
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 3, SEPTEMBER 2019 857

Inferring Functional Connectivity From Time-Series
of Events in Large Scale Network Deployments

Antoine Messager, George Parisis , Istvan Z. Kiss, Robert Harper, Phil Tee , and Luc Berthouze

Abstract—To respond rapidly and accurately to network and
service outages, network operators must deal with a large num-
ber of events resulting from the interaction of various services
operating on complex, heterogeneous and evolving networks. In
this paper, we introduce the concept of functional connectivity as
an alternative approach to monitoring those events. Commonly
used in the study of brain dynamics, functional connectivity
is defined in terms of the presence of statistical dependencies
between nodes. Although a number of techniques exist to infer
functional connectivity in brain networks, their straightforward
application to commercial network deployments is severely chal-
lenged by: (a) non-stationarity of the functional connectivity, (b)
sparsity of the time-series of events, and (c) absence of an explicit
model describing how events propagate through the network or
indeed whether they propagate. Thus, in this paper, we present
a novel inference approach whereby two nodes are defined as
forming a functional edge if they emit substantially more coinci-
dent or short-lagged events than would be expected if they were
statistically independent. The output of the method is an undi-
rected weighted graph, where the weight of an edge between two
nodes denotes the strength of the statistical dependence between
them. We develop a model of time-varying functional connectiv-
ity whose parameters are determined by maximising the model’s
predictive power from one time window to the next. We assess
the accuracy, efficiency and scalability of our method on two
real datasets of network events spanning multiple months and
on synthetic data for which ground truth is available. We com-
pare our method against both a general-purpose time-varying
network inference method and network management specific
causal inference technique and discuss its merits in terms of
sensitivity, accuracy and, importantly, scalability.

Index Terms—Network management, network events, func-
tional connectivity inference.

I. INTRODUCTION

SWIFTLY identifying network and service outages to
ensure network and service availability in modern, large-

scale networks is crucial [1]. Network operators continuously

Manuscript received November 30, 2018; revised April 11, 2019 and July
12, 2019; accepted July 27, 2019. Date of publication August 2, 2019; date
of current version September 9, 2019. This research was funded by Moogsoft
Ltd. and describes patented features of its product. The associate editor
coordinating the review of this article and approving it for publication was
N. Zincir-Heywood. (Corresponding author: Luc Berthouze.)

A. Messager, G. Parisis, and L. Berthouze are with the
Department of Informatics, University of Sussex, Brighton BN1
9RH, U.K. (e-mail: a.messager@sussex.ac.uk; g.parisis@sussex.ac.uk;
l.berthouze@sussex.ac.uk).

I. Z. Kiss is with the Department of Mathematics, University of Sussex,
Brighton BN1 9RH, U.K. (e-mail: i.z.kiss@sussex.ac.uk).

R. Harper is with Moogsoft Ltd., Kingston upon Thames KT1 1LF, U.K.
(e-mail: rob@moogsoft.com).

P. Tee is with Moogsoft Inc., San Francisco, CA 94111 USA (e-mail:
phil@moogsoft.com).

Digital Object Identifier 10.1109/TNSM.2019.2932896

collect log data from all devices and running processes that
are deemed to be important. Ensuring continuous network and
service availability relies on the efficient and effective analy-
sis of collected data so that outages can be quickly identified
or predicted before user experience gets disrupted. This is a
very challenging task. Networks are large, complex, hetero-
geneous and evolving. They support diverse services that are
widely distributed, and also evolving. The aggregate rate of
collected events is commonly high due to the very large num-
ber of monitored devices and services; a typical rate for a
large-scale network deployment would be 106 events per sec-
ond [2]. However, although the aggregate event rate is large,
the rate at which individual devices emit events is extremely
low such that correlating emitted events is inherently chal-
lenging; this becomes even more cumbersome in the presence
of periodical informational events [3]. In addition, the vast
majority of collected event data is noise and only a few of
them may correlate with actionable incidents. Concurrency
across network and services results in collected events whose
timestamps may be unreliable in terms of absolute values and
ordering, due to misconfiguration or loose synchronisation.
This makes workflow-based anomaly detection [4] and con-
current log analysis approaches [5] difficult to apply. Finally,
there is no explicit model describing the precise mechanisms
responsible for the generation of events in the network when an
outage or a software failure occurs. For example, black holes
due to routing failures may take seconds or minutes to mani-
fest themselves, whereas application servers will start emitting
error events immediately after contacting a failed authentica-
tion server. Events may not be emitted at all by a failed or
failing device/service or a separate monitoring device may
emit failure-related events on behalf of unreachable devices
after polling a failed device and devices/services that are
known to be attached to it (e.g., a server hosting Docker con-
tainers or a ToR switch connecting data centre servers), as
discussed in [6]. Note that in the latter case, the event emis-
sion pattern and frequency is independent of the underlying
structural connectivity and solely depends on the configuration
of the external monitoring system.

Root Cause Analysis [7] has therefore been a prominent
research area. Network operators commonly employ rule-
based analysis where a pre-defined and manually updated list
of rules is used to exclude uninteresting log data and make
analysis of remaining events practical. This is a time consum-
ing and error-prone process. Misconfiguration may result in
fatal outages which could have been otherwise easily detected
or predicted [8]. Kobayashi et al. [3] recently proposed an

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1298-7143
https://orcid.org/0000-0002-9316-5896
https://orcid.org/0000-0003-3774-2369

858 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 3, SEPTEMBER 2019

inference algorithm for mining causality of network events
that has been shown to have good performance. However,
the algorithm’s complexity is cubic in the number of network
events. In model traversing techniques one explores progres-
sively the neighbours of each entity emitting an event to
identify its source [9] using a formal representation of the
network structure.

In this paper, we seek to offer a radically different take on
how network management operators could go about monitor-
ing, responding to, and even predicting, network and service
outages. This new perspective relies on the concept of func-
tional connectivity within the network. The term functional
connectivity was coined in the field of neuroscience and refers
to “an observable phenomenon that can be quantified with
measures of statistical dependencies, such as correlations,
coherence, or transfer entropy”. Importantly, such connectivity
is not assumed to denote any causal influence (in which case,
the terminology used is effective connectivity). From a network
management viewpoint, a functional connectivity could there-
fore denote a number of different things. It could, for example,
refer to the integrated involvement of a set of network nodes
in the provision of a particular service1 but it could equally
represent a set of network nodes that appear to be system-
atically involved whenever a particular kind of hardware or
software failure occurs. Functional connectivity is underpinned
by, but distinct from, structural connectivity, a description of
the actual physical network infrastructure (including end-hosts,
switches, routers, firewalls, NAS devices and any other mid-
dleboxes present in the network) typically obtained by taking
a dump of the customers operations database. Such database
is fed by the change management and connectivity discovery
systems, and is automatically updated when network links are
provisioned/de-provisioned or equipment is configured.

By design, our approach is agnostic to whether an oper-
ational meaning can be readily attributed to the inferred
connectivity. Rather, it is a data-driven approach that identifies
nodes as having statistical dependencies between their activ-
ities. Specifically, we measure these statistical dependencies
in terms of properties of the distribution of delays between
the events emitted by the nodes. We develop an inference
method whose output is an undirected weighted graph where
the weight of an edge between two nodes denotes the strength
of the statistical dependency between them. Our method does
not rely on event pre-processing and de-duplication, therefore
it is very efficient in terms of execution time and memory
requirements. In contrast to [3], we take advantage of all
events, including purely informational, periodical events, to
infer functional connectivity between network nodes even in
the absence of failures or service outages. Depending on the
structure of the graph that is being produced (for example, if it
consists of multiple connected components or features a strong
modularity index), the output of our method can be interpreted
in terms of one or many functional groups consisting of a

1Services may be realised at different layers by in-network and end-host
devices; e.g., a set of routers that form an OSPF area, a set of switches that
are part of a spanning tree, or an application deployment that consists of
application and database servers, load balancers and a firewall.

number of nodes; and a node may belong to multiple func-
tional groups (e.g., servers running different VMs supporting
multiple cloud tenants’ services). With our method a network
operator is informed at all times about ever-changing service
deployments (and the underlying network topology which can
also be seen as a functional one at the physical/link or IP
layers). We believe this provides a powerful tool for swiftly
responding to, and investigating the root causes of recent or
imminent failures, based solely on the times of events emitted
by devices.

The paper is organised as follows. In Section II, we describe
the proposed methodology. In Section III, we validate the
method by applying it to real-world data and quantifying its
predictive power. We then benchmark it against two state-of-
the-art methods on both real-world data and synthetic data for
which ground truth is available. Finally, we provide results
regarding scalability. Section IV discusses research related to
our work. We conclude by discussing limitations and possible
avenues for further work (Section V).

II. FUNCTIONAL CONNECTIVITY INFERENCE

Measures of statistical dependence typically used in func-
tional connectivity inference include correlations, coherence
and transfer entropy. However, their applicability to event
times of devices in large-scale network deployments is
severely undermined by (a) the sparsity of events at node level
and (b) the lack of knowledge as to how precisely the timing
of events is being recorded, or indeed whether this timing is
artificially induced by how the network management system
obtains or records events (e.g., polling might be involved).
Instead, in what follows, we introduce a statistic that meets
those challenges and for which confidence intervals have been
analytically derived, irrespective of either sparsity or duration
of the data. Given two point processes X and Y, each emitting
a given number of discrete events m and n on a fixed period of
time T, this statistic quantifies the likelihood that the observed
number of pairs of events (Xi ,Yj) separated by a delay of
less or equal than τ could be expected if X and Y were inde-
pendent. This statistic is the basis of our assessment that two
nodes are functionally connected (i.e., that they are statistically
dependent). In the following subsection, we describe the statis-
tic and how it is used in a windowed measure of the temporal
relationship between the events emitted by two nodes. This
measure (referred to as score thereafter) will then be used to
build a model of time-varying edge probabilities (which will
be described in Section II-B).

A. Score: Estimating Pairwise Statistical Dependence

The data we were provided with (described more fully in
the next Section) consisted of sequences of integer event times
(Unix time stamps in seconds) for each device in the network.
For the purpose of our statistic, each time-series was inter-
preted as a fixed-length sequence of 0’s and 1’s where 1’s
denoted the presence of an event and 0’s the absence of an
event. Then, for each pair of nodes, we used a simple adap-
tation of the cross-correlation function to count the number
of times their respective events occurred within less than a

MESSAGER et al.: INFERRING FUNCTIONAL CONNECTIVITY FROM TIME-SERIES OF EVENTS IN LARGE SCALE NETWORK DEPLOYMENTS 859

given lag (delay) δ of one another, making no distinction
between positive and negative delays (thus partly addressing
the challenge of concurrency). Formally, we calculated

ST ,δ =
{
(i , j) ∈ [[1,T]]2 : |i − j | ≤ δ,Xi = Yj = 1

}
.

(1)

To assess the presence of statistical dependence, we compared
this quantity with its expected value and standard deviation
when X and Y are independent and identically distributed uni-
form random variables emitting the same number of events
nX and nY over the same period of time T. These values
were analytically derived in [10] and summarised here:

E

(∣∣∣S̃T ,δ

∣∣∣
)
= pX pY

(
(T − (T − δ))2

)
+ pX pY (T − δ),

(2)

and

σ2δ = (2δ + 1)pX pY (1− pX pY)

+ 2δ(2δ + 1)pX pY (pY (1− pX) + pX (1− pY)),

(3)

where parameters pX , pY are set to their empirical estimators
nX
T and nY

T respectively.
The derivation [10] of a central limit theorem demonstrating

convergence of the distribution of this statistic to a normal dis-
tribution of known parameters finally enables us to construct
the following Z-score:

ZX ,Y (δ) =
|ST ,δ| − E

(
|S̃T ,δ|

)

σδ
√
T

(4)

quantifying the likelihood of X and Y being functionally
connected.

Since calculating cross-correlations over all possible pair-
wise interactions is computationally intensive when consider-
ing a large-scale network, we typically limited ourselves to a
maximum delay δmax as specified in Section III-F and used
the average over all lags up to δmax as our final score.

B. Model of Time-Varying Connectivity

In this section, we describe our approach to translating the
scores introduced in Section II-A into time-varying probabili-
ties of the existence of functional edges. Since scores require
estimates of cross-correlations, a fundamental assumption of
the method is that of separation of timescales; changes in
functional connectivity should occur much slower than the
rate at which processes generate events; this is a realistic
assumption in the context of computer network management.
Changes in the functional connectivity occur when hardware is
commissioned / de-commissioned and services are deployed
/ un-deployed. Even in very dynamic network deployments
that support elastic cloud services, changes in the functional
connectivity can be safely assumed to take place at timescales
that are significantly smaller than the respective event gener-
ation rates (a range of time windows will be considered in
Section III). Another source of changes are failing devices
(e.g., servers, routers). Such failures do happen frequently,

especially in large-scale deployments, however, they result in a
stream of events (by neighbouring or monitoring devices) and
therefore provide information to our method about functional
connectivity around the failing node.

A key principle of the proposed methodology is that the
score se(tw) for a pair of nodes within a time window tw
provides the information required to update the estimate of
the value of the probability pe(tw − 1) of a functional edge
existing between these nodes at the previous time window.
More precisely, we consider that information is gained about
the probability of an edge existing only when both nodes emit
events during the time window considered. This is a natural
implication of the sparsity constraint. The fact that only one
node in a pair emits an event does not necessarily imply that
an edge does not exist (or no longer exists). For each pair
of nodes and each time window tw , there are therefore three
cases to consider:

1) The score is positive, se(tw) > 0, i.e., there were
more coincident or short-lagged events between these
two nodes than between randomly picked pairs of nodes
with similar levels of activity. This increases confidence
about the existence of an edge and therefore the prob-
ability pe(tw) should increase as some function h1 of
the score.

2) The score is negative, se(tw) ≤ 0, i.e., there were
fewer coincident or short-lagged events than expected
at random. This lowers confidence about the existence
of an edge and therefore the probability pe(tw) should
decrease as some function h2 of the score.

3) At least one of the node does not emit events: This
scenario does not provide any information and the
probability should remain unchanged.

This leads to the following model formulation:

pe(tw + 1) =

⎧
⎪⎪⎨
⎪⎪⎩

(1− (1− pe(tw))

×(1− h1(se(tw)))) if se(tw) > 0,

pe(tw)× (1− h2(se(tw))) if se(tw) ≤ 0,

pe(tw) if no information,

(5)

If h1 and h2 are continuous, monotonically increasing and
decreasing, respectively, functions of the score with output in
[0; 1], this formulation ensures that pe(tw) remains in [0; 1]. In
our implementation, h1 and h2 are simple sigmoid functions,
each involving a single free parameter (referred to as α and β
thereafter). Other formulations are possible but do not affect
the principle of the method, provided they are differentiable
in their parameter(s). Since changes in functional connectivity
from one window to the other are assumed to be small, we
formulate the problem of determining the two free parameters
as one of minimising the error of a binary classifier predicting
the sign of the score at time tw given the edge probability at
time tw − 1. In other words, if the edge probability at time
tw −1 is greater than a threshold th (0.5 throughout) and both
nodes emit events in time window tw , we expect the score at
time tw to be positive. Conversely, if the edge probability at
time tw − 1 is less than the threshold and both nodes emit
events in time window tw , we expect the score at time tw to

860 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 3, SEPTEMBER 2019

Fig. 1. Evolution of the average type distance over all connected pairs of
device as a function of the probability edge threshold (blue). Average type
distance between not functionally connected pair of nodes (dashed green).
Average type distance between structurally connected pair of nodes (dashed
orange).

be negative. Our error criterion is formally defined as:

E =
1

2

Nw∑
tw=1

⎛
⎝ ∑

se(tw)≤0 and pe(tw−1)≥th

(pe(tw − 1)− th)

+
∑

se(tw)>0 and pe(tw−1)<th

(th − pe(tw − 1))

⎞
⎠.

(6)

It penalises misclassifications, namely pe(tw) ≥ th and
se(tw) ≤ 0, or pe(tw) > th and se(tw < 0)), with a cost
proportional to the difference between edge probability and
threshold. As a sum of edge probabilities that are differen-
tiable functions of the parameters, a simple gradient descent
can be used to determine the values of the free parameters.
Time-varying edge probabilities can then be calculated for all
pairs using the update equation (5).

III. EXPERIMENTAL RESULTS

A. Description of the Datasets

1) Real Datasets: This paper is based on datasets of
network events and underlying physical network topologies
from two different organisations.2 The first (Dataset 1 there-
after) consists of network events and the underlying physical
topology from a large retail bank. The infrastructure sup-
ports both central and distributed operations in remote sites.
The network consists of a core of meshed routers, distribu-
tion switches and the supported application and infrastructure
servers. The network supports both hub, hub to spoke and
intra-spoke operations for financial transactions, and the sup-
porting back office systems. Network events span a duration
of 54 days (in period 5/2018 to 06/2018). Structural network
topologies were obtained in the middle and at the end of
the record. Overall 13,428 different nodes emitted 3,000,418
events leading to a mean value of 4.14 events per node
per day. Just 1% of the nodes emitted 65% of all events

2These datasets are currently not publicly available due to their commer-
cially sensitive nature.

whilst only 260 nodes (or 2%) emitted more than one event
per hour. The second dataset (Dataset 2 thereafter) corre-
sponds to a Fortune 500 technology company and comprises
a core of meshed backbone routers and a distribution layer of
switches. It supports the company’s commercial operations,
including accounting, human resources, research and develop-
ment, telephony and sales. Network events span a duration of
five months (2/5/2015 to 25/11/2015). Considering only those
10,984 nodes in the giant component that emitted events, there
were 2,189,579 events leading to a mean value of 1.36 events
per node per day. More than half of the nodes emitted only
up to 1 event per month whereas less than 3% of the nodes
emitted more than 1 event per day. Only a tiny fraction of the
nodes emitted more than 1 event per hour.

2) Construction of the Synthetic Data: Since validating a
method that infers functional connectivity is very challenging
because more often than not no ground truth is available (as
with our real datasets – but see Section III-B), we designed
and generated a synthetic dataset capturing as many proper-
ties of the real system as possible. First, to enable sensitivity
analysis over a large number of scenarios and parameters, we
generated scaled-down versions of the actual structural con-
nectivity, i.e., the actual physical network infrastructure. The
generation process was as follows. Initialise a first list L1

with a node n picked at random from the network. Initialise
a second list L2 containing the neighbours of node n. Then,
until L1 reaches the desired size, repeat: choose a member of
L2 at random with probability proportional to its number of
neighbours in L1; add to L1; update L2. The resultant graph
is the subgraph induced by the vertices in L1. This process
guarantees that the graph generated is connected. We con-
firmed that this simple process approximately preserved key
features of the true topology, specifically, the degree distribu-
tion and the distributions of local clustering, local assortativity
and betweenness centrality. This is illustrated qualitatively by
the top 4 rows of Figure 2 and quantitatively by the bottom
row, using Jensen-Shannon Divergence (JSD) when varying
the size of the synthetic data from 100 to 10,000 nodes. We
note that whilst there are a number of methods able to gener-
ate graphs with a prescribed degree distribution (as well as a
limited number of other features), we are not aware of any
network generative mechanism preserving the above set of
properties (whether of the same size or otherwise).

Next, we defined two classes of event-emitting processes.
The first class involves functional connectivity in so far as
the events are produced as in the four types of failure sce-
narios identified in [6]. Each scenario involved a different
temporal pattern of events. To model container failures, in
which a server failure leads to events being associated to the
contained virtual machines (following probing by the manage-
ment system), we organised neighbours of high-degree (10+)
nodes into a number of disjoint functional groups, each node
modelling a different virtual machine. For each container fail-
ure, one functional group was chosen at random and events
were emitted on behalf of all nodes of that functional group
approximately 30s after the failure, with some jitter allowing
for bursts spanning approximately 5 seconds. In intelligent
polling failure scenarios, a similar setup was used except that

MESSAGER et al.: INFERRING FUNCTIONAL CONNECTIVITY FROM TIME-SERIES OF EVENTS IN LARGE SCALE NETWORK DEPLOYMENTS 861

Fig. 2. (Top 4 rows) Distributions of key network metrics (degree, betweenness centrality, local clustering, local assortativity) for the giant component of
the actual network (Dataset 1) (first column) and various sizes of synthetic structural connectivities generated using the process described in Section III-A2.
Unsurprisingly, differences in distributions decrease as the size of the synthetic network grows (bottom row). Nevertheless, there is reasonable agreement for
networks as small as 100 nodes which were needed to accommodate comparison with state of the art techniques in Sections III-D and III-E.

the events occurred approximately once per minute on a round-
robin basis, up to some specified duration. To simulate flapping
interface failures, we randomly picked two nodes among those
nodes with the highest betweenness centrality and constructed
a functional group out of all nodes located on the shortest path
in the structural connectivity between them. All nodes in the
group emitted events at a rate of one every few seconds up
to multiple per second for a specific duration. Finally, service
failures, in which events are generated by dependent applica-
tions, involved groups of randomly picked low-degree nodes,
i.e., purposefully not linked to any feature of the underlying

structural connectivity. Here, failures consisted of bursts of
events generated over a short time-span of up to a few seconds
and occurring at random intervals.

In all four cases, temporal changes in functional connectiv-
ity were controlled by a parameter determining the probability
of a functional connectivity starting/stopping on a daily basis.

The second class of event-emitting processes produced
events occurring at random times on randomly chosen nodes
(background noise). The rates of such events for each node
were set so that the distribution of the number of events per
node (over the entire synthetic dataset) roughly followed that

862 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 3, SEPTEMBER 2019

Fig. 3. Distribution of the number of events per node (top), distribution of
the cumulated number of events emitted per day (bottom) for the real (left)
and synthetic (right) datasets.

of the real dataset (modelled for simplicity as a power law
distribution with exponent α = 1.8). Figure 3 provides a com-
parison of both distributions, along with a comparison of the
number of events emitted per day. It can be observed that
the daily rates for the synthetic data show some burstiness
although less pronounced than in the actual dataset.

B. Validation: Pseudo-Ground Truth

Acquiring ground truth for evaluating our method is
extremely difficult from a practical point of view, as this would
require being able to label each device in the network with
the different functional connectivities it is a member of, at all
times. In the following, we use the type of events a device
emits as the proxy for assessing our method in the absence
of (absolute) ground truth. The intuition behind this assump-
tion comes from our previous work [2], where we extensively
studied Dataset 2 and discovered that only 0.5% of all devices
emit events of more than one type and that devices seem to
be emitting events that pertain to their functionality in the
network. Types refer to the functionality of the running service
emitting the event; examples of event types include ‘router’,
‘LANSwitch’, ‘JVM’, ‘Linux’, ‘NetApp’, ‘VMWare’, indicat-
ing functionality related to routing and switching, virtualised
servers, and storage.

In order to quantify our intuition, we define an event-
type distance metric on the types of events emitted by
pairs of nodes. Specifically, if devices i and j emit events
of types {t1, t2, . . . , tn} in proportion {pi1, pi2, . . . , pin} and
{pj1, pj2, . . . , pjn} such that

∑n
k=1 p

i
k =

∑n
k=1 p

j
k = 1, then

we define their event-type distance as follows:

d =
1

2

ni∑
k=1

(
p
j
k − pik

)2
(7)

Based on our findings from [2], we expect that nodes belong-
ing to the same functional connectivity will have low values
of d, compared to nodes that are not functionally connected.
We ran our method with Dataset 2. More specifically, we
used 85% of the recording (130 days) to train our method
(i.e., optimising the free parameters) and the remaining 15%

Fig. 4. Number of devices per connected component (red) and events they
emitted over the last 3 weeks of recorded data (blue). Only components of
more than one node are displayed. The probability threshold is set to 0.8.

(21 days) to compute the functional connectivity. To main-
tain consistency with the method of Kobayashi et al. [3], the
window (i.e., the unit of adaptation time, i.e., when probabili-
ties are updated) was set to 1 day. The maximum delay τmax

over which cross-correlations were calculated was set to 120s.
This is consistent with the values used in the subsequent sec-
tions. Figure 1 shows the event-type distance d for different
values of the threshold on the edge probability. We observe
that for all values of the edge probability threshold, the cal-
culated average distance for all pairs of nodes connected in
the functional topology output by our method is at least half
the average type distance for events emitted by devices not
connected in the produced functional connectivity. For com-
parison purposes, we also provide the distance metric when
considering structural links (orange dashed line). It is evident
by the average type distance, that physically connected nodes
rarely emit events of the same type. We note that, as the thresh-
old value increases, the distance appears to decrease, in line
with our intuition; as the criterion for identifying an edge in the
functional topology gets stricter, nodes inferred to be function-
ally connected appear increasingly more likely to emit events
of the same type.

Analysis of the functional connectivity: For all sensible val-
ues of the edge probability threshold, our method produces
a graph that consists of a giant component and a number of
smaller connected components (each one consisting of 10 or
fewer devices). The distribution of component sizes, along
with the number of events emitted by devices belonging to
these components, is shown in Figure 4. The giant component
consists of more than 80% of the network nodes. It encom-
passes multiple functional connectivities which, as we demon-
strate below, are easy to cluster and retrieve. Figure 5(left)
illustrates the graph that our method produced (with the param-
eters described above) for a threshold value of 0.8. Each colour
identifies a unique event type, as depicted in Figure 6. Whilst
nodes are coloured according to their most frequently emit-
ted event type, edges are coloured according to the types of
their end-points if those are identical, black otherwise. Note
that more than one clusters of the same colour exist; i.e., the
method can identify distinct functional connectivities from the
time series of emitted events even when these events are of

MESSAGER et al.: INFERRING FUNCTIONAL CONNECTIVITY FROM TIME-SERIES OF EVENTS IN LARGE SCALE NETWORK DEPLOYMENTS 863

Fig. 5. (Left) Functional topology of the graph for a probability threshold of 0.8. (Right) Structural topology using the mapping of the func-
tional connectivity on the left. Detailed, zoomable versions of those figures are available from https://figshare.com/s/7cbfda9df3222e37710e and
https://figshare.com/s/9b59a8f1ef882124700e, respectively.

Fig. 6. Mapping of the type to a specific colour.

the same type. For example, two different and independent
virtualised server deployments may be emitting the same type
of event (e.g., ‘VMWare’), even though they belong to sepa-
rate functional connectivities. The fact that the various clusters
identified in the graph appear to be fairly homogeneous in
colour suggests that our method is indeed able to identify
functional connectivities (provided that event types are an
appropriate surrogate of functional connectivity, as suggested
by our analysis of the data [2].

To better understand the relationship of functional connec-
tivities and types of emitted events, we used the Louvain com-
munity detection algorithm [11] to identify sub-components
in the giant component. We also included the small connected
components identified by our method (which we assume to
be independent functional connectivities of their own). In
Figure 7 we illustrate the proportion of the most common
type in each functional connectivity, as a function of the edge
probability threshold. If a functional connectivity c consists of
|c| nodes that emit events of types {t1, t2, . . . , tn} in propor-
tion {pc1 , pc2 , . . . , pcn}, the proportion of the most commonly
emitted type is given by the weighted sum of the respective
proportion for each functional connectivity:

prop =

∑
c |c| ×max1≤i≤n

(
pci

)
∑

c |c|
(8)

First, we observe that the proportion of the most common
type across all connectivities is significantly higher than that

Fig. 7. Proportion of the most common type in each connectivity (as defined
in Equation (8) as a function of the edge probability threshold. The black
dotted line denotes the proportion of the most common type found across all
connected nodes irrespective of community membership.

when ignoring functional connectivities, confirming that our
method does identify groups of nodes that (mostly) emit events
of a single type (we remind the reader that event type is not
part of the information used to infer connectivity, only event
times are). Second, this proportion increases with the thresh-
old, which indicates that the precision of the method increases
with the threshold; we extensively investigate the performance
of our method with respect to precision and sensitivity in
Section III-C.

Comparison to the structural connectivity: We have shown
that our method has a high propensity to identify groups of
nodes that emit events of the same type. Based on our analysis
of the data, we believe these groups to be functional connectiv-
ities. Here, we show that knowledge of the event types (which,
as a reminder, is not used in our inference method) and that of
the structural connectivity would not have permitted to extract
said functional connectivities. To illustrate this, we once again

864 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 3, SEPTEMBER 2019

plot the inferred functional connectivities of Figure 5(left) but
replacing the functional edges by the known structural edges
(using the same colourings scheme). The result is depicted in
Figure 5(right).

This analysis reveals that the functional connectivities
inferred by our method cannot be predicted based on structural
connectivity. Indeed, functionally connected nodes feature vir-
tually no physical connections between them. Further, we
observe that most links are black (indeed, 5150 out of 5207 are
black), which show that they connect nodes emitting events
of different type. Finally, the graph reveals the presence of
hubs, i.e., very small (typically less than 5 nodes) but highly
dis-assortative functional connectivities originating thick bun-
dles of connections to various other functional connectivities.
Careful examination (it will be helpful to the reader to use
the zoomable version of the Figure) reveals that these hubs
emit events of type ‘NetApp’, possibly reflecting data stor-
age devices supporting back-end services. This suggests that
the method could provide the means to assist with root-cause
analysis.

C. Validation: Predictive Power

To further assess the performance of our method, we con-
sider a more operational perspective on the usefulness of the
concept of functional connectivity, namely, predictive power,
whereby the inference of a functional link between two nodes
enables us to make a statement about the likelihood that if
events occur at one of the two nodes, events are also likely to
occur at the other node. We first consider Dataset 1 and inves-
tigate the predictive power of the method when systematically
varying the length of the data over which the method is trained
(from 2 to 50 days). The testing period (unseen data) consisted
of the first 2 days of data after the training period. To maintain
consistency with the method of Kobayashi et al., the win-
dow (the unit of adaptation time, i.e., when probabilities are
updated) was set to 1 day. For this experiment (and all further
experiments unless stated otherwise) the threshold (determin-
ing whether an edge existed) was set to 0.5. This is fairly
arbitrary, and, as we will discuss in Section V, not necessarily
helpful. As evidenced by the bottom panel of Figure 8, whilst
selecting a low threshold does increase sensitivity, the gain is
small in comparison to the loss in precision (almost a factor
2 between precisions at thresholds 1 and 0.5). The maximum
delay τmax over which cross-correlations were calculated was
set to 120s. Again, this value was chosen to facilitate com-
parison with Kobayashi et al. as it corresponds to 2 bins of 1
minute. To quantify predictive power in the absence of ground
truth, we adopted the following definitions (summarised in
Table I). An edge is a true positive if the method predicted an
edge and there was short-lagged activity across this edge in
the testing period such that the score would predict the pres-
ence of an edge. An edge is a false positive if the method
predicted an edge and there was some short-lagged activity
across this edge in the testing period but the score for this
activity would not predict the presence of an edge. True and
false negatives are defined as the logical counterparts of true

Fig. 8. (Top) Precision (red) and sensitivity (blue) as a function of the length
of the training data (single run, full dataset). (Bottom) Average precision (red)
and sensitivity (blue) as a function of the choice of edge probability threshold.

TABLE I
CONFUSION MATRIX. *PCP = PREDICTED CONDITION POSITIVE,

PCN = PREDICTED CONDITION NEGATIVE,
NPC = NO PREDICTED CONDITION

and false positives. It is essential to note that these defini-
tions are contingent to short-lagged interaction happening in
the testing period. This is because lack of activity across an
edge over a period does not provide any information as to the
existence of an edge. The edge might exist but not be active
over the period. Such property was explicitly included in the
construction of the model (see Section II-B).

Figure 8(top) shows the evolution of precision and sensitiv-
ity as the length of the training set was varied between 2 and
50 days. Whilst sensitivity remains stable for most length of
training data, precision shows a gradual drop as the length of
training data increases. This could suggest that the underly-
ing functional topology changed during the record (this will
be investigated below). To provide more confidence into the
result, we repeated the experiment and averaged performance
over 50 subnetworks of 1000 nodes picked at random.

As shown by Figure 9, sensitivity once again showed lit-
tle sensitivity to the length of training data. Precision was
slightly higher, and interestingly, there was less evidence of
the decay seen when the full dataset was used. This is a

MESSAGER et al.: INFERRING FUNCTIONAL CONNECTIVITY FROM TIME-SERIES OF EVENTS IN LARGE SCALE NETWORK DEPLOYMENTS 865

Fig. 9. Precision (red) and sensitivity (blue) as a function of the length of
the training data (averaged over 50 subnetworks of 1000 nodes each).

Fig. 10. Precision (red) and sensitivity (blue) as a function of the time (in
days) between training data (first 10 days) and testing data (1 day), averaged
over 50 subnetworks of 1000 nodes each.

somewhat counter-intuitive observation at first but can be
explained in terms of the (limited) ability of a single (small)
set of hyper-parameters to model heterogeneity in different
components of the underlying functional topology. By consid-
ering subnetworks, the amount of per-network heterogeneity is
potentially reduced, which may compensate for the potential
loss of precision due to a changing underlying connectivity.
An interesting operational implication could be that in a highly
heterogeneous environment, it might be beneficial to deploy
multiple instances of the method (each dealing with specific
types of events) rather than one.

To shed light on whether the underlying functional topology
might have changed (in the absence of ground truth, this is dif-
ficult to establish) we analysed the method’s predictive power
when training was done over 10 days and the testing horizon
was systematically varied between 1 and 40 days away from
the training data. Figure 10 shows some evidence of grad-
ual decline in both precision and sensitivity, suggesting there
might have been changes.

To provide some insights into the behaviour of the method
in response to changes in the underlying functional topology,
we used synthetic data and systematically varied a parame-
ter controlling the amount of changes in the set of functional
connectivities involved on each day of the record (specifically,
the probability that a functional connectivity starts/stops being
active from one day to the other). Fifty networks of 1000 nodes

Fig. 11. F1 score (based on precision and sensitivity as defined in text)
as a function of the time (in days) between training data (first 10 days) and
testing data (1 day), averaged over 50 subnetworks of 1000 nodes each. Linear
regressions are fitted to highlight the trends.

were used, with an average of 20% of the functional connectiv-
ities described in Section III-A2 active at all times. Figure 11
shows that whilst performance remains approximately stable
in the absence of changes (the blue line has no slope), sug-
gesting the ability of the method to stabilise its predictions
after 10 days, there is a steady drop in performance in the
presence of changes, and the drop correlates with the amount
of change unsurprisingly.

D. Comparison With Kobayashi et al. [3]

The method by Kobayashi et al. [3] assumes a direct acyclic
graph (DAG) of events corresponding to the causality of events
and proceeds in three steps. First they preprocess the data
and remove events of time series that show strong temporal
periodicity. Then, for every pair of nodes (X,Y), they state that
an edge is not formed if there exists at least one node Z, such
that nodes X and Y are conditionally independent (P(X,Y|Z)
≈ P(X|Z)P(Y|Z)). Independence is tested using the conditional
cross-entropy and the G-square test:

G2 = 2mCE (X ,Y |Z),

where m is the duration of the recording. Finally, they post-
process the data and remove frequently appearing edges to
enable the detection of unusually important causality. Our
results were obtained using the authors’ implementation avail-
able at https://github.com/cpflat/LogCausalAnalysis.

A comparison between their method and ours is challeng-
ing for three main reasons: (1) their method outputs DAGs
denoting causal relationships between events based on activ-
ity taking place over a day, whereas our method infers an
undirected functional topology based on activity taking place
over a chosen amount of time; (2) their method requires event
descriptors; (3) its greater time complexity (see Section III-F)
makes it very impractical to deploy on the kind of large
datasets for which our method is designed.

In principle we could apply the same experimental schedule
as in Section III-C, however, we found that unlike with our
method, the daily networks inferred were changing substan-
tially (e.g., from 23% overlap on consecutive days to 5% over
2 days). The reason for this was found to be the low density

866 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 3, SEPTEMBER 2019

Fig. 12. Precision using our (star) and Kobayashi’s (circle) scoring method
for the method of Kobayashi et al. (dashed line) and ours (solid line). Data
correspond to mean and standard deviation over the 10 days of unseen data.

Fig. 13. Precision (red) and sensitivity (blue) for our method (solid line)
and Kobayashi et al.’s method (dashed line). Length of training data is varied
between 3 and 29 days. Performance is measured against ground truth on the
next day.

of events such that events occurring on the day were not nec-
essarily representative of events occurring on a different day.
This means that training the method over 10 days or over the
last of these 10 days would yield the same set of DAGs, thus
making a comparison with our method unfair. Since only sen-
sitivity is affected by this property, when using real data, we
only report precision.

Because Kobayashi et al.’s method requires event descrip-
tors, we used Dataset 2. Both methods were trained over an
increasing number of days and performance was measured
over the next 10 days of unseen data. Since Kobayashi et al.
predict causal interactions whilst our method returns undi-
rected networks, precision was calculated using both criteria.
Figure 12 shows that irrespective of the performance mea-
sure used, the method by Kobayashi et al. yields significantly
higher precision. However, this must be put in context of a
huge discrepancy in the number of events being predicted.
Whereas our method returned over thousands of functional
edges on a daily basis (up to over 100,000 for the longest
training periods), the method by Kobayashi et al. only rarely
returned more than 10 events per day (2.6%) and often (80%)
none at all with an average of 1.2 edges predicted per day.
Below, we will use synthetic data to make this case more
fully.

Fig. 14. Precision (red) and sensitivity (blue) for our method (solid line) and
Kobayashi et al.’s method (dashed line) when the percentage of active func-
tional connectivities os varied between 10% and 100%, all other parameters
being equal. To make a straightforward comparison possible, our method was
configured to return the same precision as that of Kobayashi et al., thus the
near perfect overlap between red curves.

The lack of stability in day-to-day inference as well as the
low number of predicted events returned by the method of
Kobayashi et al. can be attributed to the low density of events
per node per day in the dataset (0.5). Experiments (results
not shown) revealed that with higher densities, the percent-
age of overlap between day-to-day predictions increases (up
to 30% for 100 events per node per day) albeit far inferior to
that of our method (>90% overlap for densities from 0.7 to
100 events per node per day) and at the cost of much longer
computations (both our method and that of Kobayashi et al.
have a dependence on the number of events to be considered).
In what follows, we used synthetic data with a sufficiently
high density of events to provide both precision and sensi-
tivity. The testing protocol considered is equivalent to that
in Section III-C but using static networks of 300 nodes over
30 days (to reduce computational cost). Figure 13 shows that
whilst the precision of our method is somewhat inferior to
that of Kobayashi’s, our sensitivity is far superior. Based on
our earlier observation that the choice of threshold 0.5 whilst
slightly improving sensitivity, dramatically reduces precision,
we also calculated precision and sensitivity for a thresh-
old of 0.9. This led to 20% improvement in precision (still
less than Kobayashi) and a 33% drop in sensitivity (results
not shown).

It will be noted that we used a very low density of functional
edges. As illustrated in Figure 14, this is because in the method
of Kobayashi et al., the likelihood of an edge existing relies on
a p-value derived from conditional cross-entropies. The higher
the density of functional edges, the more likely it is to find a
node Z such that there is conditional independence between X
and Y. There is also a drop in sensitivity for our method. This
is because the number of pairs showing significantly higher
scores than those picked at random is dropping.

E. Comparison With Hallac et al. [12]

Hallac et al. [12] extended the graphical Lasso algorithm
and developed a method to solve for Θ = (Θ1,Θ2, . . . ,ΘT)

MESSAGER et al.: INFERRING FUNCTIONAL CONNECTIVITY FROM TIME-SERIES OF EVENTS IN LARGE SCALE NETWORK DEPLOYMENTS 867

Fig. 15. Precision (red) and sensitivity (blue) for our method (solid line)
and that of Hallac et al. (dashed line) when length of training data is varied
between 1 (3 for our method) and 20 days. Performance was calculated as the
mean over the 10 days of unseen data and was averaged over 10 networks of
50 nodes each. On average 20% of the functional connectivities were active.

a set of symmetric positive definite matrices:

minΘ∈Sp
++

T∑
i=1

−li (Θi) + λ||Θi ||+ β
T∑
i=2

Φ(Θi −Θi−1),

where T is the number of windows, li (Θi) = ni (log detΘi −
Tr(SiΘi)) is a function that encourages Θi to be close to S−1

i
the inverse of the empirical covariance (if Si is invertible), ni
is the number of observations, ||Θi || is the semi-norm of Θi , λ
is a positive constant that is adjusted to enforce the sparsity of
the covariance matrix, Φ(Θi−Θi−1) is a convex penalty func-
tion minimised at Φ(0), which encourages similarity between
Θt and Θt−1 and β is a positive constant determining
how strongly correlated neighbouring covariance estimations
should be. The connectivity at time t is then simply extracted
from the non-zeros values of the inverse of the precision matrix
Θt . Our results were obtained using the authors’ implementa-
tion available at https://github.com/davidhallac/TVGL.

The challenge of providing a comparison is in setting
a suitable criterion for setting the various parameters of
Hallac et al.’s method, most critically, number of windows,
bin size, choice of penalty function and parameters λ and β.
Since the number of windows is an arbitrary choice, we set it
to 1 day, as in Kobayashi et al. The penalty function was set
to the Laplacian because smooth changes are assumed to take
place in the real data. All other parameters were subjected to
grid search to maximise the resulting F1 score. In the absence
of ground truth, predictive power was assessed in terms of the
method’s ability to predict an event. This is substantially dif-
ferent from any of the tests used previously but is fair, if not
particularly favourable to either method.

The presence of an edge in Hallac et al.’s method was
assessed on the basis of non-zero values of the inverse of
the Θ matrix it returned. As shown in Figure 15, our method
outperforms that of Hallac et al. for all configurations con-
sidered. In particular, because the networks are so small (size
chosen due to the poor time complexity of the method of
Hallac et al.), our method can achieve high precision and sensi-
tivity after only 10 days of training data. In a final experiment,
we examined whether the density of events (within the limit

Fig. 16. Precision (red) and sensitivity (blue) for our method (solid line)
and Hallac et al.’s method (dashed line) when the density of events is var-
ied between 1 and 10,000 events per day (for networks of 100 nodes).
Performance is measured against ground truth.

Fig. 17. Time complexity (in seconds) for our method (blue), Hallac et al.
(green) and Kobayashi et al. (red) when network size is varied between 10
and up to 10,000 nodes (depending on methods).

of what was computationally possible) could explain the poor
performance of Hallac et al.’s method. We systematically var-
ied the density of events through multiplying the functional
event rates to reduce the sparsity of the binned matrix used by
Hallac. As shown in Figure 16, whilst the increased density
did result in a higher sensitivity for our method, both precision
and sensitivity for Hallac et al. remained very low.

F. Scalability Analysis

A major challenge in this work was the inability of the
benchmark methods to handle the size of the real datasets
considered here. In this Section, we provide a comparative
analysis of how each method scales with network size. For
the purpose of this analysis, we ignored any consideration of
performance but focused on measuring time complexity when
all three methods were set to operate on an as similar setup
as possible. Concretely, we used synthetic data and simulated
activity over 10 days. Window size was set to 1 day in all three
methods. Bin size was 1h for Hallac et al.s’ method. Cross-
correlations were calculated up to 2 minutes in our method.

Figure 17 demonstrates the clear superiority of our method
when the number of nodes in the network is systematically var-
ied, with roughly a factor 104 for network sizes of 103 nodes.
No simulations were carried out for network sizes greater than

868 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 3, SEPTEMBER 2019

103 nodes for the benchmark methods due to the excessive
time it would have taken to do so.

IV. RELATED WORK

A number of approaches that are based on traditional
data mining techniques have been proposed to extract use-
ful information about the operation of networks and services
that could be used for real-time [13], [14] and post-incident
analysis [15], [16] and for understanding performance prob-
lems [17]. Recently, the use of supervised and unsupervised
learning for detecting anomalies in network and service log
data has been explored (see [18] for a summary). Workflow
construction through processing of collected log data [4],
[5] and filtering of unimportant network nodes based on the
notion of graph vertex entropy [8] and supervised machine
learning [19] have also been proposed. Our method is comple-
mentary to the aforementioned algorithms and systems, which
can be more efficient and effective when applied to smaller
datasets of collected network log data known to have been
produced by network devices and servers belonging to the
same functional topology, i.e., collectively providing a specific
service or core network functionality.

Our work is inspired by research conducted in the con-
text of other complex networks. In brain networks, even the
most advanced forms of imaging cannot provide an accurate
or complete description of structural connectivity, see [20]
for example. Although link prediction methods are being
developed to attempt to extract missing information [21], [22],
a more promising approach is to infer connectivity from the
temporal evolution of events occurring at node level [23]
without assuming any prior knowledge regarding connectiv-
ity. In brain neural networks, for example, network inference
may rely on spike dynamics [24]. In gene regulation, pub-
lished methods primarily use gene expression data derived
from micro-arrays [25].

A number of methods have been developed to infer con-
nectivity changes in a network by adapting Bayesian network
methods [26]–[29]. These methods assume a model of event
propagation. At their core is the belief that the current state
can be predicted, with some probability, based on the previous
state or states. In the context of very sparse data, such as in
computer network and service deployments, when an event in
A may trigger an event in B in only a small percentage of
the cases, such an assumption is problematic. Further, and as
should be apparent from the failure scenarios we discussed in
the context of generating the synthetic data, there can be great
heterogeneity in how event times ‘follow’ from a root cause
event. For example, when intelligent polling is used (whereby
a monitoring server polls devices that might be affected by a
failure elsewhere) can result in event times that are not intrinsic
to the network infrastructure itself but rather depend on how
the monitoring system is set up to react to the root cause (such
information not being available to us). For this reason, meth-
ods such as the Markovian model used in temporal exponential
graphs [30], various adaptations of the Kalman filter [31],
[32] or methods relying on propagation of cascades [33] are
unlikely to be as effective as a method that will solely rely on

pair-wise information. In fact, the use and adaptation of pair-
wise correlations is the basis of many methods that do not
assume an event propagation model, e.g., [34]–[36]. However,
these adaptations typically result in methods that do not scale
well to large networks over long recordings.

A final class of methods relies on the estimation of a time-
varying covariance matrix to encode the correlation structures
at each observation, e.g., [37]–[39]. Constraints of sparsity
(in the network of interdependencies between the nodes)
are enforced by way of lasso penalty. These methods typi-
cally do not scale well to large examples, as we showed for
Hallac et al. [12].

V. CONCLUSION

Monitoring, responding to, and predicting, failures in a
large scale network deployment is a key responsibility of
network operators. The sheer amount of data generated by
devices makes this task particularly difficult. In this paper, we
sought to present an alternative framework to representing and
modelling network events. This framework is based on the
concept of functional connectivity first introduced in neuro-
science. In contrast to structural connectivity, the underpinning
physical infrastructure, functional connectivity represents sta-
tistical dependences between the activities of nodes in the
network. In this paper, we specifically focused on statistical
dependence based on the amount of short-lagged interactions
between them. We presented a new statistic to robustly assess
the presence of statistical dependence between two nodes. By
deploying this statistic in a windowed-fashion and embedding
it into a predictive framework, we were able to develop an
inference model of time-varying functional connectivity able
to meet three key challenges: (a) non-stationarity of the under-
lying structural and functional connectivities, (b) sparsity of
the time-series of events limiting the effectiveness of classical
measures of statistical dependence, and (c) lack of information
as to how events follow from root causes.

The fact that a substantial amount of this paper was focused
on the methodological aspects of inferring functional con-
nectivity in large-scale commercial deployments should not
detract from its main focus, namely, making the case for
functional connectivity as a powerful tool in the arsenal of
network operators. Through our various validations effort, we
have sought to demonstrate a number of benefits. First, as
shown in Section III-B, the inference of functional connectiv-
ity provides the kind of insights that might otherwise require
intensive processing of the content of the events. We showed
that the extracted communities were characterised by (among
other things) great homogeneity in the type of events that
originating them. Such information can be available to oper-
ators but commercial experience (as well as academic papers
such as [3]) shows that recovering it typically entails a sig-
nificant cost because event descriptions can involve templates
that change over time, manual entries that might be subject
to human error, etc. Further, relying on event descriptions
constrains the kind of functional relationships that will be
identified to those that will have been anticipated by the oper-
ators setting up the system, e.g., services, expected failures.

MESSAGER et al.: INFERRING FUNCTIONAL CONNECTIVITY FROM TIME-SERIES OF EVENTS IN LARGE SCALE NETWORK DEPLOYMENTS 869

By relying on timestamps only, the concept of functional con-
nectivity is agnostic to the origin of the dependencies. It tells
the network operator that nodes that might not have been pre-
dicted to be related in any way, actually are, due to unexpected
factors. Second, the concept of functional connectivity allevi-
ates the need for accurate network discovery that afflicts most
existing commercial systems. Currently fault localisation and
root cause analysis depend on an accurate description of the
network. This is challenging for two reasons. First, the network
is complex, heterogeneous and changing. Second, automated
discovery approaches cannot always capture the inherently
multiplex nature of large-scale deployments. Instead, although
functional dependencies are underpinned by structural connec-
tivity, their identification is not contingent on having full and
accurate knowledge of this structural connectivity. This was
clearly illustrated in Section III-B, and Figure 5 particularly,
showing the almost total lack of overlap between functional
and structural connectivities. Indeed, we found an almost com-
plete lack of structural links between nodes belonging to
a functional connectivity (as identified by community struc-
ture membership). Instead, structural edeges appear to link
functional connectivities, highlighting their mediation but not
causal role in the emergence of functional relationships. Thus,
at the very least, one can think of functional connectivity as
providing added value to current network discovery protocols.
Finally, inference of functional connectivity, including time-
varying functional connectivity, has useful predictive value for
network operators. Even though functional connectivity is not
effective (or causal) connectivity, a robust and comprehensive
characterisation of correlation has long been established as
an important step to pinpoint the causes [of alarms] so that
problems can be handled effectively [40]. Functional connec-
tivities can be thought of as spheres of influence such that in
the presence of an incident, network operators (i) can rapidly
discard events that might co-occur purely for spurious reasons,
(ii) focus their effort on those nodes they know to be function-
ally related (including interpreting their content) and (iii) use
this information to accelerate the process of fault localisation
and root cause analysis. Importantly, inference of time-varying
functional connectivity is crucial for dynamic computing envi-
ronments where hardware, storage and network virtualisation
enables the elastic provisioning of resources to a large and
diverse set of services and applications. In such environments,
service components (e.g., Docker containers or whole virtual
machines) can be dynamically created, removed or migrated so
that specific performance constraints are adhered to. We expect
that functional connectivity inference will play a key role in
fault analysis and prediction in such dynamic environments in
the future.

Inferring functional connectivity is a hard problem. When
using synthetic data for which ground truth was available, the
F1-score only rarely exceeded 0.7 in the near-static case, 0.6
in the more dynamic case. However, this should not detract
from the fact that the method was able to recover a substantial
amount of the connectivity, including its changes over time,
from an extremely limited amount of information. Indeed,
it did so at least as well as state of the art methods in
the near-static case, and usually better in the dynamic case.

Importantly, unlike existing network inference methods (that
typically do not handle sparse data well), it remains com-
putationally tractable even with large networks (here, 10,000
nodes) over very long records (here, 107 observations). To be
able to benchmark our method against state-of-the-art meth-
ods, we had to scale down to networks of size magnitudes
smaller than our real-world application. The lack of scalability
of these methods cannot be overstated.

Although our method produces weighted networks, where
the weight denotes the strength of the interaction, in this
paper, we have been thresholding those weights throughout,
both for prediction and evaluation purposes. Use of a thresh-
old has a number of disadvantages, from losing important
information about high-confidence edges (their distribution
and organisation) to giving the same importance to high- and
low-confidence edges. It also potentially confers the infer-
ence with sensitivity to the choice of the threshold. Whilst
our experiments did not show evidence of such sensitivity
(at least in the scenario that was tested), our results did
show that the marginal gain in sensitivity due to using a
small threshold came at the cost of a substantial drop in
precision. An alternative is to use a continuous loss function
based on the probabilities returned by our model. We are cur-
rently developing a method for automatically inferring the best
threshold.

Our method returns a graph. It is reasonable to ask whether
there is any reason for it other than visualisation. Whilst the
visualisation aspect cannot be underestimated in the context of
a network management system, we see the graph representa-
tion as an essential, albeit yet to be fully explored, component
of the concept of functional connectivity in the sense of it
being a starting point for understanding and analysing the
system. In this paper, we compared the properties of the
(known) structural and (inferred) functional connectivities and
were able to gain insights regarding the extent to which
inferred functionality did capture an aspect of the events which
was not included in the inference mechanism (namely, event
types) as well as how structural connectivity underpinned
connectivity between distinct functional connectivities. The
operational implications of such insights remain to be seen.
As we infer a time-varying connectivity, it will also be of
interest to monitor how the characteristics of these inferred
connectivities evolve over time. Indeed, it has been recently
suggested that such analysis could help predict failures.

A key stumbling block in the development of this framework
has been the absence of ground truth. Because functional con-
nectivity only denotes statistical dependence (but not causal
influence), there is no obvious way to provide an unequivo-
cal assessment of how valid our inference is. In this work,
we have used two approaches. One is to assess the extent to
which the inferred model can predict future statistical depen-
dences. Whilst this has operational value (e.g., filtering events
based on knowledge that they are merely an expression of
some latent statistical dependence to the activity of another
node known to have emitted events), it is not an absolute mea-
surement of quality since, for example, functional connectivity
could be changing or nodes may not emit events during the
period considered. Unsurprisingly, we have been consistently

870 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 16, NO. 3, SEPTEMBER 2019

reporting low sensitivity values. The other approach is to use
synthetic data. However, this has presented yet another chal-
lenge, namely, that of providing an accurate depiction of what
happens in a live deployment. In this work, we have considered
four types of network failure scenarios as proxy for functional
connectivities. However, there are many other ways by which
to define such connectivities. This highlights the need for con-
trolled testbeds for experimentation. We are not aware of any
and sadly there is little scope for experiments in commercial
deployments, particularly when they involve critical services.

In conclusion, this is a first step toward developing the
notion of dynamic functional connectivity inference in network
management. To fulfil its full applicative potential, a more
complete understanding of the various assumptions and param-
eters underpinning it must be obtained, which will be the
subject of our future work.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for
their very constructive and helpful comments.

REFERENCES

[1] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or die: High-availability design principles drawn from Googles network
infrastructure,” in Proc. ACM SIGCOMM, 2016, pp. 58–72.

[2] A. Messager, G. Parisis, R. Harper, P. Tee, I. Z. Kiss, and L. Berthouze,
“Network events in a large commercial network: What can we learn?”
in Proc. IEEE/IFIP NOMS AnNet, 2018, pp. 1–6.

[3] S. Kobayashi, K. Otomo, K. Fukuda, and H. Esaki, “Mining causality of
network events in log data,” IEEE Trans. Netw. Service Manag., vol. 15,
no. 1, pp. 53–67, Mar. 2018.

[4] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang, “CloudSeer:
Workflow monitoring of cloud infrastructures via interleaved logs,” in
Proc. ASPLOS, 2016, pp. 489–502.

[5] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “Inferring
models of concurrent systems from logs of their behavior with CSight,”
in Proc. ICSE, 2014, pp. 468–479.

[6] R. Harper and P. Tee, “A method for temporal event correlation,” in
Proc. NOMS IEEE/IFIP Netw. Oper. Manag. Symp., 2019, pp. 13–18.

[7] M. Steinder and A. S. Sethi, “A survey of fault localization techniques in
computer networks,” Sci. Comput. Program., vol. 53, no. 2, pp. 165–194,
2004.

[8] P. Tee, G. Parisis, and I. Wakeman, “Vertex entropy as a critical node
measure in network monitoring,” IEEE Trans. Netw. Service Manag.,
vol. 14, no. 3, pp. 646–660, Sep. 2017.

[9] S. Kätker and M. Paterok, “Fault isolation and event correlation for inte-
grated fault management,” in Proc. IFIP/IEEE IM, 1997, pp. 583–596.

[10] A. Messager, N. Georgiou, and L. Berthouze, “A new method
for the robust characterisation of pairwise statistical dependency
between point processes,” ArXiv e-prints, Jul. 2019. [Online]. Available:
https://arxiv.org/abs/1904.04813v2

[11] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech. Theory Exp.,
vol. 2008, no. 10, 2008, Art. no. P10008.

[12] D. Hallac, Y. Park, S. Boyd, and J. Leskovec, “Network inference via
the time-varying graphical lasso,” in Proc. KDD, 2017, pp. 205–213.

[13] J. P. Rouillard, “Real-time log file analysis using the simple event
correlator (SEC),” in Proc. LISA, 2004, pp. 133–150.

[14] K. Yamanishi and Y. Maruyama, “Dynamic syslog mining for network
failure monitoring,” in Proc. KDD, 2005, pp. 499–508.

[15] A. Oprea, Z. Li, T. F. Yen, S. H. Chin, and S. Alrwais, “Detection of
early-stage enterprise infection by mining large-scale log data,” in Proc.
DSN, 2015, pp. 45–56.

[16] T.-F. Yen et al., “Beehive: Large-scale log analysis for detecting
suspicious activity in enterprise networks,” in Proc. ACSAC, 2013,
pp. 199–208.

[17] S. Roy, A. C. König, I. Dvorkin, and M. Kumar, “PerfAugur: Robust
diagnostics for performance anomalies in cloud services,” in Proc. ICDE,
2015, pp. 1167–1178.

[18] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log
analysis for anomaly detection,” in Proc. ISSRE, 2016, pp. 207–218.

[19] R. Harper and P. Tee, “The application of neural networks to predicting
the root cause of service failures,” in Proc. IFIP/IEEE IM AnNet, 2017,
pp. 953–958.

[20] C. Thomas et al., “Anatomical accuracy of brain connections derived
from diffusion MRI tractography is inherently limited,” Proc. Nat. Acad.
Sci. USA, vol. 111, no. 46, pp. 16574–16579, 2014.

[21] Q. Liu, S. Tang, X. Zhang, X. Zhao, B. Y. Zhao, and H. Zheng, “Network
growth and link prediction through an empirical lens,” in Proc. ACM
IMC, 2016, pp. 1–15.

[22] L. Lü and T. Zhou, “Link prediction in complex networks: A survey,”
Physica A Stat. Mech. Appl., vol. 390, no. 6, pp. 1150–1170, 2011.

[23] I. Brugere, B. Gallagher, and T. Y. Berger-Wolf, “Network structure
inference, a survey: Motivations, methods, and applications,” ACM
Comput. Surv., vol. 51, no. 2, Jun. 2018, Art. no. 24.

[24] E. N. Brown, R. E. Kass, and P. P. Mitra, “Multiple neural spike train
data analysis: State-of-the-art and future challenges,” Nat. Neurosci.,
vol. 7, no. 5, pp. 456–461, 2004.

[25] M. Hecker, S. Lambeck, S. Toepfer, E. Van Someren, and R. Guthke,
“Gene regulatory network inference: Data integration in dynamic
models—A review,” Biosystems, vol. 96, no. 1, pp. 86–103, 2009.

[26] F. Dondelinger, S. Lébre, and D. Husmeier, “Non-homogeneous dynamic
Bayesian networks with Bayesian regularization for inferring gene reg-
ulatory networks with gradually time-varying structure,” Mach. Learn.,
vol. 90, no. 2, pp. 191–230, 2013.

[27] Z. Wang, E. E. Kuruoglu, X. Yang, Y. Xu, and T. S. Huang, “Time
varying dynamic Bayesian network for nonstationary events modeling
and online inference,” IEEE Trans. Signal Process., vol. 59, no. 4,
pp. 1553–1568, Apr. 2011.

[28] J. W. Robinson and A. J. Hartemink, “Learning non-stationary dynamic
Bayesian networks,” J. Mach. Learn. Res., vol. 11, pp. 3647–3680,
Dec. 2010.

[29] L. Song, M. Kolar, and E. P. Xing, “Time-varying dynamic Bayesian
networks,” in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1732–1740.

[30] F. Guo, S. Hanneke, W. Fu, and E. P. Xing, “Recovering temporally
rewiring networks: A model-based approach,” in Proc. ICML, 2007,
pp. 321–328.

[31] V. Carluccio, N. Bouaynaya, G. Ditzler, and H. M. Fathallah-Shaykh,
“The Akron–Kalman filter for tracking time-varying networks,” in Proc.
IEEE BHI, 2017, pp. 313–316.

[32] J. Khan, N. Bouaynaya, and H. M. Fathallah-Shaykh, “Tracking of time-
varying genomic regulatory networks with a Lasso–Kalman smoother,”
EURASIP J. Bioinformat. Syst. Biol., vol. 2014, no. 1, p. 3, 2014.

[33] M. G. Rodriguez, J. Leskovec, D. Balduzzi, and B. Schölkopf,
“Uncovering the structure and temporal dynamics of information prop-
agation,” Netw. Sci., vol. 2, no. 1, pp. 26–65, 2014.

[34] A. J. Oliner, A. V. Kulkarni, and A. Aiken, “Using correlated surprise
to infer shared influence,” in Proc. Int. Conf. Depend. Syst. Netw., 2010,
pp. 191–200.

[35] A. A. Mahimkar et al., “Towards automated performance diagnosis in
a large IPTV network,” in Proc. SIGCOMM, 2009, pp. 231–242.

[36] Z. Zheng, L. Yu, Z. Lan, and T. Jones, “3-dimensional root cause
diagnosis via co-analysis,” in Proc. ICAC, 2012, pp. 1–10.

[37] R. P. Monti, P. Hellyer, D. Sharp, R. Leech, C. Anagnostopoulos,
and G. Montana, “Estimating time-varying brain connectivity networks
from functional MRI time series,” NeuroImage, vol. 103, pp. 427–443,
Dec. 2014.

[38] E. C. Wit and A. Abbruzzo, “Inferring slowly-changing dynamic
gene-regulatory networks,” BMC Bioinformat., vol. 16, no. 6,
p. S5, 2015.

[39] S. Zhou, J. Lafferty, and L. Wasserman, “Time varying undirected
graphs,” Mach. Learn., vol. 80, nos. 2–3, pp. 295–319, 2010.

[40] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo,
“A coding approach to event correlation,” in Integrated Network
Management IV, A. S. Sethi, Y. Raynaud, and F. Faure-Vincent, Eds.
Boston, MA, USA: Springer, 1995, pp. 266–277. [Online]. Available:
https://link.springer.com/chapter/10.1007%2F978-0-387-34890-2_24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

