation of a DNS query and/or the corresponding DNS
response and traffic analysis is an evaluation of DNS traffic
over a monitoring period (e.g., in terms of time and number
of samples). These features are used as thresholds or fed to
machine learning models to build countermeasures for DNS
tunneling detection. However, the above-mentioned detection
methods rely on features that attackers and their malware can
easily obfuscate by mimicking benign entities. For instance, an
analysis of character frequencies and entropy can be bypassed
using steganography. Such an obfuscation would result in data
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TABLE III
FEATURES

TABLE IV
CRITERIA FOR MAKING FEATURE VECTORS (INPUTS) FOR CLASSIFIERS

leakage. Therefore, it is necessary to propose a resilient feature
to detect DNS tunneling by focusing on a “trace” of DNS
tunneling that cannot be easily concealed.

The output of the classifiers in the related works [9]–[24] is
the label (i.e., legitimate or malicious/anomalous). The clas-
sifiers are evaluated based on performance metrics, such as
the true positive rate and accuracy, which are computed on
the basis of the confusion matrix. The criteria for making the
feature vectors (inputs) for classifiers in the related works are
summarized in Table IV. The focus in most existing studies
is on a query and/or response and their legitimateness.

III. CACHE-PROPERTY-AWARE FEATURES FOR DNS
TUNNELING DETECTION

Fujiwara et al. [47] reported that the cache hit ratio on
the DNS cache server1 inside the University of Tsukuba in
November 2011 was 75.1%. During a DNS tunneling attack,

1The authors defined the cache hit ratio as (Total # of client queries that do
not cause any queries to authoritative DNS servers)/(Total # of client queries).

the cache hit ratio is expected to decrease because the mali-
cious DNS queries generated to exfiltrate data cause cache
misses, as discussed in Section II-A. To the best of our
knowledge, this characteristic of DNS tunneling has not been
investigated in related works, as demonstrated in the review in
Section II-C. In this section, we propose three features based
on the cache property to identify DNS tunneling traffic.

A. Cache Hit Ratio

The first feature we propose is the cache hit ratio CHRn

on the DNS cache server, which is defined as follows:

CHRn =
1
n
· N n

CH .

Here, n is the number of queries under observation (i.e., a
window size), and N n

CH is the number of successful cache
hits within the n observed queries. Note that in this paper,
we define the cache hit as a state in which the response to
a query from the DNS client is discovered in the connected
DNS cache server without sending any queries to authoritative
DNS servers. Experimental results using time-series data are
reported in Section IV-B, where the plots of CHR derived from
all generated queries in a sliding window manner are shown.

CHR is a naive feature derived from the cache property to
identify DNS tunneling traffic; it has two shortcomings. First,
CHR is not improved by the caches of resource records that
a client query rarely looks up. According to [47, Table 2],
90.7% of queries from the DNS clients were for the A and
AAAA records, and therefore, caching these resource records
can increase CHR. However, resource records, such as NS
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TABLE V
COMPARISON BETWEEN A CACHE ENTRY AND AN ACCESS ENTRY

records, which are not often looked up by DNS clients, are
also cached to mitigate the load of authoritative DNS servers.
Such records play no role in DNS tunneling detection (i.e.,
unnecessary caches for DNS tunneling detection); therefore,
they might induce a decrease in CHR.

Second, in addition to the use of caching algorithms, such as
least recently used (LRU), caches are evicted based on their
time to live (TTL). Fujiwara et al. [47] show that defining
a low TTL value (≤300 sec), where DNS-based wide-area
load balancing is achieved [48], [49], decreases the CHR.
Furthermore, the TTL itself essentially causes a cache miss
and does not aid in characterizing the DNS tunneling traf-
fic. It is therefore difficult to determine whether a decrease
in the CHR is attributable to DNS tunneling or the inherent
shortcomings of the CHR.

B. Access Hit Ratio

To compensate for the shortcomings of the CHR described
in Section III-A, we first propose an access entry that
inspects client queries and stores minimal information, only
the FQDNs. The entry eviction policy is the LRU. When an
FQDN in the client query is found in a given list of access
entries, this can be considered as an access hit. Table V sum-
marizes a comparison between the cache entry and the access
entry.

We propose a second feature, which we call the access hit
ratio AHRn , defined by the following formula:

AHRn =
1
n
· N n

AH .

Here, n is the number of queries under observation (i.e., a
window size), and N n

AH is the number of successful access
hits within n queries. Experimental results obtained from the
time-series data are reported in Section IV-B, showing the plots
for the AHR derived from every generated query in a sliding
window manner.

However, malware can intentionally increase the AHR by
sending a large volume of legitimate DNS queries whose
FQDNs are normally expected to be stored in the access entry.
In this case, the malware can send tunneling queries while
hiding its activity, which is a shortcoming of AHR.

C. Access Miss Count

To compensate for the shortcoming of the AHR described in
Section III-B, we focus only on the access misses and propose
a third feature, which we call the access miss count AMC t ,
defined by the following formula:

AMC t = N t
AM .

Here, t is a time interval whose unit is seconds, and N t
AM

is the number of access miss queries in that time interval.

Fig. 3. Calculation example of CHR, AHR, and AMC (n = 100, t = 600).

Experimental results from the time-series data are reported
in Section IV-B; the plots for the AMC derived from every
generated query are shown in a sliding window manner.

Fig. 3 is the summary of a calculation example of CHR,
AHR, and AMC. These experimental results are shown in
Section IV-B. As described in Section III-A, not only the tun-
neling queries but also the legitimate ones cause cache misses,
and it is difficult to distinguish whether a decrease in the
CHR is caused by a malicious event such as DNS tunneling.
By proposing an access entry and AHR, we compensate for
the shortcomings of the CHR. However, malware can inten-
tionally replay legitimate DNS queries to increase the AHR.
In addition, both ratio-based features normalize the number
of cache hits and access hits, respectively, which means that
the number of access misses itself cannot be evaluated based
on these features. Finally, AMC, a count-based feature, solves
these shortcomings.

IV. MONITORING AND ANALYSIS OF

CACHE-PROPERTY-AWARE FEATURES

A. Experimental Setup

For our DNS traffic monitoring experiments, we installed
a DNS cache server on the local network of our laboratory
at Osaka Prefecture University and captured the DNS traffic
generated on the cache server by laboratory members. To pro-
duce DNS tunneling traffic in our laboratory, we set up an
authoritative DNS server, a DNS tunneling client, and a DNS
tunneling server. We assumed that the tunneling client was
legitimate. However, unfortunately, it was infected by mal-
ware (i.e., installed a DNS tunneling client). Therefore, the
client produced both legitimate and tunneling traffic. In our
experiments, while generating the tunneling traffic, the
client produced legitimate DNS traffic by browsing the
Web and launching some background applications such
as Slack. The authoritative DNS server delegated the domain
name for DNS tunneling to the DNS tunneling server, which
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Fig. 4. Time-series data of CHR100 of all the clients in Scenario 1 and AHR100 and AMC600 of all the clients in Scenarios 1, 2, and 3.

Fig. 5. Time-series data of CHR100 of the tunneling client in Scenario 1 and AHR100 and AMC600 of the tunneling client in Scenarios 1, 2, and 3.

made the DNS cache server forward malicious queries gener-
ated by the tunneling client to the tunneling server. We used
dnscat2 [26] as a DNS tunneling tool for both the tunnel-
ing client and server. Note that because of the nature of
DNS tunneling (i.e., data is exfiltrated via cache misses),
we would have obtained the same results (CHR, AHR,
and AMC) using different tools when the parameters of
the tunneling query transmission interval and the tunnel-
ing traffic generation period were set to the same values.
Before performing the experiments on tunneling, we created a
list of cache entries and access entries by capturing DNS traffic
from 21 clients in our laboratory for 31 days. The parameters
for the experiments are presented in Table VI. We prepared
three data exfiltration scenarios in terms of the tunneling query
transmission interval: Scenarios 1, 2, and 3, with transmis-
sion intervals of 1, 10, and 100 s, respectively. We used a list
of cache entries only for Scenario 1, which demonstrated the
effectiveness of AHR and AMC against the shortcomings of
the CHR. We omitted the experiments for Scenarios 2 and 3
because the results for Scenario 1 (the “easiest” case for DNS
tunneling detection) already indicated the shortcomings of the
CHR.

B. Results

The scatter plot of the time-series data for the CHR collected
from all the clients in Scenario 1, and the AHR and AMC

TABLE VI
PARAMETERS FOR TUNNELING EXPERIMENTS

collected from all the clients in Scenarios 1, 2, and 3, for
n = 100 and t = 600 are shown in Fig. 4. Fig. 5 shows
the traffic of the tunneling client extracted from Fig. 4. To
compute the CHR and AHR of all the clients, a memory to
store the latest n queries was prepared for each client, and the
first CHR and AHR are calculated after the arrival of n queries.
To compute the AMC of all the clients, a memory to store the
latest queries within t was prepared for each client, and the
first AMC was calculated after t s. The red curve in Figs. 4
and 5 indicate that the CHR, AHR, and AMC were affected
by the DNS tunneling traffic generated by the tunneling client.
These figures illustrate that both the CHR and AHR decreased,
whereas the AMC increased when DNS tunneling traffic was
produced.
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Fig. 6. Cumulative distribution functions (CDF) of TTL (s) of unique A and
AAAA records in our 31-day dataset.

From Figs. 4(a) and 5(a), during the monitoring period,
CHR cannot clearly establish whether the decrease in the CHR
was caused by the tunneling because of the two drawbacks of
the cache entries discussed in Section III-A. In our 31-day
dataset, 99.7% of the queries from all the clients were for A
and AAAA records, whereas 51.2% of the cache entries were
for A and AAAA records. Fig. 6 shows the CDF of the TTL
of unique A and AAAA records in our 31-day dataset, and the
CDF indicates that the TTL of 43.7% of the A and AAAA
records were less than 300 s. These statistics are related to
the two drawbacks discussed in Section III-A.

By contrast, Figs. 4(b), 5(b), 4(c), and 5(c) clearly identify
the decrease in the AHR caused by tunneling. These figures
indicate that the AHR effectively addressed the drawbacks of
the CHR and can successfully identify tunneling traffic. As
shown in Figs. 4(d) and 5(d), we observed that during the
tunneling traffic generation period, the AHR did not decrease
drastically; therefore, the AHR could not identify the tunnel-
ing traffic when the tunneling query transmission interval was
large, which is a vulnerability of AHR.

As described in Section III-B, one shortcoming of the
AHR is that it can be increased by malware that sends a
large volume of legitimate DNS queries with FQDNs that
are normally expected to be stored in the access entry, thus
concealing the tunneling queries. To overcome this vulnerabil-
ity, we focused only on the access misses and computed the
AMC. Figs. 4(e), 5(e), 4(f), 5(f), 4(g), and 5(g) clearly show
the increase in the AMC owing to the tunneling. Compared
to the AHR, the AMC can characterize tunneling traffic more
effectively because it ignores legitimate traffic that increases
AHR during the tunneling traffic generation period. These
figures indicate an increase in the AMC, even when only legit-
imate traffic was generated. This was caused by the fact that
new Web content that were not captured among the DNS
traffic for the 31 days were accessed. Accessing new con-
tent sends a certain number of queries that are not included
among the access entries in a short period of time, which
drastically increases the AMC. In addition, we confirmed that
some websites install crawlers to resolve domain names. For
instance, the website, http://www.guide2research.
com/ resolves many FQDNs of conference Web sites and
might retrieve some information about the conferences.

Fig. 7 illustrates the CDFs of query transmission interval
of the tunneling client in Scenarios 1, 2, and 3, excluding
the tunneling query transmission interval. From the CDFs, we

Fig. 7. CDFs of query transmission interval (s) of the tunneling client in
Scenarios 1, 2, and 3, which exclude the tunneling query transmission interval.

Fig. 8. Minimum AHRn for legitimate and tunneling traffic in
Scenarios 1, 2, and 3.

Fig. 9. Average AHRn for legitimate and tunneling traffic in Scenarios 1, 2,
and 3.

observed that 62.4%, 58.3%, and 48.3% of the intervals were
less than 1 s in Scenarios 1, 2, and 3, respectively. Considering
a higher threshold, 73.7%, 69.9%, and 61.8% of the intervals
were less than 10 s for each scenario, and 96.3%, 94.5%,
and 93.3% of the intervals were less than 100 s for each
scenario. Therefore, our parameter settings generated tunnel-
ing queries at a reasonable time interval, compared to general
legitimate query traffic.

Figs. 8 and 9 show the minimum and average AHRn for
tunneling and legitimate traffic in Scenarios 1, 2, and 3. Here,
the minimum and average AHRn for the tunneling traffic were
calculated based on (a) the traffic produced by the tunneling
client for 20 min during the tunneling traffic generation period,
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Fig. 10. Maximum AMC t for legitimate and tunneling traffic in
Scenarios 1, 2, and 3.

Fig. 11. Average AMC t for legitimate and tunneling traffic in
Scenarios 1, 2, and 3.

and (b) the first n queries after generating the last tunneling
query. The minimum and average AHRn for legitimate traf-
fic in Scenarios 1, 2, and 3 were computed based on traffic
from all the clients, except the above (a) and (b) traffic. The
minimum AHRn for tunneling traffic in Scenarios 1 and 2
was lower than that for legitimate traffic, which means that
the traffic can be easily classified. By contrast, in Scenario 3
(large tunneling query transmission interval), it was impossi-
ble to classify the traffic, as the corresponding minimum AHR
values of legitimate traffic were less than those of the tun-
neling traffic. The average AHRn for the tunneling traffic in
Scenarios 1, 2, and 3 was lower than that for legitimate traf-
fic, which indicates that the AHRn decreased because of the
tunneling traffic.

Figs. 10 and 11 show the maximum and average AMC t for
the tunneling and legitimate traffic in Scenarios 1, 2, and 3.
Here, the maximum and average AMC t for the tunneling traf-
fic are calculated based on (a) the traffic produced by the
tunneling client for 20 min during the tunneling traffic gen-
eration period and (b) the queries produced within t seconds
after the tunneling traffic generation period. The maximum
and average AMC t for the legitimate traffic in Scenarios 1,
2, and 3 were computed based on traffic from all the clients,
except the above (a) and (b) traffic. The maximum AMC t for
the tunneling traffic in Scenario 1 was higher than that for

Fig. 12. FQDN ranking vs. the number of DNS queries.

the legitimate traffic in Scenarios 1, 2, and 3, which indicated
that the traffic could be easily classified. When t increased
(t ≥ 500 s), the maximum AMC t for tunneling traffic in
Scenario 2 was higher than that for the legitimate traffic in
Scenarios 1, 2, and 3. By contrast, in Scenario 3 (large tunnel-
ing query transmission interval), it was impossible to classify
the traffic, as the corresponding maximum AMC values of the
legitimate traffic was higher than those of the tunneling traffic.
The average AMC t for the tunneling traffic in Scenarios 1, 2,
and 3 was higher than that for legitimate traffic in Scenarios 1,
2, and 3, which indicates that the AMC t increased because
of the tunneling traffic. From the average AMC t for the tun-
neling traffic in Scenarios 1, 2, and 3, the average number of
access misses for 20 min was approximately 2.

Fig. 12 shows the queried FQDN ranking versus the number
of DNS queries from all the clients, which can be obtained by
analyzing our 31-day dataset. Each FQDN was ranked based
on the number of DNS queries that contained it. Fig. 12
indicates that popular FQDNs are repeatedly requested by
the clients, roughly adhering to the Zipf’s law [27]. This
fact verifies the hypothesis introduced in Section I and sup-
ports the results for the AHR and AMC shown in this section
(i.e., access misses do not often happen based on the typi-
cal human behavior, and once tunneling queries are generated,
the corresponding access misses occur; consequently, the AHR
decreases and AMC increases, which indicates DNS tunneling
traffic).

V. FILTERS BASED ON CACHE-PROPERTY-AWARE

FEATURES AGAINST DNS TUNNELING

In this section, based on the results presented in
Section IV-B, we implement a rule-based filter and an LSTM
filter using the AMC as a cache-property-aware feature. The
proposed monitoring and filtering system (Fig. 13) should be
deployed on the DNS cache server in the enterprise network.
We assume that the DNS clients are expected to connect to
the DNS cache server installed in the enterprise to monitor
and manage their activities in terms of risk hedge.
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Fig. 13. Overview of the proposed monitoring and filtering system.

A. Rule-Based Filter

Our rule-based filter is based on an anomaly detection model
that defines a threshold value for AMC. Specifically, the filter
classifies the DNS query as anomalous when the AMC exceeds
a preconfigured threshold value. To extract the threshold val-
ues, we collect only legitimate DNS traffic, create access
lists, and compute the AMC for the DNS query generated
by each DNS client. The AMC values are collected (from all
the clients) into a training dataset. The classifiers’ thresholds
are determined by taking user-defined percentile values from
this dataset. For example, the threshold computed for the 99th
percentile corresponds to the minimum AMC from the top 1%.

B. Long Short-Term Memory Filter

The filter is modeled using LSTM networks [28], a type
of recurrent neural network. LSTMs differ from feedfor-
ward neural networks (which are universal, nonlinear function
approximators [50]), as they also have feedback connections
that serve as a type of “memory” for what the network
has already seen. Such networks are suitable for use when
the input consists of data sequences such as network traffic.
Compared to standard recurrent neural networks, LSTMs can
handle very long sequences, which makes them ideal for this
study. They are widely deployed in the industry.

The proposed LSTM filter is based on an anomaly detection
pipeline for temporal data. The rationale behind the design of
this pipeline is that a predictive model of normal behavior
has a low prediction error when fed with normal input and
a higher prediction error for abnormal input. We implement
the pipeline as follows. In the same manner as described in
Section V-A, we first collect only legitimate DNS traffic, cre-
ate access lists, and compute the AMC for the DNS query
generated by each DNS client. Then, we collect the AMC val-
ues into a training dataset. We use the AMC dataset to train
an LSTM model and obtain its next-step predictions. We then
compute the prediction error based on the model’s predictions
and the actual AMC values. Because legitimate DNS traffic
itself contains outliers, the prediction error tends to be higher
at these outliers and can be used to create a filter. Therefore,
we create a filter by constructing a binary classifier that takes
the prediction error as the input. The classifier’s threshold

above which the input is deemed an “anomaly” is computed
by a user-defined percentile value. For example, the threshold
computed for the 99th percentile corresponds to the minimum
prediction error from the top 1%. During deployment, the filter
monitors the DNS traffic, computes the AMC for each DNS
client, and predicts the next step AMC using the trained LSTM.
When the prediction error exceeds the threshold computed for
the binary classifier, the filter produces an alert because such
queries can be anomalous.

To summarize, the difference between the rule-based and
LSTM-based filters is that the former uses a threshold com-
puted directly from the AMC, whereas the latter uses a thresh-
old computed from the prediction error of an AMC-forecasting
LSTM model.

C. Guides to Deploy Filters

Note that multiple thresholds can be computed to achieve
flexibility and easily customize the sensitivity of the filter dur-
ing deployment. In general, there is a tradeoff when choosing
a threshold value (increasing both the true and false positive
rates); therefore, there is no optimal threshold value. It all
comes down to the false positive rate deemed acceptable by
the enterprise network operators.

The proposed monitoring and filtering system should be
implemented on the DNS cache server, and the number of
trained models equals the number of DNS cache servers in
the enterprise network. For instance, if an enterprise network
installs several DNS cache servers for each department, cor-
responding models should be created for each of them. This
model creation policy stems from the fact that the locality of
the DNS traffic for each DNS cache server was different [51],
which makes it necessary to tune the model for each of them.
Because our proposed system monitors multiple DNS clients
in parallel, the system has to create a number of instances
for the trained model equal to the number of clients. The
required storage for an LSTM-based filter depends on the num-
ber of units, weights and clients (see Appendix A for a detailed
explanation).

VI. EVALUATION OF FILTERS

A. Experimental Setup

In this section, we describe the procedure for creating and
evaluating the rule-based and LSTM filters. To create the fil-
ters, we used the 31-day DNS traffic dataset introduced in
Section IV-A. The initial access entries were created using the
data of the first 24 days. The access entries were then used
to calculate AMC t (t = 100, 200, . . . , 1200) for each DNS
query generated by each DNS client for the remaining seven
days. The training set consisted of a large dataset of legiti-
mate queries, which were more than 350,000. AMC t was not
computed for the first t s because the data were not sufficient.
The computed AMC t vectors, which were time-series data,
comprised the training dataset for creating the filters.

The additional procedures for building the LSTM filters can
be explained as follows. We preprocessed the dataset using the
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standard scaler2 to the dataset. The training dataset obtained
from each client was divided according to the batch size, and
data that were not consistent with the batch size were excluded.
The training dataset was fed into a stateful LSTM, which can
remember past trends better than the stateless LSTM. As for
the parameters of the LSTM, the timestep was set to 100,
the batch size was set to 32, the input dimension was set to 1
because only AMC t was used, and the number of LSTM cells
was set to 1, 2, 4, 8, and 16. We used the Adam Optimizer [52].
The loss function was the mean squared error, and when the
difference between the current error and the previous error
was less than 10−3 or the number of epochs reached 30, we
terminated training. The LSTM was trained on a client-by-
client basis, and the state of the model was reset every time
the client was switched.

The evaluation method of the filters is described below. For
the rule-based filters, as mentioned in Section V-A, we deter-
mined multiple thresholds for the training dataset to classify
a query as an attack or not on the basis of the AMC t . In our
experiments, we considered 10,000 thresholds (from 0.01% to
100% with 0.01% increments). For the LSTM filters, we used
the trained LSTM model to predict the training set and calcu-
late the prediction error, that is, the squared error between the
actual and predicted AMC t . As mentioned in Section V-B,
multiple thresholds can be used to classify a prediction error
as an attack or not. In our experiments, we considered 10,000
thresholds (from 0.01% to 100% with 0.01% increments).
We then extracted the AMC t for each DNS query from the
DNS traffic data generated in Scenarios 1, 2 and 3, which
were described in Section IV-A. The initial access list used
to obtain AMC t was created from the 31-day DNS traffic
dataset described in Section IV-A. Similar to the training, the
AMC t was not computed for the first t s because of insuf-
ficient data. The test dataset for evaluating the data was the
computed AMC t , which was time-series data. The rule-based
filters directly classified the activity of the test dataset using
their computed thresholds. On the other hand, the LSTM-based
filters classified the activity by first predicting it, then comput-
ing the prediction error and finally comparing the error with
their corresponding thresholds. For both filters, we evaluated
the receiver operating characteristic (ROC) curve (this curve
was plotted using the true positive rate3 and false positive
rate4), area under the curve (AUC) score, and accuracy.5 The
speed of the attack detection was defined as follows:

x{filter ,t} = N {filter ,t},1
FN + N {filter ,t},2

FN + N {filter ,t},3
FN and

Speed{filter ,t} = 1 − x{filter ,t} − xmin

xmax − xmin
.

Here, x{filter ,t} is the summation of N {filter ,t},1
FN , N {filter ,t},2

FN ,

and N {filter ,t},3
FN , which are the number of false negatives

required for the model {filter, t} (there were 72 models

2We also used the power transformer to preprocess the dataset; however,
the models created using the preprocessed dataset exhibited worse prediction
performance (see Appendix B).

3(# of true positives)/(# of true positives + # of false negatives).
4(# of false positives)/(# of false positives + # of true negatives).
5(# of true positives + # of true negatives)/(# of queries).

Fig. 14. ROC curves for the test dataset of Scenarios 1, 2, and 3 (AMC600).

because we prepared one rule-based model and five LSTM
models for 12 values of t) to create the first alarm (as the
filter initially predicted the input as legitimate) in Scenarios 1,
2, and 3, respectively, and xmin and xmax were the minimum
and maximum of x{filter ,t}, respectively. When Speed{filter ,t}
is 1.0, the model {filter, t} is the one that raises the earliest
detection alarm. Note that in this paper, positives indicate that
the queries are (a) the ones produced by the tunneling client
for 20 min during the tunneling traffic generation period or
(b) the ones produced within t seconds after the tunneling
traffic generation period (the red curve illustrates the queries
in Figs. 4 and 5). The other queries were labeled negatives.

B. Results

Fig. 14 shows the ROC curves for the test dataset of
Scenarios 1, 2, and 3, when t was 600. From the figure, when
the false positive rate was over 0.025, the true positive rate
was over 0.91, which indicated that our filters could clas-
sify legitimate and malicious DNS queries correctly with high
probability. By contrast, in Fig. 15, which shows the ROC
curves for the test dataset of only Scenario 3, when t was
600, the classification performance deteriorated, compared to
Fig. 14. This is because, as mentioned in Section IV-B, the
larger the tunneling transmission interval, the harder it was to
detect the DNS tunneling attack. From these figures, the rule-
based filter outperformed the LSTM-based one. In checking
the positives classified as negatives (i.e., legitimate queries) by
the filters, the LSTM filter sometimes identified several posi-
tives as legitimate queries because it evaluated the queries on
the basis of a threshold computed from the prediction error,
which means the prediction error could become low at some
point, even during the tunneling attack. Meanwhile, the rule-
based filter evaluated the queries with a threshold computed
directly from the AMC. When the prediction error obtained
by the LSTM filter fell below the predetermined threshold
and the AMC exceeded the threshold for the rule-based filter,
the rule-based filter classified the queries as anomalous.
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TABLE VII
AUC SCORES FOR THE TEST DATASET OF SCENARIOS 1, 2, AND 3

TABLE VIII
AUC SCORES FOR THE TEST DATASET OF SCENARIO 3

Fig. 15. ROC curves for the test dataset of Scenario 3 (AMC600).

As shown by the results reported in Table VII, almost all
of the AUC scores were over 0.90, with a few exceptions
(marked in bold). However, from the results in Table VIII,
we observed a considerably different situation. Scenario 3
was the most challenging in the context of DNS tunneling
detection. The results indicate that the efficiency of the fil-
ter not only depended on the number of units in the LSTM
model but was also strongly related to the time interval t,
which was also the size of the sliding window. It appears
that the value of t significantly influenced the quality of the
detections. More interestingly, for the same value of t, we
observed different results, depending on the number of units
in the LSTM model. This clearly implies that for more chal-
lenging settings where exfiltration was performed over large
periods of time, the model must be able to identify a larger
number of features on varying scales. Therefore, one possible
future research direction is to investigate the effectiveness of
multi-scale ensemble LSTM models for detecting DNS tun-
neling attacks over large periods of time. Another interesting

Fig. 16. Pareto front (false positive rate = 0.025). There are 12 models per
filter (each with a different value of t (100, 200, . . . , 1200)) and there exist
9 non-dominated solutions. Although the rule-based filters tend to achieve
higher true positive rates than LSTM filters, the LSTM filters tend to detect
attacks more quickly.

question is whether there is a correlation between the number
of units in the LSTM model and the exfiltration period.

We fixed the false positive rate at 0.025 and discussed the
accuracy and speed of attack detection. The accuracy for the
entire test dataset for Scenarios 1, 2, and 3 are shown in
Table IX. Table X shows the accuracy for the test dataset for
only Scenario 3. These tables indicate that both filters have a
high accuracy (ranging from 0.9697 to 0.9763).

Fig. 16 illustrates the Pareto front based on the true pos-
itive rate and the speed of the attack detection. As shown
in Figs. 14 and 15, rule-based filters tended to achieve higher
true-positive rates than LSTM filters. Instead, the LSTM filters
tend to detect attacks more quickly than rule-based filters. This
benefit comes from the fact that the LSTM filters predicted
the time-series data and could thus detect anomalies faster.
The metric of speed is important to prevent data exfiltration;
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TABLE IX
ACCURACY FOR THE TEST DATASET IN SCENARIOS 1, 2, AND 3 (FALSE POSITIVE RATE = 0.025)

TABLE X
ACCURACY FOR THE TEST DATASET IN SCENARIO 3 (FALSE POSITIVE RATE = 0.025)

TABLE XI
VALUES OF t AND THRESHOLDS OF THE 9 NON-DOMINATED SOLUTIONS

SORTED BY TRUE POSITIVE RATE (NOTE THAT THE THRESHOLD OF THE

RULE-BASED FILTER IS AMC WHILE THAT OF THE LSTM FILTER IS THE

PREDICTION ERROR OF THE CORRESPONDING AMC-FORECASTING

LSTM MODEL)

once the first alarm goes off, the firewall operator can care-
fully examine the anomalous client and determine whether the
client is to be isolated. Finally, the total amount of leaked data
can be reduced as much as possible. Table XI summarizes the
values of t and the thresholds of the 9 non-dominated solutions
sorted by true positive rate.

VII. DISCUSSION

Based on the evaluation in the foregoing Section VI, we
conclude that the rule-based filter achieves a higher rate of
the DNS tunneling attack detection than the LSTM, which,
however, detects the attack faster, while both maintain a low
misdetection rate. From this perspective, enterprise network
operators can deploy our proposed monitoring and filtering
system with some strategies. For example, first, based on
the LSTM filter, the operators identify a suspicious client.
After the first alarm raised by the LSTM filter, the operators
still allow the client to produce the queries. However, these
queries, including the tunneling ones, should be resolved by
only the connected DNS cache server without the iterative
query process, such that the unresolvable ones do not get for-
warded to the outside (i.e., data exfiltration is eliminated at
this point). Then, using a rule-based filter, at a defined point,

the operators can determine whether the client is infected by
malware. This strategy to combine these filters is an enterprise
network operation guarding against data exfiltration through
DNS tunneling.

In this paper, we proposed a method for detecting DNS
tunneling that focuses on DNS clients rather than domain
names. This is because our goal was to prevent information
leakage by detecting DNS clients infected with malware in tar-
geted attacks. As discussed in Section II-C, some researchers
have focused on domain names and proposed filters whose
design guideline was to identify the domain names used to
perform DNS tunneling [11], [14], [18], [20], [21]. The short-
coming of such methods is that they fail when the attackers
and their malware change tactics and utilize several domain
names for the attacks. Our proposed filter does not focus on
the domain name; rather, it detects attacks based on whether
access misses have occurred, thereby effectively addressing
the above drawback.

The proposed filters can be easily integrated with the con-
ventional detection methods introduced in Section II-C. For
example, when malware attempts to leak a file through DNS
tunneling, to detect the attack, a countermeasure adopts length-
based features such as the FQDN length and the longest label
length, which are used in the payload analysis. RFC 1035 [53]
defines the maximum total length of a domain name (dots
included) and a label as 255 characters and 63 characters,
respectively. In the dataset used in [23], more than 99% of
the queries included less than 80 characters. Considering the
malware, to improve the information leakage throughput by
adding more data, the FQDN becomes longer. However, this
type of malicious FQDN should be filtered out by a counter-
measure based on the statistics of the FQDN length. Finally,
to circumvent the filter, the malware is forced to generate
more malicious queries, which causes more access misses,
thus including the likelihood of the proposed filter detect-
ing the attack more easily. By combining our proposal with
conventional filters, we can create a more resilient firewall.

Our experiments were carried out by utilizing a DNS traf-
fic dataset from 21 clients in our laboratory. We expect that,
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Fig. 17. Comparison of actual AMC100, predicted AMC100 with standard
scaler, and predicted AMC100 with power transformer for one client in one
day in the training set.

even if the number of clients increases, the robustness of the
cache-property-aware features will be assured. The reason is
because the robustness is related to the queried FQDN rank-
ing versus the number of DNS queries from all the clients
(see Section IV-B). Popular FQDNs are repeatedly requested
by the clients, roughly adhering to Zipf’s law, and hence,
access misses do not often happen based on the typical human
behavior. Hasegawa et al. [51] observed Zipf’s law even in a
large DNS traffic dataset captured at a DNS cache server in
a campus network. This indicates that our solution could be
applied even for the case that the number of clients increases.
Evaluating our proposed system by increasing the number of
clients is one of our future works.

However, the proposed method is limited in one regard; it
cannot effectively identify low-throughput attacks, as shown
in Sections IV and VI. We believe that it is still difficult to
detect such attacks, even using the existing methods introduced
in Section II-C. To detect low-throughput attacks, one possi-
ble approach is to employ the proposed cache-property-aware
features. For instance, when the information on the access
misses from a DNS client is recorded over a long period of
time and the total number of access misses for one client is
higher than that of other DNS clients at a certain point, the
client could be suspected of being infected with malware. In
other words, it is essential to propose a method for detecting
low-throughput attacks by long-term monitoring rather than
short-term monitoring.

VIII. CONCLUSION

Various countermeasures against DNS tunneling have been
proposed; however, they are based on DNS tunneling features
that can be easily obfuscated by malicious entities mimick-
ing legitimate ones. Therefore, conventional approaches are
not robust against feature obfuscation. To solve the issue,
we focused on the nature of DNS tunneling. When a tun-
neling client sends a malicious query to the tunneling server,
the query definitely causes a cache miss on the DNS cache
server to which the client connects. Based on this obser-
vation, we proposed cache-property-aware features for DNS
tunneling detection. Our extensive experiments revealed that
the access miss count can clearly reveal DNS tunneling
traffic that generates tunneling queries within a reasonable
time interval, compared to general legitimate query traffic.
Moreover, we exploit the cache-property-aware features to

develop the rule-based and LSTM filters to counter DNS
tunneling. The DNS tunneling attack detection rate of the rule-
based filter was higher than that of the LSTM, which instead
detected the attack more quickly, while both maintained a low
misdetection rate.

In future work, we will tackle low-throughput information
leakage DNS tunneling attacks. We believe that the proposed
cache-property-aware features can be applied for detection
based on long-term monitoring; therefore, we will further
investigate the “trace” of DNS tunneling against such an
advanced attack.

APPENDIX A
FILTER STORAGE REQUIREMENTS

The required storage for an LSTM-based filter depends on
the number of units, weights and clients. One LSTM unit typ-
ically has two stored values for the states: the “cell state”
and the “hidden state”. The number of weights for 1, 2, 4, 8,
and 16-unit LSTMs is 18, 43, 117, 361, and 1233, respectively.
Note that the LSTM weights and the threshold can be shared
(they do not change for each client), therefore, can be stored
only once, whereas the states need to be maintained indepen-
dently for each client. Thus, assuming that the state, weight
and threshold are expressed by 8 bytes, the required storage for
a rule-based system is just 8 bytes, while the required storage
for the LSTM-based filters is 8 ∗ (2 ∗ N ∗ m + w + 1) bytes,
where N is the number of clients, m is the number of LSTM
units and w is the number of weights. More specifically, 1, 2,
4, 8, and 16-unit LSTMs, require (16N + 152), (32N + 352),
(64N + 944), (128N + 2896), and (256N + 9872) bytes,
respectively. If, for example, there are 1000 clients, the most
memory-intensive model (16 units) requires 265872 bytes
(∼260KB).

APPENDIX B
DATA PREPROCESSING

Similar to the procedure described in Section VI, we
performed experiments to verify the influence of two data pre-
processing methods: standard scaler and power transformer.
Fig. 17 shows the comparison of the actual AMC 100, pre-
dicted AMC 100 with standard scaler and power transformer
for one client for one day in the training set. From the figure,
we can observe that the standard scaling can enable accurate
prediction AMC (in the figure, blue and pink lines overlap;
thus, the overlapped part can be seen as purple), whereas
that of the power transformer failed to do this. This fact was
most apparent in the case where t was set to a smaller value.
Thus, in this study, we adopted a standard scaler as the data
preprocessing method.
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