
652 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

DASON: Dependability Assessment Framework for
Imperfect Distributed SDN Implementations

Petra Vizarreta , Kishor Trivedi , Veena Mendiratta , Senior Member, IEEE,
Wolfgang Kellerer , Senior Member, IEEE, and Carmen Mas-Machuca , Senior Member, IEEE

Abstract—In Software Defined Networking (SDN), network
programmability is enabled through a logically centralized con-
trol plane. Production networks deploy multiple controllers for
scalability and reliability reasons, which in turn rely on dis-
tributed consensus protocols to operate in a logically centralized
manner. However, bugs in distributed control plane can have dis-
astrous effects on the data plane, e.g., losing traffic by installing
paths containing blackholes. In this paper we study the preva-
lence of issues in state-of-the-art distributed frameworks in
SDN, by analyzing 500+++ issues reported in two of the largest
open source SDN controller platforms: Open Network Operating
System (ONOS) and OpenDaylight (ODL), during the period
between 2014-2019. We identify system vulnerabilities, localize
dependability bottlenecks, and provide stochastic models for a
holistic assessment of system dependability.

Index Terms—Software Defined Networking, SDN controller,
ONOS, OpenDaylight, distributed system, distributed consensus,
high availability, fault tolerance, software reliability.

I. INTRODUCTION

A. Problem Definition and Research Challenges

IN SOFTWARE Defined Networking (SDN), the control
plane logic of forwarding devices is offloaded to an SDN

controller, which assumes the role of a network operating
system. Logically centralized network control enables fine-
grained resource management, dynamic per-flow QoS control
and simplified enforcement of traffic engineering policies,
spanning a diverse set of network devices. Present-day pro-
duction grade SDN controllers additionally provide support for
legacy network protocols and hybrid devices, advanced secu-
rity features, automated bootstrapping and interworking with
virtualization platforms and cloud management systems. The

Manuscript received April 5, 2019; revised November 21, 2019; accepted
January 23, 2020. Date of publication February 14, 2020; date of current
version June 10, 2020. This work is part of a project that has received
funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No
647158 - FlexNets, and has received funding from the CELTIC EUREKA
project SENDATE-PLANETS (Project ID C2015/3-1) and the German BMBF
(Project ID 16KIS0473). Kishor Trivedi’s research was supported in part
by the National Natural Science Foundation of China under Grant num-
ber 61872169. The associate editor coordinating the review of this article
and approving it for publication was C. Avin. (Corresponding author:
Petra Vizarreta.)

Petra Vizarreta, Wolfgang Kellerer, and Carmen Mas-Machuca are with the
Chair of Communication Networks, Technical University of Munich, 80333
Munich, Germany (e-mail: petra.vizarreta@lkn.ei.tum.de).

Kishor Trivedi is the with Department of Electrical and Computer
Engineering, Duke University, Durham, NC 27708 USA.

Veena Mendiratta is with the Distributed Control System Research, Nokia
Bell Labs, Naperville, IL 60563 USA.

Digital Object Identifier 10.1109/TNSM.2020.2973925

heterogeneity of supported networks and services has resulted
in the controllers becoming rather complex software systems,
and recent studies [1]–[3] on large scale operational networks
have reported that software bugs caused more than 30% of
documented customer impacting incidents.

Production networks deploy multiple controllers to ensure
scalability, high availability and high performance. In such
distributed architectures, the benefits of logically centralized
network control are maintained by means of distributed proto-
cols such as Gossip and Raft [4]. However, correct and stable
implementation of distributed network control plane is not
trivial, as confirmed by Google’s report on critical network
outages [1], which showed that control plane issues prevail
in their B4 WAN.1 Their analysis showed that under con-
trol plane software failures, maintaining globally consistent
network state is a difficult, and the cascade of control-plane
element failures is a common culprit of critical customer
impacting failures.

Despite the magnitude and ubiquity of network control soft-
ware failures, the state of the art literature is still missing
realistic dependability models of SDN controllers. The goal of
this study is to provide high fidelity models that can reproduce
the stochastic behaviour of real-life distributed SDN platforms.
Such models are needed in order to identify dependability
bottlenecks, and reliably assess whether SDN solutions are
ready to be deployed in a particular use-case scenario, such as
industrial networks [6]. The controllers in our study are Open
Network Operating System (ONOS) [7] and OpenDaylight
(ODL) [8], two of the largest production-grade open source
SDN orchestration platforms, whose code internals and bug
repository are publicly available, allowing us to perform an
in-depth dependability assessment.

B. Towards Data-Driven Dependability Assurance

We propose DASON, a data-driven dependability assess-
ment framework, for a holistic assessment of dependability,
as illustrated in Fig. 1. The framework implements a gen-
eral analyse-model-evaluate meta-workflow for dependability
assessment, applied the use-cases of open-source distributed
SDN orchestration platforms.

1) Mining Software Repositories: In the analysis step, the
system architecture and failure modes are extracted by mining

1B4 [5] Google’s internal Wide Area Network (WAN), carrying the traffic
between data center clusters, is arguably the biggest live SDN network, both
in geographical scale and the volume of traffic it serves.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7423-0242
https://orcid.org/0000-0001-7396-6330
https://orcid.org/0000-0002-6941-2391
https://orcid.org/0000-0003-4358-8038
https://orcid.org/0000-0002-2348-2714

VIZARRETA et al.: DASON: DEPENDABILITY ASSESSMENT FRAMEWORK FOR IMPERFECT DISTRIBUTED SDN IMPLEMENTATIONS 653

Fig. 1. An overview of DASON: Data-driven dependability assurance
framework based on Stochastic Reward Nets (SRN).

software repositories of two distributed SDN platforms, ONOS
and ODL. We leverage the fact that the code repositories and
issue trackers are open to the public, enabling us to perform
detailed analysis of system vulnerabilities. The outcome of
this analysis, i.e., prevalent failure modes, has been used to
guide the construction of stochastic models proposed in the
next step.

2) Modelling Abstractions: The modelling abstractions
are provided by the formalism of Stochastic Reward Nets
(SRN) [9]. SRNs can be directly mapped to Markov chains,
and are widely used in modelling complex systems consist-
ing of large number of dependent components. We model
separately single controller nodes, their interaction using dis-
tributed system protocols, as well as the services that run
in such architectures. Dependability KPIs of interest, e.g.,
downtime distribution and outage frequency, are computed
by assigning reward rates at the SRN level. Model input
parameters are based on real-life controllers and systems.

3) Quantitative Dependability Evaluation: Once the
stochastic models are defined and parametrized, they can be
used as a tool for forecasting the control plane outages and
dependability benchmark platform. For instance, the mod-
els can be used to characterize the failure dynamics in a
distributed SDN control plane, as well as their impact on user-
perceived service availability. Different control plane designs,
e.g., cluster size and deployment scenarios, can be compared
easily, by modifying the parameters of the stochastic models.

C. Our Contribution

The work in this article is strongly motivated by the results
presented in our previous two papers [10], [11], although it
does not presents their direct extension. The modelling abstrac-
tions proposed in [10] focused on independent controller
failures, but has neglected the complex interaction between
different replicas in a cluster replicas (assuming perfect han-
dover, and no synchronization overhead). The empirical study
in [11], which analyzed the large ODL bug repository, showed
that these assumptions do not hold in practice, since the
clustering component is one of the most buggy modules in

ODL core subsystem. In this article we provide more accu-
rate modelling abstractions for imperfect distributed SDN
implementations. Moreover, we extend [11] with taxonomy of
defects in distributed SDN control plane, as well as service-
control plane dependencies. The contributions of this article
can be summarized as:

i. We analyse real-life distributed SDN implementations,
and localize software defects and common failure
modes.

ii. We propose modelling abstractions for imperfect dis-
tributed control plane, and interaction with service plane.

iii. We characterize the failure dynamics in realistic scenar-
ios, including not only pure control plane dependability
metrics, but also user-perceived service availability.

The remainder of the paper is organized as follows.
Section II provides an overview of the related work on dis-
tributed SDN controller frameworks, and key empirical and
model-based studies relevant for our methodology. Section III
presents an overview of distributed SDN control planes, while
Section IV discusses defects of real life distributed SDN
implementations. In Section V modelling abstractions based
on SRN for imperfect distributed SDN plane are presented,
and are used for the quantitative analysis of control plane and
service availability in Section VI. Section VII concludes the
paper with a summary and discussion of the results.

II. RELATED WORK

The following sections provide an overview of the related
work on distributed SDN controller frameworks (Section II-A),
and relevant empirical and model-based dependability studies
(Section II-B).

A. High-Availability in Distributed SDN Implementations

A good overview of distributed SDN control platforms is
presented in [12]. The survey compared different architectural
designs and their approaches to address scalability and high-
availability issues. However, most of the presented controllers
have not made it into production environments, such as Onix,
HyperFlow, DISCO and Kandoo [13]–[16], or are closed pro-
prietary solutions, such as Google’s B4 [5] and Espresso [2].
Hence, we choose to focus on ONOS [7] and ODL [8],
two production-grade open source controllers, which form the
code-basis for many other commercial vendor products.

The software maturity of these two platforms, in terms of
the reliability growth, was compared in [17]. The further min-
ing of the software repositories [11] identified the clustering
module (distributed control plane implementation) as the cul-
prit in many of the ODL controller failures, but did not further
investigate the nature of such issues.

Stability issues under high load of distributed control plane
implementation with ONOS was analyzed in [18]. The authors
have shown that consensus protocols, such as Raft, misbe-
have in overload conditions, due to increases in the delay of
heartbeat messages and time-threshold based failure detectors.
Such behaviour triggers the frequent leader re-elections, lead-
ing to a crash of the entire control plane. The same effect

654 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

of performance degradation under load causing a node flap-
ping, repeated leader elections, and a cascade of control
plane failures was also observed in [19], which noted that the
problem was already reported in the bug repository. Sakic et al.
proposed ODL control plane enhancements, such as adaptive
consistency [20], [21] addressing the issue of chattyness of
consensus protocols, and Byzantine Fault Tolerance (BFT)
protocols [22] addressing the security and reliability issues
of misbehaving controllers. Our mining of ONOS and ODL
bug repositories, discussed in Section VII, exposed many more
issues of practical distributed control plane implementations.

Two informal measurement standards on SDN control plane
benchmarking, by the IETF [23] and the ONF [24], specify
cluster performance and stability tests. The performance of
ODL clustering, in terms of synchronization overhead, failure
detection and failover time, was analyzed in [25], while ONOS
inter-controller traffic in different scenarios was measured and
modelled in [26]. An ONOS report on SDN control plane
performance [27] discusses distributed design solutions con-
sidered by developers, as well as the final implementation, and
demonstrates the improvements compared to an older release.
These standard performance and cluster stability tests have
already been incorporated in the ONOS and ODL test suites.

Despite the extensive testing many of the bugs go unnoticed
during testing, manifesting only in the production environ-
ment. One of the reasons why many bugs escape the testing
phase is non-determinism, such as racing and concurrency
issues, which makes them extremely hard to reproduce, since
triggering requires precise timing between input events and
internal procedures [28]. In [29], [30] the authors showed
a huge number of concurrency violations in SDN controller
applications. In the follow-up work [31], the concurrency vio-
lations were clustered and filtered, facilitating fault localization
of the root causes analysis for the developers, demonstrating
its efficiency on the Floodlight controller. Indeed, our anal-
ysis of production-grade controllers showed that concurrency
issues are the root cause in many of the reported issues related
to distributed protocols.

Google’s report on critical network outages [1], showed that
control plane issues prevail in their SDN-based B4 WAN.
Their analysis showed that maintaining globally consistent
network state is a challenge, due to the control plane conver-
gence delays, inconsistency between control plane elements,
as well as synchronization between data and control plane. A
number of partial and complete failures of control plane ele-
ments and the control plane network, including the cascade
of control-plane element failures were observed. Noteworthy
are also the operational issues due to the buggy control plane
software update push.

Another empirical study on defects in well-known dis-
tributed systems, such as Cassandra and HDFS [32], showed
that faulty/error handling was the cause of 95% of catastrophic
failures. In most of the cases the error handling code was
either empty or incomplete, ignoring the local failure which
then propagated to entire system, or was overreacting, allow-
ing a minor failure to crash the entire system. The authors
also noticed resource leaks and incorrect performance issues,
which have not been analyzed before in the context of SDN.

New vulnerabilities, due to cyclic dependencies between
the control and data planes in distributed SDN, are discussed
in [33]. The authors demonstrate how control plane network
failures may render the cluster down, even in the absence of
partitions. Illustrative examples of the problems of oscillating
leaders and lost leadership were also presented. Alternative
adaptive consistency models for ONOS have been discussed
in [34], while relaxation of strong consistency models used in
ODL was proposed in [35].

Large scale empirical studies on real-life incidents in
Google and Microsoft networks [36], IP Backbone [37] and
data center networks [38], [39] provide valuable data to the
industry and to researchers, exposing network vulnerabilities
and suggesting preventive measures. However, a compre-
hensive study on network control software in SDN is still
missing. To fill this gap, we systematically analyze two of
the largest open source repositories (10k+ bugs) to locate
the vulnerabilities in production-grade distributed controller
platforms.

B. Model-Based Studies on SDN Control Plane
Dependability

Despite the diversity and complexity of SDN control plane
failures, most of the studies on SDN control plane depend-
ability reduce the controller to a single failure mode, i.e.,
assuming it is either operational or non-operational. Dynamic
models often assume that software failure and repair time
are exponentially distributed, which is an assumption thought
necessary to obtain analytically tractable results, rather than
reflecting controller behaviour from real life deployments or
testbed measurements.

The first studies on the reliability of SDN control plane
consider the controller as perfectly reliable, assuming only
control path link failures [40], and distributing the controllers
only for latency reasons. More recent studies [41]–[43] also
accounted for the software failures. The authors in [41] model
controller availability as a deterministic variable, while in [42]
the assumption was that the operational times of network ele-
ments, including the controllers, have different i.i.d. Weibull
distributions. The temporal variations in software failure rates
due to reliability growth are modelled as Non-Homogeneous
Poisson Process (NHPP) in [17], [44]. Longo et al. [43] dis-
cuss the limitations of Markovian models, and assume the
reliability of the controller to follow phase-type distribution
(generalized hypoexponential distribution), which captures
better the changes in operational conditions, when some of
the controller instances fail.

More complex dependencies and interactions between the
elements of a complex systems use the Stochastic Reward
Nets (SRN). The models described using the SRN modelling
formalism can be directly translated to large Continuous
Time Markov Chains (CTMC). The SRN models for the
interaction between SDN control and data plane have been
proposed in [20], [45]–[48]. In our previous work [10] we
proposed a dynamic controller model based on SRN. The
model included five failure modes (e.g., transient and stop-
fail software failures), as well as the temporal fluctuations of

VIZARRETA et al.: DASON: DEPENDABILITY ASSESSMENT FRAMEWORK FOR IMPERFECT DISTRIBUTED SDN IMPLEMENTATIONS 655

controller software failure rates, which change in the long term
due to maturity and in the short-term due to resource leaks.
However, the model did not address the interaction between
controllers.

Overall, an important limitation of the previous models is
the assumption about the perfect failover between identical
controller replicas. Our analysis shows that simple controller
replication is ineffective, because of i) shared failures, e.g.,
semantic bug in path computation, ii) faulty error handling
mechanisms, which may lead to a erroneous failover and cause
a cascade of controller failures and iii) failures specific to
distributed control plane implementations, such as a software
bug in distributed consensus protocols. These inefficiencies are
modelled as the common mode failure (i), and the coverage
factor (ii) in system dependability literature, while the failures
specific to distributed systems (iii) are typically neglected.

Indeed, the complexity of interaction between SDN con-
troller replicas has been widely overlooked in the literature.
The failure correlation due to control plane misconfiguration
was discussed in [46], while Mendiratta et al. [47] also dis-
cussed the imperfect failover. The study by Gonzalez et al. [48]
modelled the synchronization process between controller repli-
cas, with the focus on the trade-off between consistency
and performance. Sakic and Kellerer [20] provided a real-
istic response time model of the Raft consensus algorithm
under different failure rates, complementing it with the mea-
surements from an ODL testbed. SRN models proposed in
this paper, aim to combine all failure modes of distributed
SDN implementations, for a holistic assessment of system
dependability.

Model-based dependability assurance based on SRN has
been successfully applied to various communication systems,
such as software defined backbone network [46], NFV-based
virtualized core [49], VoIP system [50], IaaS cloud [51], as
well as distributed consensus protocols, such Raft [20], Paxos
BFT [52], and their application in permissioned block chain
systems [53]. We follow a similar approach to provide high
fidelity models that account for all failure modes encountered
in the issue repositories of distributed SDN platforms.

III. ANALYSIS OF DISTRIBUTED SDN IMPLEMENTATIONS

WITH ONOS AND ODL

Next, we present the basic concepts of distributed systems,
with the focus on distributed SDN control plane, implemen-
tations with ONOS and ODL. Our analysis is based primarily
on the official code documentation and the presentations by
ONOS2 and ODL3 distributed system engineering teams.

A. A Primer on Distributed Control Plane in SDN

In practice, a cluster of multiple SDN controllers is deployed
in order to provide high performance, scalability and high

2Thomas Vachushka: ONOS Distributed Core and Jordan Halterman:
Distributed Systems in ONOS with Atomix 3: Architecture and
Implementation.

3Colin Dixon: Clustering in OpenDaylight, Robert Varga, Jan Medved:
OpenDaylight Clustering: What’s new in Boron, Moiz Raja, Tom Pantelis:
MD-SAL Clustering Internals.

availability. Appearance of the logically centralized control
plane is possible due to distributed protocols, which take
care of the coordination, knowledge dissemination and seam-
less failover between different controller replicas. Services
provided by the SDN control plane to network devices and
applications should be unaware of the distributed control plane
implementation. Fig. 2(a) illustrates how the separation of
concerns and location transparency are implemented.

In order to manage large-scale networks, network state is
partitioned into smaller chunks, called shards. Provisioning
of a fault-tolerant system requires shards to be replicated on
several nodes. Shard replicas can be updated in a strongly con-
sistent or eventually consistent manner. Distributed systems
use different replication styles (Fig. 2(b)) depending on the
application requirements and access patterns. i) Consensus
based protocols like Raft [4] provide strong consistency,
requiring the majority of the replicas to acknowledge the
update before it can be committed by the leader, and used to
create the response to the client. ii) Gossip protocols provide
eventual consistency, using the epidemic style of propagation,
where random pairs of neighbours compare their version of
the data, known as anti-entropy, and agree on an appropriate
final state if concurrent updates have occurred, which is known
as reconciliation. iii) Another style of replication is primary-
backup. The performance-consistency trade-off is balanced by
choosing the number of replicas and replication flavour.

Timestamps and version vectors are used for ordering of
the events. Distributed systems are inherently asynchronous
and typically there is no global clock. Local clocks skew
and drift, and even the NTP protocol can provide a limited
accuracy. Event ordering is necessary to enforce causal rela-
tionships between the events. Hence, the vector clocks, also
called version vectors, are often used instead. With Raft, the
leader is responsible for the correct ordering of the updates.

Cluster membership and role management with Raft is illus-
trated in Fig. 2(c). The controller (re-)joining the cluster starts
as the follower. If the leader heartbeat is not received within a
given threshold, it becomes a candidate, increases the election
term, votes for itself and requests the votes from other mem-
bers. Three outcomes are possible: if the candidate receives the
majority of the votes before the election timeout it becomes
the leader; if it discovers a candidate with higher term or a
current leader it becomes the follower; otherwise, it increases
the term count and starts the new election round. If a leader
discovers a node with a higher term, it gives up the lead-
ership. Raft uses randomized election timeout to reduce the
probability of split votes. The leader election service can be
used without using Raft’s strongly consistent data replication,
e.g., for the assignment of the primary-backup roles.

After leader failure, the follower with the largest term
and the longest log will win the election. The leader proves
its liveliness by sending periodic heartbeats to its follow-
ers. However, the independent controller nodes communicate
over an unreliable network, which typically does not provide
bounded delay guarantees, and it is practically impossible to
distinguish between network and controller node failures. The
messages can be delayed (network congestion or high load
on the controller node), or lost (partitioned network or node

656 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

Fig. 2. A primer on distributed SDN control plane implementations with ONOS and ODL.

crash), which can result in temporary inconsistencies between
the network state seen by replicas. Failure detection is based
on time thresholds, which have to be carefully tuned balancing
the trade-off between stability and failure detection efficiency.

The ϕ-accrual failure detector [54], is widely used in dis-
tributed systems, including in the SDN controllers implemen-
tations addressed here. The detector accounts for a suspicion
level, Φ = − log10(1 − F (t)), where F(t) represents a dis-
tribution of previous heartbeat inter-arrival times, implicitly
assuming a normal distribution. Raft requires the majority
of the controllers to be available, hence, it requires 2f + 1
controllers to tolerate f failures. In the case when network
partitioning split the cluster into two parts that cannot com-
municate, either both partitions continue operating indepen-
dently (fav. availability) or one of the partition freezes (fav.
consistency), as consequence of the CAP theorem [55].

After the crash, a node re-joining the cluster has to syn-
chronize with the rest of the cluster. The changes to the data
store are kept in a log, or a journal. Log compaction, or state
compression, is the process of removing the entries from the
log that no longer affect the current state. It is performed peri-
odically to prevent the uncontrollable growth of the log. The
replicas may request logs from another replicas after order to
fill in missing transactions. Snapshots of data store state are
saved, as a checkpoint in case the node crashes. Journals and
snapshots are stored on disk for persistence.

The implementation of distributed systems requires fine-
tuning of configuration parameters. The controller nodes have
finite resources, such as CPU and memory, which can eas-
ily exhaust if not dimensioned and managed properly. The
nodes may slow down during high load, or computationally
expensive operations, such as serialization of large messages.
Distributed systems rely on 3rd-party libraries, which may
introduce interoperability issues.

B. ONOS Implementation

The focus of ONOS, since its inception has been on provid-
ing scalability, high availability and carrier-grade performance

fulfilling the requirements of large operator networks. The
project is supported by the key partners from the telecom
operators and network equipment vendors. Distributed core
was introduced from the beginning, and has evolved together
with the application ecosystem.

ONOS core provides low level distributed primitives, such
as EventuallyConsistentMap and ConsistentMap,
offering different consistency models and replication styles.
Distributed primitives provide interfaces similar to standard
Java classes, implementing the data structures and syn-
chronization operations upon which data stores are built.
Developer guidelines suggest that control plane data, such
as resource reservation and other network configuration data,
use strong consistency. Data originating from the environ-
ment, such as network topology (read-intensive), should use
eventual consistency to provide faster reaction to the network
events. A primary-backup replication is used for the par-
titioned FlowRuleStore, while device mastership uses
LeadershipService. Journals and snapshots are stored
on disk for persistence.

C. ODL Implementation

ODL is a much larger and older project, foreseen from the
beginning to be the Linux of the networks, supporting a variety
of southbound protocols to ensure the smooth transition from
legacy networks. The majority of ODL key partners are ven-
dors, and the focus at the beginning was on the applications
in data centers and coexistence with network virtualization
technologies. Development of major clustering project features
started only after the fifth release (Boron).

ODL provides essentially two data stores, configurational
to store a desired state, e.g., configuration of the flows, and
operational store, storing the actual network state. All data
is stored in the data tree, which is broken into shards. There
are module-based shards, e.g., inventory, topology, while the
rest of data goes to default shard. The shards are replicated to
followers for high availability. Data replication uses the Raft
consensus protocol, providing only a strong consistency model

VIZARRETA et al.: DASON: DEPENDABILITY ASSESSMENT FRAMEWORK FOR IMPERFECT DISTRIBUTED SDN IMPLEMENTATIONS 657

Fig. 3. The number of software defects related to distributed implementations reported over time for ONOS and ODL. The dates of major releases for both
distributed controller platforms are indicated in the figure.

for all network primitives. The EntityOwnership service
takes care of the leader election, handles failover, as well as co-
locating tasks and data. Data change notifications and Remote
Procedure Calls (RPCs) operating on a given shard are directed
to the entity owner, i.e., the leader.

In ODL, the Akka [56] framework encapsulates the com-
plexity of the distributed protocols. Akka actors implement
the data tree shards, so interacting with the remote data shard
is done by sending the messages to actors. Akka clustering
implements Raft, and is responsible for the discovery of the
nodes, their IP address, as well as the liveliness and reachabil-
ity of the member. Cluster messaging relies on Akka remoting,
while Akka persistence is responsible for durability.

IV. LOCALIZING DEPENDABILITY BOTTLENECKS IN

DISTRIBUTED SDN IMPLEMENTATIONS

Next, we provide the insights into defects reported in differ-
ent functional areas of distributed control plane. We localize
the most vulnerable components, as well as identify prevalent
failure modes and their manifestation patterns.

Problems in ONOS and ODL controllers are reported in
their public Jira issue trackers.4 Such bug repositories are a
valuable source of information, as they contain the detailed
fault reports from test and production environments. In our
analysis we consider the issues labelled as “bugs” rather than
new feature requests or enhancements. We filter the issues
related to defects in distributed implementations. In the case
of ODL we select the issues tagged as part of the clustering
project, while in the case of ONOS we use manual inspection.

The number of bugs over time for both controllers is
presented in Fig. 3. The monthly failure rate for ONOS peaks
right before Blackbird (2nd release), while in the case of
ODL the number of defects peaks before Carbon (6th release),
which is consistent with these controllers’ evolution.

In total 500+ issues related to the distributed implementa-
tion were reported. We divide these issues into the following
four categories: i) defects in the implementation of distributed
protocols (DP), ii) scalability and performance (SP), iii) high
availability (HA), and iv) operational (OP) issues. In case of

4Data retrieved on March 3, 2019 from ONOS and ODL bug repositories.

ambiguity, we assign a bug to the primary trigger, a necessary
condition, which serves as a precursor for the manifestation
of a bug as a user perceived failure.

A. Defects in the Implementation of Distributed
Protocols (DP)

In a multi-controller architecture, all controllers must have a
consistent view of the network state in order to provide correct
logically centralized operation, which is ensured by means of
distributed protocols, Raft and Gossip. We identify 216 (40%)
issues in this category, related to state inconsistency, leader
election process, and cluster messaging implementations.

1) State Inconsistency: State inconsistency between con-
trol plane and data plane elements has already been identified
as one of the leading causes of critical outages in opera-
tional SDN networks [1]. Our analysis affirms this finding,
discovering 52 (10%) of defects reported in this category.

One reason of the state inconsistency are the missing data
change notifications. The notifications are missing for a partic-
ular data stores [dp1, dp2], update event types [dp3, dp4] and
occasionally under particular conditions, e.g., master handover
and load balancing [dp5, dp6].

The second root cause of the state inconsistency are cluster
synchronization issues. It was noted that in the relaxed consis-
tency mode it is possible to be out-of-sync indefinitely [dp7],
while [dp8] reports that the node re-joining as follower could
not synchronize, and the lagging follower must be forced by
the leader to install a snapshot. Another common synchroniza-
tion issue are event ordering problems. This happened, e.g.,
when last applied index in Raft state machine moves back-
wards, leading to violation of transaction ordering [dp9,dp10].
For instance, in [dp10] time moves backwards due to the
Daylight Saving Time, suggesting that instead of calendar, the
vector time should be used for versioning.

2) Leader Election Issues: Leadership assignment and
hand-off are essential for load balancing, scale-in/out and fail-
ure mitigation operations. Our findings show that a stable
leader/master is hard to implement, given that 58 (10%) issues
were reported in this category.
EntityOwnership least load policy not working as

expected [dp11], or not balancing the load properly [dp12],

658 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

have been reported. Sometimes, the controller role change
messages are not being delivered and the devices intermittently
loose their master [dp12,dp13,dp14].

3) Cluster Messaging System: Another challenge lies in
the implementation of the reliable cluster messaging system,
which relies on 3rd-party data serialization (Kryo) and mes-
saging (Netty) libraries. Serialization is an expensive operation
which can significantly slow down the controller, degrading
the performance and eventually leading to the crash of other
operations. BGP router crashing during Kryo serialization was
reported in [dp15], while in [dp16] the processing of a large
message incorrectly triggered UnreachableMember.

B. Scalability and Performance (SP) Issues

Increasing the scalability of the control plane should not
affect the system performance [27], which should remain sta-
ble over the long hours of operation. However, we identified
91 (17%) of issues belonging to this category.

1) Scalability Issues: Providing a performant SDN control
plane is non-trivial for large service provider networks, which
induces high load on the controllers, both, in terms of topology
size and the volume of network events they must handle.

A recurring issue in both controllers is seen when pro-
cessing a large number of events slows down a node, delay-
ing the heartbeats. Several issues related to the unexpected
UnreachableMember when the cluster is under load have
been reported, under umbrella bug [sp1]. Delayed heartbeats
have severe consequences on the cluster operation, leading
to frequent leader re-election, control plane instability and
eventual crash, as was discussed in [18] and [19]. Indeed,
Raft requirements for the correct leader election and stable
operation requires the following constraints to be satisfied [4]:

BroadcastTime � electionTimeout � MTBF

where BroadcastTime represents the time to send and receive
responses from to all the cluster nodes in parallel (includ-
ing network propagation delay and node processing time),
MTBF is the mean time between failures of a single server
and electionTimeout (Fig. 2(c)).

Slow controller under load can also cause other operations
to timeout and misbehave, e.g., installation of large number of
flows [sp2], load balancing on large topologies [sp3, sp4], or
loose data during scale-out operation [sp5].

2) Performance Regression: Maintaining the same
performance at scale is presumably an even harder challenge,
due to the overhead introduced by distributed protocols (e.g.,
leader election, consensus-based replication), as well as the
resource leaks which can degrade the performance over time.

Several issues related to performance degradation in multi-
node setup have been reported. For example maximum number
of installed intents being lower in the cluster than stand-
alone mode, resource reservation taking more time and higher
reaction time to network events [sp6, sp7]. The performance
overhead in a cluster setup when using strongly consistent Raft
replication style was discussed in [20], and in [21] the authors
proposed adaptive consistency models to balance response
time and reliability.

Resource leaks, such as unclosed transactions and memory
leaks, can cause the performance to degrade over time and
lead to the controller crash, due to the resource exhaustion. For
example a bug in Atomix log compaction timer [sp8] caused
the nodes to eventually run out of disk space. Moreover, a
number of memory leaks have been reported, in particular data
stores [sp9, sp10, sp11], as well as 3rd-party libraries, such
as Netty messaging manager [sp12], and Kryo serialization
[sp13]. The increase in resource consumption does not happen
only due to the bugs. For instance, expired flows remain in
the ODL configurational data store [sp14], while in ONOS
EventuallyConsistentMap naturally grows due to the
usage of placeholders replacing dead objects [sp15].

C. High Availability (HA) Issues

HA is a key enabler for mission critical operations, and in
many use cases the main reason to adopt a distributed SDN
design. The principles to ensure HA are reliable failure detec-
tion, failure contention, and fast recovery. Nevertheless, our
analysis exposes 118 (21%) defects in HA subsystem.

1) Failure Detection: Failure detection in ONOS and ODL
is based on the ϕ-accrual failure detector [54], which detects
when the heartbeat intervals have exceeded given suspicion
level. The parameters of the failure detector should be care-
fully tuned to avoid false positives, triggering unnecessary
leader re-elections. Previously, the heartbeatInterval
and phiFailureThreshold could not be configured
[ha1]. In addition to false positives caused by slow-performing
nodes, some configuration changes [ha2, ha3] can lead to
unnecessary state changes.

2) Failure Mitigation: When failures occur, it is important
that the nodes fail gracefully, recover quickly and synchronize
with the rest of the cluster.

Failure contention is not trivial, due to a tight interaction
of the cluster members. Failure contention mechanisms that
should be in place to avoid that a failure of one instance
propagating entire cluster can be faulty [ha4, ha5, ha6, ha7].
In the last example, a Raft client continually retried a failed
operation as long as it could maintain its session, increasing
CPU/memory usage in already overloaded partitions, causing
the cluster to spiral out of control.

Failing fast and gracefully is another desirable property
of highly-available systems, especially given that many other
subsystems have transitive dependency to this module [ha9].
Sometimes the nodes hang in a non-recoverable state, instead
of crashing hard [ha8]. In case of failures, the leadership
handover should happen quickly and without a data loss
[ha10, ha11, ha12, ha13].

An Efficient Recovery After Failures: Snapshots of data
stores and transaction journals are occasionally persisted for
durability, to ensure quick recovery after failures. The state
persistence is not perfect, as reported in [ha14, ha15], for
flow and intent stores in ONOS. Nevertheless, the most preva-
lent issue is faulty recovery, with 53 (10%) reported bugs.
Typical issues are a node failing to join and sync with
the rest of the cluster [ha16, ha17], and a data loss upon

VIZARRETA et al.: DASON: DEPENDABILITY ASSESSMENT FRAMEWORK FOR IMPERFECT DISTRIBUTED SDN IMPLEMENTATIONS 659

restoration [ha18, ha19], leading to the state inconsistency
between controller replicas.

D. Operational (OP) Issues

Operational issues include supporting functions, not neces-
sary related to the buggy controller code, but rather to practical
deployment scenarios. This category includes 76 (14%) issues,
related to documentation and test automation/coverage, cluster
configuration and bootstrapping, interworking with virtual-
ization platforms, upgrades and updates of the 3rd-party
libraries.

1) Documentation and Testing: An adequate documen-
tation should be provided to facilitate correct usage and
configuration of the multi-node cluster [op1]. The execution
of the test suites should be automated [op2], and occasionally
extended with the new test cases [op3, op4], covering new
failure modes, which were previously unaccounted for.

2) Cluster Configuration and Bootstrapping: The con-
trollers in a cluster have to be correctly configured and
able to automatically discover the peers. The issues, such as
serialization of cluster configuration change, cluster configu-
ration issues [op5, op6], are typically discovered before the
deployment.

3) Deployment & Orchestration Issues: The controller soft-
ware requires a host operating system, and the multi-instance
setup is often deployed in virtualization environment, with
dockers or virtual machines. The interactions with virtualiza-
tion layers have to be carefully tested [op7, op8, op9].

4) Upgrades & Updates: The regression tests must be in
place to efficiently detect 3rd-party vulnerabilities and back-
ward compatibility issues, for 3rd-party libraries, as well as
internal modules [op10].

E. Prevalent Failure Modes

The presented categories of defects significantly differ in
their impact on the network services. Most of the bugs in the
implementation of distributed protocols lead to soft failures,
e.g., transient state inconsistencies [1], while memory leaks,
slowing down the controller node are more likely to lead to
a hard crash [26], leading to a delay of the heartbeats, which
consequently may trigger a fatal cascade of control plane fail-
ures [1], [19]. Faulty failure contention mechanisms are the
most critical, while they allow a single instance failure to
propagate to entire cluster. In the following section we pro-
pose the modelling abstractions that capture these effects and
can replicate all failure modes in imperfect SDN controller
platforms.

V. MODELLING ABSTRACTIONS FOR IMPERFECT

DISTRIBUTED SDN IMPLEMENTATIONS

The modelling abstractions for imperfect distributed SDN
implementations are provided in the formalism of Stochastic
Reward Nets (SRN), a stochastic extension of Petri Nets [57].
We explain the key SRN modelling ideas via the examples of
cluster (Fig. 4), service (Fig. 5) and rejuvenation (Fig. 6) mod-
els. In the SRN framework, the combination of markings in
the places (circles) represents model states. The system state

Fig. 4. Modelling abstraction for imperfect SDN cluster.

Fig. 5. SRN for service request dynamics.

Fig. 6. SRN extension for preventive maintenance.

is changed upon the firing of the activities, which can be
instantaneous (inconsistent_state → sw_ok), deter-
ministic (sw_prone → planned_restart), or follow
an n.e.d distribution. An SRN model can be automatically
translated to equivalent Continuous Time Markov Chains
(CTMC). he states and activities are associated with the cor-
responding rewards, which allows straightforward evaluation
of system performance metrics, such as the expected number
of operational controllers.

A. Modelling Abstraction for Imperfect SDN Cluster

Next, we elaborate how the failure patterns discussed in
Section IV, are incorporated in the proposed SRN model in
Fig. 4.

1) Resource Leaks: When the controller is initiated or
reloaded after a crash, it starts from the clean state sw_ok.
The baseline software failure rate in this state is λ0. During
the continuous operation the resource leaks are accumulated
and the controller performance starts to degrade. A common
way to model this effect is to assume that the risk of failure
significantly increases after a certain utilization threshold is
exceeded [58], as seen in practice [sp15]. For instance, [19]
note that the controller throughput and response time degrade

660 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

significantly when available memory is below 4 GB. We model
this effect by introducing the state sw_prone. The time to
reach this utilization threshold depends on the controller load
and the type of network applications serves. We account for the
randomness in the resource leaks by modelling it as Poisson
process with the rate λleak .

2) Soft and Hard Software Failures: Our analysis in
Section IV showed two distinct types of failures, soft fail-
ures, resolved by a simple retry of the operation, and hard
failures leading to a controller crash, requiring a restart. Soft
failures are short interruptions in the controller operation, due
to failed or timed-out transactions, concurrency and data race
issues, leader movement and load balancing. They are typically
resolved by retrying the operation, which occurs at the rate
μretry . Hard failures, i.e., software crash, can happen when the
controller node runs out of resources, e.g., with out-of-memory
error. The controller restart time (rate) μrestart accounts not
only for the application restart, but also for the loading time
of all dependent bundles, as well as the time to reconnect with
peers, and discover the leaders of data store shards.

A distribution between soft and hard failures are pokhard =

1 − poksoft in the initial state (sw_ok) and pokhard = 1 − poksoft
in failure prone state (sw_prone).

3) Transient State Inconsistencies and Cluster Crash:
A qualitative analysis in the previous section showed that
software failures can be either i) successfully recovered
from, or can result in ii) transient state inconsistencies,
or iii) cluster-wide failure. Transient state inconsistencies
(inconsist_state) occur with probability pstate , due to
missing notifications, wrong event ordering, lagging follow-
ers, data loss in journals and snapshots, which are used upon
recovery. Cluster failures reflect the cases when the failure
contention fails (prob. pcrash) and crash of a single controller
brings down the entire control plane. The cluster repair rate
μcluster is longer than the restart of the single controller node.

Distribution between successful repairs (pok), transient state
inconsistencies (pstate) and cluster crash (pcrash) are hard to
estimate from the bug reports. Hence, we make a reasonable
assumption, and conduct the sensitivity analysis to evaluate
the impact of uncertainty regarding its value.

4) Operational Failures: From all operational issues dis-
cussed in Section IV-D the interaction with the environment,
e.g., host operating system and computing hardware will
have the highest impact on the services in the production
environment. The operating system, including the virtualiza-
tion layer, fails with the rate λos , and is rebooted with the
rate μos . Similarly, computing hardware fails with the rate
λhw , and is repaired with the rate μhw . Bugs in the fail-
ure contention mechanism may lead to a complete system
crash, which happens in poscrash and phwcrash of the cases,
respectively.

We introduce a common failure mode to account for dif-
ferent deployment scenarios. In cases when controller replicas
are deployed as virtual machines (VM) on the same server,
the crash of a server will render all the replicas down.
Similarly, in case when the replicas run in docker contain-
ers (DC), the host operating system is shared as well, and
its failure will lead to a cluster-wide failure. This effect is

modelled by adding reset_cluster output gate following
the transitions {os,hw}_fail (see Fig. 12).

B. Reference Stand-Alone Model

A controller operating in a stand-alone mode is used as a
reference model, to evaluate the gains in terms of control plane
dependability in a distributed setup. In stand-alone mode many
of the failure modes will be shared, since the controller uses
the same data structures as in the cluster mode. State inconsis-
tencies between control and data plane can still occur, due to
the slow node failing to process the network events on time,
or faulty journal recovery upon restart. Resource leaks, espe-
cially those related to the natural increase in memory usage,
do occur as well in the stand-alone operation. Hence, we reuse
the model in Fig. 4, but remove cluster_crash place, and
all the transitions associated with it (pcrash → 0).

C. Modelling Abstraction for Control Plane Services

SDN controllers provide services, such as management of
the forwarding devices through the south-bound interface, and
implementation of the high level policies through the north-
bound interface. The generic modelling abstractions for control
plane services is illustrated in Fig. 5. A given number of
requests N req

sent arrives with a given rate λreq , and are served at
the rate μreq . In cases when the majority of the controllers is
down, new requests cannot be processed (N req

unavail.), and the
ongoing requests will be interrupted (N req

interrupt.). λreq and
μreq depend on a particular service, as well as the performance
of the particular control plane configuration. The serving rate
can be tied to the number of operational controllers and cur-
rent simulation time, accounting for a degraded performance
due to resource leaks. For the simplicity, we keep μreq con-
stant throughout the experiment, leaving it to the future work
to study more complex parameter relationships.

D. Preventive Maintenance Policies

The failure rate after long hours of operation (sw_prone)
is higher due to the lower amount of available resources,
caused by resource leaks, i.e., software ageing [58]. An oper-
ator can decide to preventively restart the controller, cleaning
up the internal data structures, dead objects, zombie processes,
and unclosed connections. Such preventive measure can be
implemented by starting a timer (deterministic action with rate
λR), once the certain utilization threshold is reached. Duration
of the planned outage (1/μR), also called software rejuvena-
tion, of the controller depends on the level of rejuvenation,
e.g., process or application restart. We assume rejuvenation is
triggered only when majority of controllers is available.

E. Dependability Metrics of Interest

Dependability metrics are defined by assigning rewards.
1) Availability: steady state availability (SSA) is evalu-

ated as the probability of being in the operational states:
sw_ok and sw_prone. Note that the place related to state
inconsistency (sw_state) is a transient state.

Depending on the replication style, the control plane will
need the majority of the nodes participating in the cluster to

VIZARRETA et al.: DASON: DEPENDABILITY ASSESSMENT FRAMEWORK FOR IMPERFECT DISTRIBUTED SDN IMPLEMENTATIONS 661

be available (Raft), at least two operational controllers for
primary-backup replication, or at least one operational replica
for Gossip style replication. The model does not differentiate
leader and followers, since different nodes may be leaders for
different data shards. We define availability metrics as:

Ai =

⎧
⎪⎨

⎪⎩

A1/N = P
{
Noperational ≥ 1

}
(Gossip)

A2/N = P
{
Noperational ≥ 2

}
(P − B)

Amaj. = P
{
Noperational >

⌊
N
2

⌋}
(Raft)

(1)

where the number of operational controllers is defined as:

Noperational = Tokens(sw_ok)+ Tokens(sw_prone).

2) Failure Dynamics: We are interested in time spent in
individual failure states (rate reward), in order to quantify the
contribution of different failure modes to control plane out-
ages, as well as the frequency (impulse rewards) of different
controller and system failures.

3) User-Perceived Service Availability: The control plane
services are not needed continuously. Depending on the ser-
vice, the control plane availability will be sampled at different
times, i.e., at request arrival, and for a different duration, i.e.,
request serving. We define Service Availability (SA), Service
Continuity (SC) and Request Completion Success Rate (SR):

SA =
N req
received

N
req
sent

=
N req
received

N
req
received + N serv.

unavail.

(2)

SC =
N req
served

N
req
received

=
N req
served

N
req
served + N

req
interrupt.

(3)

SR =
N

req
served

N req
sent

=
N

req
served

N req
received + N serv.

unavail.

= SA× SC (4)

VI. CHARACTERIZATION OF FAILURE DYNAMICS AND

USER-PERCEIVED SERVICE AVAILABILITY

Next, we present the case study on realistic SDN controller
platforms. The proposed models are used to quantify control
plane dependability metrics. Moreover, we show the practi-
cal applications for network operators, by analysing different
deployment scenarios and preventive maintenance policies.

Model parameters are based on empirical data presented
in Section IV, and on the studies of software components
of a similar complexity. Parameters related to the software
failure rates [45], [59], resource leaks [62], and recovery pro-
cedures [59], [61], as well as the parameters related to the
availability of operating system and computing hardware [45],
[63], are presented in Tab. I.

A. Control Plane Availability

1) Steady-State Availability: SSA for different cluster con-
figurations is presented in Tab. II. Since the availability for
larger clusters are rather small, we present the Steady State
Unavailability (SSU), to illustrate the magnitude of differ-
ence between various cluster configurations. We observe that
unavailability of stand-alone controller is an order of magni-
tude higher than in distributed setup (N>1), because of better
fault tolerance to the failures of single controller instance.
However, as the number of controllers in the cluster increases,

TABLE I
SRN MODEL PARAMETERS [45], [59]–[62]

the unavailability of the cluster actually slightly decreases.
This effect is in part due to specific, cluster-induced, failures,
such as the ones due to faulty failure contention. Other rea-
son why the unavailability of strongly-consistent application
is lower in larger clusters, is due to the fact that larger num-
ber of the cluster members (i.e., majority) is required to be
operational.

2) Parameter Uncertainty: sensitivity analysis for A2/3 is
conducted to study the impact model parameters uncertainty.

We observe in Fig. 7 that cluster recovery failures μcluster
and failure contention success rate 1− pcrash have the largest
impact on availability of strongly consistent services A2/3.
The qualitative analysis in the previous section exposed many
defects in failure contention mechanism. The results of the
sensitivity analysis only emphasize the need to prioritize the
hardening of failure contention mechanism.

The following parameters, by the impact of their uncertainty
of the strongly consistent services are failure rate in failure-
prone state λhigh and resource leak rate λleak . Unfortunately,
these parameters depend on many factors, such as work-
load, service request type, hardware configuration, available
resources (CPU, RAM, etc.), and hence, have to be measured
for a particular distributed setup and use case.

The uncertainty of software λ0, operating system λos
and hardware λhw failure rates has slightly lower impact.
Fortunately, these parameters are well reported in the past
empirical and model-based studies.

B. Failure Dynamics

The failure modes differ significantly in terms of their
frequency and control plane outage, which we define here as an
event in which the majority of the controllers were unavailable.

In total 10.25 control plane outages, of cumulative dura-
tion of 2.8 hours are expected within one year of operation of

662 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

TABLE II
STEADY STATE UNAVAILABILITY (1 − SSA)

Fig. 7. Sensitivity analysis for A2/3.

Fig. 8. Downtime (DT) distribution.

3-node cluster. In 9.88 (96%) of the cases the control plane
is caused by unsuccessful failure contention. Moreover, the
state inconsistency between control and data plane elements
is expected to occur 73.91 times within one year. Although
transient state inconsistencies are resolved quickly, not affect-
ing the control plane availability, they can have adverse effect
on data plane operation. State inconsistency can cause traf-
fic loss by installing the paths with blackholes, or overload
the links by installing the paths with loops, and install flow
rules implementing conflicting policies. Practical experience
reports on operational SDN networks demonstrate that state
consistency issues cannot be neglected [1].

Downtime distribution (ECDF) is presented in Fig. 8. As
a reference, PDF is also presented (shaded grey area). We
observe that the median of system outage in a reference setup
of 3-node cluster duration is below 10 min, while 90%-tile
is below 30 min, with many short-term interruptions due

TABLE III
SERVICE REQUEST AND SERVING RATES

software failures. Such failure dynamics of the control plane
failures has a detrimental impact on which services get affected
by the system outages.

C. User-Perceived Service Availability

User-perceived availability depends on the service dynam-
ics, i.e., request arrival (λreq) and serving rates (μreq). The
impact of λreq and μreq on service availability metrics, SA,
SC and SR, is presented in Tab. III and Fig. 9. In Tab. III sev-
eral typical services are presented. Request serving rate ranges
from 500 ms for an installation of large batch of flows, up to 15
min for in-service software upgrades (ISSU). Request arrival
rate varies between 1 min to 1 hour, representing different
control plane traffic patterns, e.g., PACKET_IN or network
statistics poll. We observe that SR = SA × SC is mainly
affected by SA, service unavailability at the moment of request
arrival, more than service continuity SC, which is an order of
magnitude higher in a given setup.

Fig. 9, illustrating unsuccessful service request completion
rate (1 − SR), demonstrates how the longer serving rate can
increase the service unavailability up to an order of magni-
tude. Similarly, higher request arrival rate, resulting in frequent
sampling of the control plane availability, results in lower user-
perceived service availability, as it is more likely to be affected
by short, but frequent software failures.

D. Comparison of Different Deployment Scenarios

In small resource-constrained networks, such as industrial
networks [6], the network operator may choose to run the clus-
ter of controller nodes on shared physical machines. Deploying
the controllers in separate virtual machines (VM) provides
better isolation between software instances, but introduces
additional overhead, since every instance runs its own oper-
ating system. Docker containers (DC) provide a lightweight
virtualization, but imply an additional common mode failure,
since a crash of the operating system will render all instances
unavailable.

Control plane availability A2/N for different deployment
scenarios is illustrated in Fig. 10. We observe that in the case
of VMs running on the same physical machine, i.e., shared
hardware failures, the availability is only slightly lower. In the
case of DC, the availability loss is much higher, being an order
of magnitude lower than in the first two deployment scenarios.

E. Optimization of the Preventive Maintenance Policies

The impact of different rejuvenation policies, i.e., rejuve-
nation scheduling λR , for different rejuvenation duration is

VIZARRETA et al.: DASON: DEPENDABILITY ASSESSMENT FRAMEWORK FOR IMPERFECT DISTRIBUTED SDN IMPLEMENTATIONS 663

Fig. 9. User-perceived service unavailability.

Fig. 10. A2/N in different deployment scenarios: separate physical machines
(PHY), virtual machines (VM) and docker container (DC) sharing the same
physical hardware.

Fig. 11. Software rejuvenation policies.

illustrated in Fig. 11. We observe that early rejuvenation is
beneficial in all studied scenarios, and optimally is done as
soon as the sw_prone state is entered (λR → ∞). The oper-
ator and/or controller software developers should determine
the precise threshold when this state is reached, by measur-
ing the resource leak rates (λleak) for a given configuration
setup and operational workload profiles. We leave it to the

Fig. 12. Modelling abstractions for different deployment scenarios. In cases
when controller replicas are deployed as virtual machines (VM) on the same
server, the crash of a server will render all the replicas down. Similarly, in case
when the replicas run in docker containers (DC), the host operating system
is shared as well, and its failure will lead to a cluster-wide failure.

future work to conduct an exhaustive measurement campaign
for real-life distributed SDN controller platforms.

VII. CONCLUDING REMARKS

This article presents a comprehensive analysis of defects and
vulnerabilities in real-life SDN controller platforms, as well as
the modelling abstractions of imperfect distributed controller
plane. In the first part, we demonstrate that while some of the
defects have been already studied, e.g., stability under over-
load and overhead of Raft-based synchronization, there are

664 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

TABLE IV
DEFECTS IN THE IMPLEMENTATION OF DISTRIBUTED CONTROL PLANE IN OPEN SOURCE SDN CONTROLLERS: ONOS AND ODL. THE BUG IDS IN

THE FIRST COLUMN ARE HYPERSENSITIVE, CONTAINING THE HYPERLINK TO THE BUGS IN THE PUBLIC ISSUE TRACKERS

many more critical defects that have been overlooked, e.g.,
resource leaks and failure contention. In the second part, we
provide modelling abstractions accounting for all the failure
modes identified during our qualitative analysis. Dependability

models, in the formalism of SRN, are used to evaluate dif-
ferent dependability metrics, such as steady state availability,
failure dynamics, as well as the impact on the user-perceived
service availability. Moreover, we demonstrate how an SRN

VIZARRETA et al.: DASON: DEPENDABILITY ASSESSMENT FRAMEWORK FOR IMPERFECT DISTRIBUTED SDN IMPLEMENTATIONS 665

Fig. 13. Modelling abstractions for software rejuvenation policies. An operator can decide to preventively restart the controller, preventing the effects of
software ageing, e.g., leaks leading to resource exhaustion [58]. One such preventive measure is implemented by starting a timer once the certain utilization
threshold is reached (sw_prone state). Controller node is rejuvenated, i.e., taken out of service (planned_restart state) after the timer has expired
(start_cleanup → 1/λR). We assume rejuvenation (end_cleanup → 1/μR) is triggered only when majority of controllers is available (maj_ok).

model can assist the operators and network architects to com-
pare different deployment scenarios and optimize preventive
maintenance policies. The main threats to validity in our study
is the accuracy of model parameters. While majority of the
model parameters are based on the empirical data, and reported
values in similar studies, few parameters are based on reason-
able assumptions. Hence, we focus on the methodology and
model structure, rather than numerical results. Nevertheless,
we believe that the quantitative analysis give a reasonable
estimation of the order of magnitude of the impact of dif-
ferent failure modes. We hope that the proposed framework
is only the first step towards robust, data-driven, model-based
certification of softwarized networks.

The proposed DASON framework can aid the operators to
assess and improve the network dependability in several ways.
First, the analysis in Section IV can help the developers to
design more reliable distributed network control software. A
taxonomy and localization of defects in distributed SDN plat-
forms should raise awareness about potential vulnerabilities in
network control software. Such analysis should guide the soft-
ware development process and design of test suites, in order
to prevent recurrence of the same defects in future releases
and facilitate their early detection/mitigation (before releas-
ing it to operational networks). Second, the models presented
in Section V offer a valuable tool for forecasting the con-
trol plane outages and dependability benchmark platform.
We have provide high fidelity stochastic models, based on a
data collected from the real-life bug reports. The modelling
abstractions can replicate all failure modes in imperfect SDN
controller platforms, from transient state inconsistencies to
failures of the operational environment. The model parameters
can be easily tuned based on the control plane configura-
tion (e.g., cluster size, virtualization flavor), and measurements
(e.g., recovery times in a particular setup). This offers the
operators a statistical benchmark platform to compare different
“what-if scenarios”. Third, DASON can be applied to quantify

user satisfaction. The proposed modelling abstractions cap-
ture the interplay between network control plane and services
offered to users and application. These compound models
allow us to quantify user-perceived service quality, in terms
of KPIs, such as service accessibility, continuity and proba-
bility of successful request completion. Up to the best of our
knowledge, this is the first work that quantifies the impact of
SDN control plane dependability to service quality.

Moreover, the identified vulnerabilities and modelling
abstractions are applicable to other commercial platforms
based on ONOS and ODL, such as Cisco Open SDN
Controller and Ericsson Cloud SDN.

APPENDIX A
DATASET FROM BUG REPOSITORIES

This section presents the mapping of aliases for software
defects (used in Section IV) to their respective keys used in
Jira repositories are presented in (Tab. IV). The bug IDs used
in this article (first column) are mapped to the real bug IDs
that can be found in actual bug repositories (second column).
Short bug descriptions from the repositories (third column) are
also included for the convenience.

APPENDIX B
MODELLING ABSTRACTIONS

In Section V only baseline clustering model was presented
in detail, due to space limitations. In this section we include
the modelling abstractions for different deployment scenarios
(Fig. 12), and preventive rejuvenation policies (Fig. 13).

ACKNOWLEDGMENT

The authors would like to thank L. Jagadeesan from Nokia
Bell Labs, whose thorough review and feedback greatly
improved the quality of this manuscript.

666 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 2, JUNE 2020

REFERENCES

[1] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or die: High-availability design principles drawn from Google’s network
infrastructure,” in Proc. ACM SIGCOMM, 2016, pp. 58–72.

[2] K.-K. Yap et al., “Taking the edge off with espresso: Scale, reliability
and programmability for global Internet peering,” in Proc. Conf. ACM
Special Interest Group Data Commun., 2017, pp. 432–445.

[3] H. H. Liu et al., “CrystalNet: Faithfully emulating large produc-
tion networks,” in Proc. ACM Symp. Oper. Syst. Principles, 2017,
pp. 599–613.

[4] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm,” in Proc. USENIX Annu. Tech. Conf., 2014,
pp. 305–319.

[5] S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 3–14, 2013.

[6] P. Vizarreta et al., “Incentives for a softwarization of wind park commu-
nication networks,” IEEE Commun. Mag., vol. 57, no. 5, pp. 138–144,
May 2019.

[7] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc.
ACM 3rd Workshop Hot Topics Softw. Defined Netw., 2014, pp. 1–6.

[8] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a model-driven SDN controller architecture,” in Proc. IEEE Int. Symp.
World Wireless Mobile Multimedia Netw., 2014, pp. 1–6.

[9] C. Hirel, B. Tuffin, and K. S. Trivedi, “SPNP: Stochastic Petri nets.
Version 6.0,” in Proc. Int. Conf. Model. Techn. Tools Comput. Perform.
Eval., 2000, pp. 354–357.

[10] P. Vizarreta, P. Heegaard, B. Helvik, W. Kellerer, and C. M. Machuca,
“Characterization of failure dynamics in SDN controllers,” in Proc. IEEE
Int. Workshop Resilient Netw. Design Model., 2017, pp. 1–7.

[11] P. Vizarreta, E. Sakic, W. Kellerer, and C. M. Machuca, “Mining soft-
ware repositories for predictive modelling of defects in SDN controller,”
in Proc. IFIP/IEEE Symp. Integr. Netw. Service Manag., 2018, pp. 1–9.

[12] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control:
Survey, taxonomy, and challenges,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 1, pp. 333–354, 1st Quart., 2017.

[13] T. Koponen et al., “ONIX: A distributed control platform for large-
scale production networks,” in Proc. USENIX Symp. Oper. Syst. Design
Implement., vol. 10, 2010, pp. 1–6.

[14] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in Proc. Internet Netw. Manag. Conf. Res.
Enterprise Netw., 2010, p. 3.

[15] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed multi-
domain SDN controllers,” in Proc. IEEE Netw. Oper. Manag. Symp.,
2014, pp. 1–4.

[16] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and
scalable offloading of control applications,” in Proc. ACM 1st Workshop
Hot Topics SDN, 2012, pp. 19–24.

[17] P. Vizarreta et al., “Assessing the maturity of SDN controllers with
software reliability growth models,” IEEE Trans. Netw. Service Manag.,
vol. 15, no. 3, pp. 1090–1104, Sep. 2018.

[18] R. Hanmer, L. Jagadeesan, V. B. Mendiratta, and H. Zhang, “Friend
or foe: Strong consistency vs. overload in high-availability distributed
systems and SDN,” in Proc. IEEE Int. Symp. Softw. Rel. Eng., 2018,
pp. 1–6.

[19] C. Di Martino, U. Giordano, N. Mohanasamy, S. Russo, and M. Thottan,
“In production performance testing of SDN control plane for telecom
operators,” in Proc. IEEE/IFIP Int. Conf. Depend. Syst. Netw., 2018,
pp. 642–653.

[20] E. Sakic and W. Kellerer, “Response time and availability study of RAFT
consensus in distributed SDN control plane,” IEEE Trans. Netw. Service
Manag., vol. 15, no. 1, pp. 304–318, Mar. 2018.

[21] E. Sakic and W. Kellerer, “Impact of adaptive consistency on distributed
SDN applications: An empirical study,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 12, pp. 2702–2715, Dec. 2018.

[22] E. Sakic, N. Derić, and W. Kellerer, “MORPH: An adaptive framework
for efficient and Byzantine fault-tolerant SDN control plane,” IEEE J.
Sel. Areas Commun., vol. 36, no. 10, pp. 2158–2174, Oct. 2018.

[23] V. Bhuvaneswaran, A. Basil, M. Tassinari, V. Manral, and S. Banks,
“Benchmarking methodology for software-defined networking (SDN)
controller performance,” Internet Eng. Task Force, Fremont, CA, USA,
Rep. RFC-8456, Oct. 2018. [Online]. Available: https://goo.gl/xqpDEE

[24] “OpenFlow controller benchmarking methodologies,” Open Netw.
Found., Menlo Park, CA, USA, Rep. ONF TR-539, Nov. 2016. [Online].
Available: https://goo.gl/HuursP

[25] D. Suh, S. Jang, S. Han, S. Pack, T. Kim, and J. Kwak, “On performance
of OpenDaylight clustering,” in Proc. IEEE NetSoft Conf. Workshops,
2016, pp. 407–410.

[26] A. S. Muqaddas, P. Giaccone, A. Bianco, and G. Maier, “Inter-controller
traffic to support consistency in ONOS clusters,” IEEE Trans. Netw.
Service Manag., vol. 14, no. 4, pp. 1018–1031, Dec. 2017.

[27] “SDN control plane performance,” Menlo Park, CA, USA,
ONOS, White Paper, pp. 1–23, 2017. [Online]. Available: http://
onosproject.org/wp-content/uploads/2017/08/ONOS_Performance_
White_Paper-2.pdf

[28] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A com-
prehensive study on real world concurrency bug characteristics,” ACM
SIGOPS Oper. Syst. Rev., vol. 42, no. 2, pp. 329–339, 2008.

[29] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and M. Vechev,
“SDNRacer: Detecting concurrency violations in software-defined
networks,” in Proc. ACM SIGCOMM Symp. Softw. Defined Netw. Res.,
2015, p. 22.

[30] A. El-Hassany, J. Miserez, P. Bielik, L. Vanbever, and M. Vechev,
“SDNRacer: Concurrency analysis for software-defined networks,” in
Proc. ACM SIGPLAN Notices, vol. 51, 2016, pp. 402–415.

[31] R. May, A. El-Hassany, L. Vanbever, and M. Vechev, “BigBug: Practical
concurrency analysis for SDN,” in Proc. ACM Symp. SDN Res., 2017,
pp. 88–94.

[32] D. Yuan et al., “Simple testing can prevent most critical failures: An
analysis of production failures in distributed data-intensive systems,” in
Proc. USENIX Symp. Oper. Syst. Design Implement., 2014, pp. 249–265.

[33] Y. Zhang, E. Ramadan, H. Mekky, and Z.-L. Zhang, “When RAFT meets
SDN: How to elect a leader and reach consensus in an unruly network,”
in Proc. 1st Asia–Pac. Workshop Netw., 2017, pp. 1–7.

[34] F. Bannour, S. Souihi, and A. Mellouk, “Adaptive state consistency for
distributed ONOS controllers,” in Proc. Int. Conf. Global Commun.,
2018, pp. 1–6.

[35] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “SCL:
Simplifying distributed SDN control planes,” in Proc. USENIX Symp.
Netw. Syst. Design Implement., 2017, pp. 329–345.

[36] R. Potharaju and N. Jain, “When the network crumbles: An empirical
study of cloud network failures and their impact on services,” in Proc.
ACM Symp. Cloud Comput., 2013, p. 15.

[37] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an IP backbone,” in Proc. IEEE
INFOCOM, vol. 4, 2004, pp. 2307–2317.

[38] P. Gill, N. Jain, and N. Nagappan, “Understanding network fail-
ures in data centers: Measurement, analysis, and implications,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 350–361, 2011.

[39] H. S. Gunawi et al., “What bugs live in the cloud? A study of 3000+
issues in cloud systems,” in Proc. ACM Symp. Cloud Comput., 2014,
pp. 1–14.

[40] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proc. ACM 1st Workshop Hot Topics SDN, 2012, pp. 7–12.

[41] P. Vizarreta, C. M. Machuca, and W. Kellerer, “Controller placement
strategies for a resilient SDN control plane,” in Proc. IEEE Int. Workshop
Resilient Netw. Design Model., 2016, pp. 253–259.

[42] F. J. Ros and P. M. Ruiz, “Five nines of southbound reliability in
software-defined networks,” in Proc. ACM 3rd Workshop Hot Topics
SDN, 2014, pp. 31–36.

[43] F. Longo, S. Distefano, D. Bruneo, and M. Scarpa, “Dependability
modeling of software defined networking,” Comput. Netw., vol. 83,
pp. 280–296, Jun. 2015.

[44] P. Vizarreta, K. Trivedi, B. Helvik, P. Heegaard, W. Kellerer, and
C. M. Machuca, “An empirical study of software reliability in SDN
controllers,” in Proc. IEEE Int. Conf. Netw. Service Manag., 2017,
pp. 1–9.

[45] G. Nencioni, B. E. Helvik, A. J. Gonzalez, P. E. Heegaard, and
A. Kamisinski, “Availability modeling of software-defined backbone
networks,” in Proc. IEEE Int. Conf. Depend. Syst. Netw. Workshop, 2016,
pp. 105–112.

[46] G. Nencioni, B. E. Helvik, and P. E. Heegaard, “Including failure corre-
lation in availability modeling of a software-defined backbone network,”
IEEE Trans. Netw. Service Manag., vol. 14, no. 4, pp. 1032–1045,
Dec. 2017.

[47] V. B. Mendiratta, L. J. Jagadeesan, R. Hanmer, and M. R. Rahman, “How
reliable is my software-defined network? Models and failure impacts,”
in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops, 2018, pp. 83–88.

[48] A. J. Gonzalez, G. Nencioni, B. E. Helvik, and A. Kamisinski, “A fault-
tolerant and consistent SDN controller,” in Proc. IEEE Global Commun.
Conf., 2016, pp. 1–6.

VIZARRETA et al.: DASON: DEPENDABILITY ASSESSMENT FRAMEWORK FOR IMPERFECT DISTRIBUTED SDN IMPLEMENTATIONS 667

[49] A. Gonzalez, P. Gronsund, K. Mahmood, B. Helvik, P. Heegaard, and
G. Nencioni, “Service availability in the NFV virtualized evolved packet
core,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.

[50] D. Wang and K. S. Trivedi, “Modeling user-perceived service availabil-
ity,” in Proc. Int. Service Availability Symp., 2005, pp. 107–122.

[51] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi, “Scalable
analytics for IaaS cloud availability,” IEEE Trans. Cloud Comput., vol. 2,
no. 1, pp. 57–70, Jan.–Mar. 2014.

[52] H. Sukhwani, J. M. Martínez, X. Chang, K. S. Trivedi, and A. Rindos,
“Performance modeling of PBFT consensus process for permissioned
blockchain network (hyperledger fabric),” in Proc. IEEE Symp. Rel.
Distrib. Syst., 2017, pp. 253–255.

[53] H. Sukhwani, N. Wang, K. S. Trivedi, and A. Rindos, “Performance
modeling of hyperledger fabric (permissioned blockchain network),” in
Proc. IEEE Int. Symp. Netw. Comput. Appl., 2018, pp. 1–8.

[54] N. Hayashibara, D. Xavier, R. Yared, and T. Katayama, “The ϕ
accrual failure detector,” in Proc. IEEE Symp. Rel. Distrib. Syst., 2004,
pp. 66–78.

[55] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “Cap for
networks,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw.
Defined Netw., 2013, pp. 91–96.

[56] J. Bonér (Lightbend). Akka. Accessed: Apr. 5, 2019. [Online]. Available:
https://akka.io/

[57] K. S. Trivedi and A. Bobbio, Reliability and Availability Engineering:
Modeling, Analysis, and Applications. Cambridge, U.K.: Cambridge
Univ. Press, 2017.

[58] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuve-
nation: Analysis, module and applications,” in Proc. IEEE Int. Symp.
Fault Tolerant Comput., 1995, pp. 381–390.

[59] S. A. Vilkomir, D. L. Parnas, V. B. Mendiratta, and E. Murphy,
“Availability evaluation of hardware/software systems with several
recovery procedures,” in Proc. IEEE Int. Comput. Softw. Appl. Conf.,
vol. 1, 2005, pp. 473–478.

[60] S. Chandra and P. M. Chen, “Whither generic recovery from application
faults? A fault study using open-source software,” in Proc. IEEE Int.
Conf. Depend. Syst. Netw., 2000, pp. 97–106.

[61] V. B. Mendiratta, “Reliability analysis of clustered computing systems,”
in Proc. IEEE Int. Symp. Softw. Rel. Eng., 1998, pp. 268–272.

[62] W. Xie, Y. Hong, and K. S. Trivedi, “Software rejuvenation policies for
cluster systems under varying workload,” in Proc. IEEE Pac. Rim Int.
Symp. Depend. Comput., 2004, pp. 122–129.

[63] D. S. Kim, F. Machida, and K. S. Trivedi, “Availability modeling and
analysis of a virtualized system,” in Proc. IEEE Pac. Rim Int. Symp.
Depend. Comput., 2009, pp. 365–371.

Petra Vizarreta received the bachelor’s degree from
the University of Belgrade in 2009, the master’s
degree from the Karlsruhe Institute of Technology
and Polytechnic University of Catalonia in 2011,
and the Dr.-Ing. (Ph.D.) degree from the Technical
University of Munich in 2019. She joined the
Chair of Communication Networks, as a Researcher
in September 2015. Her research interest include
modeling and design of dependable softwarized
networks.

Kishor Trivedi is a Professor of ECE with
Duke University. He has authored a text book
Probability and Statistics With Reliability, Queuing
and Computer Science Applications. His latest book,
Reliability and Availability Engineering (Cambridge
University Press, 2017). He has supervised 46
Ph.D. dissertations. He was a recipient of the
IEEE Computer Society’s Technical Achievement
Award for his research on Software Aging and
Rejuvenation, he works closely with industry in car-
rying out reliability/availability analysis and in the

development and dissemination of software packages, such as SHARPE and
SPNP.

Veena Mendiratta (Senior Member, IEEE) received
the B.Tech. degree in engineering from the Indian
Institute of Technology, New Delhi, India, and
the Ph.D. degree in operations research from
Northwestern University, USA. She is a Consulting
Member of Technical Staff in the End-to-End
Network and Service Automation Lab, Nokia Bell
Labs, Naperville, IL, USA. Her current research
is focused on network reliability and analytics—
architecting and modeling the reliability of next-
generation programmable networks and development

of analytics-based anomaly detection algorithms for improving network
performance and reliability. She is a member of INFORMS, SIAM, and ASA.

Wolfgang Kellerer (Senior Member, IEEE) received
the Dipl.-Ing. (Master) and Dr.-Ing. (Ph.D.)degrees
from the Technical University of Munich in
1995 and 2002, respectively. He was with NTT
DOCOMO’s European Research Laboratories for
over ten years. He is a Full Professor with
the Technical University of Munich, heading the
Chair of Communication Networks, Department of
Electrical and Computer Engineering. His research
resulted in over 200 publications and 35 granted
patents. He currently serves as an Associate Editor

for the IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

and on the editorial board for IEEE COMMUNICATIONS SURVEYS AND

TUTORIALS. He is a member of ACM and VDE ITG.

Carmen Mas-Machuca (Senior Member,
IEEE) received the M.Sc. degree in 1996,
and the Ph.D. degree in 2000. She is a Privat
Dozent/Adjunct Teaching Professor with the Chair
of Communication Networks, Technical University
of Munich, Germany. She has published more
than 100 peer-reviewed papers. Her main research
interests are in the area of techno-economic
studies, network planning and resilience, SDN/NFV
optimization problems, and next generation
converged access networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

