
2662 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

Predicting Network Flow Characteristics Using
Deep Learning and Real-World Network Traffic

Christoph Hardegen , Benedikt Pfülb , Sebastian Rieger , and Alexander Gepperth

Abstract—We present a processing pipeline for flow-based traf-
fic classification using a machine learning component leveraging
Deep Neural Networks (DNNs). The system is trained to predict
likely characteristics of real-world traffic flows from a campus
network ahead of time, e.g., a flow’s throughput or duration.
Training and evaluation of DNN models are continuously per-
formed on a flow data stream collected from a university data
center. Instead of the common binary classification into “mice”
and “elephant” (throughput) or “short-term” and “long-term”
(duration) flows, predicted flow characteristics are quantized into
three classes. Various communication contexts (subset of network
traffic, e.g., only TCP) and flow feature groups (subset of flow fea-
tures, e.g., only a flow’s 5-tuple), which are supported through an
enrichment strategy, are considered and investigated. An in-depth
description of the data acquisition process, including preprocess-
ing steps and anonymization used to protect sensitive information,
is given. Additionally, we employ an accelerated variant of t-
distributed Stochastic Neighbor Embedding (t-SNE) to visualize
network traffic data. This enables the understanding of traffic
characteristics and relations between communication flows at a
glance. Furthermore, possible use-cases and a high-level archi-
tecture for flow-based routing scenarios utilizing the developed
pipeline are proposed.

Index Terms—Traffic engineering, network management, flow
prediction, machine learning, deep learning, NetFlow.

I. INTRODUCTION

TRAFFIC Engineering has been an ongoing research field
since the early days of computer networks [1], [2].

Recent advancements in machine learning (ML) have led
to approaches that improve network and service manage-
ment, e.g., using traffic forecasting [3], [4]. These include
the prediction of traffic characteristics for efficient routing as
well as load balancing, e.g., based on Equal-Cost Multipath
(ECMP) [5]. Significant effort has been put into the classifi-
cation of “mice” and “elephant” network flows to allow for an
even link utilization [6]. The same applies to the differentiation
between “short-term” and “long-term” flows [7]. As consid-
ered in [8] and [9], we specify a flow as metadata describing

Manuscript received January 15, 2020; revised June 14, 2020; accepted
September 7, 2020. Date of publication September 21, 2020; date of current
version December 9, 2020. The associate editor coordinating the review of this
article and approving it for publication was R. Badonnel. (Christoph Hardegen
and Benedikt Pfülb contributed equally to this work.) (Corresponding authors:
Christoph Hardegen; Benedikt Pfülb.)

The authors are with the Department of Applied Computer Science, Fulda
University of Applied Sciences, Germany (e-mail: christoph.hardegen@cs.hs-
fulda.de; benedikt.pfuelb@cs.hs-fulda.de; sebastian.rieger@cs.hs-fulda.de;
alexander.gepperth@cs.hs-fulda.de).

Digital Object Identifier 10.1109/TNSM.2020.3025131

a stream of packets (≥ 1) that belongs to a communication
between a source and destination system.

1) Problem Statement: In a classical routing scenario, the
destination IP address only is used to select a link or path
to forward a flow’s packets. As a consequence, no “intelli-
gent” routing is possible because the average traffic a flow
will produce for a finite duration is not known a priori.
Additionally, flows cause different traffic volumes and have
varying durations. Hence, the following question arises: How
precisely can different flow characteristics be predicted by
DNNs within the scope of various communication contexts
and feature groups? The forecast results can be used for traffic
engineering, e.g., predictive flow routing to tackle the disad-
vantages of state-of-the-art routing. The problem is significant
for future communication networks because increasing traf-
fic volumes have to be efficiently distributed across network
resources. Otherwise, network capacities are used unevenly,
and flows are negatively affected (throughput or latency).

Because flows typically have to be forwarded over the same
path, reactive load distribution across multiple paths is chal-
lenging. This is caused by, e.g., stateful network components
like firewalls and middleboxes [10], [11]. Thus, a proactive
and prediction-based solution that is not limited to destination-
based forwarding is required for enhancing traffic engineering.
This could include Software-Defined Networking (SDN) [12]
techniques that enable a fine-grained traffic steering based on
the prediction of flow characteristics.

In order to improve traffic engineering, we use DNNs
in an application-oriented scenario, in which dynamic flow
information of a real-world campus network is predicted. Two
scenarios clarify related challenges and motivate our work:

a) Example 1: Using only a single optimal path, e.g., the
shortest one, can result in a high load or congestion. Although
alternative paths with higher cost but less load exist, indi-
vidual flows are negatively influenced by a high load on the
shortest path. This can lead to high latency, packet loss and
low throughput (flow-level metrics) experienced by applica-
tions, i.e., Quality of Experience. In addition, available links
and paths, respectively, are unequally utilized, leading to a
high Maximum Link Utilization (MLU) or Maximum Path
Utilization (MPU), as well as a low and unbalanced average
load (topology-level metrics) of the entire topology.

Figure 1 shows an example with three paths between
routers R1 and R7. Path P1=(R1,R2,R7) with three
router hops is the shortest one. P2=(R1,R3,R4,R7) and
P3=(R1,R5,R6,R7) are two alternatives with four hops.
In a classic routing scenario, P1 will be preferred over P2

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-4002-6160
https://orcid.org/0000-0002-0108-1936
https://orcid.org/0000-0003-3597-6284
https://orcid.org/0000-0003-2216-7808

HARDEGEN et al.: PREDICTING NETWORK FLOW CHARACTERISTICS USING DEEP LEARNING AND REAL-WORLD NETWORK TRAFFIC 2663

Fig. 1. Congestion on a single shortest path.

Fig. 2. Unequal utilization of multiple paths with equal cost.

and P3. Each path has a capacity of 100%. Three load
levels are distinguished: low (<10%, green), medium (10-
90%, orange) and high (>90%, red). There are three flows
f1, f2 and f3 with given bit rate levels B(fx) that need to
be routed from R1 to R7 : B(f1)=B(f3)=40%, B(f2)=30%.
Forwarding all over the optimal path leads to a theoretical
path load of L(P1)=110% and results in a congestion on P1

(L(P1)>100%), while the full capacity is available on both
alternatives with L(P2)=L(P3)=0%.

b) Example 2: Multiple paths with equal cost have to be
shared evenly to avoid unequal utilization. This is challeng-
ing, for instance, in ECMP-based load balancing techniques
that use flow-based hashing or round robin. An uneven dis-
tribution of traffic loads across available paths can lead to a
high MLU/MPU. Depending on the throughput of individual
flows, an unequal distribution can cause a high load on one of
the equal-cost paths. This results in, e.g., high latency, packet
loss or a low throughput for flows and for the entire topology.

An example with two simple paths of equal costs (three
hops) between the routers R1 and R4 is given in Figure 2.
The paths P1=(R1,R2,R4) and P2=(R1,R3,R4) have a uni-
form capacity of 100%. Four flows need to be forwarded
from R1 to R4 and have the following throughput require-
ments: B(f1)=B(f2)=55% and B(f3)=B(f4)=5%. Routing f1
and f2 over P1 and forwarding f3 and f4 via P2 leads to
an unequal utilization. While P1 is overloaded (theoretically
L(P1)=110%), whereby f1 and f2 may be exposed to the men-
tioned negative impacts, P2 , P2 is less loaded (L(P2)=10%).

2) Contributions: We propose a flow data stream pipeline
to train and deploy a deep learning model for the prediction
of several network flow characteristics, i.e., bit rate, dura-
tion and number of bytes/packets. Compared to existing traffic
classification mechanisms, e.g., distinguishing mice from ele-
phant flows [6] or short-term from long-lasting flows [7], we
introduce a flow feature estimation categorized into multiple
traffic classes. This allows for a more fine-grained traffic
engineering/steering of network flows.

Traffic characteristics are highly variable, e.g., with respect
to the environment and size of the network [13]. For instance,
the amount of traffic fluctuates over time, and spikes usually
occur. Therefore, a key challenge in our work is to obtain real-
istic network traffic characteristics to be used as input for the
DNN. Consequently, a systematic collection of network traffic

metadata was conducted in our university campus network. We
provide insights into the network topology, traffic data and the
experimental environment. Various communication levels and
groups of flow characteristics are investigated to evaluate the
prediction of individual flow metadata in different contexts. In
order to address gradual changes of collected traffic character-
istics, i.e., concept drift, we use a stream processing approach
over consecutive time intervals to achieve continuous learn-
ing and adaption of DNN. This setting requires an efficient
implementation of the processing pipeline to keep up with the
stream of flow data. Privacy is a further obstacle to process-
ing flow data and obtaining a realistic dataset. Flows contain
IP addresses, which can be viewed as sensitive information.
Accordingly, anonymized flow data is used at all processing
stages in the proposed pipeline to ensure privacy protection.

This article is an extended version of the paper “Flow-based
Throughput Prediction using Deep Learning and Real-World
Network Traffic” from the Conference on Network and Service
Management (CNSM) 2019 [9].

a) Main contributions of the CNSM paper:
• We perform multi-class training and prediction of a flow’s

bit rate using DNNs working in a streaming setup.
• We give insights into the process of collecting real-world

flow data and apply t-SNE as a visualization technique.
• We provide a dataset (525 million flows) collected during

one week and the code for our flow data stream pipeline.
b) Extended contributions of this article:

• We extend our investigations with regard to various flow
communication contexts, and feature groups, while consid-
ering different flow characteristics as labels.

• The class boundaries for each prediction experiment are
estimated automatically by equal frequency binning.

• We reorganize the flow data stream pipeline and give more
insights on its implementation1 and the experimental setup.

• We validate our research from the CNSM 2019 by collecting
a new dataset, and obtain similar results. An optimized t-
SNE implementation is used to analyse 10000 instead of
only 1000 flow data samples at a glance.

• We investigate the influence of an exporter misbehaviour on
the prediction results by comparing the results with those
of using an alternative exporter.

• We discover accuracy instabilities observed when using the
Adam optimizer, which do not exist when using vanilla
Stochastic Gradient Descent for DNN models in the context
of continuous learning on flow data.

• We present exemplary scenarios in which the use of pre-
dicted flow characteristics results in an optimized flow rout-
ing. Additionally, a more detailed overview of a distributed
and centralized routing architecture are given.
c) Summarized main findings:

• The validity of the CNSM paper is reconfirmed by conduct-
ing additional streaming experiments.

• Predicting different flow characteristics for streamed flow
data is feasible with DNNs.

• The prediction accuracies depend on the considered com-
munication context, feature group and selected label.

1https://gitlab.cs.hs-fulda.de/flow-data-ml

2664 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

Fig. 3. Flow data stream pipeline.

II. RELATED WORK

A survey of techniques for traffic classification using ML
is given in [3], [4], [14] and [15]. An example for using ML
to classify flows and their throughput in simulated data cen-
ter networks is presented in [16]. In contrast to simulated
traffic, flow characteristics in real-world networks are often
fluctuating and complex [13]. Other techniques for ML-based
routing can be found in [17]. [18] presents an SDN-based
adaptive traffic engineering framework. Both papers focus on
only two traffic classes (mice and elephant). An approach that
proposes the use of deep reinforcement learning on synthetic
network traffic for routing can be found in [5]. Reference [19]
introduces the combination of learning from existing Dijkstra-
based routing algorithms and imitating them with higher
performance using a dynamic routing framework for SDN
to optimize network throughput for simulated data. A solu-
tion with supervised deep learning for routing decisions based
on real traffic demands is presented in [20]. The model uses
aggregated known traffic demands as an input to optimize
the overall path utilization. Reference [7] analyzes real-world
network flows captured from a university campus network.
Thereby, the prevalence of small flows and the classification
of features is discussed and the importance of data collection
in real networks is emphasized.

The relevance of deep learning based traffic classification
and prediction in SDN is explained in [21]. Traffic analy-
sis and routing optimization with deep learning are explicitly
named as major future research problems. This is also sup-
ported by the necessary shift from rule-based network traffic
control to mechanisms using artificial intelligence (AI), e.g.,
due to steadily increasing traffic volumes [22]. Reference [23]
argues that a network AI can be used to predict future network
traffic from past data to evolve network management and
automation. Using a network AI, [24], [25] and [26] focus on
intelligent traffic routing for aggregated traffic characteristics
and improved network analytics. For verification, prediction
models can be cross-checked, e.g., with existing evaluations
of the interpretability of deep learning models used in the area
of computer networks [27]. An option is generative replay,
whereby generated characteristic traffic is combined with prior
data to ensure prediction model adaptability [28].

As proposed for knowledge-defined networking [29] or
cognitive network management [30], our approach can be
combined with SDN [12] and Virtual Network Functions [31].

Main differences between this article and related work are:
• multi-class instead of binary classification
• real-world compared to synthetic network data
• flow-level instead of aggregated path data
• stream compared to batch processing

Fig. 4. Network and NetFlow collection infrastructure.

• early prediction based on first packet features
• analysis of communication contexts and feature subsets
• discussion of use-cases for improved flow routing.

III. FLOW DATA STREAM PIPELINE

The flow data stream pipeline (Figure 3) performs data
collection and preparation as well as learning from flow data.

A. Data Collection

Data collection takes place in a real-world production
network at Fulda University of Applied Sciences.

a) Network architecture: The campus network covers fac-
ulty as well as teaching facilities (about 30 buildings) and
hence connects several subnets from the data center, laborato-
ries, researchers, administration (about 600) and also students
(about 10000; primarily WiFi). It is designed according to the
core-distribution-access model, in which each building repre-
sents an element in the distribution layer, being connected to
two core routers as shown in Figure 4. Two data centers are
also connected to the core layer, providing central IT services.

This architecture allows us to export traffic metadata from
both central core routers using the NetFlow protocol, catch-
ing WiFi, data center, internal and external traffic, except for
packets that are routed within the distribution layer.

The Cisco Catalyst platform is used for the entire network.
At the core layer, two Cisco Catalyst 6509-E switches in
Virtual Switching System mode build the primary router in
building E (CatE), while a Cisco Catalyst 4500 switch is avail-
able for redundancy in building M (CatM). All devices are
capable of exporting Cisco Flexible NetFlow [32], [33].

b) Flow export: Flow information for all application proto-
cols is continuously exported by two core routers. As both
devices connect most of the campus infrastructure, traffic
includes a variety of realistic patterns. This traffic may be
affected by constraints (e.g., QoS policies) that are reflected
in exported flow data. A configured flow record selects flows
to export based on a set of matching criteria, i.e., the 5-tuple

HARDEGEN et al.: PREDICTING NETWORK FLOW CHARACTERISTICS USING DEEP LEARNING AND REAL-WORLD NETWORK TRAFFIC 2665

Fig. 5. Setup for mirroring WiFi traffic.

(source/destination IP address, source/destination port, proto-
col). Collection criteria are added to flows before they get
exported to the collector. This metadata consists of timestamps
for a flow’s start and end time, the number of packets/bytes
transmitted and a union of all observed TCP flags. A defined
flow monitor references the flow record and the configured
flow collector. Timeouts ensure that data is either exported at
periodic intervals (longer lasting flows) or after inactivity. An
active timeout of 600 s and an inactive one of 30 s are used.

Flow records are exported only for ingress traffic to avoid
duplicated exports from one router. The collector handles
∅≈2000 flow records per second. Only unicast flows are con-
sidered. Since the proportion of multicast traffic is quite low
in our network and it does not offer the same feature variety
as unicast traffic, multicasts and broadcasts are filtered.

Depending on the switches, a flow can pass through both
routers. As both devices export flows, the same data is poten-
tially collected multiple times. Duplicated flows are filtered out
and only unique records are processed further (Section III-B1).

In general, there is considerably more work-time network
usage but a certain traffic level remains at night. In order to
get an examplary overview of the traffic volume within the
considered network as well as the trend of the flow cache
sizes and the number of flow records exported per second for
a complete week, we refer to [9].

c) Misbehavior of the NetFlow exporter: While all gener-
ated and retraced flows [9] were correctly exported by the
core switches in various tests, some flows were affected by a
misbehavior of the NetFlow exporter during data collection.
These flows had a faulty duration, i.e., the NetFlow inactive
timeout was added to the flows’ duration. For example, there
were some flow records specifying only one exchanged packet
but a duration of nearly the inactive timeout. The problem
may be related to flow inactivity management. No significant
switch load was monitored during the flow export and the issue
was observed for different times and communication contexts.
After detecting the issue and trying different configurations
for the Cisco exporter, the NetFlow exporter nprobe [34] was
connected to a packet mirror configured on CatE (Figure 5) to
investigate the error in the exporter. Due to the potentially crit-
ical impact on the network, the packet mirror extracted only
WiFi traffic based on VLAN tags.

Flow data was collected by each exporter for one work day
(8 h). The analysis of both datasets states slight differences
regarding the data distribution of a flow’s duration and
throughput. As the distribution is comparable, the impact on
our experiments is exemplarily investigated by predicting the
bit rate. We trained two DNNs with identical parameters on
each dataset and evaluated the results (Figure 6).

Since the accuracy trends for both experiments show only
minor deviations, the influence of the exporter’s misbehavior

Fig. 6. Accuracy comparison for different flow exporters.

is negligible. Moreover, our focus remained on collecting
realistic traffic data from a real-world network.

Another issue concerns flow timestamps. The exporter
reported a higher timestamp for the first compared to the last
packet, resulting in negative durations. Out of ≈480 million
flows collected during a week (2019-12-02 15:00 to 2019-12-
09 15:00),≈15000 records distributed over a continuous time
interval are affected. As the proportion of involved flows is
small, the impact on subsequent steps is assumed to be low.

The described exporter issues show that the collection and
preparation of real-world flow data is a major issue since it
requires an understanding of the flow exporter’s behavior. In
general, a misbehavior of an exporter directly influences the
quality of collected data but the experiments show that the
effect on the prediction results is negligible.

B. Data Preparation

After receiving a collection of ≈100000 flow records
(block), data preparation is initiated. To prepare flow
information for the training performed in the ML module, sev-
eral operations (see below) are applied to each block of flow
records. Most steps of the data preparation are executed by a
central flow data streaming server to which multiple flow data
streaming clients can connect. Several clients can implement
various experiments, e.g., different learning techniques. The
streaming server is responsible for data aggregation, enrich-
ment and anonymization. Collected and preprocessed data can
be stored as an offline dataset. The streaming clients filter and
select flow data, before class labeling and normalization are
performed (Figure 3). All data preparation operations are par-
allelized on server- and client-side. Each block is temporarily
divided into data chunks that are processed independently.

1) Data Aggregation: One flow record might not describe a
complete communication because of exporter configurations or
hardware limitations (i.e., timeouts or cache sizes). To obtain
flow entries that represent an entire communication, flow
records are aggregated in a block-wise manner. The applied
method is based on a flow’s 5-tuple, timestamps and flags.
Flow properties like timestamps, duration, number of packets
and bytes, as well as bit rate, are updated. Because of the
timestamp resolution (50 ms steps), the bit rate for short-term
flows (duration <1 ms) cannot be estimated and is set to 0 (∅≈
17000 records per block). On average ≈20000 records per
block are flows with only 1 packet (duration=0 ms). Records
that cannot be aggregated are dropped (∅≈2500 records per
block). Duplicate records from exporters in both switches are

2666 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

TABLE I
NORMALIZATION AND TRANSFORMATION EXAMPLES

filtered based on their first occurrence (∅≈4200 records per
block). Aggregation and filtering of a block reduces≈100000
records to ∅≈75000 entries.

2) Data Enrichment: Each flow entry is enriched with addi-
tional metadata that is extracted from the local and global
network context (e.g., private/public prefixes, VLANs, ASNs),
depending on a flow’s source and destination IP address. IP
address management system exports, as well as a lookup ser-
vice [35] are used as data sources. Data enrichment aims at
enhancing the prediction accuracy and enables the considera-
tion of different communication contexts and levels.

3) Data Anonymization: To ensure privacy protection, an
anonymization of IP and network addresses is performed.
Address octets are substituted using individual substitution
tables, which are permuted based on a cryptographically
hashed password (seed) defined by the data center. This
ensures that the semantics of addresses are kept apart from
their adjacency. The strategy preserves relationships between
IP addresses and their subnets. But relations between neigh-
boring IP addresses or subnets are not retained.

4) Data Filtering: The filtering of data allows to exclude
flows that match a set of pre-specified conditions for avail-
able flow features. Feature filtering enables the extraction of
sub-datasets from the flow data stream, e.g., for individual
experiments. For example, in order to keep only TCP traffic,
other flows are skipped based on the transport protocol. Thus,
the data filtering stage allows to reduce the number of flows.

5) Data Selection: The selection of one or more flow
features supports the consideration of various feature com-
binations. Again, feature selection enables the extraction of
sub-datasets from the flow data stream. For example, to retain
only a flow’s 5-tuple, the IP addresses, ports and the transport
protocol are selected. Hence, the data selection stage allows
to decrease the number of features for all flows.

6) Data Labeling: Each flow is assigned a class using
predefined boundaries for the selected flow property. Flow
properties that merit being predicted by the model are referred
to as class labels. The number of bytes and packets as well as
a flow’s duration and bit rate are supported. Labels are deter-
mined during data collection or updated in the aggregation
stage and afterwards transformed into the one-hot format.

7) Data Normalization: To feed the model (e.g., DNNs)
with suitable inputs, normalization and data format transfor-
mations are performed. The latter include the replacement of
dynamically chosen ports ≥ 215 by 0, and the splitting of
timestamps. The normalization supports three formats: float,
bit pattern, one-hot (e.g., Table I). The float normalization
(min-max normalization) maps a single value to a predefined
interval, e.g., [0.0, 1.0]. Methods like bit pattern and one-
hot avoid the representation of numerical proximity, which is

TABLE II
FEATURES IN THE DATA STREAM

Fig. 7. Data flow diagram of network flow data.

important for, e.g., IP addresses. The latter method transforms
each categorical value to a bit pattern with a single 1.

An overview of the features in the data stream that results
from the data preparation stage is given in Table II. The size of
output vectors is stated for each feature. Data transformation
types marked in gray are used for the experiments. The origin
(Src) of each feature can be identified and features for which
there is both a source and a destination are marked with �.

C. Machine Learning

This module implements the training and inference stages.
Various online and offline (i.e., not operating on live data
streams) experiments can be performed to evaluate the validity
of different ML models, their hyper-parameters and data nor-
malization or enrichment strategies. When doing so, either for
model training or inference, the prepared flow data is always
processed in a block-wise manner. A (chronologically ordered)
block is split into a training and test set, both of which are
individually shuffled to preserve the chronological order of
flow data. The machine learning stage outputs the predictions
of the trained ML model for individual flow communications.

D. Data Flow of Network Flow Data

The data flow diagram in Figure 7 depicts the processing of
flow data on Flow Data Stream Server and Clients. Exported
flows from multiple exporters are collected by the NetFlow
Collector until an entire block has been received. Each block
of 100000 Flow Records is processed by the Flow Processor
that splits a block into multiple chunks containing a subset of

HARDEGEN et al.: PREDICTING NETWORK FLOW CHARACTERISTICS USING DEEP LEARNING AND REAL-WORLD NETWORK TRAFFIC 2667

all flows and passes each chunk to one of n Flow Processors
performing aggregation, enrichment and anonymization. The
number of processing units n depends on the available CPU
cores. Blocks of flow records have to be processed in parallel
to ensure that processing ends before a new block is available.
Preprocessed chunks of Flow Entries are recombined into a
block, which is compressed and transferred to connected Flow
Data Stream Clients by the Connection Handler. Raw and
preprocessed data can be exported to files, either for offline
analysis or reproducible experiments.

On the Flow Data Stream Client side, the Stream Handler
is responsible for decompressing a received block and passing
the flow data to the Flow Processor. Again, the Flows are
split into chunks and processed by m Flow Processors, while
the number m depends on the available client hardware. Each
Flow Processor applies a feature filter and selector, as well
as a normalization and labeling function. Finally, the resulting
data chunks are reconstructed into a block of suitable DNN
Inputs, and then split into chronologically ordered Training
and Test Datasets, which are individually shuffled and passed
to the depicted FC-DNN Client (fully-connected DNN). The
datasets and evaluation results can be exported to files.

This architecture supports a simultaneous evaluation of
multiple machine learning models on a data stream. As data
collection and most parts of data preparation are performed
on the server-side, the models can be implemented on the
client. Additionally, our streaming solution can replay a stored
dataset, either with raw or preprocessed flow data.

The flow data stream pipeline supports the processing of
exported IPv4 flows. In order to add support for IPv6 flows,
only IP address operations in the affected pipeline stages need
to be modified (128 instead of 32 bit). The same statement
applies to ASN numbers (4 instead of 2 bytes) or the value
range of other supported features in the flow data stream.

All pipeline stages have varying but constant runtime com-
plexities that depend on the block size. In order to guarantee
real-time capability, a block has to be processed until the sub-
sequent one is collected. The latter factor is influenced by
existing network conditions, i.e., number of flows per second,
and available computational resources.

IV. TRAFFIC ANALYSIS EXPERIMENTS

Unless stated otherwise, we selected aggregated flow entries
from block 1340 (2019-12-03 at about 14:00) out of a stored
reference dataset2 for traffic analysis. The dataset contains
about 6800 blocks with overall ≈480 million flow entries col-
lected for a continuous week (2019-12-02 15:00 to 2019-12-09
15:00). The data distribution was investigated based on the
chosen flow labels. Structural patterns within the flow data
are visualized, while only the first 10000 flow entries of the
selected block are used. Variations were present for previous
or following blocks, but the trend remained unchanged when
considering day and night time separately. Both steps help to
provide a better understanding of the data.

In order to verify the operation of each stage in the flow data
stream pipeline, network traffic was generated and retraced in

2The dataset is available upon request.

Fig. 8. Histograms of a block for all flow labels (log scale).

exported flow data. For example, we performed various down-
loads and compared the results with obtained flow information,
e.g., a flow’s duration and throughput. This is described in
more detail in our previous work [9].

A. Label-Based Data Distribution

Figure 8 outlines the data distribution within the com-
plete selected block for each flow label. While respecting the
observed value range, the histograms summarize data in 25
bins. Most flow communications are active for a relatively
short time (Figure 8a) and/or transmit very few data while
being active (Figure 8b). The same findings apply to the
observed number of transferred bytes and packets (Figure 8c
and 8d), which are both relatively small.

Flow data is unevenly distributed, which is clarified by
the median values (Figure 8). As the number of classes and
the related definition of boundaries used to label each flow
depends on the observed data, a suitable determination is
challenging. Using three classes allows for an approximately
balanced number of samples per class. In order to pre-estimate
the boundaries for different experiments with varying data
distributions, an equal-depth frequency partitioning method
(equal frequency binning) – smoothed by a bin’s min. and
max. value – is applied. Resulting boundaries ensure the best
possible balanced distribution for each class, which is appro-
priate for DNN training, even though they have to be adapted
for practical application.

Figure 9 illustrates the trend of the class distribution across
all dataset blocks. A flow’s bit rate is exemplarily used as
label. The class boundaries are predetermined (in bit/sec)
according to the above mentioned strategy: class 0=[0, 4169[,
class 1=[4169, 12288[, class 2=[12288, ∞]. While the pro-
portion for each class remains approximately the same, there
are minor deviations for individual classes. Additionally, class
weighting methods are applied to address an imbalanced
number of elements per class for training.

B. Structural Data Patterns

To discover and visualize structural patterns, we use
t-SNE [36], which is based on an Euclidean distance metric
and performs dimensionality reduction by mapping high-
dimensional data to a lower space (2D), while preserving

2668 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

Fig. 9. Class distribution for all blocks of the dataset.

Fig. 10. Transport protocol-based tagging of the t-SNE results.

Fig. 11. Locality-based tagging of the t-SNE results.

neighborhood relations as much as possible. To apply t-SNE
on a block with adequate computational time, an optimized
tree-based approximation [37] is used. Figure 10 to 12 share
the same output for 10000 flows with different context-related
tags. Similarities are indicated by the relative distance between
sample points, but absolute point positions are meaningless.

The differentiation of flow entries based on the transport
protocol is shown in Figure 10. 85.5% of the flow samples
belong to UDP and 13.5% to TCP traffic. The remaining
proportion of 1.0% describes communications using other
protocols like ICMP. For each transport protocol, there are
multiple accumulations of samples indicating feature similari-
ties. Symmetric spots for each accumulation can be identified.

Figure 11 depicts the tagging of each data sample according
to the communications’ localities. Four communication types
are distinguished based on the source and destination localities.
3.4% of the 10000 flow entries are related to communica-
tions between private systems, the other 96.6% involve at least
one publicly addressed system (i.e., communication to or from
the Internet). While 25.2% of the flows describe communica-
tions between publicly addressed systems, 36.6% respectively
34.8% belong to communications between an internal and
external system. Again, symmetric accumulations for each

Fig. 12. Application-based tagging of the t-SNE results.

communication type are visible. Considering the context of
localities, symmetric spots within the t-SNE visualizations are
related to different communication directions, i.e., belonging
to the same session or conversation. WiFi traffic (46.3%) is
separately marked and strengthens this fact.

The tagging of the t-SNE output with symmetric accu-
mulations based on the application protocol is delineated in
Figure 12. With 79.8%, most of the flow entries are DNS traf-
fic, which is interrelated to the huge proportion of UDP flows
(Figure 10). 13.2% of the flow entries belong to HTTP(S)
traffic and another 7.0% to other application protocols, e.g.,
SNMP, LDAP, SMTP.

According to the accumulations of individual data samples
and their symmetric pair spots, the t-SNE results show feature
similarities for several flow entries. The context-based tagging
helps to clarify the existing structural patterns in the data.

Besides the fact that almost every communication requires
a domain name lookup, the reason for the huge proportion
of flow communications that are related to DNS lies in the
network architecture and the protocol operation of DNS itself.
Requests sent to the internal DNS resolver and those addressed
to external DNS servers pass through the central network
devices that export flow data. External requests also include
queries that cannot be handled by the local DNS resolver.
Hence, they are externally forwarded. Flows that describe DNS
communications normally have either one exchanged packet,
or a small number of transferred bytes as well as a short dura-
tion (short-term). While ≈70% of all flows belong to DNS,
their volumetric proportion is small (Table VI). Thus, these
flows and similar ones can be excluded as the prediction is
practically not relevant.

V. FLOW PREDICTION EXPERIMENTS

Subsequently, insights into the experimental setup are given
and the results of our streaming experiments are presented.

A. Experimental Setup

In order to perform 240 prediction experiments on the
stream of flow data that last for one week, experiments are
conducted simultaneously by about 180 computational nodes
with different hardware specifications (Table III).

Since static DNN models are used, the GPU memory usage
is constant for all trained models (about 400 MB). As GPU uti-
lization depends on the clocking and number of CUDA cores,
the value ranges from 30% to 50% during model training and
testing. Data preparation steps are processed in parallel by sev-
eral processes whose number depends on the available cores.

HARDEGEN et al.: PREDICTING NETWORK FLOW CHARACTERISTICS USING DEEP LEARNING AND REAL-WORLD NETWORK TRAFFIC 2669

TABLE III
USED COMPUTATIONAL RESOURCES

Fig. 13. Training epochs comparison of used GPUs.

Fig. 14. Accuracy comparison of used GPUs.

Each experiment uses up to 2 GB of RAM. On average, data
preparation steps on the flow data streaming server require
about 12.20 seconds (aggregation: 7.65 s, enrichment: 4.50 s,
anonymization: 0.05 s) when using 8 parallel processes and
about 700 MB of RAM. Data preparation steps on the flow data
streaming client require 2.13 seconds on average (labeling:
0.01 s, normalization: 2.12 s) when using 16 parallel processes.

In order to eliminate the computational imbalance of het-
erogeneous hardware, we chose a slow (Quadro P620) and a
fast (RTX 2080) GPU to measure the influence on the training.
Both nodes are connected to the flow data streaming server,
and two DNNs with identical hyper-parameters are trained for
one week. The comparison of performed training iterations or
epochs on each block, respectively, yields a constant factor of
2.75. The number of epochs (Figure 13) depends inversely on
the number of received flows per second in order to ensure
real-time processing. Consequently, training and testing are
performed for fewer epochs during the day than at night.

On average, the different iteration counters result in an accu-
racy deviation of about ±1% (Figure 14). To exclude the
influence of varying training iterations, counters are fixed for
all experiments based on the slowest GPU.

TABLE IV
CONTEXTS/FEATURE BOUNDARIES FOR THE EXPERIMENTS

B. Deep Neural Network Architecture

Fully-connected DNN (FC-DNN) classifiers with fixed
hyper-parameters are used to predict various flow labels. DNN
parameters are selected based on a previously performed
parameter optimization [8] (grid search) using a reference
dataset: 5 layers with 1000 neurons each and a learning rate
of 0.001. We chose FC-DNNs because they are efficiently
(re-)trainable in a streaming setup (online learning support
without resource-intensive pruning) and can represent more
complex problems than sparsely connected models. During
DNN training on a block, standard cross-entropy loss is min-
imized by Stochastic Gradient Descent. Rectified Linear Unit
transfer functions are applied to each hidden layer, and the
output layer utilizes a softmax function. While flow data is
continuously streamed, sequentially prepared and processed
(Section III), each block is fed mini-batch-wise (batch size
100) to the DNN until a specified number of training iterations
is reached or the next prepared block becomes available.

A flow’s number of packets and bytes as well as its duration
and bit rate are selected as class labels. Because regression is
more challenging for unevenly distributed data, the prediction
is treated as a multi-class classification problem. Training
(90%) and test data (10%) are obtained by splitting a data
block, while respecting chronological order, and are individ-
ually shuffled. This ensures that training and test data are
separated in time preventing overly optimistic test results due
to correlated timestamps, which could be used as features by
DNNs. Standard class weighting methods are applied to han-
dle an imbalanced number of data samples for each class. This
means that a weight factor based on the proportion of data
samples is determined for each class. Weighting is performed
block-wise for the training and testing phase.

C. Learning on a Streaming Interval

240 streaming experiments for various communication con-
texts are performed, in which DNNs (Section V-B) are trained
and tested on a flow dataset collected for a week (2019-12-
02 15:00 to 2019-12-09 15:00). For each context, individual
sub-datasets and class label boundaries are determined. Only
intermediate values are given, whereby 0 as the lower and ∞
as the upper bound are used for each entry (Table IV). Features
are grouped and their importance is analyzed (Table V).

In summary, each prediction experiment evaluates an indi-
vidual combination of communication context, feature group
and selected flow label. A block’s maximum accuracy is used

2670 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

Fig. 15. Accuracy trend for only TCP flows and different labels.

TABLE V
FEATURE GROUPS FOR THE PREDICTION EXPERIMENTS

as representative value. Table VI summarizes the results, giv-
ing maximum, mean and median accuracy for all blocks. The
forecasting of a flow’s number of packets and bytes is less
challenging compared to the throughput and duration.

Table VI also shows the protocol proportion and median
values of flow volume metrics that are determined based
on the first ≈4000 blocks. Later blocks are excluded as
flows with a negative duration are contained (exporter issue,
Section III-A). Besides TCP and UDP, DNS is listed because
it is the predominant application protocol in collected data.

Eight experiments are selected and the accuracy trends are
shown in Figure 15. All are related to the same communica-
tion context. The achieved accuracies for using all features or
a flow’s 5-tuple are compared for different labels. The differ-
entiation between day and night has a significant impact on
accuracy. This is due to higher network dynamics at daytime,
e.g., a varying number of (student) mobile devices. Generally,
the enrichment improves results by about +2%, as well as the
stability of the inference stage especially during the day.

VI. DISCUSSION OF RESULTS

In the following, analysis results for collected flow traffic
and findings from the streaming experiments are discussed.

A. Traffic Analysis and Data Distribution

Although the flow data has no inherent metric, t-SNE is a
suitable tool for the visualization of structural patterns. The

t-SNE visualizations clarify data similarities and provide a
better understanding of the flow data in our university network.

Regardless of selected labels, the data is unevenly dis-
tributed w.r.t. classes. Hence, the definition of class boundaries
is challenging. In this article, classes are statically defined so
that an on average approximately equal number of samples
for each class is obtained, which is required for DNN train-
ing. Small differences in class frequencies are compensated
by a class-dependent weighting factor in the loss function.
At the same time, sufficient data samples for each class are
required. We chose a shortcut and analyze the label distribu-
tion for all training data (e.g., not just the current block) in
order to define appropriate class boundaries. In a streaming
setting where only the current block is available, this shortcut
will have to be replaced by a more generic solution.

The treatment of classification problems with unbalanced
classes is difficult with DNNs [38] when class imbalances are
too high. Roughly, there are three ways to deal with imbal-
ances: First of all, there is the method we have adopted here,
which simply increases the DNN learning rate for less frequent
classes. A downside of this approach is that there is no way of
telling if this modified learning rate is too high, which could
break down the training process completely. Secondly, one
might simply discard samples from more frequent classes in
order to ensure balanced classes. However, this would ignore
available data, which is inacceptable to us. And lastly, one
could store or generate a set of “holdout” samples that is used
to bolster less frequent classes. While this would be a robust
solution, it means that learning is partly performed on data
that have no connection to the current learning task. Thus,
performance could suffer enormously.

Network traffic contains a huge proportion of flows that do
not necessarily require a prediction, e.g., short-term flows, and,
thus, can be excluded or handled in a different manner.

B. Results of the Experiments

Our streaming experiments show that multi-class bit rate
prediction for streamed flow data is feasible with DNNs.

HARDEGEN et al.: PREDICTING NETWORK FLOW CHARACTERISTICS USING DEEP LEARNING AND REAL-WORLD NETWORK TRAFFIC 2671

TABLE VI
OVERVIEW OF THE FLOW PREDICTION EXPERIMENT RESULTS (LEFT PART) AND FLOW VOLUME METRICS (RIGHT PART) FOR EACH CONTEXT

Compared to binary classification, a multi-class problem is
more challenging. Considering only two classes, our experi-
ments achieve more than 90% accuracy.

Regarding the investigation of different communication con-
texts, feature groups and flow labels, the prediction results
vary. Whereas the proposed enrichment strategy can improve
and stabilize the accuracy, using a flow’s 5-tuple only provides
slightly worse results (about −2%). Forecasting a flow’s num-
ber of packets and bytes is less challenging than predicting its
throughput and duration. Because the duration and the num-
ber of bytes are used to calculate the bit rate, a fine-grained
duration prediction is of high interest. This calls for a more
precise export of flow timestamps.

Comparing the results of a previously performed feature
importance analysis [9] to the results presented in Section V-C,
learning on a stream rather benefits from the enrichment but is
context-dependent. While the initial feature importance exper-
iments from [9] only consider a short time interval (10 blocks,
5 - 10 minutes), the streaming experiments are based on a
week’s worth of flow data. Due to more network dynamics
during the day, the accuracies are less favorable than at night.
The results do not seem to be directly related to the number
of training epochs, which strengthens this fact.

We initially employed the Adam optimizer in 240 performed
streaming experiments, in which DNN models were trained for
a continuous week. A significant proportion of the experiments

resulted in accuracy instabilities. All experiments provided sta-
ble results for the first 444 blocks (6 h). The instabilities we
observed started at different times and followed no simple con-
dition or obvious pattern like having no sufficient number of
flow data samples for one class. However, this may be due to
the varying data distributions (e.g., class imbalances) in con-
secutive blocks and the resulting impact on the used optimizer.
As a comprehensive analysis of the optimizer issue is required,
we used vanilla Stochastic Gradient Descent. Compared to the
previous experiments, no instabilities were detected.

A statement on the generalizability of our approach remains
an open issue, because no comparable datasets exist as a
basis for further evaluation. In contrast to using synthetic
data, which depends on the generator’s quality, a real-world
network scenario is the most credible setup. Although other
environments have different traffic patterns or characteristics,
a campus network with a huge amount of fluctuating and het-
erogeneous systems is challenging. Thus, obtained results may
be transferable to similar networks. Nevertheless, reproducible
simulations for practical transferability are needed to evaluate
the actual benefits in real scenarios.

VII. FLOW ROUTING SCENARIOS

First, the forecasting of flow characteristics can be used
to enhance a flow’s performance (i.e., latency, packet loss,

2672 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

Fig. 16. Preventing path congestion by throughput prediction.

throughput). A suitable path for a flow communication in the
network topology can be determined based on the predicted
flow characteristics. Second, flow-based prediction offers the
potential for an optimized or equal utilization of multiple paths
(e.g., multi-pathing or ECMP), whereas a round-robin or hash-
based path selection can result in uneven resource utilization
or congestion. As both scenarios require an advanced traf-
fic routing, a proactive flow steering based on predicted flow
metadata is suggested. Additionally, an architectural proposal
for a centralized and distributed approach is presented.

A. Use-Cases

In the following, different use-cases for the application of
prediction results to network routing are presented.

1) Throughput Prediction for Path Selection: A proactive
path determination based on the prediction of a flow’s likely
throughput is one approach to address the challenges related to
the examples given in Section I. On the one hand, using a sin-
gle optimal path for multiple flows between two routers may
result in a high load or congestion. Meanwhile, alternatives
that have higher costs, but are less loaded, can exist (Figure 1).
On the other hand, multiple paths of equal costs have to be
utilized equally (Figure 2). Knowing a flow’s approximate
throughput ahead of time allows for an advanced distribu-
tion of flows across paths. This minimizes negative impacts on
individual flows and optimizes the MLU/MPU in the topology.

In relation to the first example given in Section I, Figure 16
shows three simple paths between the routers R1 and R7 with
a uniform capacity of 100%: P1 as the shortest one (three
router hops) as well as P2 and P3 as two alternatives with
higher costs (four hops). Predicting the required throughput
for the three flows f1, f2 and f3 that need to be routed while
causing varying loads and considering the forecasting for path
selection enables the avoidance of congestion:
1) f1 is forwarded via P1 (L(P1)=B(f1)=40%).
2) f2 is routed via P1 (L(P1)=B(f1)+B(f2)=40%+30%).
3) As forwarding f3 via P1 would cause congestion, an

alternative path is selected, e.g., P3 (L(P3)=B(f3)=40%).
Although the utilization of P2 is low (L(P2)=0%), instead of
having one overloaded path, both P1 and P3 are utilized to
a medium level (70%/40%). Because there can be multiple
paths to choose from (i.e., P2 and P3), different selection
strategies are possible: choose the less loaded path or evaluate
path metrics (e.g., latency/load or router resources like queue
utilizations) to calculate and compare their weighted sums.

According to the second example given in Section I,
Figure 17 depicts the simple paths P1 and P2 between the

Fig. 17. Preventing uneven path load by throughput prediction.

routers R1 and R4, which are of equal cost and have a capac-
ity of 100%. Four different flows with varying throughput
requirements have to be forwarded. The prediction of a flow’s
throughput allows an even utilization of the paths and helps
to avoid congestion:
1) f1 is routed via P1 (randomly chosen, L(P1)=B(f1)=55%).
2) f2 is routed via P2 (L(P2)<L(P1), L(P2)=B(f2)=55%).
3) f3 is forwarded via P1 (randomly selected because P1 and

P2 are equally utilized, L(P1)=B(f1)+B(f3)=60%).
4) f4 is forwarded via P2 because P2 is less loaded than P1

(L(P2)=B(f2)+B(f4)=60%).
As a result, P1 and P2 are equally utilized to a medium load
level of 60%. Besides a randomized selection of evenly uti-
lized paths, an advanced mechanism that selects a path based
on the evaluation of prespecified path or router statistics and
their weighted combination is possible. While this analysis is
either based on the current or past state, a prediction of path
attributes, e.g., the observed latency, can serve as a criteria.

At this point, the examples assume that the available capaci-
ties satisfy the required resources. Discussed flows can also be
interpreted as an aggregation of a given set of communications.

2) Duration Forecast for Predictive Traffic Load Matrices:
When a flow routing decision is required, the predicted flow
throughput must be compared to the monitored network state.
Link or path loads can be organized in link-level traffic load
matrices based on past or current load data. The use-cases in
Section VII-A only use the current load levels L(Px). If all
flows are routed based on the forecasting results, the traffic
load matrices correspond to the sum of predicted throughputs.
To evaluate a predictive link/path state, not only the likely
throughput B(fx) but also the probable duration D(fx) of a
flow is required. Predicting both characteristics answers the
question of how long and resource intensive a flow will be.

For example, considering two flows f1 (start t1, B(f1),
D(f1)) and f2 (start t2=t1+

1
2D(f1),B(f2),D(f2)=D(f1)) that

are routed over the same path Px results in the following facts
regarding the likely link loads of Px in a load matrix:
• B(f1) for the time interval from t1 to t1+

1
2D(f1)

• B(f1)+B(f2) for the time interval from t2 to t2+
1
2D(f2)

• B(f2) for the time interval starting from t2+
1
2D(f2).

3) Flow and Topology Predictions for Path Selection:
Next to organizing predictive path states based on the likely
throughput and duration of flows, the prediction of topology
characteristics can serve as the basis for evaluating the topol-
ogy’s state. For example, the average load or related latency
of a single link or comprehensive path L(Px) can be predicted
for a given time interval T. Hence, not only the current topol-
ogy state or, e.g., an average of a past time interval, but also
the likely future state can be considered. Based on the example
given in Section I, Figure 18 depicts a related scenario.

HARDEGEN et al.: PREDICTING NETWORK FLOW CHARACTERISTICS USING DEEP LEARNING AND REAL-WORLD NETWORK TRAFFIC 2673

Fig. 18. Preventing congestion by flow and topology prediction.

Fig. 19. Preventing unequal util. by flow and topology prediction.

In a hybrid scenario, there are flows that get routed using
a classic routing algorithm (FPx

) and selected ones fx for
which prediction-based flow routing is applied. The former
flows traverse Px or a part of it. Over time, FPx

flows cause
different load on various paths that are monitored in a differen-
tiated manner (e.g., excluding prediction-based routed flows).
They are used to train a model based on path loads to predict
the load of each link/path for a specified time interval T.
Combining the predicted throughput B(fx) and duration D(fx)
with the forecasted path load L(Px), high load/congestion
on the optimal path between R1 and R7 can be proactively
avoided. Three flows f1, f2 and f3 with B(f1)=B(f3)=40% and
B(f2)=30% need to be routed from R1 to R7 with the expected
path loads L(P1)=10%, L(P2)=30% and L(P3)=60% for T.
All flows fx start and end in T (D(fx) ≤ T).
1) f1 is forwarded via P1 (L(P1)+B(f1)<100%).
2) f2 is routed via P1 (L(P1)+B(f1)+B(f2)<100%).
3) Because f3 would cause congestion on P1, an alternative

path (P2 or P3) must be selected.
4) While D(f3)≤T , and the expected path load is

L(P2)<L(P3),P2 is chosen. This is due to a classically
routed flow that starts after f3 and is routed from R5 via
R6 to R7 and likely causes load on the path.

The result is a medium load for all three simple paths
L(P1)=80%, L(P2)=70% and L(P3)=80%.

The same procedure can help to optimize the example given
in Section I. Figure 19 shows an exemplary scenario.

Four flows f1, f2, f3 and f4 with B(f1)=B(f2)=55% as well
as B(f3)=B(f4)=5% need to be forwarded from R1 to R4 with
the expected path loads L(P1)=30% and L(P2)=10% in T. The
initial difference results from varying classically routed flows.
All flows fx start and end in T (D(fx)≤T).
1) f1 is routed via P2 (L(P2)<L(P1)) and at the same time,

L(P2)+B(f1)<100%).
2) f2 is forwarded via P1 (L(P1)<L(P2) and at the same

time, L(P1)+B(f2)<100%).
3) f3 and f4 are routed via P2 (L(P2)<L(P1) and

L(P2)+B(f3)+B(f4)<100%).
The result is a medium load for the two paths (85% and 75%).

Fig. 20. Architectural overview of a centralized approach.

The prediction of path loads is used for the representation of
the topology state in both examples. Other path information,
e.g., the latency or various router resources like CPU or memory
and their weighted combination can be considered as well. If
D(fx) does not fall completely within T, the programmed flow
steering needs to be reevaluated and reactively adapted.

B. Architectural Overview

1) Centralized Approach: A closed-loop architecture in
which the proposed prediction of flow characteristics can be
utilized for various flow routing scenarios (Section VII-A), is
depicted in Figure 20. The network topology is build of SDN-
enabled devices (e.g., OpenFlow [39] or P4 [40]) that forward
network traffic within the topology. These devices are able to
share their state and configuration with a centralized control
instance, e.g., by SNMP [41], NETCONF [42] or network
telemetry. The controller receives exported flow information
from SDN devices, e.g., via NetFlow [33], IPFIX [43] or
supported by programmable data planes (P4).

The Controller implements a prediction-based flow rout-
ing with three main components. A Flow Processing Engine
is responsible for handling collected network flow data that
will be fed to a continuously (re)trained ML model. All
required operations are executed through a flow data stream
pipeline that performs data collection, preparation and machine
learning (Section III). The Topology Monitor continuously
maintains a state model of the routing topology, e.g., path
capacities and current load. To route individual flows, a
network router sends a routing request to the central Routing
Engine that queries the Flow Processing Engine with the cor-
responding 5-tuple describing the flow. It receives a forecast
of one or more relevant flow characteristics. While consid-
ering the predicted flow characteristics, the Routing Engine
evaluates the topology’s state to select an appropriate path
within the topology. Afterwards, the path is programmed on
affected network devices and the Routing Engine maintains
the proactive distribution of flow communications.

Next to an SDN-enabled solution, where a complete path
is programmed on each network router, a source or segment
routing based approach is also possible. Thereby, flow-based
predictions are requested from a source edge or border router,
and the centralized controller provides a flow path which
is embedded in the flow’s packets and evaluated at each
intermediate router to forward the packets to the destination.

While the topology monitoring, discovery mechanism and
the flow export are used to collect information, the Routing
Engine is responsible for proactively controlling the flow

2674 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

Fig. 21. Architectural overview of a distributed approach.

forwarding in the underlying topology (dashed arrow in
Figure 20). It is crucial that individual routing for each flow
results in significant challenges, especially w.r.t. performance
that must be considered separately. For instance, there is a
delay of the first packet of each flow that is defined by the
time required for performing a prediction and determining the
routing decision. While using all supported flow features and
the DNN architecture described in Section V-B, we measured
the elapsed time for a prediction. Measurements without any
optimization for 100000 single flows and batches (100) on
a node with an RTX 2080 GPU (Section V-A) resulted in a
median delay of≈ 0.5 ms and≈ 0.7 ms, respectively.

2) Distributed Approach: A distributed scenario is also
conceivable. Each router serves as a Prediction-Based Flow
Router (PBR) that implements the Topology Monitor, the
Flow Processing and the Routing Engine (Figure 21). Thereby,
only a local topology view is available. Each PBR can either
use local flow-based prediction results to share traffic load
resulting from multiple flows across connected links, e.g., for
improved ECMP. Alternatively, prediction results from other
PBRs are distributed and used for path programming. In both
cases, a Flow Routing Protocol is required that shares the local
state on a global level or the network state plus flow-based
prediction results to combine them at each router. In addition,
there is a delay that affects the first packet of each flow.

A hybrid approach, in which distributed and centralized
entities form a comprehensive solution, e.g., organizing the
topology state in a centralized controller and implementing
the other modules in a distributed manner, is possible as well.

The Flow Processing Engine (highlighted gray in Figure 20
and 21) provides the basis for the conception of the Routing
Engine. The Prediction Feedback mechanism aims at the
improvement of the forecasting. Effectiveness is evaluated by
comparing a prediction with the corresponding flow export
after the transmission of the flow is completed. A further
optimization is possible by applying reinforcement learning
in the context of a routing decision and the topology’s state.

The use-cases observe the theoretical utilization of predicted
flow characteristics for an optimized flow steering. Although
benefits are shown, some challenges arise in practical network
environments that have to be taken into account separately.
One example is the consideration of QoS policies while
performing the routing decision. Moreover, dynamics in the
underlying network environment like failed or added routers

that affect available paths need to be discovered (see Topology
Monitor). These events require or allow a reactive resteering
of flows to optimize path utilization, which may be executed
at a given frequency. Another challenge is the interaction
with other routing protocols, whereby some flows get routed
prediction-based and others based on classical routing metrics.

VIII. CONCLUSION AND FUTURE WORK

We propose a flexible flow data stream processing pipeline
to train machine learning models (here DNNs) on real-world
network flow data for the prediction of flow characteristics
that can be used for network traffic optimization.

On the one hand, analyzing the observed flow data stream
from a productive campus network reveals an unequal data
distribution for all considered flow labels, which makes the
definition of application-oriented classes with a balanced num-
ber of flow data samples challenging. On the other hand,
feature similarities between various flow samples are discov-
ered by applying t-SNE to flow data. Thereby, context-related
tagging provides a better understanding of the network data.

Different communication contexts (e.g., only TCP), feature
combinations (e.g., 5-tuple or all features) and flow labels
(e.g., throughput or duration) are investigated. While 240
experiments, each lasting one week, show that the prediction is
feasible for streamed flow data, the benefit of our enrichment
strategy like an improved or stabilized accuracy depends on the
setup. Our findings show that the prediction accuracy varies for
different flow labels and depends both on the communication
context and the available features. This limits the individual
operational capability for certain application scenarios.

Furthermore, we found that using the Adam optimizer
instead of vanilla Stochastic Gradient Descent is problematic
for a continuous learning on flow data.

Instead of differentiating between small (mice) and large
(elephant) flows, we use a multi-class model. This allows a
more fine-grained classification for an improved traffic engi-
neering, especially in combination with network automation.

The codebase for the streaming setup and a reference dataset
are available to reproduce the experiments.

We see the following points as avenues for further work:
• Class Definition: A process for the definition of classes

(number, boundaries) that is based on application require-
ments rather than pure data statistics needs to be developed.

• Dealing with Class Imbalance: We plan to evaluate data
generation and oversampling methods to compensate the
imbalanced number of examples for each class, and to
ensure that suddenly occurring class imbalances do not
disrupt the training of DNN classifiers.

• Robust Continuous Adaptation: A continuous adaptation of
the prediction model based on network changes or seasonal
effects is essential to ensure a sustained prediction accuracy.
Training several classifiers at different time scales might be
beneficial, since this provides fallbacks if a classifier trained
on short-term information only is degraded by a short-term
change in data statistics. This was observed for several of
the long-term experiments we conducted for this article.
Lastly, it is planned to investigate other online machine
learning models that do not share the limitations of DNNs

HARDEGEN et al.: PREDICTING NETWORK FLOW CHARACTERISTICS USING DEEP LEARNING AND REAL-WORLD NETWORK TRAFFIC 2675

w.r.t. incremental learning capacity and class imbalance or
that can handle imbalanced regression problems. For these
investigations, it is imperative to systematically consider
datasets that are even larger and more extended in time.

• Stochastic Gradient Descent Optimizer Investigation: A
detailed analysis of the accuracy instabilibities observed
when utilizing the Adam optimizer for the DNN models
remains an open issue. In order to investigate the effect and
impact of different strategies for a continuous learning on flow
data, a more comprehensive study of optimizers proposing
enhancements for Stochastic Gradient Descent is necessary.

• Generalizability Evaluation: To study the generalizability
of our proposed approach, we aim at getting access to flow
data from other network setups, e.g., data centers, or the
evaluation of other data sources like Internet traces.

• Integrating Forecasting Results in Flow-based Routing:
Forecasting results can serve as basis for a prediction-based
flow routing. To evaluate this approach, a network emu-
lation environment that contains the architecture given in
Section VII-B is under development. Besides an adaptive
routing, this includes network monitoring mechanisms like
(in-band) telemetry or data plane supported probing for
maintaining the state of the network topology.

• Programmable Data Planes for Flow Export: Switches with
a programmable data plane (e.g., P4) are planned to be eval-
uated as flow exporters. This allows for a flexible export of
features and can provide more fine-grained flow information
like timestamps. Additionally, the switches might imple-
ment a data enrichment strategy at the network level.

REFERENCES

[1] D. O. Awduche, “MPLS and traffic engineering in IP networks,” IEEE
Commun. Mag., vol. 37, no. 12, pp. 42–47, Dec. 1999.

[2] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering
in software defined networks,” in Proc. IEEE INFOCOM, 2013,
pp. 2211–2219.

[3] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning
for networking: Workflow, advances and opportunities,” IEEE Netw.,
vol. 32, no. 2, pp. 92–99, Mar./Apr. 2018.

[4] Z. M. Fadlullah et al., “State-of-the-art deep learning: Evolving
machine intelligence toward tomorrow’s intelligent network traffic con-
trol systems,” IEEE Commun. Surveys Tuts., early access.

[5] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning
to route,” in Proc. 16th ACM Workshop Hot Topics Netw., 2017,
pp. 185–191.

[6] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, “Identifying
elephant flows through periodically sampled packets,” in Proc. 4th ACM
SIGCOMM Conf. Internet Meas., 2004, pp. 115–120.

[7] P. Jurkiewicz, G. Rzym, and P. Borylo, “Flow length and size
distributions in campus Internet traffic,” 2018. [Online]. Available:
arxiv.abs/1809.03486.

[8] B. Pfülb, C. Hardegen, A. Gepperth, and S. Rieger, “A study of deep
learning for network traffic data forecasting,” in Proc. Int. Conf. Artif.
Neural Netw., 2019, pp. 497–512.

[9] C. Hardegen, B. Pfülb, S. Rieger, A. Gepperth, and S. Reißmann, “Flow-
based throughput prediction using deep learning and real-world network
traffic,” in Proc. 15th Int. Conf. Netw. Service Manag., 2019, pp. 1–9.

[10] S. W. Brim and B. E. Carpenter, “Middleboxes: Taxonomy and issues,”
IETF, RFC 3234, 2002.

[11] J. Iyengar, C. Raiciu, S. Barre, M. J. Handley, and A. Ford,
“Architectural guidelines for multipath TCP development,” IETF, RFC
6182, 2011.

[12] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[13] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteris-
tics of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.
Internet Meas., 2010, pp. 267–280.

[14] T. T. T. Nguyen and G. Armitage, “A survey of techniques for Internet
traffic classification using machine learning,” IEEE Commun. Surveys
Tuts., vol. 10, no. 4, pp. 56–76, 4th Quart., 2008.

[15] R. Boutaba et al., “A comprehensive survey on machine learning
for networking: Evolution, applications and research opportunities,” J.
Internet Services Appl., vol. 9, p. 16, Jun. 2018.

[16] H. Rastegarfar et al., “TCP flow classification and bandwidth aggrega-
tion in optically interconnected data center networks,” IEEE/OSA J. Opt.
Commun. Netw., vol. 8, no. 10, pp. 777–786, Oct. 2016.

[17] P. Poupart et al., “Online flow size prediction for improved network
routing,” in Proc. IEEE 24th Int. Conf. Netw. Protocols, 2016, pp. 1–6.

[18] P. Wang, S.-C. Lin, and M. Luo, “A framework for QoS-aware traffic
classification using semi-supervised machine learning in SDNs,” in Proc.
IEEE Int. Conf. Services Comput., 2016, pp. 760–765.

[19] A. Azzouni, R. Boutaba, and G. Pujolle, “NeuRoute: Predictive dynamic
routing for software-defined networks,” in Proc. 13th Int. Conf. Netw.
Service Manag., 2017, pp. 1–6.

[20] J. Reis, M. Rocha, T. K. Phan, D. Griffin, F. Le, and M. Rio, “Deep
neural networks for network routing,” in Proc. Int. Joint Conf. Neural
Netw., 2019, pp. 1–8.

[21] A. R. Mohammed, S. A. Mohammed, and S. Shirmohammadi, “Machine
learning and deep learning based traffic classification and prediction in
software defined networking,” in Proc. IEEE Int. Symp. Meas. Netw.,
2019, pp. 1–6.

[22] J. Xu and K. Wu, “Living with artificial intelligence: A paradigm shift
toward future network traffic control,” IEEE Netw., vol. 32, no. 6,
pp. 92–99, Nov./Dec. 2018.

[23] J. Zhang, T. Huang, S. Wang, and Y.-J. Liu, “Future Internet: Trends and
challenges,” Front. Inf. Technol. Electron. Eng., vol. 20, pp. 1185–1194,
Sep. 2019.

[24] H. Yao, T. Mai, C. Jiang, L. Kuang, and S. Guo, “AI routers & network
mind: A hybrid machine learning paradigm for packet routing,” IEEE
Comput. Intell. Mag., vol. 14, no. 4, pp. 21–30, Nov. 2019.

[25] K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Unveiling the potential of graph neural networks for network
modeling and optimization in SDN,” in Proc. ACM Symp. SDN Res.,
2019, pp. 140–151.

[26] Z. Zhuang, J. Wang, Q. Qi, H. Sun, and J. Liao, “Toward greater intelli-
gence in route planning: A graph-aware deep learning approach,” IEEE
Syst. J., vol. 14, no. 2, pp. 1658–1669, Jun. 2020.

[27] Y. Zheng, Z. Liu, X. You, Y. Xu, and J. Jiang, “Demystifying deep
learning in networking,” in Proc. ACM 2nd Asia–Pac. Workshop Netw.,
2018, pp. 1–7.

[28] S. Lettner and A. Blenk, “Adversarial network algorithm benchmark-
ing,” in Proc. ACM 15th Int. Conf. Emerg. Netw. Exp. Technol., 2019,
pp. 31–33.

[29] A. Mestres et al., “Knowledge-defined networking,” ACM SIGCOMM
Comput. Commun. Rev., vol. 47, no. 3, pp. 2–10, 2017.

[30] S. Ayoubi et al., “Machine learning for cognitive network management,”
IEEE Commun. Mag., vol. 56, no. 1, pp. 158–165, Jan. 2019.

[31] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[32] Flexible NetFlow Technology White Paper, Cisco, San Jose, CA, USA,
2008.

[33] B. Claise, “Cisco systems NetFlow Serv. Export V9,” IETF, RFC 3954,
2004.

[34] L. Deri, “nProbe: An open source NetFlow probe for gigabit networks,”
in Proc. Terena Netw. Conf., 2003, p. 6.

[35] MaxMind. [Online]. Available: https://dev.maxmind.com/geoip/geoip2
/geolite2/, 2019

[36] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J.
Mach. Learn. Res.

[37] L. van der Maaten, “Accelerating t-SNE using tree-based algorithms,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 3221–3245, 2014.

[38] S. Wang et al., “Training deep neural networks on imbalanced data sets,”
in Proc. IEEE Int. Joint Conf. Neural Netw., 2016, pp. 4368–4374.

[39] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[40] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

2676 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

[41] J. D. Case, R. Mundy, D. Partain, and B. Stewart, “Introduction and
applicability statements for Internet-standard management framework,”
IETF, RFC 3410, 2002.

[42] R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network
configuration protocol,” IETF, RFC 6241, 2011.

[43] B. Claise and B. Trammell, “Information model for IP flow information
export,” Internet Eng. Task Force, Fremont, CA, USA, RFC 7012, 2013.

Christoph Hardegen received the B.Sc. and M.Sc.
degrees in applied computer science from the Fulda
University of Applied Sciences in 2015 and 2018,
respectively, where he is currently pursuing the
Ph.D. degree. His research interests include traffic
engineering, especially the application of machine
learning results to routing in programmable network
architectures.

Benedikt Pfülb received the B.Sc. and M.Sc.
degrees in applied computer science from the Fulda
University of Applied Sciences in 2015 and 2018,
respectively, where he is currently pursuing the
Ph.D. degree. His research interests include neu-
ral networks and artificial intelligence, especially
continual, and life-long learning.

Sebastian Rieger received the Diploma degree in
computer science from the Fulda University of
Applied Sciences in 2003, and the Ph.D. degree
from the University of Göttingen in 2007. He
was a Research Assistant with the Gesellschaft für
wissenschaftliche Datenverarbeitung mbH Göttingen
and Steinbuch Centre for Computing. Since 2012,
he holds a full professorship for Multimedia
Communication Networks in Fulda. His research
interests include network management, virtualiza-
tion, and automation.

Alexander Gepperth received the Diploma degree
in physics from LMU, Munich, in 2002, and the
Ph.D. degree from Ruhr-Universität Bochum in
2005. He worked with Honda Research Institute,
Offenbach, Germany, as a Senior Scientist from
2005 to 2010, and as an Assistant Professor with
ENSTA ParisTech until 2016. Since 2016, he
holds a full professorship for Machine Learning at
Fulda University of Applied Sciences. His research
interests include continual machine learning as well
as cognitive architectures.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

