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Abstract—Named Data Networking (NDN) is one of promising
next generation Internet architectures that aim to realize efficient
content distribution. However, in terms of producer anonymity,
NDN has a serious problem that adversaries can easily learn
who publishes what content due to its feature that content is
inherently tied to the producer by the content name and the
signature. In this article, we first define producer anonymity
rigorously in terms of content-producer unlinkability, and then
design a system to achieve it. Our design is based on hidden
service, which is an onion routing-based system in IP, however,
we improve it to take full advantage of NDN. We demonstrate that
our system provides a level of anonymity comparable to hidden
service with lower overhead through analysis and experiment.

Index Terms—Named data networking, producer anonymity,
onion routing.

I. INTRODUCTION

IT IS becoming increasingly common for the Internet to be
used to distribute content rather than to interconnect hosts

to enable them to communicate with each other as originally
intended. This change has led researchers to design alterna-
tive Internet architectures. One of the promising candidates is
Named Data Networking (NDN) [1], which shifts focus from
host to content. In NDN, each content is carried in a Data
packet, which is identified and located by a URL-like content
name and signed by its producer. A consumer who wishes
to obtain some specific content issues an explicit request,
called an Interest packet, specifying the content name. Since
every content is signed, consumers can verify the integrity and
provenance of the content regardless of who returned it. Thus,
Interest packets can be satisfied by producers or intermediate
routers caching content. In-network caching yields several ben-
efits in terms of efficiency of content distribution, such as
reductions in delay, bandwidth usage, and producer load.
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In addition to realizing efficiency, it is desirable to incor-
porate mechanisms to guarantee privacy and anonymity in
NDN as pervasive monitoring and censorship on the Internet
have become serious issues of concern [2], [3]. Anonymity is
required in some privacy-sensitive applications and protocols,
such as location-based services and cryptocurrencies [4], [5],
[6], [7], to hide users’ identities and activity histories. In NDN,
anonymity can be classified into consumer anonymity and
producer anonymity, depending on who appears to be anony-
mous. Intuitively, consumer/producer anonymity mean to hide
who requests/publishes what content. In terms of unlinkabil-
ity, they can be defined as request-consumer unlinkability and
content-producer unlinkability, respectively. Because request-
consumer unlinkability refers to requests and their senders,
consumer anonymity can be regarded as a type of sender
anonymity [8], [9]. ANDaNA [10] has been designed for NDN
based on onion routing [11] to achieve a level of consumer
anonymity comparable to Tor [12], which is the most widely
used system to achieve sender anonymity in IP. In onion rout-
ing, encapsulated packets pass through circuits, each of which
consists of several voluntary hosts called anonymizing routers
(or onion routers), to conceal their origins.

In contrast, no systems to achieve producer anonymity have
been proposed for NDN. Before designing such systems, how-
ever, we should rigorously define producer anonymity because
conventional anonymity definitions in IP are not appropri-
ate for producer anonymity in NDN. For example, receiver
anonymity [8], which is used as an anonymity model for hosts
publishing content in IP, is defined as request-receiver unlink-
ability. However, this definition does not completely capture
the notion of producer anonymity because each request can
be satisfied by any intermediate entity before the intended
producer receives it in NDN. In this article, we define pro-
ducer anonymity by focusing on packet flow on the networks,
whereas some previous studies define receiver anonymity
by focusing on hosts that could have received a particular
packet [8], [13]. Intuitively, a producer is said to be anony-
mous if content publishing performed by the producer has only
a negligible effect to the network flow observed by adversaries.

Producer anonymity is difficult to achieve in naive NDN
due to its feature that each content is inherently tied to its
producer by the producer name, which is a globally routable
name of the producer, and the signature. To solve this issue, we
design a system to achieve producer anonymity in NDN based
on hidden service [12], [14], which is implemented on Tor
to achieve receiver anonymity in IP. Specifically, we improve
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hidden service to take full advantage of NDN by leveraging
the RICE protocol [15], while using onion addresses and ren-
dezvous points in hidden service. The advantages of our system
are summarized as follows.

First, our system improves RTT in content retrieval by build-
ing circuits on RICE’s reverse paths, each of which consists
of temporal FIB entries in a sequence of intermediate routers.
Hereinafter, the network layer routers are called regular routers
to distinguish them from anonymizing routers. In our system,
consumers’ Interest packets are forwarded along reverse paths
created by producers. This enables producers to hide their
producer names even to the first-hop anonymizing routers in
contrast to the fact that receivers must reveal their IP addresses
to the first-hop anonymizing routers in hidden service. This
producer anonymity provided at the network layer reduces by
one the number of anonymizing routers in each circuit required
to achieve a comparable level of anonymity to hidden service.

Second, our system offers better security than hidden service
against the predecessor attack [16], in which adversaries wait
until producers unfortunately choose compromised anonymiz-
ing routers as the members of their circuits. The predecessor
attack is a substantial threat to anonymity systems based
on onion routing and no comprehensive countermeasures
have been proposed. Hidden service mitigates this attack by
employing entry guards, which are the first-hop anonymiz-
ing routers hiding receivers’ IP addresses [17]. In our system,
the first-hop regular routers of producers play the role of entry
guards because producers’ identifiers, such as MAC addresses,
are disclosed only to them. Moreover, rendezvous points in our
system play the role of exit guards, which are the fixed last-
hop anonymizing routers similar to entry guards. We prove
that these changes decrease the probability of the predecessor
attack succeeding.

The contributions of this article are summarized as follows:
• We rigorously define producer anonymity in terms of

content-producer unlinkability. To the best of our knowl-
edge, this is the first study which addresses producer
anonymity under a realistic adversarial model.

• We design a system to achieve producer anonymity by
incorporating RICE in hidden service.

• We prove that our system achieves a level of anonymity
comparable to hidden service with one fewer anonymiz-
ing router and show that our system has better security
against the predecessor attack.

The rest of this article is organized as follows: Section II
describes existing studies on onion routing-based systems in
IP and NDN. We define producer anonymity in Section III.
Section IV describes the design of our system. We analyze
the anonymity of our system in Section V and the second
half of Section VI. The the first half of Section VI presents
the performance evaluation. Section VII summarizes related
works. Section VIII concludes this article.

II. PRELIMINARIES

A. Tor and Hidden Service

We describe Tor [12] and hidden service [12], [14] to
examine how sender and receiver anonymity are achieved

based on onion routing in IP. In this article, we focus on
communication in which a sender issue a content request
to a receiver in the context of IP communication for the
sake of simplicity. According to the definition in [8], we
define sender/receiver anonymity as unlinkability of a plaintext
packet and its sender/receiver, respectively.

In Tor, the sender first builds a circuit by exchanging secret
keys with several anonymizing routers incrementally. Then, the
sender issues a packet encapsulated in multiple layers of secret
key encryption along the circuit. Each anonymizing router
decrypts the top layer and forwards it to the next anonymiz-
ing router or the receiver. Because the packet is forwarded
through distributed anonymizing routers while altering its bit
pattern by decryption, its origin is mixed with other senders
from the perspective of adversaries. Although the sender peri-
odically changes the circuit, the first-hop anonymizing router
hiding the sender’s IP address is used repeatedly for a longer
period of time. Such fixed first-hop anonymizing routers are
called entry guards. Entry guards have been proposed to miti-
gate the predecessor attack [16], [17] as described in detail in
Section V-C.

Hidden service is deployed on Tor so that receivers can
hide their identities even from senders. In the following
description, we assume that all entities communicate through
circuits. The receiver first generates a pseudonym called an
onion address from her/his public key. Then, the receiver
asks several anonymizing routers to act as introduction points,
which relay senders’ connection requests to the receiver. If
the anonymizing routers accept the requests, the receiver gen-
erates a descriptor, which contains the IP addresses of the
introduction points. The descriptor is uploaded to several
anonymizing routers called descriptor directories. The sender
learns the onion address in some out-of-band way, downloads
the descriptor, and asks an anonymizing router to play the role
of a rendezvous point by building a circuit which includes the
rendezvous point as the last-hop anonymizing router. Then, the
sender issues a connection request through one of the intro-
duction points. This connection request contains the IP address
of the rendezvous point and the first half of keying materi-
als, e.g., those in the Diffie-Hellman key agreement protocol.
The receiver establishes a connection to the sender through
the rendezvous point while sending the second half of keying
materials. The sender and the receiver derive a shared secret
key used to encrypt and authenticate packets from these key
materials. At this time, the sender can send packets to the
receiver through the rendezvous point without knowing the IP
address of the receiver.

B. ANDaNA

In this subsection, we describe ANDaNA, which is an
initial attempt to adapt Tor to NDN to achieve consumer
anonymity [10]. Because we design a system to achieve pro-
ducer anonymity based on hidden service deployed on Tor,
our system has affinities with ANDaNA.

Similar to sender anonymity in IP, consumer anonymity can
be defined as request-consumer unlinkability, i.e., unlinkabil-
ity of a plaintext Interest packet and a consumer who sends
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Fig. 1. Overview of the RICE protocol.

it. The content-oriented design of NDN is compatible with
consumer anonymity. In particular, consumer anonymity is nat-
urally achieved against adversaries on core networks because
each Interest packet carries information about which Data
packet is being requested but not about who is requesting
it. However, this kind of consumer anonymity is insufficient
against adversaries on edge networks because they can directly
observe who sends a specific Interest packet.

To solve this issue, ANDaNA [10] has been designed.
ANDaNA has the advantage that it achieves a level of
anonymity comparable to that of Tor with one fewer
anonymizing router. By the term “level of anonymity”, we
mean the number of anonymizing and regular routers an
adversary must compromise to break anonymity by tracking
packets throughout a circuit. For example, in the case that
three anonymizing routers are included in a sender’s circuit
in Tor, the level of anonymity is three. This is because an
adversary can learn the sender’s IP address by compromis-
ing the first-hop anonymizing router and track packets from
the sender throughout the circuit by compromising the rest
of the anonymizing routers. The above advantage is thanks
to NDN networks inherently providing a level of consumer
anonymity equivalent to that achieved by passing through one
anonymizing router. More specifically, only the first-hop regu-
lar routers of consumers can learn their identities in ANDaNA,
whereas the first-hop anonymizing routers can learn senders’
IP addresses in Tor. Thus, the adversary must compromise the
first-hop regular routers in addition to the anonymizing routers
in circuits to break consumer anonymity.

C. RICE

Our system runs on RICE [15], which is a communication
protocol having different features from the original Interest-
Data exchanges in NDN. RICE is originally designed to enable
consumers to delegate computation to remote entities. The
overview of the RICE protocol is illustrated in Fig. 1. A
consumer first issues an Interest packet (called an I1 packet)
specifying the name of a function the consumer asks to exe-
cute. This Interest packet also carries a consumer-chosen
reverse path identifier. When each intermediate regular router
receives the I1 packet, it creates an ephemeral FIB entry to
forward other Interest packets (called I2 packets) specifying
the reverse path identifier to the interface from which the
I1 packet came. In Fig. 1, a regular router creates a FIB
entry to forward I2 packets specifying /rID as their name
prefixes to face0. As a result, a sequence of FIB entries on the
intermediate regular routers, called a reverse path, is created

by the I1 packet. If a producer who has the capability to
execute the function receives the I1 packet, it sends back I2
packet(s) along the reverse path to let the consumer return
some input parameters for execution with the corresponding
Data packet(s) (called D2 packet(s)). Upon receiving the D2
packet(s), the producer executes the function and returns its
result with the Data packet (called a D1 packet) correspond-
ing to the I1 packet or in another Interest/Data exchanges.
Specifically, our system leverages the feature of RICE that
senders of I1 packets enable remote entities to send I2 pack-
ets back to them without advertising their routable names to
achieve producer anonymity efficiently.

III. PRODUCER ANONYMITY

In this section, we identify issues of naive NDN that make
producer anonymity difficult to achieve, and then present our
adversarial model and rigorously define producer anonymity.

A. Issues Regarding Producer Anonymity

We first illustrate two typical scenarios where producer
anonymity is required. In the descriptions, we indicate a
producer and a consumer by (P) and (C), respectively. 1)
Assuming that Alice (P) wishes to launch a website that
provides people (C) with information about fraud by some
companies or governments, she may lose her job or be pun-
ished if she is not anonymous. 2) Assume that Bob (P) agrees
to offer his health information, such as his age, weight, and
blood pressure value, to a server for statistical surveys (C).
However, he might wish to hide his identity from the server
for his privacy.

In contrast to consumer anonymity, producer anonymity has
not been thoroughly studied in NDN. Producer anonymity
should be defined as being somewhat different from receiver
anonymity, whereas consumer anonymity can be regarded
as a type of sender anonymity. If the notion of receiver
anonymity is applied to NDN, it can be defined as request-
producer unlinkability, i.e., unlinkability of a plaintext Interest
packet and a producer who receives it. However, we are rather
interested in content-producer unlinkability, i.e., unlinkability
of a plaintext Data packet and its producer. The difference lies
in the communication features of IP and NDN.

Receiver anonymity is originally defined for host-oriented
IP architecture [8], in which two hosts communicate with
each other based on connections/sessions established between
them. In contrast, content-oriented NDN architecture does not
assume such end-to-end connections/sessions. Indeed, every
content can occasionally be returned from any intermediate
entity caching it. In this case, producers do not receive
any packets, however, content-producer unlinkability can still
be violated because Data packets are strongly bound to
their producers by their two components, producer names
and signatures. First, a producer name is a human-readable
globally-routable name prefix of every content name of a
producer. Each producer name plays the dual roles of the
identifier and the locator of a producer simultaneously. This
implies that one producer name reveals a similar amount
of information to a pair of an IP address and a domain
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TABLE I
SUMMARY OF NOTATION

name, which is often encrypted by using cryptographic proto-
cols such as TLS. Thus, each producer name carries enough
information to uniquely identify the producer and to obtain
more meaningful information, such as the producer’s locations
and affiliations [18]. Second, the signature carried in each Data
packet is also regarded as the producer’s identifier because it is
publicly verifiable with her/his unique public key. These fea-
tures make producer anonymity difficult to achieve, in contrast
to consumer anonymity being naturally achieved.

B. Adversarial Model

Table I summarizes the notation used in this article. We
define C, P, A, and R as the sets of all consumers, producers,
anonymizing routers, and regular routers, respectively. Each
intersection of these sets can be non-empty.

We assume that the goal of an adversary Adv is to iden-
tify who publishes what content. Following the adversarial
model in Tor and ANDaNA [10], [12], we assume Adv
that is 1) non-global, 2) active, and 3) efficient. First, we
assume that Adv compromises only a proper subset of enti-
ties. Then, Adv can be represented as a 4-tuple: Adv =
(CAdv , PAdv , AAdv , RAdv ) ⊂ (C, P, A, R), where CAdv ,
PAdv , AAdv , and RAdv are the sets of compromised con-
sumers, producers, anonymizing routers, and regular routers,
respectively. This assumption is reasonable because these enti-
ties are assumed to be distributed throughout the networks.
Second, Adv is capable of performing any action that the
compromised entities can perform, such as observing, altering,
and dropping packets. Third, Adv can run any algorithms only
in time polynomial in a security parameter κ. This is a fun-
damental assumption for almost all of modern cryptographic
protocols [19].

Note that we do not assume Adv who aims to block some
specific content throughout the networks, such as worldwide
censorship authorities. To evade such censorship, we must
encrypt Interest and Data packets in an end-to-end manner
in exchange for the advantage of content caching because
censorship can be enforced by simply dropping Interest/Data
packets which contain some censored keywords even if their
origins are anonymous [20], [21]. In addition, we do not
aim to achieve consumer anonymity against Adv , whereas
hidden service is designed so that it provides both sender
and receiver anonymity. This enables our system to leverage
cached content close to consumers because circuits are not
needed between consumers and rendezvous points. Moreover,
leveraging cached content improves producer anonymity in our
system as shown in Section V.

C. Anonymity Definition

We present a formal definition of producer anonymity in
terms of content-producer unlinkability. In this article, we
define producer anonymity by using the notion of indistin-
guishable configurations [10], [22]. In brief, a configuration
consists of packets and network entities forwarding them and
represents the packet flow in a round of communication. We
define a round as a series of content publishing of producers
performed without changing their circuits. For the sake of sim-
plicity, we assume that each producer is requested at most one
piece of content by a consumer in each round. This assumption
does not affect the definition of producer anonymity because
producer anonymity is broken if a producer is linked to even
a piece of content.

Formally, we define a configuration CF as a mapping which
associates producers with established circuits, consumers who
issue Interest packets, and the corresponding plaintext Data
packets, as follows:

Definition 1 (Configuration):

CF : P→ A
n ∪ {⊥} × C× D,

where ⊥ is a special symbol to represent the case where con-
tent is returned to a consumer from a cache on a regular router
without using a circuit and D is the set of all the Data packets
which follow the prescribed packet format.

For convenience of explanation, we also define the follow-
ing four mappings which represent elements in a configuration
CF; CFA : P→ A

n∪{⊥} (selections of n anonymizing routers
in circuits), CFAi : P → A (selections of i-th anonymizing
routers in circuits), CFC : P → C (associations between pro-
ducers and consumers), and CFD : P→ D (selections of Data
packets to publish). For example, if a producer p ∈ P pub-
lishes a Data packet dat ∈ D along a circuit consisting of n
anonymizing routers {a1, . . . , an} ∈ A

n to a consumer c ∈ C

in a configuration CF, then CF(p) = {a1, . . . , an , c, dat},
CFA(p) = {a1, . . . , an}, CFAi (p) = ai , CFC(p) = c,
and CFD(p) = dat . For another example, if c receives
dat of p from a cache on a regular router in CF, then
CF(p) = {⊥,c, dat}. In this case, p does not send/receive any
packets.

Because Adv can eavesdrop packets only at a portion of
entities and Data packets are encrypted throughout circuits, for
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a configuration CF, there can exist another possible configu-
ration CF′ which yields packet flow that seem to be consistent
with those yielded in CF from the viewpoint of Adv . In this
case, Adv cannot differentiate CF from CF′, i.e., CF and CF′
are indistinguishable with respect to Adv . To formalize this
notion, let Adv(1κ, ̂CF) denote any probabilistic algorithm
run by Adv in time polynomial in the security parameter
κ such that, given ̂CF chosen uniformly at random from a
known set {CF,CF′}, it outputs 1 if it deduces that ̂CF cor-
responds to CF. From this definition, Pr[Adv(1κ,CF) = 1]
and Pr[Adv(1κ,CF′) = 1] represent the probability that Adv
correctly identifies inputted CF as CF and the probability that
Adv incorrectly identifies inputted CF′ as CF, respectively.
By using Adv(1κ, ̂CF), indistinguishable configurations can
be defined as follows.

Definition 2 (Indistinguishable Configurations): Two con-
figurations CF and CF′ are said to be indistinguishable with
respect to Adv , denoted as CF ≡Adv CF′, if for Adv there
exists a negligible function ε(·), such that

∣

∣Pr[Adv(1κ,CF) = 1]− Pr
[Adv

(

1κ,CF′
)

= 1
]∣

∣ ≤ ε(κ),

for the security parameter κ.
From the definition, the left side of the inequality in defi-

nition 2 represents the probability that Adv can distinguish
CF from CF′. A function is said to be negligible if it is
asymptotically smaller than an inverse function of any pos-
itive polynomial. Therefore, CF ≡Adv CF′ implies that Adv
can correctly differentiate CF and CF′ only with negligible
probability.

Content-producer unlinkability is achieved with respect to
Adv if Adv can determine neither which content a pro-
ducer p ∈ P is providing nor whether p or another producer
p′ ∈ P (p′ 	= p) is publishing particular content. This
notion can be formalized by using indistinguishable config-
urations as follows: given the actual configuration CF (i.e.,
the configuration which reflects the actual network activi-
ties Adv is observing) in which p publishes a Data packet
dat, content-producer unlinkability is achieved if there exist
another imaginary but possible configuration CF′ in which p′
publishes dat and p publishes another Data packet, and Adv
cannot determine whether s/he is observing either CF or CF′.
This implies that content publishing of p and p′ causes only
a negligible difference in Adv ’s observation. We define pro-
ducer anonymity in terms of content-producer unlinkability as
follows:

Definition 3 (Producer Anonymity): p ∈ (P \ PAdv ) has
producer anonymity in configuration CF with respect to Adv
if ∃CF′ ≡Adv CF such that ∃p′ ∈ (P \ PAdv ), CF′D(p′) =
CFD(p) 	= CFD(p′) = CF′D(p) and p′ 	= p.

From the perspective of an anonymity set, which is gener-
ally defined as the set of all possible subjects that might cause
an action [8], the anonymity set with respect to p’s content
publishing consists of p and all the producers who satisfy the
requirements for p′ in the Definition 3. As the number of pro-
ducers in the anonymity set increases, p is hidden in the larger
crowd, and the anonymity degree increases.

Fig. 2. Overview of the system to achieve producer anonymity.

IV. DESIGN

In this section, we first provide an overview of our system,
and then describe its protocols in detail.

A. System Model

One of the key constraints in designing a system to achieve
producer anonymity is that producers cannot initiate content
publishing without first receiving Interest packets from con-
sumers. This is due to the feature of NDN that Data packets
are published only when the corresponding Interest packets are
issued to maintain one-to-one flow balance of Interest and Data
packets. Taking this constraint into account, our system uses
pseudonyms of producers, called onion names, and rendezvous
points. Onion names are used to distinguish services provided
by anonymous producers. However, consumers cannot send
Interest packets toward producers only by using onion names
because onion names are designed so that their producers can-
not be identified and located as described in Section IV-B.
Thus, rendezvous points accept Interest packets specifying
onion names under their globally routable names and forward
them to anonymous producers.

The overview of our system is illustrated in Fig. 2. We
assume that every anonymizing router advertises its routable
name and its public key certificate via directory nodes like Tor
and hidden service. 1) A producer who wishes to anonymously
publish content generates a long-term public/private key pair
and derives an onion name from the public key. 2) The pro-
ducer asks an anonymizing router to act as a rendezvous point
through a circuit. If the anonymizing router accepts it, the
producer waits for content requests while maintaining the cir-
cuit. We assume that the producer changes circuits periodically
like Tor and hidden service, however, the rendezvous point is
used for a longer period of time until it becomes unavail-
able. 3) The producer uploads her/his descriptor to some of
the descriptor directories, which are anonymizing routers for
publishing descriptors, through another circuit. A descriptor
contains the producer’s public key certificate, the rendezvous
point’s routable name, and the rendezvous point’s public key
certificate. The name of the descriptor is derived from the
corresponding onion name. 4) A consumer who learns the
onion name in some out-of-band way downloads the descriptor
from one of the responsible descriptor directories by specify-
ing the descriptor name. 5) To obtain content, the consumer
issues a request toward one of the rendezvous points. The
corresponding content is returned by an intermediate regular
router between the consumer and the rendezvous point if it
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has cached the content. Otherwise, the rendezvous point for-
wards the request to the producer through the circuit. In this
procedure, the producer can publish content without revealing
anything more than the onion name.

Note that the consumer builds circuits neither to the descrip-
tor directory nor the rendezvous point since we focus solely
on producer anonymity in this article. In addition, hidden
service uses introduction points to enable senders to send
connection requests to receivers and exchange secret keys
with them as described in Section II-A. This additional com-
munication phase is required to establish connections and
to encrypt packets in an end-to-end manner with the secret
keys to evade censorship enforced throughout the networks.
However, our system does not use introduction points because
we do not assume such worldwide censorship as described in
Section III-B.

B. Naming

In our system, an onion name is used as the prefix of every
content name of a producer instead of her/his producer name.
There are several requirements for onion names that are dif-
ferent from those for producer names. It must be ensured that
every onion name is 1) non-routable, 2) non-human-readable,
and 3) unique and securely bound to both its producer and
her/his public key without relying on any authorities. First,
if an onion name is advertised as the routable name of a
producer, Adv can easily correlate the onion name with the
producer, and thus producer anonymity cannot be achieved.
Second, onion names should not be human-readable to prevent
information leakage from themselves. Third, in the case of
producer names, uniqueness of names and bindings between
a producer, her/his name, and her/his public key are estab-
lished by trusted authorities, such as ICANN and CAs [23],
[24]. However, our system does not leverage such authorities
to avoid any single point of failure in terms of anonymity.

Taking these requirements into account, producers generate
their onion names from fresh public keys. A producer first gen-
erates a long-term public/private key pair (pk id , sk id ) called an
identity key pair, and the corresponding self-signed public key
certificate Cert(pk id ) signed with sk id . Note that Cert(pk id )
must be generated so that it does not contain its producer’s
identifiers except the public key. We assume the length of this
key pair is a function of the security parameter κ. The producer
uses “onion” as the top component and the hash of pk id as the
second component of the onion name, respectively. By using
the onion name, content names of the producer are represented
as follows:

/onion/H (pk id )/〈suffix〉,
where 〈suffix〉 denotes the name suffixes determined by the
producer, e.g., 〈suffix〉 = article/xyz/html.

The onion names satisfy the three requirements. Onion
names are not routable because they are just hashes of public
keys. Thus, consumers cannot send Interest packets directly to
producers. For the same reason, onion names are non-human-
readable and a collision of onion names occurs only with
negligible probability. Finally, the bindings between a pro-
ducer, her/his onion name, and her/his public key are securely

established as follows: the producer is bound with the onion
name and the public key because their ownership can be
proved with a signature which can be generated only with the
producer’s private key corresponding to the public key pk id ,
and the onion name is bound with the public key because
the onion name is self-certifying, i.e., the onion name con-
tains the hash of the public key. In addition, no authorities are
required while establishing these bindings because the pub-
lic key certificate Cert(pk id ) and onion names are locally
generated.

In terms of trust of producers, there is an inherent conflict
between producer anonymity and the naive NDN’s trust mech-
anism, in which a consumer of a piece of content verifies its
producer’s certificate along the trust chain, and trusts the pro-
ducer if the trust chain reaches one of the consumer’s trust
anchors. In contrast, our system has no built-in mechanisms
to provide consumers with the information they need to decide
onion names to trust since self-signed certificates are used to
keep private the bindings between producers, their names, and
their public keys. Therefore, if necessary, trust should be estab-
lished to producers’ onion names instead of their identities
by using reputation systems or in some ad-hoc manners [25],
[26], [27]. For example, there are several websites publish-
ing the lists of what kind of services are offered under some
onion addresses in the current hidden service. We believe that
such mechanisms help consumers decide onion names whose
content they retrieve and encourages anonymous producers to
behave trustworthily.

Similarly, consumers cannot directly authenticate anony-
mous producers. Thus, consumers authenticate onion names
instead. When a consumer receives a Data packet belonging
to an onion name of her/his interest, the consumer confirms
that it is certainly created by the correct owner of the onion
name by verifying whether the signature is valid for the public
key corresponding to the onion name. Since onion names and
public key certificates reveal nothing about producers’ iden-
tities, producer anonymity cannot be broken in this kind of
authentication process.

C. Rendezvous Point Establishment

Next, the producer asks an anonymizing router to act as
a rendezvous point by sending it the onion name and the
public key certificate Cert(pk id ). Hereinafter, we refer to this
anonymizing router simply as a rendezvous point. To prevent
Adv from impersonating the producer, this request should con-
tain the signature generated with sk id , denoted by σsk id

. The
rendezvous point accepts it only if both the onion name and
σsk id

are valid for pk id obtained from Cert(pk id ).
The important point is how to send them to the rendezvous

point. It might be problematic to send them with Interest
packets because they are not designed to carry much data.
A straightforward way to send them with Data packets is that
the producer advertises her/his producer name to the first-hop
anonymizing router to have it forward Interest packets from the
rendezvous point requesting them. This is the same approach
as hidden service, in which receivers’ IP addresses are given
to the first-hop anonymizing routers as source addresses. In
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Fig. 3. Anonymous rendezvous point establishment.

contrast, the producer has the first-hop anonymizing router
forward such Interest packets along a reverse path used in
RICE in our approach. This enables the producer to send Data
packets without revealing her/his identity even to the first-hop
anonymizing router.

In the following description, we explain how the producer
can establish the rendezvous point through a circuit built
on reverse paths. Fig. 3 shows the communication sequence,
where a circuit includes one anonymizing router other than
the rendezvous point. Let AR and RP denote the anonymizing
router and the rendezvous point, and /AR and /RP denote their
routable names, respectively. We use any CCA-secure secret
key encryption scheme Π = (Gen,Enc,Dec), where Gen is a
key generation algorithm which generates a secret key accord-
ing to inputted security parameter κ and Enc and Dec are
an encryption and a decryption algorithm with the secret key,
respectively. CCA-secure encryption schemes are probabilistic
and non-malleable: 1) ciphertexts are randomized so that Adv
cannot gain any partial information on the plaintexts, and 2)
given a ciphertext, Adv cannot generate a different ciphertext
such that their plaintexts are somehow related [19]. We assume
that the producer has built a circuit anonymously by exchang-
ing secret key ki ← Gen(κ) and session identifier sID i chosen
uniformly and independently at random from {0, 1}κ with AR
and RP. This can be done with standard Interest/Data packets
exchanges [28].

The producer first issues an I1 packet which includes
establish_rp as a name component to RP to request ren-
dezvous point establishment. The I1 packet is encapsulated
in multi-layers of encryption by using Enc. We assume that
Interest packets from the producer always pass through one
regular router offered by an ISP as the first-hop regular
router, hereinafter. AR and RP remove the top layers of the
received I1 packets by using Dec with the secret keys k1 and
k2 corresponding to the session identifiers sID1 and sID2

specified in the I1 packet, respectively. The I1 packet also
carries reverse path identifiers rID1 and rID2 in each layer
to create two reverse paths between the producer and AR
and between AR and RP. rID1 and rID2 are chosen uni-
formly and independently at random from {0, 1}κ to prevent
Adv from linking the incoming and the outgoing packet at
a non-compromised anonymizing router. On the receipt of
the I1 packet, RP issues an I2 packet specifying the con-
tent name /rID2/sID2/Enck2

(established_rp) along the
reverse path. This I2 packet notifies the producer that RP

has agreed to act as the rendezvous point and is requesting
the D2 packet containing the onion name, Cert(pk id ), and
σskid . AR encrypts the entire content name of the I2 packet
with k1 and appends rID1 as the new name prefix to for-
ward it along the reverse path to the producer. The D2 packet
is transported by using PIT entries created by the I2 packet,
while being decrypted with k1 and k2. The D2 packet also
contains MAC tags generated with k1 and k2, denoted by
tk1

and tk2
, to enable each anonymizing router to verify

the origin of the D2 packet. Finally, after receiving the D2
packet, the rendezvous point returns the D1 packet corre-
sponding the I1 packet to notify that the D2 packet has been
received.

In these Interest/Data packet exchanges, AR and RP cannot
learn their predecessors, i.e., they cannot learn the producer
and AR, respectively. This is because the I1/D2 packets do not
carry their senders’ identities. In contrast, the first-hop regular
router can learn the MAC addresses of the producer.

The rendezvous point establishment protocol requires the
intermediate regular routers to maintain ephemeral FIB entries,
each of them contains a unique reverse path identifier, to
ensure the reachability to producers. If there are so many pro-
ducers who wish to enjoy anonymity, the FIB size on each
regular router might exceed its capability. To solve this issue,
producers can leverage aggregatable reverse path identifiers
by appending topological prefixes to the reverse path identi-
fiers : /〈topological-prefix〉/rID , where /〈topological-prefix〉
denotes (maybe hierarchical) name prefixes which represent
topological information of producers. However, the topologi-
cal information should be carefully controlled because the use
of such prefixes can degrade anonymity.

D. Descriptor Publication/Retrieval

In order to advertise the existence, the producer uploads the
descriptor to several descriptor directories in the same way as
the rendezvous point establishment phase. The descriptor is
used by consumers to find the established rendezvous point
corresponding to the onion name of their interests. Concretely,
the descriptor is a type of content generated by the producer
containing the producer’s public key certificate Cert(pk id ), the
routable name of the rendezvous point, its public key certifi-
cate, and the signature σsk id

. We assume that the selection of
responsible descriptor directories follows previous studies on
hidden service [14], [29]. In short, the descriptor directories
are managed by a scheme based on a distributed hash table
(DHT) and the responsible directories are determined by the
content name of the descriptor (called descriptor name) and
current timestamp. Similar to onion names, descriptor names
are derived as follows:

/onion/H (pk id )/descriptor.

A consumer who learns the onion name derives the descrip-
tor name, finds the responsible descriptor directories deter-
mined by the descriptor name, and downloads the descriptor
from one of them. The consumer accepts the descriptor only
if σsk id

is valid for pk id obtained from Cert(pk id ) in the
descriptor.
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Fig. 4. Anonymous content publication.

E. Content Publication

After uploading the descriptor, the producer waits for con-
tent requests from consumers. Because reverse paths expire
after a certain amount of time has elapsed, the producer
updates them by issuing I1 packets carrying nonces to RP.
These I1 packets also have the role of keeping the circuit
alive by sending packets periodically, similar to PADDING
cells in Tor [30]. RP waits for content requests for a cer-
tain time period T determined according to the reverse path
expiry time and RTT between the producer and RP. If no
content request from consumers has arrived within T, RP
returns a Data packet to the producer to inform that there
is no request. Suppose that the expiry time of FIB entries on
reverse paths is set to tFIB , then T ≤ tFIB − RTT should
hold, where RTT is the estimated RTT between the producer
and RP.

Fig. 4 illustrates the flow of Interest/Data packets in the case
where there is a content request from a consumer. Since the
onion name is not routable, the consumer issues an Interest
packet int requesting content through RP by appending its
routable name as the content name prefix. For example, int
carries the content name /RP/onion/encode(pk id )/article/xyz/
html. int can be satisfied by any cache on the regular routers
between the consumer and RP because it is not encrypted.
If int reaches RP without being satisfied by the caches, RP
first removes the name component /RP from int and then
forwards such a new Interest packet int ′ along the reverse
path associated with the onion name specified in int ′. In the
reverse paths, int ′ is treated as an I2 packet. The correspond-
ing Data packet dat ′ containing the requested content and
σskid is returned from the producer to RP as the D2 packet
by using PIT entries. Then, RP generates a Data packet dat
which has the same content name as int by encapsulating
dat ′ (without encryption). After sending dat to the consumer,
RP returns the D1 packet to acknowledge the D2 packet.
Suppose that the PIT entries expiry time is set to tPIT , then
T ≤ tPIT−2RTT should also hold to transport the D1 packet
to the producer.

The consumer verifies that dat has certainly been generated
by the intended producer advertising the onion name by veri-
fying σskid in dat with the public key pk corresponding to the
onion name of her/his interest. In addition, each anonymiz-
ing router cannot learn its predecessor in these Interest/Data
packet exchanges for the same reason as the rendezvous point
establishment phase.

V. ANONYMITY ANALYSIS

In this section, we provide an analysis of our system on pro-
ducer anonymity against 1) Adv who just observes bit patterns
of packets passing through compromised entities; and 2) Adv
who also observes other sources of information, such as timing
and volume of packets. We call the former a weak adversary,
denoted as Advw , and the latter a strong adversary, denoted
as Adv s , respectively (Adv ∈ {Advw ,Adv s}).

A. Notation

In the following discussion, we focus on the content pub-
lication phase described in Section IV-E because producer
anonymity is achieved in other phases in the same way. In
terms of linkability of packets, I1, I2, D1, and D2 packets
traverse the same route by using PIT or reverse paths and
are easily linkable by observing their content names and the
reverse path identifiers. Consequently, in terms of producer
anonymity, it is sufficient to focus on linkability between pro-
ducers and one of these packets. In addition, I2 and D2 packets
between a RP and a producer are just encrypted forms of
Interest and Data packets between a consumer and the PR,
respectively. From these observations, we hereinafter focus
only on linkability between a producer and a Data packet.

Let Ek denote an operation in which a Data packet is
encrypted once by using an encryption algorithm Enc with a
secret key k ← Gen(κ) and a reverse path identifier and a ses-
sion identifier chosen uniformly and independently at random
from {0, 1}κ are appended to the content name as described
in Section IV. We represent a Data packet dat which has gone
through E for a sequence of l secret keys Kl = (k1, . . . , kl )
(if l = 0, then Kl = ∅) in this order as follows:

datKl
=

{

dat (l = 0)
Ekl

(

Ekl−1

(· · · (Ek1
(dat)

) · · · )
)

(l ≥ 1)

Obviously, producer anonymity is broken if Adv can cor-
rectly correlate an outgoing Data packet at the producer, i.e.,
Ekn (Ekn−1

(· · · (Ek1
(dat)) · · · )), and an outgoing Data packet

at a rendezvous point, i.e., dat, because it implies that Adv
can correlate the input and output of a circuit. For the sake of
simplicity of notation, we define that the circuit is said to be
compromised by Adv in such a case.

In our system, the sender of each Data packet might be
included in an anonymity set, i.e., there might exist several
possible senders, from the viewpoint of Adv . This is because
Data packets do not carry any identifiers of their senders and
we assume thatAdv does not compromise all the entities. Note
that the term “sender” does not always correspond to the pro-
ducer; for example, if an anonymizing router forwards a Data
packet after removing the top layer of encryption, its sender
is the anonymizing router. We define a sender anonymity set
of a Data packet datKl

with respect to Adv as follows.
Definition 4 (Sender Anonymity Set):

AS
datKl
Adv = {e ∈ P ∪ A | Pr[Adv infers that e has sent

datKl
| Adv observes datKl

]

> 0
}

.

This implies that the sender anonymity set of datKl
with

respect to Adv contains all the entities which seem to have
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sent it with non-zero probability from the perspective of Adv .
When the producer sends a Data packet, Adv on the first-hop
regular router can identify the producer (i.e., the sender), how-
ever, the sender anonymity set will grow as it is transported
toward regular routers on core networks because packets from
more senders can pass through them. We assume that the
anonymity degree of all the possible senders of datKl

equals

|AS
datKl
Adv |−1, where | · | represents the size of a set.

B. Anonymity Against Advw

Since any CCA-secure encryption scheme is used and
reverse path identifiers and session identifiers are chosen
uniformly and independently at random in our system, the
following theorem holds.

Theorem 1: Advw can correctly correlate incoming Data
packets from non-compromised producers with the outgoing
counterparts at a non-compromised anonymizing router only
with negligible probability.

We provide the proof of Theorem 1 in the Appendix.
Next, we show the requirement to achieve producer

anonymity in our system.
Theorem 2: p ∈ P \ PAdvw has producer anonymity in a

configuration CF with respect to Advw if ∃p′ ∈ P \ PAdvw

such that CFD(p′) 	= CFD(p), p′ 	= p, and any of the following
conditions holds:

1) CFA(p) = CFA(p′) =⊥.

2) p, p′ ∈ AS
CFD(p)Kn
Advw .

3) ∃i ∈ {1, . . . ,n}, CFAi (p) = CFAi (p
′) ∈ A \ AAdvw .

4) ∃i ∈ {1, . . . ,n}, CFAi (p),CFAi (p
′) ∈ A \ AAdvw and

CFAi (p),CFAi (p
′) ∈ AS

CFD(p)Kn−i

Advw .
In other words, p can anonymously publish her/his Data

packet if there exists another producer p′ who publishes
another Data packet and any of the following conditions holds:
1) the Data packets of p and p′ are returned from caches; 2)
p and p′ are included in the same sender anonymity set of the
encrypted Data packets from p and p′ with respect to Advw ;
3) p and p′ share the same i-th anonymizing router which is not
compromised by Advw ; or 4) The i-th anonymizing routers of
p and p′ are not compromised by Advw and these anonymiz-
ing routers are included in the same sender anonymity set of
their output Data packets with respect to Advw .

Theorem 2 is also proven in the Appendix.
In hidden service, receiver anonymity is achieved against
Advw only if a circuit includes at least one non-compromised
anonymizing router. Similarly, our system achieves producer
anonymity in such a case as described in the third condition.
The difference between our system and hidden service is that
our system can achieve anonymity even if all the anonymiz-
ing routers in a circuit are compromised. This is because a
producer can be included in a sender anonymity set with
respect to Advw who does not compromise the producer’s
first-hop regular router. This corresponds to the second con-
dition. Putting together the second and the third condition,
our system achieves a level of anonymity with one fewer
anonymizing router than hidden service thanks to the first-
hop regular router providing anonymity at the network layer,

instead of an anonymizing router. The fourth condition is sim-
ilar to the second condition. In contrast to the fact that each
anonymizing router can learn its predecessor from the source
address in a received packet in hidden service, each anonymiz-
ing router cannot learn its predecessor form a Data packet in
our system. Thus, the fourth condition implies that it is more
difficult for Advw to compromise a circuit in our system than
in hidden service. The first condition implies that producer
anonymity can be achieved by leveraging in-network caching.
This is because producers do not send/receive any packets
when cache hits occur.

The inverse of Theorem 2 also holds: producer p does
not have producer anonymity if none of the conditions of
Theorem 2 hold, i.e., Data packet dat of p is not returned
from caches and Advw compromises the first-hop regular
router of p and all the anonymizing routers in p’s circuit.
This is because it implies that Adv can track dat through-
out the circuit, i.e., the circuit is compromised by Advw . Let
fA = |AAdv |/|A| and fR = |RAdv |/|R| (0 ≤ fA, fR < 1,
Adv ∈ {Advw ,Adv s}), i.e., fA and fR represent the fractions
of compromised entities in the sets of all the anonymizing
routers and the regular routers, respectively. Hereinafter, we
suppose that each anonymizing router in a circuit is compro-
mised independently with probability fA. This gives a good
approximation in the realistic model, in which a large num-
ber of anonymizing routers exist (e.g., |A| ≈ 6000 in current
Tor [31]). Then, Advw can break producer anonymity with
probability

(1− pc) · fR · f n
A

, (1)

where pc is the probability that a cache hit occurs (0 ≤
pc ≤ 1). Intuitively, larger n, i.e., longer circuits, contributes
to achieve producer anonymity with more confidence.

C. Anonymity Against Adv s

Adv s can launch more sophisticated attacks called traffic
analysis attacks [16], [32], [33], [34], [35] by using other
sources of information, such as timing and volume of pack-
ets. In particular, we focus on traffic confirmation attacks,
which are a type of traffic analysis attacks aiming to cor-
relate two entities included in the same circuit. To mitigate
traffic confirmation attacks, several schemes like packet batch-
ing and reordering have been proposed [35], [36], however,
they are not implemented in Tor and hidden service due to
their high cost in terms of the delay and the load at each
anonymizing router. Thus, our system does not explicitly
employ such schemes, whereas we believe that they could also
be incorporated into our system almost without modification.

In this subsection, rather than discussing how to deal
with traffic confirmation attacks, we analyze the probabil-
ity that producer anonymity is broken with the predecessor
attack [16], [17], assuming that Adv s launches successful
traffic confirmation attacks. The predecessor attack is a sub-
stantial threat to anonymity systems based on onion routing
because it is difficult to detect, relatively easy to launch,
and the probability of its success increases to 1.0 with
time [16]. With the predecessor attack, Adv s can break
producer anonymity even when Advw cannot.
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Fig. 5. The cases in which receiver anonymity and producer anonymity are
broken in hidden service and in our system with traffic confirmation attacks.

1) Predecessor Attack in Static Model: Before describ-
ing the predecessor attack, we describe the cases in which
producer anonymity and receiver anonymity are broken with
traffic confirmation attacks and show the probabilities of their
occurrence in a single round. Hereinafter, we assume that
traffic confirmation attacks always succeeds when two enti-
ties on the same circuit are compromised by Adv s . In the
current implementation of hidden service, each circuit of
receivers includes three anonymizing routers by default. To
match the level of anonymity against Advw , we assume that
two anonymizing routers are included in each circuit in our
system.

The upper illustration in Fig. 5 depicts the case in which
anonymity of a producer is broken in our system. AR and RP
are an anonymizing router and a rendezvous point included in
the producer’s circuit, respectively. Hereinafter, we focus only
on the case in which Interest packets are not satisfied by caches
because Adv s cannot launch traffic confirmation attacks if
cache hits occur. In our system, producer anonymity is broken
with traffic confirmation attacks if both the first-hop regular
router and the rendezvous point of the producer’s circuit are
compromised by Adv s . This is because it implies that Adv s

can correlate the producer’s MAC address obtained at the first-
hop regular router and plaintext Data packets outputted by the
rendezvous point. Note that Adv s can make sure that s/he has
compromised a rendezvous point among anonymizing routers
because packets are plaintext only between a consumer and
a rendezvous point. Similarly, Adv s can make sure that a
compromised regular router is the first-hop of a producer by
checking whether the packets received on the regular router
are the same as those received on the compromised rendezvous
point. If not the same, there is an anonymizing router between
the regular router and the rendezvous point, and thus the
regular router is the first-hop of a producer. Thus, producer
anonymity is broken in our system with probability fR · fA.

Similarly, the lower illustration in Fig. 5 depicts one of
the cases in which anonymity of a receiver is broken in hid-
den service. Note that the last-hop anonymizing router of a
receiver’s circuit is not the rendezvous point in hidden ser-
vice. Instead, the last-hop anonymizing router of a sender’s
circuit is the rendezvous point. Traffic confirmation attacks
against hidden service looks a little more complicated due to
end-to-end encryption between senders and receivers: Adv s

requires to act as a sender to observe packets from a receiver in
plaintext. However, this requirement is easily satisfied because
anyone can act as a sender, and thus we ignore the proba-
bility that a sender is compromised, hereinafter. The goal of

Adv s acting as a sender is to learn a receiver’s IP address at
the first-hop anonymizing router. Even if Adv s finds that a
compromised anonymizing router is included in a receiver’s
circuit, however, Adv s cannot confirm its position in the cir-
cuit. Thus, in addition to the first-hop anonymizing router
(AR1), Adv s must compromise another anonymizing router
in the same circuit (AR2 or AR3). Then, Adv s makes sure
of their positions in a circuit based on the IP addresses of the
compromised anonymizing routers and the rendezvous point
known to the sender (i.e., Adv s ). For example, if Adv s learns
that two compromised anonymizing routers in the same circuit
are not adjacent to each other and one of them is adjacent to
the rendezvous point, then these anonymizing routers are AR1
and AR3. Therefore, receiver anonymity is broken in hidden
service with probability fA · (1− (1− fA)2) = 2f 2

A
− f 3

A
.

In the predecessor attack,Adv s just acts like legitimate enti-
ties, i.e., follows the prescribed protocols for the compromised
entities, and continually performs a succession of traffic confir-
mation attacks against the packets passing through them [16].
In this subsection, we consider the predecessor attack in the
static model, where the entities in A and R do not change
throughout rounds. In each round, a circuit is compromised by
Adv s in hidden service and in our system with probabilities
of 2f 2

A
− f 3

A
and fR · fA, respectively as described above. These

are the lower bound of the probabilities of a circuit being com-
promised with the predecessor attack. Comparing to Eq. (1),
we can see that the predecessor attack has a greater probabil-
ity of success in many cases. Because receiver and producer
anonymity are broken if one circuit is compromised, we focus
on the probability that at least one circuit is compromised by
Adv s in m rounds, hereinafter.

If all the anonymizing routers in circuits are chosen uni-
formly at random in each round, the probability that at least
one circuit of a receiver is compromised in m rounds in hidden
service is derived as follows:

1−
(

1− 2f 2
A

+ f 3
A

)m
. (2)

As the number of rounds increases (m →∞), the probability
grows to 1.0.

To mitigate the predecessor attack, entry guards are intro-
duced to hidden service. Because a receiver repeatedly uses
the first-hop anonymizing router called an entry guard, Adv s

must compromise it in addition to either the second-hop or
the third-hop anonymizing router. The probability that neither
the second-hop nor the third-hop anonymizing router is com-
promised even once in m rounds is (1 − fA)2m . Therefore,
the probability that at least one circuit of a receiver is
compromised is derived as follows:

fA ·
{

1− (1− fA)2m
}

. (3)

As the number of rounds increases (m →∞), the probability
grows to fA (< 1).

In our system, the last-hop anonymizing router in circuits
of a producer, i.e., a rendezvous point, is fixed. Such an
anonymizing router is called an exit guard. In addition, the
first-hop regular router plays the role of an entry guard because
the producer’s identities, such as MAC addresses, are revealed
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Fig. 6. The probability that at least one circuit is compromised with the
predecessor attack in the static model (fA = 0.1).

only to it. Thus, Adv s must compromise both of them to com-
promise a circuit. Therefore, the probability that at least one
circuit of a producer is compromised is derived as follows:

fR · fA, (4)

regardless of the number of rounds (fR · fA < fA < 1.0). This
probability is equal to the lower bound of probability of a
circuit being compromised by the predecessor attack in the
static model.

Fig. 6 shows the changes in Eq. (2), Eq. (3), and Eq. (4) as
the number of rounds increases when fA = 0.1. It is shown
that our system offers the best security even if fR is much
larger than fA.

2) Predecessor Attack in Dynamic Model: In this subsec-
tion, we consider the predecessor attack in the dynamic model,
where the members in A and R change over rounds. As dis-
tinct from the static model, changes of an entry and an exit
guard are caused if one of them becomes unavailable, and
this gives Adv s further opportunities to compromise circuits
in addition to those in the static model. The dynamic model is
worth considering because it has been shown that only about
half of the entry guards in hidden service remain available for
the intended period of time (e.g., 720-1440 hours), and thus
changes of guards occur when they are undesirable [37]. Since
anonymizing routers are operated by unreliable volunteers, we
believe that this is a inherent problem for hidden service and
our system.

It is possible to use both entry and exit guards in hidden ser-
vice to improve security against the predecessor attack in the
static model. However, this causes a problem in the dynamic
model because the receiver changes entry and exit guards if
one of them becomes unavailable, and thus changes of guards
are presumed to occur more frequently in the case where both
entry and exit guards are used than in the case where only entry
guards are used [17]. Although our system employs both entry
and exit guards, our system mitigates this problem by having
the first-hop regular routers act as entry guards instead of the
first-hop anonymizing routers. Because (carrier-grade) regular
routers managed by ISPs are intended to provide higher avail-
ability, e.g., the five nines available requirement [38], than
anonymizing routers operated by voluntary hosts, changes of
guards are affected almost exclusively by the availability of
anonymizing routers chosen as exit guards. This implies that
our system provides a degree of security against the prede-
cessor attack in the dynamic model that is equivalent to that

provided by hidden service, in which only entry guards are
employed.

Hereinafter, we compare the case where anonymizing
routers are used as an entry and an exit guard in hidden service
with our system, where a regular router and an anonymizing
router are used, in terms of the probability that at least one cir-
cuit is compromised by Adv s in m rounds. Our goal is to show
how the probability decreases by substituting regular routers
for anonymizing routers. We assume that each anonymizing
router becomes unavailable in A independently with proba-
bility q (0 < q < 1) at the end of each round. Because we
are interested in how the change in q affects the probability
of a circuit being compromised, we assume f = fA = fR
(0 ≤ f < 1), i.e., the same fraction of anonymizing routers
and regular routers are compromised by Adv .

When anonymizing routers are used as both entry and exit
guards in hidden service, the probability that the producer
changes guards i times in m rounds is {1− (1− q)2}i{(1−
q)2}m−i

(m
i

)

. For i changes of guards, the probability that
Adv s succeeds in compromising at least one circuit of the
producer is 1 − (1 − 2f 2 + f 3)i . Thus, the probability that
Adv s succeeds in compromising at least one circuit of the
producer in m rounds is derived as follows:

m
∑

i=0

{

1−
(

1− 2f 2 + f 3
)i

}

{

1− (1− q)2
}i

×
{

(1− q)2
}m−i

(

m
i

)

. (5)

Next, we consider our system, in which regular routers
and anonymizing routers are used as entry and exit guards,
respectively. We assume that the probability that each regular
router becomes unavailable in R at the end of each round is
sufficiently close to 0.0. Therefore, in our system, the prob-
ability that the producer changes guards i times in m rounds
is q i (1− q)m−i

(m
i

)

. For i changes of guards, the probability
that Adv s succeeds in compromising at least one circuit of the
producer is 1 − (1 − f 2)i since Adv s must compromise the
first-hop regular router and the last-hop anonymizing router.
Thus, the probability that Adv s succeeds in compromising at
least one circuit of the producer in m rounds is derived as
follows:

m
∑

i=0

{

1−
(

1− f 2
)i

}

q i (1− q)m−i
(

m
i

)

. (6)

Fig. 7 shows the change in Eq. (5) and Eq. (6) for several
pairs of f and q. It is shown that the probabilities of a circuit
being compromised are sufficiently small in our system for all
the pairs of f and q and the differences increase as q increases.

From the analysis of the both models, the security of our
system against the predecessor attack can be summarized as
follows: First, our system provides the better security in the
static model because both entry and exit guards are used.
Second, our system provides the security comparable to that
of hidden service in the dynamic model due to the use of reg-
ular routers as entry guards. Because Adv s can launch the
predecessor attack in the static model and the dynamic model
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Fig. 7. Probabilities that at least one circuit is compromised with the prede-
cessor attack in the dynamic model. (a) represents the case where both entry
and exit guards are used in hidden service (Eq. (5)), and (b) represents our
system (Eq. (6)).

at the same time, we conclude that our system provides better
security against the predecessor attack than hidden service.

VI. EVALUATION

In this section, we first evaluate the performance of our
system compared to hidden service in terms of RTT, defined
as the time it takes for a consumer to send a request and
then receive the corresponding the content, and throughput by
implementing prototypes with minimum functions. We com-
pare our system only with hidden service because no other
anonymity systems are proposed for NDN which assume
the same adversarial model as our system as described in
Section VII. Then, we assess the probability of the success-
ful predecessor attack assuming Adv s with the knowledge of
the underlying network topology to address an issue arisen in
realistic networks.

A. Implementation and Performance

In this subsection, we focus only on the content publication
phase because the same style of communication is used in the
other phases and they have little effect on producers’ long-term
activities thanks to the fact that they are performed only at the
first set up time. In addition, we assume that Interest packets
issued by a consumer are forwarded to a producer without
being satisfied by any intermediate router’s cache. This is the
worst case scenario in terms of RTT and throughput.

We implemented our system as applications that run on
producers and anonymizing routers (including rendezvous
points) by using the ndn-cxx library, which is a C++ library
implementing NDN primitives. These applications imple-
ment the functions required in the content publication phase,
such as encryption and decryption of packets, described in
Section IV-E. We used AES-128 as a secret key encryp-
tion/decryption algorithm and HMAC with SHA-256 as a
message authentication code generation/verification algorithm.
These cryptographic functions were implemented by using
OpenSSL. To compare our system with hidden service, we
also implemented simple hidden service applications which
work as receivers and anonymizing routers because the cur-
rent hidden service implementation includes many functions
not required for comparison. In hidden service, we assume that
a sender issues an IP packet requesting content through a cir-
cuit built by a receiver without using a circuit between a sender

Fig. 8. Process delay measurement.

Fig. 9. Throughput measurement.

and a rendezvous point so that the only receiver anonymity
comparable to producer anonymity is provided.

We focus mainly on the process delay taken by the
applications to derive RTT. This is because current NDN
runs as a application on top of TCP/IP, and thus an
unavoidable overhead will be incurred in our system, which
is implemented over NDN, compared to hidden service,
which is implemented over TCP/IP, when producers/receivers
and anonymizing routers communicate with each other as
described in [10], [39]. Thus, we first show the overall pro-
cess delay taken by the applications of our system and hidden
service, and then show the RTT for various average end-to-end
delay in communication between each pair of entities assum-
ing a simple line topology. The overall process delay is defined
as the total time it takes for the applications to process a packet
by using cryptographic functions, not including the time it take
to transport the packet between them. All experiments were
conducted on a machine with an Intel Xeon E5-2620 v4 pro-
cessor (2.10 GHz) with eight DDR4 16GB DRAM devices.
The operating system on the machine is Ubuntu 18.04 LTS.

Fig. 8 shows the overall process delay as a function of
the achieved level of anonymity against Advw , and similarly
Fig. 9 shows the throughput of the applications. Since a level
of anonymity represents the number of anonymizing routers
and regular routers Adv must compromise to trace packets
throughput a circuit, for example, if the level of anonymity
is three, it means that three anonymizing routers are used
in hidden service and that two anonymizing router is used
in our system. Because the size of application data is set to
512 bytes in the current hidden service implementation, we
set the size of each Data packet payload to the same size.
Regarding the size of content name in Interest/Data packets,
Ghali et al. have generated realistic NDN compatible names
according to the URLs in the Unibas dataset from The Content
Name Collection [20] and found that the average and the max-
imum size of the names are approximately 60 bytes and 770
bytes, respectively. According to this result, we evaluated the
cases where content names are set to these sizes.
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Fig. 10. RTT measurement (level of anonymity = 3).

As expected, our system has better performance (i.e., less
process delay and more throughput) when content names are
shorter. This is mainly because the smaller content names
result in shorter process delay for performing cryptographic
functions and packet generation. This implies that producers
can improve efficiency of content publishing by carefully nam-
ing their content so that the content names are small in our
system. In comparison with hidden service, our system has
better performance because our system reduces the number of
required anonymizing routers in a circuit by one while still
achieving a comparable level of anonymity to hidden service.
More specifically, our system reduces the number of crypto-
graphic operations performed by a producer compared to those
performed by a receiver in hidden service, in addition to that
an anonymizing router becomes unnecessary.

Fig. 10 shows how end-to-end delay between neighboring
entities influences the RTT. We assumed that the level of
anonymity is three, i.e., hidden service uses three anonymiz-
ing routers and our system uses two anonymizing routers. It is
shown that the overhead due to the process delay is sufficiently
small as we can see that RTT approximately equals to 0.0
when the end-to-end delay equals to 0.0. Thus, we conclude
that RTT is predominantly determined by end-to-end delay
required to transport packets around geographically distributed
anonymizing routers. Therefore, we argue that such overhead
is unavoidable to achieve producer anonymity. However, it is
also shown that our system sufficiently prunes such overhead
(0.05 ∼ 0.2 [sec]) by reducing the number of anonymizing
routers by one.

B. Anonymity Analysis Under a Realistic Network Topology

We have analyzed the security of our system against the pre-
decessor attack launched by Adv s in Section V-C, assuming
the adversarial model where Adv s chooses regular routers to
compromise uniformly at random. In this subsection, we ana-
lyze the security against the predecessor attack against Adv s

who chooses anonymizing routers to compromise taking the
underlying network topology into account. Because the secu-
rity of our system depends on the first-hop regular routers
of producers, Adv s can break anonymity of many produc-
ers if it preferentially compromises regular routers connecting
to many ones. Thus, the expected number of such producers
can depend on an underlying network topology. To confirm
this, we evaluate the expected value of the number of pro-
ducers being broken anonymity with the predecessor attack
in the static model based on the real network topology and
population in Tokyo, Japan.

Fig. 11. Probability that the i-th first-hop regular router is compromised.

The target area is a 32 km square part of Tokyo. We con-
struct a router-level topology defined as a tree of depth 3 based
on the positions and coverage areas of telephone exchange
buildings of NTT East Corporation [40]. The first-level regular
router is placed in Otemachi, which is one of the most thickly
populated areas in Japan. The second level regular routers are
placed near the 6 terminal stations on the Yamanote line. The
third-level regular routers are placed so that the target area is
uniformly covered and connected to the closest second level
regular routers. The fourth level regular routers connects to the
hosts within some specific municipalities, and thus plays the
role of the first-hop regular routers of producers. We call the
fourth-level regular routers the first-hop regular routers, here-
inafter. The number of the first-hop regular routers is M = 102.
We assume that the number of producers connected to each of
the first-hop regular routers is proportional to the population
within its coverage area, and the number of all producers is
927 (1/10000 of the total population in the target area).

Let ni and fRi denote the number of producers connecting
to the i-th first-hop regular router and the probability of the i-th
first-hop regular router being compromised, respectively. We
set fRi to be proportional to ne

i /
∑M

j=1 ne
j so that first-hop

regular routers with a larger number of producers are more
likely to be compromised. e is a constant that determines how
much priority is given to the regular routers with a larger
number of producers. We assume that Adv s compromises ten
of the first-hop regular routers (i.e., approximately 10% of all
the first-hop regular routers), and thus fRi = 0.1 for all the
first-hop regular routers when e = 0. By setting fRi so that
∑M

i=1 fRi is constant for e ≥ 1, the larger e becomes, the larger
fRi for the first-hop regular routers with larger ni becomes and
the smaller fRi for those with smaller ni becomes. Fig. 11
shows the values of fRi when e = {0, 1, 2, 3}. For example,
the 45-th first-hop regular router is compromised with higher
probability than others when e ≥ 1 because it connects to
more producers.

As described in Section V-B, the probability that anonymity
of each producer connected to the i-th first-hop regular router
is broken with the predecessor attack in the static model is
fRi ·fA, where fA is the probability of each anonymizing routers
being compromised defined in Section V-B. Thus, the expected
value of the number of producers of which anonymity is bro-
ken among all the producers connected to the i-th first-hop
regular router is

∑nj

j=1 j · fRi ·
(m

i

) · f j
A
· (1 − fA)ni−j . By

using linearity of expectation, the expected value of the total
number of producers who are broken anonymity is computed
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TABLE II
THE EXPECTED VALUE OF THE NUMBER OF PRODUCERS BEING BROKEN

ANONYMITY AND ITS RATIO

as follows:

E =
M
∑

i=1

nj
∑

j=1

j · fRi ·
(

m
i

)

· f j
A
· (1− fA)ni−j . (7)

The actual values of E and its ratio among all the produc-
ers are summarized in Table II. The result shows that Adv s

can break anonymity of more producers by selectively com-
promising the first-hop regular routers connecting to a large
number of producers. Thus, it is important for producers who
wish to enjoy anonymity to contract ISPs with a small num-
ber of hosts if Adv s with the knowledge of the underlying
network topology should be contemplated. However, if there
are too few hosts in the same network, anonymity is difficult
to achieve in principle. Therefore, producers should choose
ISPs to contract while simultaneously considering these two
factors.

VII. RELATED WORK

The design of onion routing is derived from Chaum’s Mix-
Net [41], which aims to hide who sends an e-mail to whom.
In Mix-Net, e-mails are encapsulated in layers of public-
key encryption and forwarded through several nodes called
mixes. After decrypting received packets, each mix stores them
for a certain period of time and forwards them in random
order. Since we describe Tor, hidden service, and ANDaNA
as existing onion routing-based systems in detail in Section II,
we summarize other kinds of anonymity systems here. Note
that producer anonymity is briefly mentioned in ANDaNA
paper [10], however, we presented a stronger and more rig-
orous definition in this article. Intuitively, the definition of
ANDaNA considers producer anonymity only against adver-
saries on anonymizing routers and regular routers, whereas
our definition also considers producer anonymity against
consumers.

Kaushik et al. have proposed an attribute-based signature
scheme suitable for NDN, called NDN-ABS (NDN Attribute-
Based Signature), to enable privacy-preserving signature ver-
ification [42]. With NDN-ABS, consumers cannot identify
a single producer among a set of producers with the same
attribute from a signature. However, NDN-ABS cannot provide
producer anonymity against adversaries eavesdropping packets
on the networks because it focuses only on the information
leakage from signatures. In addition, the attribute author-
ity, which managed producers’ secret keys used to generate
signatures, is a single point of failure in terms of anonymity.

Next, we summarize systems for consumer anonymity.
Tourani et al. have proposed a lightweight mechanism
to hide content names based on Huffman coding [43]

and Kurihara et al. have proposed an approach employ-
ing consumer-driven access control on content names, while
enabling content caching on trusted entities [44]. These mech-
anisms use trusted proxies called anonymizers to allow con-
sumers to anonymously retrieve content. Arianfer et al. have
proposed a covered content-based approach, in which produc-
ers mix censored content with other content based on keywords
contained in it to prevent information leakage from content
names [45].

Crowds is a P2P-based anonymity system without packet
encapsulation in IP [46]. In Crowds, packets are sent around
peers to hide their origins. Each peer probabilistically decides
whether to forward received packets to the intended destina-
tions or to relay them to other peers. Thus, adversaries far
away from an initiator of a packet cannot determine whether
a particular peer is the initiator or not. Inspired by Crowds, a
similar system called CRISP is proposed for NDN to achieve
consumer anonymity [9]. In CRISP, instead of peers, each
regular router probabilistically determines whether to forward
a received Interest packet toward the specified producer or
toward another cooperative regular router. This process makes
it difficult for adversaries to trace back an Interest packet to
its origin (i.e., a consumer). However, these systems have a
drawback that anonymity is broken if the first-hop entities,
i.e., peers or regular routers, are compromised by adversaries
because such adversaries can immediately learn who initiates
a particular packet.

In Section V, we specifically focus on the traffic confir-
mation attacks among traffic analysis attacks [16], [32], [33],
[34], [35]. To mitigate traffic analysis attacks, several schemes
have been proposed. For example, Gulcu and Tsudik have
proposed a batching and reordering scheme in which each
anonymizing router stores arrival packets until the number
of packets reaches a threshold and forwards them in random
order [36]. Regarding padding schemes, Shmatikov and Wang,
have proposed an adaptive padding scheme, in which each
anonymizing router inserts dummy packets in original packet
flows when it is difficult to prevent Adv from correlating two
links using inter-packet time intervals [35]. These schemes can
be leveraged in our system almost without modification, how-
ever, our system does not explicitly employ them due to their
high cost. Rather, we have analyzed the security of our system
under the assumption that Adv succeeds in launching traffic
analysis attacks.

VIII. CONCLUSION AND FUTURE WORK

This article first defined producer anonymity in NDN in
terms of content-producer unlinkability, and then designed a
system to achieve producer anonymity based on hidden ser-
vice. Concretely, we leveraged onion names and rendezvous
points of hidden service to address the NDN issue that
every content is inherently tied to it producer. Moreover, we
improved hidden service in terms of efficiency and security by
incorporating RICE in onion routing. Our experiments showed
that our system definitely reduces RTT and improves through-
put in content retrieval by reducing the number of anonymizing
routers required to achieve a certain level of anonymity by one.
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Our plans for future work include the implementation of
all the phases of our system, such as the rendezvous point
establishment phase and the descriptor publication/retrieval
phase, and more performance evaluations under various sce-
narios, e.g., mobile wireless networks and congested networks.
In addition, in terms of security of our system, integrating
several DoS mitigation mechanisms into our system is also
one of our future research plans. For instance, requiring pro-
ducers to solve puzzles, which cost a lot of CPU cycles or
memory before establishing reverse paths and circuits, can hin-
der adversaries from making regular routers and anonymizing
routers unavailable by establishing many reverse paths and
circuits through them.

APPENDIX

ANONYMITY PROOFS

Proof of Theorem 1: Suppose that two non-compromised
producers p, p′ ∈ P \ PAdvw independently exchange
sequences of secret keys Kn = (k1, . . . , ki , . . . , kn ) and
K′

n = (k ′1, . . . , k ′i , . . . , k ′n) with their chosen anonymizing
routers to build circuits, and ai ∈ A\AAdvw is used as the i-th
anonymizing router in both circuits. Two encrypted Data pack-
ets from p and p′ received by ai are denoted by datKn−i+1

and datK′
n−i+1

, respectively (dat , dat ′ ∈ D). Suppose that
Advw attempts to correlate these incoming Data packets with
the corresponding outgoing Data packets, i.e., datKn−i

and
datK′

n−i
. Suppose that an encryption algorithm Enc of any

CCA-secure secret key encryption scheme Π is used in the
encapsulation algorithm E defined in Section V-A. First, by
the definition of CCA-secure encryption schemes, Advw can
correctly correlate them by observing the changes in their bit
patterns due to decryption at ai only with negligible probabil-
ity. This is because Advw who does not compromise ai cannot
learn secret keys ki , k ′i . Second, in our system, reverse path
identifiers and session identifiers, which are the unencrypted
parts of content names on Data packets, can be considered
as the other source of information to correlate Data packets.
We assume that datKn−i+1

and datKn−i
carry reverse path

identifiers rID i , rID i−1 and session identifiers sID i , sID i−1,
respectively. Similarly, datK′

n−i+1
and datKn−i

are assumed

to carry reverse path identifiers rID ′
i , rID ′

i−1 and session
identifiers sID ′

i , sID ′
i−1, respectively. Advw can correlate

these Data packets if Advw can correlate any pair of these
identifiers on the input and the output Data packet. However,
it is infeasible for Advw because they are chosen uniformly
and independently at random by p and p′ from {0, 1}κ as
described in Section IV-C.

Proof of Theorem 2 - (1): Without loss of generality, we
assume CF such that CF(p) = (⊥, c, dat) and CF(p′) =
(⊥, c′, dat ′), and Advw such that PAdvw = P \ {p, p′},
AAdvw = A, RAdvw = R, and CAdvw = C, i.e., Advw

compromises all the producers except for p and p′ and all
the anonymizing routers, regular routers, and consumers. This
CF satisfies the first condition in Theorem 2. In this case,
dat and dat ′ are published without using circuits. Supposing
another configuration CF′ which is identical to CF except
that CF(p) = (⊥, c′, dat ′) and CF(p′) = (⊥, c, dat), the

only sources of information to distinguish CF and CF′ are
onion names and signatures on dat and dat ′. However,
CF′ ≡Advw CF holds because the onion names and signatures
are generated from identity key pairs chosen independently
and randomly by p and p′. Therefore, from the definition 3,
p has producer anonymity.

Proof of Theorem 2 - (2): Without loss of generality,
we assume CF such that CF(p) = (a1, . . . , an , c, dat)
and CF(p′) = (a ′1, . . . , a ′n , c′, dat ′), and Advw such that
PAdvw = P \ {p, p′}, AAdvw = A, and CAdvw = C, i.e.,
Advw compromises all the producers except for p and p′ and
all the anonymizing routers and consumers. We also assume
that p, p′ ∈ AS

datKn
Advw , i.e., p and p′ are included in the same

sender anonymity set with respect to Advw . This CF satisfies
the second condition in Theorem 2. We suppose another con-
figuration CF′ which is identical to CF except that CF′(p) =
(a ′1, . . . , a ′n , c′, dat ′) and CF′(p′) = (a1, . . . , an , c, dat). In
this case, Advw can track dat and dat ′ from a1 to an and
from a ′1 to a ′n for CF and CF′ because all the anonymiz-
ing routers are compromised. Thus, Advw can distinguish CF
from CF′ only if Advw can correctly correlate the input Data
packets at a1 and a ′1 with p and p′. However, such Advw

cannot exist from the definition of the sender anonymity set.
Therefore, CF′ ≡Advw CF holds for such CF′, and p has
producer anonymity.

Proof of Theorem 2 - (3): Without loss of general-
ity, we assume CF such that CF(p) = (a1, . . . , ai−1,
ai , ai+1, . . . , an , c, dat) and CF(p′) = (a ′1, . . . , a ′i−1, ai ,
a ′i+1, . . . , a

′
n , c′, dat ′), and Advw such that PAdvw = P \

{p, p′} and AAdvw = A\{ai}, RAdvw = R, and CAdvw = C,
i.e., Advw compromises all the producers except for p, p′,
all the anonymizing routers except for ai , and all the regular
routers and consumers. This CF satisfies the third condi-
tion in Theorem 2. We assume another configuration CF′
which is identical to CF except that CF′(p) = (a1, . . . , ai−1,
ai , a ′i+1, . . . , a

′
n , c′, dat ′) and CF′(p′) = (a ′1, . . . , a ′i−1, ai ,

ai+1, . . . , an , c, dat). In this case, Adv2 can track dat and
dat ′ from a1 to ai−1, from ai+1 to an , from a ′1 to a ′i−1, and
from a ′i+1 to a ′n for CF and CF′. Thus, Advw can distin-
guish CF from CF′ only if Advw can correctly correlate the
inputs and outputs at ai . However, such Advw does not exist
because it contradicts Theorem 1. Therefore, CF′ ≡Advw CF
holds for such CF′, and p has producer anonymity.

Proof of Theorem 2 - (4): Without loss of general-
ity, we assume CF such that CF(p) = (a1, . . . , ai−1,
ai , ai+1, . . . , an , c, dat) and CF(p′) = (a ′1, . . . , a ′i−1, a ′i ,
a ′i+1, . . . , a

′
n , c′, dat ′), and Advw such that PAdvw = P \

{p, p′} and AAdvw = A \ {ai , a ′i}, and CAdvw = C, i.e.,
Advw compromises all the producers except for p, p′, all the
anonymizing routers except for ai , a ′i , and all the consumers.

We also assume that ai , a ′i ∈ AS
datKn−i

Advw , i.e., ai and a ′i are
included in the same sender anonymity set of their output Data
packets with respect to Advw . This CF satisfies the fourth
condition in Theorem 2. We assume another configuration CF′
which is identical to CF except that CF′(p) = (a1, . . . , ai−1,
ai , a ′i+1, . . . , a

′
n , c′, dat ′) and CF′(p′) = (a ′1, . . . , a ′i−1, a ′i ,

ai+1, . . . , an , c, dat). In this case, Advw can track dat and
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dat ′ from a1 to ai−1, from ai+1 to an , from a ′1 to a ′i−1,
and from a ′i+1 to a ′n for CF and CF′. Thus, Advw can dis-
tinguish CF and CF′ only if Advw can correctly correlate
ai , a ′i with their output Data packets. However, such Advw

cannot exist from the definition of the sender anonymity set.
Therefore, CF′ ≡Advw CF holds for such CF′, and p has
producer anonymity.
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