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Abstract—Moving target defense (MTD) has emerged as a
proactive defense mechanism aiming to thwart a potential
attacker. The key underlying idea of MTD is to increase uncer-
tainty and confusion for attackers by changing the attack surface
(i.e., system or network configurations) that can invalidate the
intelligence collected by the attackers and interrupt attack execu-
tion; ultimately leading to attack failure. Recently, the significant
advance of software-defined networking (SDN) technology has
enabled several complex system operations to be highly flexible
and robust; particularly in terms of programmability and con-
trollability with the help of SDN controllers. Accordingly, many
security operations have utilized this capability to be optimally
deployed in a complex network using the SDN functionalities.
In this paper, by leveraging the advanced SDN technology, we
developed an attack graph-based MTD technique that shuffles
a host’s network configurations (e.g., MAC/IP/port addresses)
based on its criticality, which is highly exploitable by attackers
when the host is on the attack path(s). To this end, we developed
a hierarchical attack graph model that provides a network’s vul-
nerability and network topology, which can be utilized for the
MTD shuffling decisions in selecting highly exploitable hosts in
a given network, and determining the frequency of shuffling the
hosts’ network configurations. The MTD shuffling with a high
priority on more exploitable, critical hosts contributes to provid-
ing adaptive, proactive, and affordable defense services aiming
to minimize attack success probability with minimum MTD cost.
We validated the out performance of the proposed MTD in attack
success probability and MTD cost via both simulation and real
SDN testbed experiments.
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I. INTRODUCTION

MOVING target defense (MTD) has emerged as a proac-
tive defense technique to thwart and confuse potential

attackers aiming to penetrate a system by exploiting system
vulnerabilities [11]. MTD has been studied as one of sev-
eral network obfuscation approaches designed to mislead
attackers by changing the attack surface (i.e., the system
configurations) by using IP shuffling or randomization [20],
[26], packet header randomization [36], network topology
shuffling [5], or migration of system platforms [14]. The
recent advance of software-defined networking (SDN) tech-
nology has been leveraged to effectively and efficiently deploy
various types of MTD techniques. The principal merit of
the SDN technology is to decouple the network control
plane from the data-forwarding plane to enhance flexibil-
ity, robustness, and programmability to a networked system
by using an SDN controller that can readily deploy MTD
techniques.

In this paper, we leverage the SDN technology to propose
an MTD framework that can provide a solution to determine
how often each host’s network configuration can be shuffled to
provide adaptive, proactive, and affordable security services.
To provide highly cost-effective security services, the approach
proposed in this paper focuses on shuffling network configura-
tions of highly critical, vulnerable hosts that can significantly
attract attackers aiming to exploit the vulnerabilities on the
attack paths with the hosts.

The fundamental underlying idea is that given each host
with a different level of asset criticality if more critical
hosts are protected with high priority, then it will signifi-
cantly contribute to building highly secure and dependable
systems with low defense cost. To this end, we develop
an exploitability prediction algorithm for each attack path
and estimate an expected attack success probability (i.e., a
likelihood of an attacker successfully compromising a crit-
ical target host). When a host is detected as being on a
highly vulnerable, exploitable attack path by the proposed
exploitability prediction algorithm, hosts on the attack path
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have a priority to be shuffled over other hosts, which can pro-
vide adaptive, proactive, and low-cost defense services. Note
that the frequency of triggering an MTD operation in each
host (i.e., changing the host’s network configurations such as
MAC/IP/port addresses) is directly related to both the secu-
rity and performance. Thus, executing MTD operations more
frequently is more likely to increase a security protection but
incurs more MTD cost due to more frequent changes in the
network configurations of hosts. The key contributions of this
work are:

• We present a new graphical model for attack graphs
called the three-tier attack graph (TAG) model. This
model is developed to estimate the compromise probabil-
ity of a host by using the host’s vulnerability information.
We perform the host’s exploitability analysis using the
TAG model.

• We construct an asset criticality-aware attack graph
based on the TAG model to identify the critical compo-
nents of a system. We propose an attack path prediction
method to protect critical assets by selecting k most vul-
nerable paths among all the possible attack paths for
each host. We also develop two novel asset criticality
metrics, called role-based criticality (RC) and influence-
based criticality (IC), as a measure of a host’s criticality
to identify the more critical hosts that require a higher
priority protection.

• We propose an overhead-controllable address shuffling
method that changes a host’s network configurations
by selecting a single host based on the asset critical-
ity at every shuffling interval. This approach allows the
security administrator to operate MTD without affect-
ing system performance by controlling the shuffling
interval.

• We consider various advanced attack techniques such as
reconnaissance attacks, forensic attacks [6], and topology
poisoning attacks [18]. Our proposed SDN-based MTD
technique can defeat the attackers using network forensic
techniques such as flow rule reconstruction and IP/MAC
address revealing techniques because it does not expose
the real address to the attackers and can manipulate the
header and payload information appropriately by using
SDN functionalities.

• We implement the proposed MTD technique in SDN
and demonstrate its out performance in terms of
attack success probability and MTD shuffling cost
in both Mininet-based emulation and SDN testbed
experiments.

The remainder of this paper is organized as follows.
Sections II and III give an overview of the related work
and background of security metrics and SDN-based MTD
techniques. Section IV describes our system model, network
model, attack model, exploitability metric, and its analysis
methodology. Sections V and VI provide the details of the
proposed asset criticality-aware MTD in SDNs. Section VII
demonstrates experimental results to validate the performance
of the proposed MTD. Finally, Section VIII summarizes our
key findings.

II. RELATED WORK

MTD aims to increase uncertainty and confusion for attack-
ers attempting to penetrate into a system by identifying system
vulnerabilities. The main function of MTD is to change the
attack surface (i.e., the system/network configurations), conse-
quently invalidating the intelligence gathered by the attackers
and wasting their resources (e.g., time and cost). To provide a
brief overview of the state-of-the-art MTD approaches, we cat-
egorize MTD techniques in terms of shuffling, diversity, and
redundancy; following the classification discussed in [11].

Shuffling-based MTD is the most common MTD that rear-
ranges or randomizes system configurations such as IP shuf-
fling or randomization [9], [20], [26], [33], packet header
randomization [36], virtual machine or proxy migration [30],
or software/service reconfiguration [10], [35]. Some recent
studies have introduced topology shuffling-based MTD tech-
niques by creating a network topology using honeypots [5] or
diversifying routing paths [17]. However, these works did not
consider different levels of vulnerabilities of attack paths with
highly critical nodes, which are discussed in this paper.

Diversity-based MTD provides the capability to deploy dif-
ferent implementations of the same functionalities or services.
The examples include software stack diversity [19] to enhance
network resilience and service provisions, and programming
language diversity [34] to avoid code injection attacks.

Lastly, redundancy-based MTD improves system reliabil-
ity by creating multiple replicas of network components
such as redundancy of network sessions in cyber-physical
systems [23]. Redundancy is used in conjunction with the
shuffling or diversity techniques to implement the MTD.

Some of the research on MTD mentioned above leveraged
the SDN technology by utilizing SDN controllers such as
network topology shuffling-based MTD [17], an OpenFlow
random host mutation (OF-RHM) architecture [20], and port-
hopping MTD [12]. However, our proposed method differs
from these SDN-based MTD techniques in that we validated
our MTD based on a three-tier attack graph security model
aiming to minimize attack success and defense cost.

III. BACKGROUND

In this section, we provide backgrounds on system vulner-
abilities, attack graphs, and asset criticality in networks.

A. Security Vulnerabilities

Vulnerability refers to the weakness of a computer system
that can be exposed under the event of a threat. The national
vulnerability database (NVD) [21] is the vulnerability data
repository owned by the U.S. government, where the security
content automation protocol represents the data. The NVD
contains security checklist references, security-related soft-
ware flaws, misconfigurations, product names, and impact
metrics. The NVD analyzes entries on the common vulner-
abilities and exposures (CVE) [21] by aggregating data points
from various reference articles in the public domain.
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Common vulnerability scoring system (CVSS) [21] is the
most popular vulnerability scoring metric to assess the sever-
ity of computer system security vulnerabilities based on the
CVE information. The CVSS score indicates only the severity
of a vulnerability on a given host; not the severity of the entire
system. CVSS comprises three metric groups: the base metric
group, the temporal metric group, and the environmental met-
ric group. A score is mainly obtained using a base metric (i.e.,
[0, 10] with 10 being the most severe), and can be refined by
considering temporal and environmental metrics.

To quantify the severity of vulnerabilities, an exploitabil-
ity metric has been introduced to ascertain the probability of
a vulnerability being successfully exploited by an attacker.
The exploitability can be estimated by the following two
methods: (1) CVSS-based exploitability estimation using the
CVSS scores and the corresponding exploitability of the vul-
nerabilities [21]; and (2) time-to-compromise (TTC)-based
exploitability estimation using the concept of the number
of attack trials until reaching attack success. Longer TTC
indicates higher security in the system (e.g., survivability)
while shorter TTC indicates high system vulnerability, as a
defender’s metric [22]. On the other hand, as an attacker’s
metric, TTC is also used to measure the strength of attackers;
whereby shorter TTC indicates a stronger attack.

B. Attack Graph

An attack graph (AG) illustrates the relationships among
various vulnerabilities exploitable by an attacker and the
privileges obtainable by the attacker. Depending on the repre-
sentations of nodes and edges, different AGs can be generated.
Typically, in an AG, a node represents a state (e.g., host, privi-
lege, and vulnerability), and a directed edge denotes to a state
transition (i.e., node A to node B, remote shell to sftp). In
the AG, an attacker’s exploit of a vulnerability often leads to
privilege escalation on hosts (e.g., acquiring root access).

Reference [31] proposed an AG concept in which each
node contains five fields: user level (e.g., none, guest, priv-
ileged, root, or admin), machine (e.g., single host, subnet, or
multiple subnets), vulnerabilities, capabilities (e.g., read, write,
install a virus), and state(s). Each edge contains two fields: an
action and a condition. Although this model is not scalable,
it allows the modeling of dynamic aspects of the network.
Reference [29] introduced an exploit dependency graph, in
which each node is a privileged node, a pre-condition node
(i.e., vulnerability), or a post-condition node (i.e., exploit),
and each edge represents a state transition. Reference [25]
introduced the concept of a Bayesian AG that models poten-
tial attack paths by using a Bayesian network. Given each
node representing a state, a single node is represented by
multiple nodes with different user privileges or states. On
edges, the conditional probability tables are assigned to infer
the exploitability using the Bayesian model.

However, conventional AGs have shown some limitations
in terms of scalability [16] and dynamic reconfigurations of
AGs [7]. In large-scale networks, the complexity of find-
ing all attack paths in the AG is known to be exponential.
Previous efforts to mitigate the complexity are mostly based

on heuristics [32]. In addition, inherent dynamics derived from
changing network topology or configurations can naturally
affect the attack graphs, which has not been addressed well in
the literature [7].

IV. SYSTEM MODEL

This section describes our network model, attack model,
three-tier attack graph (TAG), and exploitability metric.

A. Network Model

We utilize an SDN technology to deploy the MTD technique
proposed in this paper. However, implementing a shuffling-
based MTD technique with the SDN technology requires
a set of components and protocols to make shuffling deci-
sions and perform address translations. In this section, we
describe the architecture of our proposed shuffling-based MTD
and the communication protocols between an SDN controller
and SDN-enabled switches to map virtual addresses to real
addresses or vice-versa. The SDN controller manages the
switches in the network to control packet forwarding decisions
while SDN-enabled switches only deal with forwarding pack-
ets. The SDN-enabled switches are configured to encapsulate
packets that have no exact matching flow rules in flow tables,
and the encapsulated packets, called “OFPT_PACKET_IN”
packets in OpenFlow (OF) protocol, are forwarded to the SDN
controller for the handling of the flow. Note that OF is a stan-
dard protocol for the communication between SDN-enabled
switches and an SDN controller. In this work, we assume that
the SDN controller and control channel are trusted; the case
of the SDN controller or the control plane of the SDN being
compromised by the attacker is out of the scope of our paper.

In our proposed architecture, only the SDN controller knows
the real IP and media access control (MAC) addresses and
active port numbers of hosts, while other hosts in the network
only use virtual addresses to communicate with each other.
After the SDN controller receives new packets from SDN-
enabled switches, it determines the process for mapping from
virtual to real addresses and sends “FLOW_MOD” packets
to install appropriate flow rules in the SDN-enabled switches.
Each switch uses the flow rules to convert the real address
into a virtual address or vice versa in the packet header. At
the switch right before a packet is delivered to the destina-
tion host, the flow rules reconvert only the virtual address of
the destination host in a packet header to its real address.
Therefore, both the source host and destination host do not
know each other’s real address. However, each host is aware
of its own real address; upon a host being compromised, the
attacker may find the real address of the compromised host.
Hence, the underlying idea of MTD techniques is to prevent
potential outside attackers from compromising legitimate hosts
by dynamically changing the legitimate host’s IP/MAC/port
addresses. After a host is compromised, it is treated as an
inside attacker, which should be detected by an IDS placed in
a given defense system.

The SDN controller mainly deals with the following tasks:
(1) making shuffling decisions of each host; (2) selecting
virtual addresses and port numbers that do not overlap;
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Fig. 1. An example of network topology.

(3) mapping from real address to virtual address during com-
munication, and (4) ensuring zero-performance degradation by
allowing connection with the previous IP for a certain period
of time. The detailed procedure of shuffling-based MTD in
SDN is discussed in Section VI.

Fig. 1 shows an example of network topology, in which
the workstation (WS) handles user requests and the database
(DB) server houses critical data such as personal credentials or
enterprise business plans. In addition, there are a few network
security functions, such as firewalls and an IDS in the network.
We assumed the use of a firewall to implement traffic-blocking
policies and an IDS to inspect network traffic flows.

B. Attack Model

We consider the following attack behaviors in this work:
• Identification and analysis of the target system by scan-

ning attacks: Attackers can leverage various scanning
tools to identify the target system’s information [8].
Moreover, attackers may conduct reconnaissance attacks
and privilege escalation attacks to identify vulnerable
components and set their attack goals. A different attack
goal may require the attacker to access other systems
inside the target network.

• Forensic attacks: Attackers can know whether or not
the victim network is an SDN by fingerprinting tech-
niques [13], and conduct flow rule reconstruction attacks
with several probing packets (e.g., ARP or ICMP pack-
ets [6]) to obtain network configuration information.

• Topology poisoning attacks: After successfully compro-
mising one of the hosts in a target system, adversaries can
perform topology poisoning attacks, such as link layer
discovery protocol (LLDP) spoofing attacks, to mislead
the topology view of an SDN controller. The compro-
mised hosts are usually exploited to capture the packets
destined to other hosts to find the next victim candi-
dates in the network [18]. In [18], a topology update
verification was proposed to defend against the topology
poisoning attacks.

• Data exfiltration attacks: The attacker iteratively repeats
a sequence of exploiting steps (i.e., identifying a target
system and components inside the target and compro-
mising them to achieve its goal) and extracts confidential
data, which can lead to the breach of data integrity and
confidentiality. To gain the desired privilege to access

TABLE I
VULNERABILITIES OF AN EXAMPLED NETWORK

a target host, an attacker exploits single or multiple
vulnerabilities on each host.

As shown in Fig. 1, active hosts in the example network are
divided into two types: hosts that can be accessed by outside
entities (denoted by Hex ) and hosts that can be connected
by only internal entities (indicated by Hin ). A Hex type host
can be exploited and accessed directly by remote attackers
through initial vulnerabilities on the host. This implies that an
attacker is unauthorized at the outset but can compromise its
direct neighbors without any access rights to their settings or
files. By contrast, the attacker cannot reach a Hin type host
directly without first compromising a host that can directly
communicate with it. In Fig. 1, h1 and h2 are Hex type hosts
because the firewall (F1) rule allows the attacker to reach only
the hosts h1 and h2. Conversely, h3 is a Hin type host because
the firewall rule blocks the access by the remote attacker.

A legitimate user can log in to any host by using two types
of accounts: a user privilege and root privilege. However, an
attacker must acquire an appropriate privilege of a target host
to exploit its vulnerability. For simplicity, in this work, we
assumed that attackers could exploit a target host’s vulnera-
bility. Moreover, in a given network, active hosts consist of
both Hex ’s and Hin ’s. In the example network provided in
Fig. 1, we assumed that an attacker is initially located outside
the network. The primary goal of the attacker is to exploit vul-
nerable components of the target system and obtain valuable
information from the DB server. Further, we assumed that the
hosts have inherent vulnerabilities which are summarized in
Table I and indexed by a CVE number with a CVSS severity
score. Specifically, the attacker may exploit vulnerability CVE-
2002-1644 in h1 for launching a privilege escalation attack in
the first round of the attack. h1, as Hex , is remotely acces-
sible by anonymous users on the Internet; thus it exposes its
vulnerabilities that allow a write operation on its home direc-
tory. An exploitable command shell assigned to h2 (as Hex )
and h3 (as Hin ) can be exploited by a remote code execu-
tion attack via system vulnerabilities, such as CVE-2015-4108
and CVE-2018-9843. The attacker finally gains root privilege
of the DB server h3 by exploiting the system vulnerability
CVE-2001-1180.

C. Three-Tier Attack Graph (TAG)

We propose a new graphical model for an AG in which the
network topology information and vulnerability information
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Fig. 2. Three-tier attack graph (TAG).

of network hosts can be considered as separate layers. The
key benefit of separating network topology information from
system vulnerability information on an AG is lowering the
complexity of the AG generation and eliminating the depen-
dency of security assessments on various network reachability
constraints such as firewall configurations and network routing
policies. In general, an AG has the form of a directed graph
with loops because the hosts in the network are interconnected;
however, the loops in the AG make it harder to find attack
paths. In the proposed TAG model, if a given AG with loops is
cyclic, we can convert it to a directed acyclic graph (DAG) by
applying either the cycle handling method [24] or d-separation
algorithm [15] without any loss of integrity.

In our proposed model, each host exposes a set of its
own vulnerabilities. Moreover, we generate a TAG based on
the type and characteristics of each host’s vulnerabilities. As
described in Fig. 2, we propose a TAG model with three lay-
ers, consisting of connectivity, remote vulnerability, and local
vulnerability layers. Each layer is detailed as follows:

• Layer 1 (L1) with network connectivity: This layer is
determined by the network topology and firewall con-
figuration, which provides reachability information.

• Layer 2 (L2) with remote vulnerability: This layer shows
vulnerabilities exposed by remote hosts that can directly
access hosts in a target network. In this layer, the listed
vulnerabilities are bound to the network stack and can be
exploited by remote entities that are one or more hops
away from a target host without any permission from the
host.

• Layer 3 (L3) with local vulnerability: This local layer
shows vulnerabilities exposed by internal hosts whose
compromise requires obtaining a local root privilege. In
this layer, since the vulnerable components are not tied to
the network stack, an attacker must gain the root privilege
of a target host to exploit its vulnerabilities.

Fig. 2 depicts the TAG generated based on the network topol-
ogy in Fig. 1 and Table I. L1 provides information describing
connectivity between network hosts and the attacker. Given
that each host has some vulnerabilities, L2 represents the rela-
tionships of the remote vulnerabilities which can be exploited

by the remote attacker. For example, the host h1 has three
possible remote vulnerabilities, along with the combinations of
the vulnerabilities. By using those vulnerabilities, the potential
attack paths are (v1 → v2 → User (h1)), (v2→ User (h2)),
and (v3 → User (h2)). The attacker can get the user privi-
lege of the host h1 by exploiting one of these attack paths.
L3 denotes the local vulnerabilities that can be exploited to
obtain a host’s root privilege.

To address the scalability problem of AG, the two-layer (TL-
AG) attack graph has been proposed and shown to improve
the scalability in AGs [16]. The key idea of TL-AG is to sep-
arate reachability information from vulnerability information
for their better controllability on AGs. We take the merit of
this approach in a similar manner but added an additional
layer by dividing the vulnerability information into two layers:
remote vulnerability and local vulnerability. This allows us to
handle both user privilege and root privilege compromise for
capturing attack paths in a given network.

D. Exploitability Metric

In this section, we explain how to calculate the probability
that an attacker successfully exploits a given host’s vulner-
ability, called exploitability. Given that the attack goal is to
compromise a host, we define the exploitability as the prob-
ability of an attacker exploiting a host’s single vulnerability
to compromise the host successfully. Denote the probability
of successfully exploiting the vulnerability v of a host (i.e.,
exploitability) by Pe(v). For example, if Pe(v1) is greater
than Pe(v2), an attacker can more easily exploit v1 than v2.
We estimate Pe(v) based on the CVSS severity score by:

Pe(v) =
μ(v)

VSmax
, (1)

where μ(v) is the severity score of vulnerability v on the
CVSS scale and VSmax is the maximum severity score of
vulnerabilities (i.e., 10 in the CVSS score [28]).

Some other terms used in this paper to measure exploitabil-
ity are compromise probability and attack success probability.

• Compromise probability refers to the probability of the
user or root privilege of a single host being successfully
compromised by an attacker. Depending on the attacker’s
purpose, it can exploit several vulnerabilities of the host
to obtain a proper privilege.

• Attack success probability is the probability that an
attacker’s given goal is successfully achieved. For exam-
ple, it refers to the probability that an attacker can access
a target host in a given network. Note that this probabil-
ity can be measured as a generic metric with a different
definition of attack success.

To compromise a target host, an attacker needs to com-
promise all the hosts on the path to the target host. We
assumed that an attacker does not have prior knowledge about
the vulnerabilities of all hosts in a network and the entire
network topology. Further, we assumed an intelligent attacker
will aim to select a next host with low attack complexity but
high exploitability vulnerability based on CVSS information
to reach the target host.
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E. Estimating Per-Host Exploitability Based on
Vulnerabilities

In this section, we describe how to estimate the per-host
exploitability (i.e., compromise probability) based on the vul-
nerability information of a host. Due to the complexity of
analyzing vulnerability information based on an AG, we gen-
eralized how exploitability of a vulnerability is analyzed to
determine the attack success probability of a node. We measure
the following three types of host’s exploitability associated
with the vulnerabilities to respective layers: exploitable vul-
nerabilities in L1 (connectivity), user privilege vulnerability
in L2 (remote vulnerability), and root privilege vulnerability
in L3 (local vulnerability).

1) Exploitable Vulnerabilities in L1: A host h can have
two sets of adjacent hosts: hosts with out-degree, denoted
by Hout (h), and hosts with in-degree, denoted by Hin(h).
For example, Hout (A) = {h1, h2} and Hin(h2) = {A, h1}
in Fig. 2. Let Vr (h) denote a set of remotely accessible
vulnerabilities in the host h. Then, Vr (h1) = {v1, v2, v3},
Vr (h2) = {v5, v6, v7}, and Vr (h3) = {v9, v10}. Because an
attacker can obtain the information about vulnerabilities of its
adjacent hosts, it will select one of the vulnerabilities as its
next vulnerability to exploit. In Fig. 2, the attacker A attempts
to exploit a vulnerability in a set of Vr (h1) ∪ Vr (h2) for
Hout (A) = {h1, h2}. We assume that each attacker chooses
the next vulnerability to exploit, with a probability in pro-
portional to the exploitabilities of the next vulnerabilities
accessible remotely. Then, the probability of host h selecting
the next victim host hj ∈ Hout (h), PAE

hj
(h), is obtained by:

PAE
hj

(h) =

∑
v∈Vr (hj )

Pe(v)
∑

hi∈Hout (h)

∑
v∈Vr (hi )

Pe(v)
. (2)

2) Exploitability of User Privilege Vulnerabilities in L2:
We denote the probability of the host hj ’s user privilege being
exploited by an attacker (called the user privilege exploitabil-
ity) by PUE (hj ). PUE (hj ) refers to the probability that an
attacker successfully exploits the remote vulnerabilities of host
hj to gain hj ’s user privilege. Usually, attackers compromise
a user privilege by exploiting the file transfer protocol (FTP)
or remote shell vulnerabilities, called remote command exe-
cution vulnerabilities. Host hj ’s user privilege exploitability,
PUE (hj ), is estimated by:

PUE

(
hj
)
= 1−

∏

v∈Vr (hj )

⎡

⎣1−
∏

u∈APV (v , U (hj ))

Pe(u)

⎤

⎦,

(3)

where APV (v ,R(hj )) is the set of vulnerabilities existing in
all possible attack paths from vulnerability v to host hj ’s user
privilege and Pe(u) is the exploitability of vulnerability u on
the attack path APV (v ,U (hj )). In Fig. 2, host h1 has three
remotely accessible vulnerabilities; Vr (h1) = {v1, v2, v3} and
PUE (h1) = 1−(1−Pe(v1)Pe(v2))(1−Pe(v2))(1−Pe(v3)).

While PUE (hj ) in (3) is the exploitability for each indi-
vidual host hj , it is needed to obtain the compromise proba-
bility that takes into account the attacker’s attack paths. The

probability that the host hj ’s user privilege is successfully
compromised on the attack paths, PUC (hj ), is obtained by:

PUC (hj ) = PUE (hj )
∑

h∈Hin (hj )

[
PUC (h) PAE

hj
(h)

]
. (4)

Note that PUC (hj ) in (4) is dependent on the other user priv-
ilege compromise probabilities of previous hosts, which are
the in-degree hosts of hj . The computation of PUC (hj ) can
be sequentially done on the attack paths from the Hex nodes
to the Hin nodes.

3) Exploitability of Root Privilege Vulnerabilities in L3: If
an attacker is legitimately authorized with privileges obtained
by successfully exploiting internally accessible vulnerabilities
that provide an administrative control over a host, it can even-
tually affect the kernel settings and system files of the host. Let
PR(hi ) denote the probability of the host hi ’s root privilege
being compromised by successfully exploiting all internally
accessible vulnerabilities. PR(hi ) is given by:

PR(hi ) = PUC (hi )
∑

v∈Vrt (hi )

∏

u∈APV (v ,R(hj ))

Pe(u), (5)

where Vrt (hi ) refers to a set of vulnerabilities associated with
the host hi ’s root privilege, and APV (v ,R(hj )) is the set of
vulnerabilities existing in all possible attack paths from vulner-
ability v to host hj ’s root privilege. To avoid any path explosion
problem upon the existence of multiple possible attack paths
to compromise the root privilege of a host, we will use back-
ward attack path (BAP) prediction algorithm, which considers
a host with multiple vulnerabilities over a host with a single
vulnerability. The probabilities of a host’s user privilege in (4)
and a host’s root privilege in (5) being successfully compro-
mised indicate the cumulative effects by attack steps, showing
how a series of individual exploits can allow an attacker to
achieve its final attack goal.

V. ASSET CRITICALITY-AWARE MTD

After the per-host exploitability analysis with the TAG
model, we construct an asset criticality (AC)-aware AG
using the L1 connectivity information of the TAG to predict
the possible vulnerable attack paths. In this section, we
describe the proposed asset criticality metrics, asset criticality-
based shuffling, attack path prediction method (i.e., BAP
prediction algorithm), and the deployment procedure of the
asset criticality-aware MTD.

A. Asset Criticality

1) Role-Based Criticality (RC): When a system (or
network) is designed to provide certain services, each host is
given its own embedded capability. This capability can be uti-
lized to determine the host’s criticality based on its role. In this
paper, we call it a host’s role-based criticality. For example,
a networked system consists of several types of assets, such
as DB servers, authentication servers, and Web servers. These
servers are usually considered more important than other typ-
ical user hosts; thus, they require higher levels of security
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Fig. 3. Asset criticality-aware attack graph.

protection and performance maintenance in order to seam-
lessly provide normal, reliable services without interruptions
and without being compromised.

We devise a role criticality (RC) metric, representing a
host’s criticality level in terms of its role in a given system.
We initialize each host’s RC level, which is an integer ranging
in [1, 10] and denoted by RChi (for the host hi ). For exam-
ple, in a cloud data center, one of the most critical assets is
the DB server. Hence, we assumed that the DB server’s RC is
higher than those of other host virtual machines (VMs), i.e.,
RCDB > RCVM . In Fig. 3, the three nodes h8, h9, and h10 are
the servers to be protected with high AC levels; for example,
RCh8 = 8,RCh9 = 10, and RCh10 = 6, respectively.

To estimate an RC (the RChi for host hi ), we identify
attack sequences starting from externally accessible hosts (i.e.,
Hex ) to hosts with high RC by using the information from L1

and L2 in the TAG model. Then, if a host is on the paths
to hosts with higher RC, the network configurations for the
host (i.e., MAC/IP/port addresses) should be shuffled more
frequently. For example, in Fig. 3, if the attacker successfully
compromises h1, the attacker has a chance to attack h8 and
h9. Therefore, if a host is on the path to other critical assets
(e.g., h4), the host’s IP address should be shuffled more fre-
quently. In this work, we define the attack success probability
as the probability of a critical asset’s root privilege being suc-
cessfully compromised by an attacker. Furthermore, attackers
are assumed to exploit the user privileges of other remaining
hosts, called intermediate hosts, which are not critical assets.
For simplicity, we define a critical asset with RChi > ρ, where
ρ is a threshold to determine highly critical assets.

2) Influence-Based Criticality (IC): A host hi ’s role-based
criticality, RChi , is determined based on its role in terms of its
service provision. However, RChi does not reflect hi ’s influ-
ence in terms of its location in a network. For example, some
hosts are involved with multiple and more attack paths while
others are not. Thus, depending on how many attack paths the
host is involved with, its influence on exposing path vulnera-
bilities to attacks varies. To consider a host’s network influence
on the degree of vulnerabilities exposed to attacks, we devise
an influence-based criticality metric; denoted by IChi for host

hi . We calculate IChi for all highly critical assets, hi ’s (with
RChi > ρ), based on the identified attack paths they are on.
In Fig. 3, since ρ is set to five, only hosts h8, h9, and h11 are
considered as critical assets.

Given that n is the number of highly critical hosts and k is
the number of the most vulnerable attack paths for each criti-
cal host identified by the BAP prediction algorithm (discussed
below in Section V-B), IChi is obtained as follows:

IChi =
∑

p∈APBAP (hi )

RCeh(p) · PR(eh(p)), (6)

where APBAP (hi ) is a set of paths passing through the host
hi obtained from the BAP prediction algorithm, eh(p) is the
end host that is finally targeted (i.e., critical assets) by the
attack path p, RCh is host h’s RC (which is given), and
PR(h) is the probability of the host h’s root privilege being
compromised in (5). In Fig. 3, ICh2 (which is shown with
a blue-colored host) is 3.9 because the attack paths passing
through h2 are AP2 and AP3. In addition, ICh9 and ICh11
are 3 and 0.9, respectively, where h9 and h11 are target hosts
on AP2 and AP3.

B. Prediction of Attack Paths to Target Hosts

Asset criticality-aware MTD operation should be based on
the accurate prediction of the exploitability of an attack path.
In this section, we discuss two attack path prediction algo-
rithms: the brute-force (BF) search and the proposed backward
attack path (BAP) prediction algorithms. BF is used to identify
the optimal solution(s) and to estimate the prediction accuracy
of the BAP over BF. To show the benefit of the BAP for scal-
ability, we will compare the BF and BAP in terms of running
time in Section VII.

An attack path is a sequence of attacks that can be identified
on a TAG, starting from an externally accessible host (i.e.,
Hex ) to an internally connectable host (i.e., Hin ) with high
AC level (i.e., a victim host). Utilizing the TAG model, we
compute hi ’s exploitability, PUC (hi ) for all hi ’s in (4) and
PR(hi ) for potential victim hosts in (5). Fig. 3 shows an asset
criticality-aware AG, wherein h1 and h2 are the externally
accessible hosts, meaning there are no in-degree edges to the
hosts, whereas, h8, h9, and h10 are the target servers with
high AC level (i.e., potential victim hosts). In Fig. 3, the table
in the figure summarizes the compromise probability of each
host’s user/root privilege, and the RC/IC values of a host. We
assumed that an attacker’s ultimate goal is to compromise the
root privilege of the critical assets. In this case, one of the
attack paths to h8 is AP1 (i.e., h1 → h3 → h5 → h8 as
shown in an orange-colored curve in Fig. 3).

1) Brute-Force Search: Finding all attack paths in an AG
has exponential time complexity. One common way to find
attack paths with highly critical asset nodes on the AG is a
depth-first search (DFS) and topological sorting (TS)-based
brute-force (BF) search method. TS is a linear ordering of
vertices of a DAG for every directed edge on the graph. The
BF-based attack path identification method finds all the attack
paths for all Hex and critical asset pairs on an AG. A valid
sequence of an attack path can be obtained by applying the
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Algorithm 1 Backward Attack Path (BAP) Prediction
Input: TAG, A ← a set of critical assets (ρ = 5)
Output: k attack paths for each asset

1: for each asset ai ∈ A do
2: for t ← 1 to k do
3: h(ai , t)← greedyBacktrack(ai , t) � h(ai , t) is

the set of hosts included in the t-th attack path targeting
ai .

4: while h(ai , t).last /∈ S (Hex )) do
5: hj ← findMaxNeighbor(h(ai , t).last)
6: add host hj to host set h(ai , t)
7: end while
8: if hj ∈ S (Hex ) then � S (Hex ) is a set of Hex

9: add host hj to host set h(ai , t)
10: end if
11: AP t

ai ← h(ai , t) � AP t
ai is ai ’s t-th attack path

12: end for
13: end for

BF search algorithm to the AG. In order to determine the
optimal attack path in the AG, we employ the average attack
trials (AAT) metric, which can be estimated by the inverse of
the compromise probability of a host (i.e., 1/PUE (h) for the
intermediate host and 1/PR(h) for the critical asset). By using
the geometric distribution, we can obtain the required number
of attack trials to get one attack success (e.g., a host is first
compromised by the attacker). If the probability of success
on each attack trial is p (i.e., compromise probability), then
the probability that the k th attack trial is the first success is
given by: Pr(x = k) = (1 − p)k−1p. For example, if the
exploitability of a host is 0.2, it implies that the attacker has
to make an average of five attack trials to compromise a host.
In this work, we assumed that the sum of AATs represents the
severity of an attack path (i.e., the higher the sum of AATs,
the lower the vulnerability of an attack path). Moreover, we
utilize a BF search (i.e., TS and DFS) to generate optimal
solutions that can be compared against those given by our
proposed attack path prediction algorithm. The performance
comparison of the TS and our proposed algorithm is discussed
in Section VII-D.

2) Backward Attack Path Prediction Algorithm: To miti-
gate high complexity in BF, we propose a greedy, heuristic
prediction method, called BAP, which is a low-cost solution
method that significantly reduces computational complexity.
Given a network topology and path exploitabilities, we show
how to predict attack paths that are more vulnerable than oth-
ers and should be protected with a higher priority. To this end,
we aim to find the most vulnerable path that hosts with high
AC are on by backtracking from the end host (i.e., one of
the most critical assets in the network), to one of the exter-
nally accessible hosts, Hex ’s. Algorithm 1 shows the procedure
of the BAP prediction for each asset in a given network. For
each asset, iterating from the most vulnerable attack path (i.e.,
k = 1) to the k-th vulnerable attack path, attack paths are com-
puted (lines 2 to 10). Moreover, given the TAG model and the
exploitability of each host, the BAP executes a series of steps
to identify attack paths. In Fig. 3, suppose h9 is first selected,

then h6 is chosen as a next node to search as it has the highest
user privilege compromise probability with 0.39; thus, expos-
ing the highest vulnerability among other neighboring hosts
(i.e., nodes directly connected to h9). The selected attack path
for the target host h9 is h2 → h4 → h6 → h9 (which is shown
with a green-colored curve in Fig. 3).

In this paper, the proposed BAP prediction algorithm iden-
tifies k attack paths for each critical asset, leading to k · n
attack paths where n is the number of hosts with RCi > ρ,
and ρ is a threshold to determine highly critical asset hosts.
The proposed BAP prediction algorithm does not need to enu-
merate all the attack paths in an AG. In Algorithm 1, for each
host, we compute k attack paths based on the BAP. Instead
of searching all attack paths, the BAP only searches n × k
number of attack paths by using a greedy selection method to
reduce computational complexity. For example, if the BAP
searches k = 1 attack path, it will find the most vulnera-
ble attack path exploitable by attackers; thus, k refers to the
number of the most vulnerable attack paths to each target
host. However, if k is too small, it is likely to mispredict the
attacker’s attack path. To investigate this scalability issue, we
demonstrate the running time of the BAP under different k
and BF in Section VII.

C. Asset Criticality-Aware Shuffling Probability

In Section V-A, we defined two types of asset criticality,
including role-based criticality (RC) and influence-based crit-
icality (IC). Accordingly, we define two shuffling methods for
a host’s network configurations as follows:

• Shuffling with RC: At every time interval Ts , each host
hi is selected to shuffle its network configuration based
on the degree of RC as follows:

FRC (hi ) =
RC (hi )∑

hj∈AG(hi )
RC

(
hj
) , (7)

where AG(hi ) is a set of hosts in an asset criticality-
aware AG involving hi , and

∑
hj∈G FRC (hj ) = 1 where

G refers to a given network.
• Shuffling with IC: Per Ts , every host hi is selected to

shuffle its network configuration based on the degree of
its IC as follows:

FIC (hi ) =
IC (hi )∑

hj∈AG(hi )
IC

(
hj
) , (8)

where
∑

hj∈G FIC (hj ) = 1 and G refers to a given
network.

In both shuffling schemes mentioned above, where the sum of
probability portions of all hosts is one, upon every Ts , one of
the hosts is selected to shuffle its network configuration where
each host has a chance to be selected with the corresponding
shuffling probability. Note that ‘shuffling with IC’ considers a
broader concept of criticality in terms of a host’s importance
in its role and impact in a network than ‘shuffling with RC.’
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Fig. 4. Address shuffling sequence to send data from host A to host B.

VI. SDN-BASED SHUFFLING MTD

In this section, we discuss: (i) how to implement the
proposed shuffling-based MTD with the asset criticality-
awareness in Section V; and (ii) how the address shuffling
mechanism can be implemented in an SDN.

A. SDN-Based MAC Shuffling

The MAC address is a primary address for communica-
tions in the data link layer network. The address resolution
protocol (ARP) provides the address mapping between the
data link layer (i.e., MAC) and the network layer (i.e., IP).
Attackers can obtain various types of information on hosts in
a target network by passively sniffing or actively broadcast-
ing ARP packets. Notwithstanding, the static configurations
of MAC addresses in wireless mobile networks are commonly
exploited by attackers to track specific machines. Network dis-
covery, the process of identifying active hosts in a network,
is a crucial step in the network information gathering process.
Since the primary step in all IPv4 network communication is
broadcasting ARP packets to find the MAC address of the tar-
get host, an attacker can identify active hosts from the ARP
response packets. By executing the address mapping process,
the attacker can detect all active hosts in the target network,
regardless of the presence of a firewall or an IDS.

We consider the following procedures when implementing
MAC address shuffling as an obfuscation technique in an SDN.
In a conventional Layer 2 switching network, a source host,
hs , retrieves the MAC address of a destination host, hd , on its
ARP cache table before sending a packet. However, if no MAC
address is found, an ARP request packet will be broadcast to
the network. When hs receives hd ’s MAC address, it uses
the MAC address in each frame when sending a packet to
hd . In this section, we propose a MAC address obfuscation
scheme that virtually and dynamically changes a host’s MAC
address. Here, we assume that the channel between a host and
its directly connected switch is a secure point-to-point direct
link, and we do not take into account scenarios in which an
attacker compromises an SDN-enabled switch itself.

Fig. 4 (a) shows the obfuscation procedure of the real MAC
address, rMAC, which virtually and dynamically changes a
host’s MAC address. It depicts the procedure of the proposed

MAC address obfuscation scheme for a simple SDN topol-
ogy consisting of two SDN switches and two hosts. The host
A sends a packet to the host B, and their MAC addresses
are obfuscated. At the start of a communication, the host A
broadcasts an ARP request packet to obtain B’s MAC address
before transmitting a data packet. The switch SW1 receives
the ARP request packet from A and sends a packet-in mes-
sage to the SDN controller because it does not know how
to handle the ARP packet. Instead of broadcasting the ARP
packets to the entire network, the SDN controller responds to
the ARP request packet by directly injecting the ARP reply
packet through a packet-out message. However, if the SDN
controller does not know B’s rMAC, it performs additional
procedures to obtain B’s rMAC. Further, when the SDN con-
troller sends the ARP reply packet to A, it selects a virtual
MAC address, vMAC, for B and includes B’s vMAC in the
ARP reply packet. In addition, the SDN controller updates
the flow tables of SDN switches on the path from A to B.
Here are the additional procedures of the MAC obfuscation:

• ARP reply packet injection: In an SDN, the SDN con-
troller receives a ‘packet-in message’ from the SDN
switches upon new packet arrivals. It decides where to
forward a packet and then sends a ‘packet-out message’
to an SDN switch. If the SDN controller doesn’t know
hd ’s location, it will forward the ARP packets to find hd .
Instead of being sent to the requesting hs , after updat-
ing the vMAC on the SDN controller, the actual ARP
reply packet is discarded. After this, the SDN controller
blocks the ARP packet broadcast and injects an ARP
reply packet containing hd ’s vMAC. The manipulated
ARP reply packet is directly retransmitted to hs . Then,
hs attempts to communicate with hd using vMAC in the
ARP reply packet.

• Spoof response for non-existing hosts: The SDN con-
troller responds not only to ARP requests for active hosts,
but also to ARP requests for temporarily non-existing
hosts, hfake , in the network (i.e., some hosts’ connec-
tivity is up and down with a certain probability). If the
SDN controller responds to ARP packets from hfake , the
attacker will spend more time in checking active hosts.
Thus, attackers can easily detect any defensive deception
(e.g., decoys) based on inconsistent patterns of spoof
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responses. Therefore, it is vital to develop a probabil-
ity model for different-sized networks and to respond to
ARP requests based on it.

• Untraceable virtual MAC address generation: The SDN
controller generates a set of vMAC using vendor organi-
zational unique identifiers (OUI) information [4]. In the
proposed method, the first 24 bits of the vMAC are deter-
mined for providing fake vendor information while the
last 24 bits of vMAC are generated randomly. The gener-
ated vMACs should not overlap vMACs of other existing
hosts or recently used and stored in the ARP caches of
the devices.

• Assignment of virtual MAC address: When the SDN
switches receive the ARP packet, the SDN controller
looks up its ARP mapping table. If the IP address
requested in the ARP packet is found in the table,
the SDN controller returns the vMAC of the requested
IP address. Otherwise, it selects one from the set of
pre-generated vMACs based on the hash value of the
requested IP address.

We discuss the overhead of the MAC shuffling technique in a
scenario where one host sends ICMP packets to another host
in Section VII-G.

B. SDN-Based IP/Port Shuffling

Using the static, common addresses, such as well-known
ports including SSH (20), HTTP (80), and domain name
system (DNS) (53), or application-specific ports; expose secu-
rity vulnerabilities because in such situations a host’s running
services can be easily identified by attackers capturing the
packet header. To prevent the security vulnerabilities exposed
by using the static network configuration, we propose a
dynamic IP/port shuffling-based MTD. The proposed IP/port
shuffling procedures are detailed as follows:

• DNS server & SDN controller: In this work, the assign-
ment of vIP’s is handled by an SDN controller and a DNS
server. A host’s virtual IP address, vIP, is shuffled period-
ically by the SDN controller, whereas its unchanged rIP
must always be known by the authorized DNS server.
The mapping between domain name and rIP is handled
by a DNS server, and the mapping between rIP and vIP is
handled by an SDN controller. Once a host sends a DNS
request packet to a DNS server, the SDN-enabled switch
that is the neighbor of the sender host sends the packet-
in message to the SDN controller. If the SDN controller
does not have rIP information of a host in the network,
it sends a DNS request packet to the DNS server. After
getting the rIP information of a destination host through
a DNS response packet, the SDN controller stores rIP
information of a host. Note that the DNS response packet
generated by the DNS server does not forward to the
requested host. Furthermore, the SDN controller regis-
ters the mapping information of rIP and vIP of a host.
Mapping of addresses changes over time upon shuffling;
therefore, the SDN controller should keep track of the
changed addresses using a mapping record. When the
SDN-enabled switches receive a new DNS request packet,

the SDN controller generates the DNS response packet,
and the IP address of the requested host in the packet is
changed to vIP based on the address mapping record. The
time-to-live (TTL) value of the DNS response packet is
set to a small value considering the shuffling probability
of the host. If the host has a high probability of shuffling,
the TTL value will be set to a relatively smaller value for
considering the situations where the host’s vIP address is
shuffling.

• Flow table update for address conversion: The SDN con-
troller updates the flow tables of switches based on the
address mapping table, such that hd ’s vIP for data pack-
ets is converted back to its rIP at the switch to which the
hd is attached. Moreover, rIP of the hs is converted to the
vIP so that the hd does not know the sender’s rIP address.
In the proposed method, vIPs are used only for forward-
ing packets toward hd at the core network switches. At
the edge switches, vIP is replaced with hd ’s rIP to ensure
the delivery of a packet to the right destination.

• Seamless conversion from the previous virtual address:
During the address shuffling time, the performance of
message delivery may be degraded owing to abrupt
address changes. For seamless service provisioning, after
a vIP is shuffled, the packets that are being forwarded to
the previous vIP should be reliably delivered to the desti-
nation in time. This can be achieved by retaining the flow
table entries for the corresponding previous and current
vIPs for a certain time interval at the SDN switches.

• IP/Port shuffling: To transform the end hosts into untrace-
able moving targets, the SDN controller periodically
reassigns vIP to the end hosts. This shuffling of network-
related addresses should be performed in an untraceable,
time-variant manner. In order to maintain high variability,
a new random vIP should be selected from the pool of
unused set of vIP’s. Notably, it is also crucial to guaran-
tee that the set of IP addresses that are successfully used
should be exclusive in the unused set of vIPs. During the
forwarding phase, for all flows, the source and destina-
tion ports are replaced with vPorts. A flow to the same
port on the same hd can have a different vPort.

Fig. 4 (b) shows the obfuscation procedure of IP address,
host A attempts to send a packet to the host B, through the
domain name. If no IP address is found in the DNS cache in
A, a DNS request packet is sent to the DNS server. When A
receives B’s vIP from the SDN controller, A uses the vIP in
each frame it sends to B. The performance of the SDN-based
IP/port shuffling is discussed in Section VII-G.

C. Defense Techniques Against SDN Targeting Attacks

Some attacks aim to disrupt the SDN operations by recon-
structing flow rules or poisoning network topologies, which
mislead an SDN controller to make poor decisions. To prevent
these, we consider the following defense mechanisms:

• SDN-based packet manipulation: We propose an SDN-
based packet manipulation technique to deal with network
forensic attacks in [6]. These attacks exploit various con-
trol packets such as ARP and ICMP packets for SDN
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TABLE II
KEY DESIGN PARAMETERS AND THEIR DEFAULT VALUES

network probing and reconstruct the flow rules in the
victim network. Since our SDN controller manages DNS
packets and ARP packets without broadcasting, the SDN
controller can prevent the network information leakage
of an active host list and their MAC address caused by
the packet broadcasting. In addition, it can also prevent
the leakage of rIP in the nested ICMP packets [6] by
modifying rIP information encapsulated in the payload
of ICMP error reply packets.

• Topology update verification [18]: We can leverage a
topology update verification mechanism in [18] to defend
against network topology poisoning attacks that inform
false topology information to the SDN controller. The
SDN controller monitors the host-generated traffic such
as ARP and DNS packets and can verify the network
topology change including host discovery and migration
using several predefined precondition and postcondition
rules.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we discuss: (1) our experimental setup;
(2) metrics; (3) MTD schemes considered for comparative
performance analysis; (4) simulation results for the attack path
prediction; and (5) simulation results of the proposed MTD.

A. Experimental Setup

1) Simulation Setup: We conducted simulations using
BRITE [1] for generating a large-scale topology and imple-
mented the proposed method using the Mininet SDN emula-
tion environment [2] and an ONOS SDN controller [3]. The
obtained experimental results show the average performance
based on 100 simulation runs with different network topolo-
gies. Further, we investigate the effect of varying the following
key design parameters on the MTD performance: (1) Each host
is given a different number of vulnerabilities (Vh ) as an integer
ranging in [5, 10] and each vulnerability has the CVSS score
as an integer in [1, 10]; (2) The ratio of different asset critical-
ity composition of a network where a host’s AC varies from
high to low critical asset hosts. ρ, a threshold to determine
whether a given host is a critical asset or not is set to five; (3)
the reconnaissance attack interval (Tr ) to consider different
levels of attack intensity; and (4) MTD shuffling interval (Ts )
to consider different levels of defense strength. Table II sum-
marizes all the key design parameters and their default values
used in this work.

2) SDN-Based Testbed Setup: We implemented our
proposed asset criticality-aware MTD on the ONOS SDN
controller in Section VII-G. The considered network has a fat-
tree topology with 10 Aruba 2920 switches (OpenFlow 1.3
support), an ONOS SDN controller (version 1.9.0), and 16

raspberry-pi end-hosts. We selected two end-hosts to measure
delay based on five hops between two hosts. Note that every
host is communicating with one or more hosts in the network
in every second. We consider scenarios using two different
MTD shuffling techniques: MAC and IP/port shuffling.

B. Metrics

1) Metrics for Attack Path Prediction: We measure the BAP
prediction algorithm in terms of the following two metrics:

• Attack path prediction accuracy (PAPk
) is measured by

the number of correctly selected hosts divided by the total
number of hosts for each attack path, given k number of
attack paths identified for each critical asset. Since the
BF can capture the ground truth attack paths, PAPk

is
given by:

PAPk
=

∣
∣APBAPk

∩APBFk

∣
∣

∣
∣APBFk

∣
∣ , (9)

where APBAPk
denotes the set of hosts contained in k

attack paths for each critical asset discovered by the BAP,
and APBFk

is the set of hosts contained in k attack paths
discovered by the BF search algorithm. The denominator
is the number of hosts obtained from the BF, reflecting
the ground truth attack paths identified. In this metric,
higher values are more desirable.

• Computational complexity is measured by the running
time of a given algorithm in finding the most k vulnera-
ble attack paths. Lower values are more desirable in this
metric.

2) Metrics for MTD Overhead: We measure the MTD
overhead with the following two metrics:

• Data plane overhead is measured by the end-to-end
delay of the two end-hosts in the SDN-based network
under the address shuffling MTD being applied. Since
the SDN controller rearranges the address of a host by
updating the flow table in SDN switches, this can cause
some end-to-end delays when forwarding data packets to
their destination. In this metric, lower values are more
desirable.

• Control plane overhead is measured by the number of
control messages coming into the SDN controller through
the control plane. As the SDN controller rearranges the
network configuration of more hosts, the number of
network control messages, such as “FLOW_MOD” pack-
ets in the OpenFlow protocol, also increases in the control
plane. Lower is better in this metric.

3) Metrics for MTD Effectiveness: We measure the MTD
effectiveness in terms of the following two metrics:

• Obfuscation ratio (φ(IPt , IP0)) estimates obfuscated
information under reconnaissance attacks, and it is
defined as the number of new addresses devided by
the total number of initial addresses used; thus, the
obfuscation ratio, φ(IPt , IP0), is given by:

φ(IPt , IP0) =
‖IPt − IP0‖0

N
, (10)

where IPt refers to the vector of IP addresses used at the
time t, IP0 is the vector of IP addresses given at the time
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t = 0, and N is the number of entire IP addresses used
in the network which is the same as the total number
of hosts. ‖ · ‖0 is the �0 norm, which returns the num-
ber of nonzero elements in the vector. Then, the �0 norm
of the vector (IPt − IP0) corresponds to the number of
IP addresses that have changed at the time t. Since the
proposed asset criticality-aware MTD shuffles a host’s IP
and MAC addresses simultaneously with a single shuf-
fling interval Ts , the obfuscation ratio of IP and MAC
addresses is the same. Higher obfuscation ratio reflects
the degree of uncertainty introduced by the MTD for
attackers.

• Mean attack success probability (P̄AS ) measures the
average attack success probabilities of the entire critical
assets in the network, and it is obtained by:

P̄AS =

∑n
i=1 PR(hi )

n
, (11)

where n is the number of critical assets and PR(hi )
refers to the probability of the host hi ’s root privilege
being successfully compromised. Lower value is more
desirable.

4) Metrics for MTD Efficiency: We measure the MTD
efficiency in terms of the following two metrics:

• MAC shuffling delay: This metric measures the additional
overhead of the proposed MAC shuffling method in a
scenario where one host sends a packet to the destination
host, hd . If no MAC address is found in the ARP cache
table in the host, an ARP request packet is broadcast
to the network. The ARP request packet is forwarded to
an SDN controller, then the SDN controller generates the
ARP response packet with hd ’s vMAC, and directly sends
it back to the source host, hs . When hs receives hd ’s
vMAC, it uses the MAC address in each frame it sends
to hd . The MAC shuffling delay includes ARP packet for-
warding time, ARP packet flooding time, and flow table
update time.

• IP/Port shuffling delay: This metric measures the addi-
tional overhead of the proposed IP/port shuffling method
in a scenario where one host sends a DNS request packet
to the DNS server to obtain hd ’s IP address from the
domain name in a given network. hs attempts to obtain
the IP address from its DNS cache table. If there is no
matching entry in the DNS table, a DNS request packet
will be forwarded to the SDN controller; and then the
SDN controller sends the DNS request packet to the
DNS server, which replies hd ’s rIP. The SDN controller
rewrites the reply packet with hd ’s vIP. The IP shuffling
delay includes DNS request time, DNS caching/response
time, and flow table update time.

C. MTD Comparing Schemes

We compare the following MTD shuffling strategies in terms
of the mean attack success probability metric:

• Role criticality-based shuffling (RC-based shuffling): This
scheme uses a host’s RC to decide the frequency of

shuffling its network configuration. Hence, the probabil-
ity of shuffling the host’s network configuration can be
computed by FRC (hi ) given by (7).

• Influence criticality-based shuffling (IC-based shuffling):
This scheme uses a host’s IC to shuffle its network con-
figuration where its shuffling decision is made based on
Fs(hi ) given by (8).

• Betweenness centrality-based shuffling: This scheme uses
a host’s betweenness centrality value as a metric to deter-
mine which host to shuffle. The BC of a host hi is given
by the expression:

BC (hi ) =
∑

s!=v !=d

σsd (hi )

σsd
, (12)

where σsd is the total number of shortest paths from the
source host hs to the destination host hd and σsd (hi )
is the number of those paths that pass through the
host hi . The probability of shuffling a host’s network
configuration is estimated as:

FBC (hi ) =
BC (hi )∑

hj∈AG(hi )
BC

(
hj
) , (13)

where BC (hi ) denotes the betweenness centrality value
of the host hi , and AG(hi ) is a set of hosts in an asset
criticality-aware AG hi involved.

• OpenFlow Random Host Mutation (OF-RHM) [20]: OF-
RHM allows every host to have its optimal mutation rate
based on the total size of allocated vIP address ranges
to its subnet. If the hosts are in the same subnet, IP
addresses of those hosts are shuffled based on a same
interval, Ts . OF-RHM does not consider criticality of
hosts in a network.

D. Results and Analysis for the BAP

In this section, we compare the performance of the BAP
with that of the BF (i.e., exhausted search) and forward-based
attack path (FAP) prediction method [27] in terms of their
prediction accuracy and computational complexity. In [27], the
optimal attack path is discovered by the FindPath algorithm
based on stack and graph coloring methods, the algorithm
searches the most vulnerable attack path from the single source
host to the final goal node in the access graph.

Fig. 5 (a) shows the effect of N (the total number of hosts)
on the attack path prediction (PAPk

) with respect to different
numbers of attack paths (k) used. As in Fig. 5 (a), a reasonably
high accuracy (i.e., over 90%) is observed when N is up to 400
hosts for all ks tested in this study. However, with more hosts,
PAPk

decreases because it naturally leads to higher chances
to inaccurately select hosts for paths with more hosts in the
network. Since the BF can capture an optimal attack path, we
show the accuracy of the BAP with respect to the ground truth
accuracy generated by the BF, as in (9). However, FAP shows
the lower performance than our BAP because the BAP allows
attackers to access different entry points (i.e., remotely accessi-
ble hosts) to penetrate into the system. Moreover, our proposed
method finds the k most vulnerable attack paths rather than
just one most vulnerable attack path. Fig. 5 (b) demonstrates
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Fig. 5. Performance analysis of the BAP prediction.

Fig. 6. Overhead analysis of the asset criticality-aware MTD.

comparative complexity analysis of the BAP, FAP, and BF in
terms of the running time for attack path prediction. The BAP
takes a backward-based greedy non-enumerative method. The
clear out performance of the BAP over BF and FAP in the
running time is observed as the network size increases while
the BF and FAP show exponential growth in its running time.

E. Results and Analysis for the Asset Criticality-Aware MTD

In this section, we compare the proposed asset criticality-
aware MTD and the existing counterparts in terms of the
overhead (i.e., end-to-end delay and a number of control mes-
sages) and security improvement (i.e., obfuscation ratio and
mean attack success probability).

Fig. 6 (a) shows the overhead in the data plane of an
SDN-based network when the proposed shuffle-based MTD is
applied. The OF-RHM method [20] shuffles the IP addresses
of all hosts at once, so there is a lot of overhead upon every
shuffling, resulting in delay in packet forwarding. However,
since our proposed MTD changes network configurations by
selecting one host every MTD interval, the proposed IC-based
shuffling does not introduce high adverse effect on packet for-
warding in the data plane. Note that the shuffling interval
of OF-RHM is 3 min. while the number of shuffled hosts
is the same as the proposed IC-based shuffling. Fig. 6 (b)
shows the overhead in the control plane of SDN-based network
when the proposed shuffle-based MTD is applied. As with the
data plane overhead, OF-RHM rearranges the address of all
hosts at once, which introduces a lot of control messages to
the SDN controller. However, our proposed MTD constantly
changes the host’s address one by one, avoiding a large num-
ber of control messages being sent to the controller at the same
time.

Fig. 7 (a) shows the effect of a different shuffling interval,
Ts , on the obfuscation ratio over time under the proposed

Fig. 7. Performance analysis of asset criticality-aware MTD.

Fig. 8. Analysis of defending against forensic attacks.

MTD when N is 300. For example, Ts = 1 means shuf-
fling a selected host’s MAC/IP address every second. It is
observed that a shorter Ts leads to a higher obfuscation ratio
with a sharper increase over time, and vice-versa. However,
after about half of the hosts have been shuffled (recall a single
host is selected to be shuffled upon each interval), the prob-
ability of previously shuffled hosts being shuffled increases,
therefore, the overall obfuscation ratio does not increase
linearly.

Fig. 7 (b) shows the performance of the compared MTD
schemes considered in this work in terms of the attack suc-
cess probability, P̂RC (hi ). We compared the performance of
the proposed IC-based shuffling, RC-based shuffling, with
two other comparable schemes (centrality-based shuffling and
OF-RHM scheme) as discussed in Section VII-C. Here, we
assumed that attackers collect reconnaissance information in a
certain period of time. During a reconnaissance attack interval,
Tr , if the addresses of the attacker’s neighbor host are shuffled,
we assumed that the probability with vulnerability v ∈ Vr (h)
where h ∈ N out (hi ) is attacked by the attacker hi decreases;
because the attacker’s information collected during the recon-
naissance is invalidated. In other words, as the shuffling
interval becomes shorter, the average attack success probability
drops due to the confusion introduced by the MTD shuffling
MAC/IP/port addresses. The result shows that the proposed
IC-based shuffling shows the best performance to defend crit-
ical assets against the considered attacks while centrality-based
shuffling shows better performance than both RC-based and
OF-RHM shuffling schemes. The RC-based shuffling consid-
ering only the role of the host has less security effectiveness
than the centrality-based shuffling scheme considering the con-
figuration and connectivity information of the network. This
implies that a node’s network influence is critical because it
may introduce severe damage to a network due to potential
cascading failure leveraging its influence.
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Fig. 9. Address shuffling delay measurements.

F. Results and Analysis for Defending Forensic Attacks

We also compared the performance of the proposed shuffle-
based MTD and OF-RHM in terms of the attack success
probability and the discovered rIP ratio in order to investi-
gate the effect of the flow rule reconstruction attacks (i.e.,
forensic attacks). In Fig. 8 (a), when an attacker scans its
neighbor hosts using nested ICMP packets, OF-RHM reveals
the rIP information of neighboring hosts to the attacker. As a
result, it fails to reduce the average attack success probabil-
ity. On the other hand, the proposed method does not expose
rIP information even if the attacker uses the various forensic
methods, showing the decreasing attack success probability
with shorter shuffling interval. Fig. 8 (b) shows the ratio of
rIP’s that an attacker has successfully identified. If the SDN
controller does not have any protection mechanism for nested
ICMP probing packets, the attacker can find out rIP’s of all
neighboring hosts in a few minutes. When the attacker sends
a probing packet to one IP address every 15 seconds to a con-
nected subnet, our SDN controller successfully removes rIP in
the nested packet generated by the attacker’s probing packets,
hindering the attacker’s reconnaissance activity.

G. Testbed Experiment-Based Results and Analysis

In this section, we will discuss our SDN-based experimental
setup and the performance analysis in terms of the additional
delay due to the IP and MAC address shuffling.

Fig. 9 (a) shows the MAC shuffling delay when the proposed
asset criticality-aware MTD is deployed. For the first frame
belonging to a new flow, if the SDN controller knows the
path to its destination host, hd , it forwards the ARP pack-
ets directly to the hd rather than flooding them. In this case,
the total ARP forwarding delay was approximately 41 ms.
On the contrary, if the SDN controller does not know the
path to hd , it floods ARP packets to find hd , taking approxi-
mately 195 ms, which includes ARP request/reply delay, flow
table update (packet-in and packet-out messages) delay on
each SDN switch, and data-forwarding delay. As shown in
Fig. 9 (a), the proposed scheme incurred an additional 12 ms
delay for the first frame due to vMAC assignment and the ARP
injection process. For the next frames, the delay of the con-
ventional forwarding includes only the data-forwarding delay.
The proposed scheme requires MAC address modification of
the switch to which hd is connected; however, forwarding

delays were nearly the same. This result indicates that the
proposed asset criticality-aware MTD for MAC address shuf-
fling can obfuscate the end-host information from attackers at
an acceptable overhead.

Fig. 9 (b) shows IP shuffling delay upon the deployment
of the asset criticality-aware MTD. In this scheme, the SDN
controller receives a DNS request packet and forwards it to
the DNS server, taking approximately 22 ms. The DNS server
receiving the DNS request packet responds with a host’s IP
address with the corresponding domain name while the SDN
controller changes the host’s rIP to vIP in the DNS reply
packet according to the sequence number of the packet. The
proposed scheme incurred an additional 173 ms delay for the
first frame due to vIP assignment and conversion. For the next
frame, the delay of the proposed method includes only the
data-forwarding and vIP modification delay.

The MAC/IP shuffling delays observed from the above
shows an acceptable level of overhead as a reasonable tradeoff
for obtaining enhanced security in increased obfuscation ratio
and lowered attack success probability.

VIII. CONCLUSION

In this paper, we have proposed an asset criticality-
aware MTD technique to effectively and efficiently obfuscate
network information from potential attackers by leveraging
the advanced SDN technology. In order to develop the asset
criticality-aware MTD, we have also devised the backward
attack path prediction as a lightweight solution to identify the
most vulnerable attack paths that can be exploited by attackers.
We have validated the out performance of the proposed asset
criticality-aware MTD over its existing counterparts in terms
of both its effectiveness and efficiency via extensive exper-
iments in both simulation and real SDN testbeds. Our key
findings prove that the proposed asset criticality-aware MTD
provides scalable, adaptive security with an acceptable level
of computation cost and communication delay.
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