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Abstract—Accurately estimating network traffic from the par-
tial measurements plays a crucial role in network management.
However, the potential anomaly existing in real networks usu-
ally makes this goal difficult to achieve. Existing network traffic
estimation methods generally impute network traffic indepen-
dent of anomaly detection, which incurs significant performance
degradation with network anomaly. To address this issue in the
realistic network scenario, we propose a novel anomaly-aware
network traffic estimation method to recover network traffic data
concurrently with network anomaly detection. Specifically, by
exploiting the inherent spatio-temporal characteristics, we first
formulate the network traffic estimation as a low-rank tensor
completion problem. Then, an outlier-robust tensor completion
(OrTC) model is constructed by introducing both L2,1-norm reg-
ularization and LF -norm regularization, which can not only well
fit the intrinsic low-rank property of real traffic data, but also
is robust against both the dense noise and the sparse anomaly.
Furthermore, an effective optimization algorithm OrTC-AM is
designed to solve the non-convex and non-smooth OrTC model
based on the popular alternating minimization method. Finally,
the extensive experiments performed on the public dataset
demonstrate that our proposed OrTC-AM method outperforms
the previously widely used network traffic estimation methods.

Index Terms—Network traffic estimation, network
anomaly detection, low-rank tensor factorization, alternating
minimization.
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I. INTRODUCTION

NETWORK traffic data provides a flow-time map, which
characterizes the volumes of the traffic between origin

and destination (OD) pairs in the networks. Accurately gener-
ating such a map will be the key enabler for effective routing
and congestion control, risk analysis, security assurance, and
proactive network failure prevention [1]. Therefore, obtaining
complete and accurate traffic data is of the highest priority for
network management.

However, due to the massive number of connected devices
involved, it is impractical to exhaustively probe all OD pairs
in large-scale Internet of Things (IoT) networks [2], [3]. An
effective alternative strategy for network monitoring and man-
agement is achieved by just taking partial measurements from
the full traffic data [4]. Moreover, the collected useful and
accurate data could be even less because OD flows potentially
undergo damages [5], willfully or accidentally, by diverse
network conditions. Consequently, the observed real traffic
measurements typically experience data missing and data pol-
lution [6]. When analyzing such realistic measurements, there
are two main technical challenges that need to solve for
acquiring complete and accurate traffic data for large-scale
IoT networks. One challenge is to impute the missing traffic
data from the partial measurements, which can be referred to
as the traffic data completion problem. The other one is to
reconstruct the traffic data from the corrupted traffic measure-
ments, e.g., the outlier data, which can be referred to as the
traffic data recovery problem. Often these two problems exist
simultaneously in practical scenarios.

Many efforts have been dedicated to addressing such two
challenges in network monitoring and management. By uti-
lizing the low-rank property of the traffic data, several stud-
ies formulated the traffic data estimation as a compressive
sensing-based problem [7], [8] or a matrix completion-based
problem [9], [10]. Besides these techniques, tensor-based
approaches [11]–[14], as the matrix expansion in more than
two-dimensional space, have been proven as a more effective
tool to impute the missing traffic data. However, these com-
pletion approaches did not explicitly account for the outlier
measurements and could incur significant performance degra-
dation under serious corruption. On the other hand, to alleviate
the impact of the anomaly (outlier) on traffic data recovery,
some researchers proposed to utilize the prior assumption that
the traffic anomaly follows Laplacian distribution [15], [16].
Therefore, researches can employ the L0-norm or its convex
approximation L1-norm of tensor to fit the traffic anomaly,
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such as flash crowds, denial-of-service attacks, and spreading
of worms, which usually affects a small fraction of data points
with a relatively large perturbation. However, in most realis-
tic scenarios, the traffic data is interfered with by the sparse
gross anomaly and the dense slight noise simultaneously. The
noise, which is usually caused by environmental interference,
commonly exists in the entire traffic data with a relatively
small value. Moreover, L1-norm regularization based on the
assumption of the Laplacian distribution can effectively detect
the uniformly and randomly distributed sparse anomaly, but
usually degrades the performance under the condition of the
non-uniform distributed anomaly. In the practical network, the
sparse anomaly is more likely to follow the structural distribu-
tion, e.g., the denial-of-service attacks usually exist in a certain
part of nodes.

To overcome the abovementioned issues, this article
presents a novel anomaly-aware network traffic estimation
approach to recover traffic data and detect network anomaly
simultaneously, which takes full advantage of the potential
relationship between the two tasks to support each other
for better performance. Specifically, by exploiting the inher-
ent spatio-temporal correlation characteristics of the traffic
data, we model the network traffic estimation problem as
a low-rank tensor completion problem. In order to deal
with the challenge of data missing, we propose a weighted
CANDECOMP/PARAFAC (CP) tensor factorization (CP-
wALS) algorithm based on the alternating least squares (ALS)
method, which is an effective approach for large-scale tensor
completion. Then, an outlier-robust tensor completion (OrTC)
model is constructed by introducing L2,1-norm regularization
instead of L1-norm to smooth the traffic anomaly. Such an idea
is inspired by recent anomaly modeling methods designed for
matrix-based data estimation problems [17], [18], which has
been verified to be effective in anomaly detection. In addition,
to improve the robustness of the proposed OrTC model, we
further employ LF -norm to fit the dense traffic noise, which
has been widely used in traffic data estimation problems [19].
In this way, the proposed OrTC model can not only well
fit the intrinsic low-rank property of traffic data, but also is
robust against both the sparse anomaly and the dense noise.
Furthermore, we employ the alternating minimization (AM)
method [20] to design an effective algorithm OrTC-AM to
solve the non-convex and non-smooth OrTC model. Finally,
experimental results performed on the public dataset reveal
that, compared with the classic tensor completion methods and
the state-of-the-art traffic estimation methods, our proposed
OrTC-AM method achieves the best performance from the
perspective of the traffic data recovery and network anomaly
detection.

The primary contributions of this work can be summarized
as follows:

• A novel outlier-robust tensor completion (OrTC) model
is proposed for estimating traffic data concurrently with
network anomaly detection, which takes full advantage
of the potential relationship between the two tasks to
achieve better performance. The L2,1-norm regulariza-
tion and LF -norm regularization are employed to fit
sparse anomaly and dense noise, respectively, enabling

our proposed OrTC model to adaptively handle a wider
range of anomaly structures beyond existing methods.

• Based on the popular alternating minimization (AM)
method, an effective algorithm OrTC-AM is designed
to solve the non-convex and non-smooth OrTC model,
which can not only well recover traffic data but also detect
anomaly accurately. Furthermore, to deal with the chal-
lenge of large-scale traffic data estimation in practice, a
weighted CP tensor factorization (CP-wALS) algorithm
is proposed to address the tensor completion problem in
the OrTC model.

• Using real traffic trace data, we compare our proposed
algorithm with the state-of-art tensor-based completion
and recovery algorithms from the perspective of traffic
data recovery and network anomaly detection. Extensive
experiments verify the superior estimation performance
of our proposed OrTC-AM algorithm in the coexistence
of network anomaly and noise.

The rest of this article is organized as follows. In Section II,
we introduce the current research advances about traffic data
estimation methods and tensor-based methods. Section III
describes the notations used in this article. Section IV con-
structs the OrTC model and presents its problem formulation.
In Section V, an optimization algorithm OrTC-AM is designed
successively to solve the proposed OrTC model. In Section VI,
a series of simulation experiments are conducted to evalu-
ate the performance of OrTC-AM on the real traffic dataset.
Finally, the conclusions are drawn in Section VII.

II. RELATED WORK

In this section, we review the related work on the network
traffic data estimation and identify the differences in our work
from the existing researches.

A. Traffic Data Completion and Anomaly Detection

To capture spatio-temporal features in the traffic data,
SRMF [21] proposed the first spatio-temporal model of traffic
matrices (TMs). It found low-rank approximations to TMs, and
recovered the missing data with the spatio-temporal operation
and local interpolation. Furthermore, to alleviate the impact
of noise on network traffic estimation, a set of studies have
been made to extend the original matrix completion (MC)
model to the noise-tolerant MC models. For instance, some
researchers assumed that the sampled matrix was corrupted by
pure Gaussian noise [22], or by pure outlier noise [23], [24].
By employing the Mixture of Gaussian distribution to model
the complex noise, Xiao et al. [17] presented a novel noise-
immune MC model to estimate network traffic. However, a
two-dimension matrix is limited in capturing comprehensive
correlations hidden in the traffic data, and thus the recov-
ery performance of matrix-based methods always significantly
decreases when the missing ratio is high.

To overcome the shortcomings of matrix-based traffic data
estimation methods, some researchers exploited the traf-
fic hidden higher-dimensional characteristics to improve the
quality of the missing data recovery. Inspired by SRMF,



WANG et al.: ANOMALY-AWARE NETWORK TRAFFIC ESTIMATION VIA OUTLIER-ROBUST TENSOR COMPLETION 2679

Zhou et al. [12] proposed a novel spatio-temporal tensor com-
pletion method to recover the missing entries in tensors of traf-
fic data. They utilized spatio-temporal properties information
to regularize the tensor decomposition procedure, resulting in a
unified framework for traffic tensor completion. Xie et al. [14]
further modeled the Internet traffic data to exploit well the hid-
den structures (temporal stability, spatial correlation feature,
and traffic periodic pattern) of the traffic data, and formulated
the traffic data estimation problem as a low-rank tensor com-
pletion problem. Furthermore, Mardani et al. [19] completed
the missing data from the sequentially acquired traffic data by
considering the impact of the Gaussian noise. TensorDet was
designed in [15] to focus on robust tensor recovery problems,
which was a simple and effective way for faster low-rank ten-
sor factorization and more accurate sparse anomaly detection.
In [16], the authors presented a new proposal for an online
subspace tracking of the Hankelized time-structured traffic ten-
sor, which can complete the missing traffic data and detect the
network anomaly simultaneously. However, the prior assump-
tion of noise distribution as Gaussian distribution or Laplacian
distribution probably leads to a significant performance degra-
dation since the traffic data is not merely interfered with by a
specific noise in most realistic scenarios.

B. Other Tensor-Based Solutions

Tensor-based methods have been successfully utilized in
various fields, such as computer vision [25], deep neural
networks [26], and road traffic [27]. Liu et al. [28] first
defined the nuclear norm of a tensor and translated tensor
completion into a convex optimization problem. In [29], the
authors proposed a tensor robust principal component analysis
(TRPCA) method to recover the low-rank and sparse outlier
components from the noisy data. In addition, Yokota et al.
introduced tensor total variation in [30] to solve the noisy
tensor completion problems based on tensor nuclear norm.
Besides using the nuclear norm, some tensor factorization
approaches were proposed for the tensor completion problem,
such as CP decomposition [31] and Tucker decomposi-
tion [32]. For example, Tan et al. [33] proposed a tensor
decomposition based imputation method to estimate the miss-
ing value in transportation traffic based on Tucker decomposi-
tion. Although the above solutions can complete missing data
or detect anomaly effectively, they fail to be fully applied to
anomaly-aware traffic data estimation in this work since they
merely cope with one traffic data problem.

As an extension of [30], Yokota and Hontani [34] further
solved the noise inequality constrained convex optimization
problem by introducing Gaussian and Laplacian distribu-
tions respectively. Besides, a generative CP tensor completion
framework was constructed in [35] in the presence of noise and
outliers. Both [34] and [35] can impute the missing data and
detect the anomaly simultaneously; however, due to the char-
acteristics of the network traffic data, these solutions can not be
directly applied to this work because of the following reasons.
First, as explicated in Section I, L1-norm regularization is not
applicable to smooth the sparse network anomaly that usually
follows a structural distribution. Second, the computation com-
plexity of these two methods is relatively high, and thus not

scalable for the large-scale network traffic data. Specifically,
the singular value decomposition involved in nuclear norm
based tensor completion [34] is of high time complexity, and
the Khatri-Rao product involved in [35] for updating factor
matrices is of high space complexity.

Based on the aforementioned analysis, we propose a novel
outlier-robust tensor completion (OrTC) model for anomaly-
aware traffic data estimation in this article by introducing
both L2,1-norm regularization and LF -norm regularization.
The proposed OrTC model can not only well fit the intrin-
sic low-rank property of traffic data, but also detect the
sparse anomaly accurately, especially for the sparse struc-
tural anomaly. Furthermore, to deal with the challenge of
large-scale traffic data estimation, a weighted CP tensor fac-
torization (CP-wALS) algorithm is developed to address the
tensor completion problem in the OrTC model.

III. PRELIMINARIES

The notation used in this article is described as follows.
Scalars are represented with lowercase letters (a, b, . . . ),
vectors are expressed as boldface lowercase (a, b, . . .), and
matrices are denoted by boldface capitals (A,B, . . .). The ele-
ments of a vector/matrix are given by the symbolic name of
the vector/matrix with indexes in subscript. For example, the
i-th entry of a vector a is denoted by ai , and element (i , j )
of a matrix A is expressed as aij .

Next, we introduce some basic concepts related to the tensor
used in this article.

Definition 1: A tensor is a higher-order generalization of
a vector (first-order tensor) and a matrix (second-order ten-
sor). An N-way or Nth -order tensor is expressed as X ∈
R
I1×I2×···×IN , where N is the order of X , also called way

or mode. In this article, we focus on the 3-way tensor, i.e.,
X ∈ R

I1×I2×I3 , and element (i1, i2, i3) of X is denoted by
xi1i2i3 , in ∈ {1, 2, . . . , In} with 1 ≤ n ≤ 3.

Definition 2: Slices are two-dimensional sub-arrays,
defined by fixing all indexes but two. A 3-way tensor X
has horizontal, lateral and frontal slices, which are denoted
by Xi1::, X:i2: and X::i3 , respectively. In this article, we
represent the frontal slice X::i3 as Xi3 .

Definition 3: The idea of CP factorization is to express a
tensor as the sum of a finite number of rank one tensors. A
3-way tensor X ∈ R

I1×I2×I3 can be expressed as

X = [[U,V,T]] =
R∑

r=1

ur ◦ vr ◦ tr (1)

with an entry calculated by

xi1i2i3 =

R∑

r=1

ui1rvi2r tki3r , (2)

where R > 0, ui1r , vi2r , ti3r are the i1-th, i2-th, and i3-th
entry of vectors ur ∈ R

I1 , vr ∈ R
I2 , and tr ∈ R

I3 , respec-
tively. The operator ◦ is the outer product of two vectors. By
collecting the vectors in the rank one components, we have
tensor factor matrices U = [u1, u2, . . . ,uR] ∈ R

I1×R , V =
[v1, v2, . . . , vR] ∈ R

I2×R , and T = [t1, t2, . . . , tR] ∈ R
I3×R .
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Fig. 1. CP factorization of a 3-way tensor.

In this article, we design the traffic data estimation method
based on the CP factorization illustrated in Fig. 1.

Definition 4: Similar to the LF -norm of a matrix, LF -norm
‖X‖F for a tensor X ∈ R

I1×I2×I3 is defined as

‖X‖F =

√√√√
I1∑

ii=1

I2∑

i2=1

I3∑

i3=1

x2i1i2i3 . (3)

Definition 5: Tensor L2,1-norm for an arbitrary tensor X ∈
R
I1×I2×I3 , given by ‖X‖2,1, is defined as (without loss of

generality, we assume that outliers are distributed along the
3rd dimension of a tensor)

‖X‖2,1 =

I3∑

i3=1

‖X::i3‖F =

I3∑

i3=1

√√√√
I1∑

ii=1

I2∑

i2=1

x2i1i2 . (4)

IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present our tensor-based traffic data
estimation model and then formulate its problem.

A. Traffic Estimation Model

As the empirical study on the real traffic data conducted
by Xie et al. [14], the traffic data holds the features of tem-
poral stability, spatial correlation, and periodicity pattern. To
fully exploit such hidden features, we model the traffic data
as a 3-way tensor X ∈ R

I1×I2×I3 , where there are I1 days
to consider with each day having I2 time intervals, and I3
corresponds to N × N OD pairs.

Due to the sample-based traffic monitoring and the unavoid-
able data missing resulted from severe communication con-
ditions, only partial measurements could be collected. By
utilizing the prior low-rank characteristic of traffic data, we
can easily employ the existing tensor completion models to
recover the full traffic data. However, as stated in Section I, the
practical sampled tensor X often suffers from the corruption
caused by the complex environmental interference, malicious
attacks, etc. Therefore, these corruptions, brought not only by
the sparse gross anomaly but also by the dense slight noise,
significantly degrade the estimation accuracy. To improve the
precision of the traffic data reconstruction and the anomaly
detection, we propose a novel anomaly-aware traffic estima-
tion method by considering that the collected tensor X consists
of the true underlying low-rank tensor X̂ , the sparse anomaly
tensor A, and the non-sparse noise tensor N , given by

PΩ(X ) = PΩ

(
X̂ +A+N

)
, (5)

TABLE I
COMMONLY USED NOTATIONS

where Ω is the indices set of the observed traffic data, PΩ
denotes the projection operator such that the (i1, i2, i3)-th ele-
ment of X equals to xi1i2i3 , and zero if otherwise, i.e., there
is no observed traffic data between a particular pair of nodes
in a given time slot.

In order to avoid confusion, we summarize the related
notations and their semantic meanings in Table I.

B. Problem Formulation

Our primary goal is to design an effective network traffic
estimation method to reconstruct the true underlying traffic
data and detect the network anomaly simultaneously, where
the traffic data reconstruction includes imputing the missing
measurements as well as denoising the inaccurate ones.

In order to deal with the challenge of traffic data completion,
we employ the CP tensor factorization to solve tensor comple-
tion problems, which is an effective approach for large-scale
traffic data [16], [19]. CP tensor factorization decomposes a
tensor as the sum of R rank-one tensors. Therefore, X̂ , denot-
ing the intrinsic low-dimensionality tensor to be recovered, can
be represented in the CP decomposition form as Definition 3,
and the rank R satisfying R � min{I1, I2, I3} is the constraint
of the low-rank property. Furthermore, different from the
existing L1-norm based anomaly detection methods, we use
tensor L2,1-norm to characterize the sparsity property of the
network anomaly. Although L1-norm regularization can effec-
tively detect the uniformly and randomly distributed sparse
anomaly, it generally degrades the performance under the con-
dition of the non-uniform distributed anomaly. Practically, the
sparse network anomaly usually tends to be the structural dis-
tribution rather than the uniform distribution. For instance,
the denial-of-service attacks frequently exist in a certain part
of OD pairs. Hence, we adopt L2,1-norm to smooth slice-
wise anomaly, which has already been verified to be effective
in matrix-based data estimation problems [17], [18]. Without
loss of generality, we assume the frontal-slice sparsity struc-
tural characteristic since the anomaly always exists in 3rd

dimension, i.e., a certain part of OD pairs. Note that outliers
can also be distributed along the other dimensions, and the
proposed model and analysis can be applied directly. Finally,
the dense noise with a relatively small value generally follows
a Gaussian distribution, and thus we introduce LF -norm to fit
the Gaussian noise.

Based on the preceding analysis, the network traffic esti-
mation problem in the coexistence of the network noise
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Fig. 2. Illustration of OrTC model.

and potential anomaly can be formulated as the following
outlier-robust tensor completion (OrTC) model, i.e.,

min
X̂ ,A,N

λ‖A‖2,1 +
1

2
‖N‖2F

s .t . PΩ(X ) = PΩ

(
X̂ +A+N

)

X̂ =
R∑

r=1

ur ◦ vr ◦ tr ,R � min{I1, I2, I3} (6)

where λ is a tunable parameter to balance the anomaly term
with the noise term. The key of the OrTC model is to recover
the true underlying traffic data and detect the network anomaly
through minimizing the L2,1-norm of the anomaly tensor A
and LF -norm of the noise tensor N . The constraint in (6)
ensures that the observed traffic tensor consists of the true
underlying low-rank tensor X̂ , the sparse anomaly tensor A,
and the non-sparse noise tensor N , where the true underlying
low-rank tensor X̂ is in a low-rank CP decomposition form.
Therefore, we can illustrate the OrTC model as Fig. 2.

V. OPTIMIZATION ALGORITHM FOR ORTC MODEL

In this section, we propose an optimization approach to
solve the OrTC model with the purpose of estimating the
underlying traffic data concurrently with network anomaly
detection.

To effectively solve the problem in (6), we can convert it
to an unconstrained form according to the penalty function
method [36], given by

min
X̂ ,A,N

λ‖A‖2,1 +
1

2
‖N‖2F +

μ

2

∥∥∥PΩ

(
X − X̂ − A−N

)∥∥∥
2

F

s .t . X̂ =

R∑

r=1

ur ◦ vr ◦ tr , (7)

where X ,A,N ∈ R
I1×I2×I3 denote the collected traffic ten-

sor, structural anomaly tensor, and noise tensor, respectively. X̂
is the objective tensor to be recovered, which can be expressed
in the CP decomposition form as a constraint. μ is a tunable
parameter that balances the penalty function with the anomaly
and noise terms.

We define the objective function as

L
(
X̂ ,A,N

)
= λ‖A‖2,1 +

1

2
‖N‖2F

+
μ

2

∥∥∥PΩ

(
X − X̂ − A−N

)∥∥∥
2

F
, (8)

and the problem in (7) can be rewritten as
(
X̂ ∗,A∗,N ∗

)
= argmin

X̂ ,A,N
L
(
X̂ ,A,N

)
. (9)

Since the OrTC model is non-convex and non-smooth, we
employ the popular alternating minimization (AM) method to
solve (9) iteratively as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ak+1 = argminA L
(
X̂ k ,A,N k

)

N k+1 = argminN L
(
X̂ k ,Ak+1,N

)

X̂ k+1 = argminX̂ L
(
X̂ ,Ak+1,N k+1

)
,

(10)

where our proposed OrTC-AM method updates each tensor
in a proximal-linear updating way while fixing the remaining
tensors at their last updated value. Specifically, during each
iteration k, the tensors are updated as follows.

A. Subproblem 1: Update Anomaly Tensor A
In this subsection, we fix X̂ and N and solve

the subproblem 1 formulated in (10), i.e., Ak+1 =
argminA L(X̂ k ,A,N k ).

Theorem 1: Each frontal slice Ai3 of tensor A can be
calculated by

Ai3
∗ = max

{
1− λ

μ‖PΩ(Oi3)‖F
, 0

}
PΩ(Oi3), (11)

where Oi3 is the i3-th frontal slice of tensor O that is defined
as O = X − X̂ − N .

Proof: By fixing X̂ and N , we can update A by

A∗ = argmin
A

λ‖A‖2,1 +
μ

2

∥∥∥PΩ

(
X − X̂ − A−N

)∥∥∥
2

F
.

(12)

We define O = X − X̂ − N . Since the outliers have
the frontal-slice sparsity structural characteristic, we unfold
A along the 3rd order, and then (12) can be expressed as

A∗ = argmin
A

I3∑

i3=1

(
λ‖Ai3‖F +

μ

2
‖PΩ(Oi3 −Ai3)‖2F

)
,

(13)

where the matrix Ai3 ∈ R
I1×I2 denotes the i3-th frontal slice

of the tensor A, i.e., A::i3 . The tensor of I1 × I2 × I3 can be
divided into I3 frontal slices which can be optimized separately
as

A∗
i3 = argmin

Ai3

λ‖Ai3‖F +
μ

2
‖PΩ(Oi3 −Ai3)‖2F . (14)
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We define f (Ai3) = λ‖Ai3‖F + μ‖PΩ(Oi3 −Ai3)‖2F /2.
According to the definition of the subdifferential, the subdif-
ferential of function f (Ai3) at Ai30 is

∂f
(
Ai30

)
=

⎧
⎨

⎩
μPΩ

(
Ai30 − Oi3

)
+ λ∥

∥
∥Ai30

∥
∥
∥
F

Ai30 Ai30 �= 0

μPΩ

(
Ai30 − Oi3

)
+ Y Ai30 = 0

.

(15)

where Y satisfies Y ∈ R
I1×I2 and ‖Y‖F ≤ λ.

If and only if 0 ∈ ∂f (Ai30), Ai30 is the global minimum
of the function f (Ai3), which can be expressed as
{
μPΩ

(
Ai30 −Oi3

)
+ λ

‖Ai30‖F
Ai30 = 0 Ai30 �= 0

μPΩ

(
Ai30 −Oi3

)
+Y = 0 and ‖Y‖F ≤ λ Ai30 = 0.

(16)

Then, we can derive out
1) when ‖PΩ(Oi3)‖F ≤ λ/μ, Ai30 = 0;
2) when ‖PΩ(Oi3)‖F > λ/μ, Ai30 �= 0, we can get

μPΩ

(
Ai30 −Oi3

)
+

λ∥∥Ai30

∥∥
F

Ai30 = 0. (17)

Since (17) is non-smooth, we need to discuss the solu-
tion of problem in (17) under different conditions. When
(i1, i2, i3) /∈ Ω, (ai30)i1i2 = 0; otherwise, (ai30)i1i2 =
μoi1i2/(μ+ λ/‖Ai30‖F ), i.e.,

Ai30 =
μPΩ(Oi3)

μ+ λ
/∥∥Ai30

∥∥
F

. (18)

Furthermore, we conduct ‖Ai30‖F by

∥∥Ai30

∥∥
F
=

∥∥∥∥∥
μPΩ(Oi3)

μ+ λ
/∥∥Ai30

∥∥
F

∥∥∥∥∥
F

=
μ‖PΩ(Oi3)‖F
μ+ λ

/∥∥Ai30

∥∥
F

, (19)

and the reduced representation of ‖Ai30‖F is

∥∥Ai30

∥∥
F
= ‖PΩ(Oi3)‖F − λ

μ
. (20)

Substituting (20) into (18), we can update each frontal slice
Ai3 of tensor A as

Ai3 =

(
1− λ

μ‖PΩ(Oi3)‖F

)
PΩ(Oi3). (21)

Jointly considering the condition 1) and 2), we can deduce
the solution of subproblem 1 as (11). This finishes the proof
of Theorem 1.

Next, we will conduct subproblem 2 to update the noise
tensor N .

B. Subproblem 2 - Update Noise Tensor N
In this subsection, we fix X̂ and A and solve

the subproblem 2 formulated in (10), i.e., N k+1 =
argminN L(X̂ k ,Ak+1,N ).

Theorem 2: The noise tensor N can be updated by

N ∗ =
μ

1 + μ
PΩ(P), (22)

where we define P = X − X̂ − A.

Proof: By fixing X̂ and A, we can update N by

N ∗ = argmin
N

1

2
‖N‖2F +

μ

2

∥∥∥PΩ

(
X − X̂ − A−N

)∥∥∥
2

F
.

(23)

Denoting f (N ) as inner objective to be minimized, the esti-
mate N is obtained in a closed form by setting ∂f (N )/∂N =
0. Similar to problem in (17), we need to discuss the optimal
solution of N under different conditions. When (i1, i2, i3) /∈
Ω, ni1i2i3 = 0; otherwise, ni1i2i3 = μpi1i2i3/(1 + μ), where
the element pi1i2i3 is the (i1, i2, i3)-th of the tensor P =
X − X̂ − A. Consequently, we can obtain the updated N ∗
as given in (22).

This finishes the proof of Theorem 2. Finally, we will
conduct subproblem 3 to recover low-rank tensor X̂ .

C. Subproblem 3 - Update Low-Rank Tensor X̂
In this subsection, we fix A and N and solve

the subproblem 3 formulated in (10), i.e., X̂ k+1 =
argminX̂ L(X̂ ,Ak+1,N k+1).

Theorem 3: The intrinsical low-rank tensor X̂ can be recov-
ered by X̂ = [[U,V,T]], and each row of the factor matrices
U can be updated as

u∗i1 = q(1)i1W
i1
(1)

(T,V)

×
(
Wi1

(1)
(T,V)TWi1

(1)
(T,V)

)†
, (24)

where Wi1
(1)

(T,V) = diag(w(1)i1)T�V. The operation † and
� indicate the Moore-Penrose pseudoinverse and the Khatri-
Rao product, respectively. q(1)i1 is the i1-th row of the mode-
1 unfolding matrix of the tensor to be completed, which is
defined as Q = X −A−N . Similarly, w(1)i1 is the i1-th row
of the mode-1 unfolding matrix of the indices tensor W . The
element wi1i2i3 of W ∈ R

I1×I2×I3 satisfies

wi1i2i3 =

{
1 if (i1i2i3) ∈ Ω
0 otherwise

(25)

In the same way, each row of the factor matrices V and T
can be calculated by

v∗i2 = q(2)i2W
i2
(2)

(T,U)

×
(
Wi2

(2)
(T,U)TWi2

(2)
(T,U)

)†
, (26)

where Wi2
(2)

(T,U) = diag(w(2)i2)T � U. q(2)i2 and w(2)i2
denote the i2-th row of the mode-2 unfolding matrix of Q
and W , respectively.

t∗i3 = q(3)i3W
i3
(3)

(V,U)

×
(
Wi3

(3)
(V,U)TWi3

(3)
(V,U)

)†
, (27)

where Wi3
(3)

(V,U) = diag(w(3)i3)V � U. q(3)i3 and w(3)i3
denote the i3-th row of the mode-3 unfolding matrix of Q and
W , respectively.
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Proof: By fixing A and N , we can update X̂ by

X̂ ∗ = argmin
X̂

1

2

∥∥∥PΩ

(
X − X̂ − A−N

)∥∥∥
2

F

s .t . X̂ =

R∑

r=1

ur ◦ vr ◦ tr . (28)

The subproblem 3 can be perceived as a tensor completion
problem. In this article, we employ the CP tensor factoriza-
tion to solve tensor completion problem, which is an effective
approach for large-scale data. Then, we can optimize the factor
matrices U, V and T to solve the problem as

(U∗,V∗,T∗) = argmin
U,V,T

1

2

∥∥∥∥∥PΩ

(
Q−

R∑

r=1

ur ◦ vr ◦ tr
)∥∥∥∥∥

2

F

= argmin
U,V,T

1

2
‖W ∗ (Q− [[U,V,T]]‖2F , (29)

where Hadamard product ∗ is the element-wise product.
Because of the effectiveness and implementation conve-

nience of ALS algorithm [37], we design a weighted CP
tensor factorization algorithm based on ALS, i.e., CP-wALS,
to update the factor matrices U, V and T. The CP-wALS algo-
rithm fixes all but one matrix at a time, and continues to repeat
the entire procedure until some convergence criterion is satis-
fied. For example, we fix V and T to solve for U, the problem
reduces to a linear least-squares problem, and the problem in
(29) can be rewritten in matrix form as

U∗ = argmin
U

1

2

∥∥∥W(1) ∗
(
Q(1) −U(T� V)T

)∥∥∥
2

F

= argmin
u1,u2,...,uI1

1

2

I1∑

i1=1

∥∥∥w(1)i1
∗
(
q(1)i1 − ui1(T� V)T

)∥∥∥
2

F
,

(30)

where the matrix Q(1) is the mode-1 matricization of the tensor
Q and likewise for W(1). The vector q(1)i1 is the i1-th row
of the matrix Q(1), and likewise for w(1)i1 and ui1 .

In this way, we can optimize the factor matrix U separately
by each row ui1 , which can be deduced as

f (ui1) =
∥∥∥w(1)i1 ∗

(
q(1)i1 − ui1(T�V)T

)∥∥∥
2

F

=
∥∥∥
(
q(1)i1 − ui1(T�V)T

)
diag

(
w(1)i1

)∥∥∥
2

F

= tr
(
q(1)i1diag

(
w(1)i1

)
qT(1)i1

)

− tr
(
q(1)i1diag

(
w(1)i1

)
(T�V)uTi1

)

− tr
(
ui1(T�V)Tdiag

(
w(1)i1

)
qT(1)i1

)

+ tr
(
ui1(T�V)Tdiag

(
w(1)i1

)
(T�V)uTi1

)
,

(31)

where tr(·) denotes the trace operator.
According to trace derivative rules, the optimal solution of

ui1 is then given by setting ∂f (ui1)/∂ui1 = 0, i.e.,

0 = −q(1)i1diag
(
w(1)i1

)
(T�V)

−
(
(T�V)Tdiag

(
w(1)i1

)
qT(1)i1

)T

+
(
(T�V)Tdiag

(
w(1)i1

)
(T�V)uTi1

)T

+ ui1(T�V)Tdiag
(
w(1)i1

)
(T�V). (32)

Thus we have the solution of u∗i1 as (24). Note that

Wi1
(1)

(T,V)TWi1
(1)

(T,V) ∈ R
R×R , and thus we need only

calculate the Moore-Penrose pseudoinverse of an R × R
matrix, which significantly decrease the computation complex-
ity since R � min{I1, I2, I3}. In the same way, the low-rank
property also contributes to reducing the computation com-
plexity of other tensor calculations involved in (24), such as the
Khatri-Rao product. Therefore, the CP-wALS algorithm can
be scalable for the large-scale traffic data completion provided
that the data is of low-rank property.

Similarly, we can update each row of the factor matrices
V and T as (26) and (27), respectively. Then, the intrinsical
low-rank tensor X̂ can be recovered by X̂ = [[U,V,T]], and
the tensor Q in next iteration n + 1 can be updated as

Qn+1 = PΩ(Qn ) + PΩ

(
X̂ n
)
, (33)

until the convergence criterion is satisfied. Here, Ω denotes
the complement set of Ω, i.e., the index set of missing entries,
and PΩ(X̂ n ) is the complement set of missing entry imputed
by X̂ . This finishes the proof of Theorem 3.

Putting the aforementioned analysis all together, the
proposed algorithm can be summarized as in Algorithm 1.

Based on the proposed OrTC model, we can obtain
the underlying low-rank traffic data X̂ and further detect
the abnormal OD pairs at a given time slot according to
anomaly tensor A. Next, we discuss the time complexity of
Algorithm 1. As shown in Algorithm 1, in the outer loop, the
OrTC-AM algorithm first separates the anomaly and the noise
from the sampled traffic data based on the tensor completion
result of previous data; then, it imputes the missing traffic data
by solving the tensor completion problem in the inner loop. At
each iteration k, updating Ak and N k both spend O(I1I2I3).
In the inner loop, we iteratively solve the tensor completion
problem by employing the ALS method. At each iteration n,
updating the 1st way factor matrix Un needs O(R2I1I2I3 +
R3I1), and likewise for Vn and Tn . Hence, solving the
problem in (28) at each iteration k needs O(tALS (R

2I1I2I3+
R3(I1 + I2 + I3))), where tALS is the iteration count of the
ALS method required to converge. Because of the low-rank
characteristic of the underlying traffic data X̂ , the rank R sat-
isfies R � min{I1, I2, I3}. Therefore, the time complexity
of Algorithm 1 is O(tAM (tALS (R

2I1I2I3)))), where tAM
denotes the iteration count that the outer loop takes for con-
vergence. In addition, the space complexity of Algorithm 1 is
O(I1I2I3).

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to val-
idate the effectiveness of our proposed OrTC-AM algorithm
using the public Abilene dataset [38], which contains a time
series of OD pairs traffic collected from the Internet2 backbone
network.
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TABLE II
COMPARISONS OF THE COMPETING METHODS

Algorithm 1 OrTC-AM Algorithm
Input: The collected traffic data tensor X , the set consisting of the indices

of sampled entries Ω, the parameters λ, μ, and a small threshold ε.
Output: The optimal objective traffic data tensor X̂ , and the structural

anomaly tensor A.
1: Initialize X0 = X , X̂0 = 0 N 0 = 0, and A0 = 0;
2: k = 0;
3: repeat
4: Evaluate Ak+1:
5: update O = X k − X̂ k −N k ;
6: for i3 = 1, . . . , I3 do
7: update each frontal slice Ai3 by (11).
8: end for
9: Evaluate N k+1:

10: update P = X k − X̂ k −A(k+1);
11: update N k+1 by (22).
12: Evaluate X̂ k+1:
13: update Q0 = X k −Ak+1 −N k+1;
14: Randomly initialize U0 V0, and T0;
15: n = 0;
16: repeat
17: for i1 = 1, . . . , I1 do
18: update each row u

(n+1)
i1

by (24);
19: end for
20: for i2 = 1, . . . , I2 do
21: update each row vn+1

i2
by (26);

22: end for
23: for i3 = 1, . . . , I3 do
24: update each row tn+1

i3
by (27);

25: end for
26: update X̂n+1 = [[Un+1,Vn+1,Tn+1]];
27: update Qn+1 by (33);
28: n = n + 1.

29: until
∥
∥
∥X̂n+1 − X̂n

∥
∥
∥

2

F

/
∥
∥
∥X̂n

∥
∥
∥

2

F
≤ ε

30: update X̂ k+1 = X̂n+1.
31: update X k+1 = PΩ(X ) + P

Ω

(

Ak+1 +N k+1 + X̂ k+1
)

;
32: set k = k + 1.

33: until
∥
∥
∥X̂ k+1 − X̂ k

∥
∥
∥

2

F

/
∥
∥
∥X̂ k

∥
∥
∥

2

F
≤ ε

A. Experimental Data

Considering that the collected raw traffic tensor may be the
aggregation of clean traffic component and noise component,
we employ the tensor BCPF algorithm [39] to discern the nom-
inal “ground truth” traffic data XT from the raw traffic data.
Similar to reference [15], for more efficient data processing,
data normalization is often applied in the data preprocess-
ing step to scale the variables or features of data, and the
normalized values are within the range [0,1] as

xi1i2i3 =
xi1i2i3 −mini1,i2,i3{xi1i2i3}

maxi1,i2,i3{xi1i2i3} −mini1,i2,i3{xi1i2i3}
. (34)

Furthermore, to simulate the true network environments, we
set up different noise scenarios as follows:

• Gaussian noise NG : 100% of the entries are contaminated
with N (0, 0.01);

• Structural anomaly AS : the structural anomaly is set to
be randomly generated within the range of [0, 5] and with
a 3rd slice-wise pollution ratio 1%;

• Random anomaly AR: 1% of the entries are corrupted
with uniformly distributed noise between [0, 5].

Then, these noise and anomaly are injected into the “ground
truth” traffic data XT . Accordingly, the incomplete traffic data
PΩ(X ) can be obtained by sampling uniformly at random
from the aggregate tensor XT+NG+AS (AR) with a missing
ratio pm .

B. Experimental Setting

Our proposed OrTC-AM method involves 3 hyper-
parameters λ, μ, and the rank R. It is important to adjust these
parameters to proper values. We use a 5-fold cross-validation
procedure to determine the optimal values of parameter λ
and R. Specifically, we randomly partition the whole data
from PΩ(X ) into 5 roughly equivalent subsets, and then select
each subset as the testing data and the remaining subsets
as the training data. This process is independently repeated
for 10 times to avoid the bias introduced by randomly par-
titioning the data. We use the following measurement to
assess the reconstruction performance of the missing entries
‖PΩ(XT − X̂ )‖2F /‖PΩ(XT )‖2F . Finally, the value leading to
the best performance is used to construct the optimal OrTC
model and then applied to the performance evaluation for the
data recovery and anomaly detection. In addition, similar to the
implementation of the HaLTRC algorithm [28], we do not fix
the value of parameter μ, but set its initial value as LF -norm
of sampling tensor, and then makes it incrementally iterate at
the rate of 1.25, which can help convergence.

We compare our proposed OrTC-AM algorithm with five
different competing methods: 1) low-rank tensor comple-
tion method: DSTC algorithm [14]; 2) LF -norm-based low-
rank tensor completion method: Online-SGD algorithm [19];
3) L1-norm-based low-rank anomaly detection method:
TRPCA algorithm [29]; 4) low-rank Tucker-based anomaly
detection method: TensorDet algorithm [15]; 5) LF -norm
and L1-norm-based low-rank tensor completion and anomaly
detection method: BRCP-TC algorithm [35]. All the involved
parameters in these competing methods were optimized by
using the same 5-fold cross-validation procedure as in our
proposed OrTC-AM algorithm. Table II summarizes the five
competing methods and our proposed OrTC-AM method
with the characteristics of missing data completion, anomaly
detection, and Gaussian-noise-tolerant.
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Fig. 3. Scenario 1: Traffic data without noise and anomaly.

C. Performance Metric

The OrTC-AM algorithm aims to recover the true under-
lying traffic data as well as position the network anomaly.
We denote the recovered low-rank traffic data as X̂ , and
the detected anomaly as A. We use the following four met-
rics [14], [15] to evaluate the performance of the proposed
OrTC-AM algorithm.

Definition 6 (Error Ratio, ER): A metric for measuring the
recovery error of entries in the tensor after the interpolation,
which can be calculated as

ER =
∥∥∥
(
X̂ − XT

)∥∥∥
2

F

/‖(XT )‖2F . (35)

Definition 7 (Successful Recovery Ratio, SRR): A metric
for measuring the successful recovery of entries in the tensor
after the interpolation, which can be calculated as:

SRR =
∑

i1,i2,i3

ρi1i2i3
/
(I1 × I2 × I3) ,

where ρi1i2i3 =

{
1 if

∣∣∣
x̂i1i2i3−xT i1i2i3

xT i1i2i3

∣∣∣ ≤ θ

0 otherwise.
(36)

where x̂i1i2i3 and xT i1i2i3 denote the recovered data and the
raw data at (i1, i2, i3)-th element of the corresponding ten-
sor, respectively. The parameter θ is the accuracy ratio of
successful recovery.

Definition 8 (True Positive Ratio, TPR): A metric for mea-
suring the proportion of anomaly that is correctly identified,
which can be calculated as:

TPR =
∑

i1,i2,i3

αi1i2i3

/
(length(AT(:))),

where αi1i2i3 =

{
1 if (i1, i2, i3) ∈ A ∩AT
0 otherwise.

(37)

where AT represents the true anomaly, i.e., structural anomaly
AS or random anomaly AR . The function length(·) returns
the total number of true anomaly.

Definition 9 (False Positive Ratio, FPR): A metric for mea-
suring the proportion of non-anomaly that is wrongly identified
as the anomaly, which can be calculated as:

FPR =
∑

i1,i2,i3

βi1i2i3
/(

length
(AT(:)

))
,

where βi1i2i3 =

{
1 if (i1, i2, i3) ∈ A ∩AT
0 otherwise.

(38)

where the non-anomaly AT is the complement set of AT .

D. Experiment Results

The objective of our proposed OrTC-AM algorithm is to
estimate the intrinsical traffic data and detect the network
anomaly simultaneously. Therefore, we compare the proposed
algorithm with others from the following two aspects: traffic
data recovery and anomaly detection.

1) Traffic Data Recovery: In order to investigate the traf-
fic data recovery performance of our proposed algorithm, we
compare OrTC-AM with three tensor completion methods,
i.e., Online-SGD, DSTC, and BRCP-TC, under three different
application scenarios.

Scenario 1 (Traffic Data Without Noise and Anomaly): We
assume that all collected traffic data is accurate in scenario 1.
Fig. 3 shows the variation of the recovery error ratio and
successful recovery ratio when the traffic data is sampled at
different proportions. The horizontal axis of the three sub-
graphs represents the missing ratio, while the vertical axis
in Fig. 3(a) represents ER, and the vertical axis in Fig. 3(b)
and Fig. 3(c) represent SRR with θ = 0.01 and θ = 0.1,
respectively. We can observe that ER is consistent with the
missing ratio trend, and SRR generally varies inversely with
the missing ratio. In this scenario, specifically, except that the
BRCP-TC algorithm achieves slightly better ER values than
our proposed OrTC-AM algorithm does when the missing ratio
is more than 0.6, the OrTC-AM algorithm consistently out-
performs all other competing methods (i.e., Online-SGD and
DSTC). For the Online-SGD algorithm, it completes the miss-
ing data from the sequentially acquired traffic data, and thus its
recovery accuracy is lower than the other completion methods
with entire data. Furthermore, from Fig. 3(b) and Fig. 3(c),
our proposed OrTC-AM algorithm obtains relatively better
results compared with BRCP-TC. When we relax the accu-
racy ratio from 99% to 90%, these two algorithms can restore
almost all data. This result indicates that the completion meth-
ods (i.e., OrTC-AM, DSTC, and BRCP-TC) can impute the
missing data accurately under the ideal condition even when
the missing ratio is high.

Scenario 2 (Traffic Data Only With Gaussian Noise): This
set of experiments assume that the collected traffic data
are corrupted by only Gaussian noise but not by network
anomaly. After sampling the traffic data in different propor-
tions, the experimental results are shown in Fig. 4. Similar to
Fig. 3, OrTC-AM and BRCP-TC outperform all other com-
peting methods from the aspect of ER and SRR. The SRR
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Fig. 4. Scenario 2: Traffic data only with noise.

Fig. 5. Scenario 3: Traffic data with noise and structural anomaly.

(θ = 0.01) performance of DSTC declines due to the impact
of the dense Gaussian noise. This result demonstrates that the
LF -norm-based methods are Gaussian-noise-robust.

Scenario 3 (Traffic Data With Gaussian Noise and
Structural Anomaly): This set of experiments assume that the
collected traffic data are corrupted by both the Gaussian noise
and network anomaly. The performance gaps among the four
algorithms are illustrated in Fig. 5. We can observe that the
proposed OrTC-AM method outperforms the other compet-
ing methods in both ER and SRR. More concretely, the ER
of Online-SGD and DSTC is considerably high since they
are not anomaly robustness. From Fig. 5(b), we observe that
the reconstruction performance (99% accuracy ratio of each
data) of all algorithms declines with the increase of missing
ratio. Even though, OrTC-AM’s SRR remains around 90%
when the missing ratio is 50% and falls to 31.5% when there
is only 10% sampled data. On the other hand, the success-
ful recovery ratio of other algorithms is only 36.8% in the
best case. Furthermore, when the accuracy ratio is relaxed
to 90%, both of OrTC-AM and BRCP-TC can consistently
maintain around 90% SRR when the missing ratio varies,
which demonstrates that they can recover a large part of
traffic data precisely. All in all, both of the L1 and L2,1

methods are robust to the network anomaly, and the L2,1
method can result in a better performance for the structural
anomaly.

2) Anomaly Detection: In order to investigate the anomaly
detection performance of the proposed OrTC-AM method, we
compare with three anomaly detection methods (i.e., TRPCA,
TensorDet, and BRCP-TC) under two different application
scenarios.

Scenario 4 (Anomaly Detection With Gaussian Noise and
Structural Anomaly): This set of experiments assume that the
collected traffic data are corrupted by both the Gaussian noise
and the structural anomaly. Fig. 6 reports the TPR and FPR
values of the TRPCA method, the TensorDet method, the
BRCP-TC method, and our proposed OrTC-AM method when
the traffic data is sampled at different proportions. Compared
with TRPCA, TensorDet, and BRCP-TC, our proposed method
achieves a lower FPR and a higher TPR when the missing ratio
is less than 50%. Moreover, when the missing ratio reaches
0.5 or more, OrTC-AM can still maintain a high TPR (more
than 98%, 6% more than BRCP-TC) and a tiny FPR (less than
0.2%, and just 0.1% more than BRCP-TC), demonstrating that
OrTC-AM can accurately detect abnormal OD pairs at a given
time slot even with a small sampling rate 10%. Comparatively,
the performance of TensorDet and TRPCA declines signifi-
cantly when the missing ratio is 0.9, e.g., the FPR rockets
to 1, which means these two methods identifies all the data
as outliers wrongly. These results prove that OrTC-AM is a
robust anomaly detection algorithm that can fully utilize the
structural information to detect the anomaly more accurately.

Scenario 5 (Anomaly Detection With Gaussian Noise and
Random Anomaly): In this scenario, we compare four meth-
ods when the collected traffic data are corrupted by both the
Gaussian noise and random anomaly, which means that the
anomaly randomly distributes on all traffic data. Similar to
scenario 4, TensorDet and TRPCA cannot detect the anomaly
precisely when the missing ratio is high, and OrTC-AM con-
sistently outperforms all other competing methods from the
aspect of TPR, i.e., OrTC-AM can detect the true anomaly
with more than 97.5% accuracy. Although BRCP-TC achieves
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Fig. 6. Scenario 4: Anomaly detection with noise and structural anomaly.

Fig. 7. Scenario 5: Anomaly detection with noise and random anomaly.

Fig. 8. ROC with structure anomaly and random anomaly.

slightly better FPR values than our proposed OrTC-AM
method does when the missing ratio is more than 50%, OrTC-
AM can continually keep the FPR less than 0.004 when the
traffic data is sampled at different proportions. These results
demonstrate that OrTC-AM is a robust anomaly detection
technique that is not only applicable to the structural anomaly
but also the random anomaly.

Furthermore, we use the Receiver Operating Characteristic
(ROC) curve to evaluate the performance of anomaly detection
in scenarios 4 and 5. The ROC curve plots the true positive
rate against the false positive rate at various discrimination
thresholds. In this case, we vary the anomaly thresholds by
fixing the missing ratio as 0.5. From the ROC curves illus-
trated in Fig. 8, we can find that the OrTC-AM algorithm

has a noticeable better detection performance than other algo-
rithms in case of the structural anomaly. On the other hand,
these four algorithms have similar performance to detect the
random anomaly, and OrTC-AM is slightly better than other
algorithms. Therefore, we can come to the same conclusion as
Fig. 6 and Fig. 7, i.e., OrTC-AM is a robust anomaly detection
technique, especially for the structural anomaly.

VII. CONCLUSION

In this article, we aim to recover the full traffic data from
partial traffic measurements. Considering the coexistence of
potential network anomaly and noise in practical applica-
tions, we proposed a novel outlier-robust tensor completion
(OrTC) model to accomplish this task. Based on the AM
method, an effective algorithm OrTC-AM was designed to
solve the non-convex and non-smooth OrTC model. Compared
with existing network traffic estimation methods, the proposed
OrTC-AM algorithm can not only complete missing traffic
data and recover corrupted traffic data simultaneously, but
also detect network anomaly accurately. Finally, the exper-
imental results performed on the real dataset justified the
advantages of our proposed OrTC-AM algorithm over the
state-of-the-art competing methods. Future work will focus
on extending our OrTC model to integrate more tensor com-
pletion techniques for improving the estimation performance
on large-scale increasing network traffic data. Furthermore, to
choose an optimal number of the rank R is the key problem of
CP tensor factorization. In this article, we utilized the cross-
validation procedure to determine the optimal value, and we
will explore automatic selection methods [39], [40] in further
research.
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