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Abstract—The complexity of resource usage and power con-
sumption on cloud-based applications makes the understanding
of application behavior through expert examination difficult. The
difficulty increases when applications are seen as “black boxes,”
where only external monitoring can be retrieved. Furthermore,
given the different amount of scenarios and applications, automa-
tion is required. Here, we examine and model application behav-
ior by finding behavior phases. We use conditional restricted
Boltzmann machines (CRBMs) to model time-series contain-
ing resources traces measurements like CPU, memory, and IO.
CRBMs can be used to map a given historic window of trace
behavior into a single vector. This low dimensional and time-
aware vector can be passed through clustering methods, from
simplistic ones like k-means to more complex ones like those
based on hidden Markov models. We use these methods to find
phases of similar behavior in the workloads. Our experimental
evaluation shows that the proposed method is able to identify
different phases of resource consumption across different work-
loads. We show that the distinct phases contain specific resource
patterns that distinguish them.

Index Terms—Unsupervised learning, CRBM, deep learning,
workload modeling, phase detection, MapReduce.

I. INTRODUCTION

THE EXTREME complexity of current and future data
centers, which are built from a large number of special-

ized technologies such as Non Volatile Memories (NVM),
programmable circuits (FGPAs) and Graphical Processing
Units (GPUs), poses a huge challenge: to develop technolo-
gies that allow for a holistic management of both work-
loads and the infrastructure while observing differentiated
performance goals. The problem of mapping workloads on
top of the hardware resources with the goal of maximiz-
ing both the performance of workloads and the utilization
of resources, referred to as the placement problem, is well
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known for being NP-hard, with an underlying similarity to the
multi-dimensional knapsack problem. The common approach
used in the past has been to design heuristics that adapt to
different contexts, providing vertical solutions for a given
workload mix and underlying infrastructure, but which can-
not be generalized. When the workload mix is completely
heterogeneous, and the infrastructure hybrid and unexplored,
the problem becomes even more challenging and needs to be
automated.

In order to feed the heuristics used to manage data
centers, it is a common practice to use workload mod-
els [1]–[3]. Application modeling is an active field in auto-
nomic computing towards performance optimization. As com-
putational resource sharing becomes critical, environment
set-up and schedule must be tailored for each application.
Unfortunately, applications are often provided as black-boxes,
and modeling must be done through sampling executions in
sandboxes [4], [5]. Furthermore, modeling must focus not
only on single-running executions, but also on environments
with several applications competing for shared resources. This
implies that models not only need to characterize applications
but also interference between them.

Existing literature in the area has studied the behavior of
applications by attempting to understand common patterns
across workloads, working on the assumption [3], [6], [7]
that different but recurrent behaviors occur during the course
of the execution, which is known as phases. Such phases
display similar usage of computational resources over time.
Recognizing which phases compose an application, and iden-
tifying the resource usages for each one, allows us to adapt
the environment for a better performance as well as predict
what applications can be co-located without interfering in their
usage of resources. In this way, applications can be scheduled
by means of decomposing them into phases instead of looking
at their complete runtime.

While some works propose invasive techniques by plac-
ing phase markers in applications source code [8], [9], here
we deal with black-box scenarios in which the application
can only be monitored through resource consumption patterns.
Workload activity is usually collected in the form of traces,
which are usually logs for CPU, memory, disk or network
usage, among others. Also, other traces related to the infras-
tructure can also be provided, such as energy consumption,
utilization of GPUs or co-processors, and other custom met-
rics coming from the Operating System or external sensors
and devices. They are therefore, in fact, multi-dimensional
time-series.
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In this paper we present a novel approach to automatically
finding and characterizing application behavior phases, using
resource consumption traces as multidimensional time-series.
In our method, we combine Conditional Restricted Boltzmann
Machines (CRBM) [10], [11] and Hidden Markov Models
(HMM) to distinguish changes on the resource consumption
patterns over time. Our solution uses two models for two dif-
ferent goals. The CRBM is used to model the time-series and
generate a code at every time step. This code summarizes
information of the workload trace at time t as well as the
information of the past n time steps. Then the HMM assigns
a label to the code, automatically detecting and tagging differ-
ent resource consumption patterns (see Section IV for further
details).

Using this approach, workload traces can be mapped to a
series of abstract phases that give a high level description of
the resource consumption characteristics. Such a description
can be used, for example, to identify interferences between
workloads [12], [13]. The proposed technique is aimed at
ingesting telemetry data (CPU, Memory, IO consumption,
among others) to automatically characterize the behavior of
workloads and dynamically produce workload profiles that
can be leveraged by resource-aware resource schedulers (see
Section II for more details). Moreover, the CRBM could be
used as a generative model which would enable forecasting of
both phase and resource consumption.

Nevertheless, forecasting is not the main focus of the work
presented in this paper, the main contributions of which can
be summarized as follows:

• Novel application of a combination of Conditional
Restricted Boltzmann Machines (CRBM) and Hidden
Markov Models (HMM) to encode time series and per-
form phase detection.

• Phase detection method based on unsupervised learning in
time series (data center telemetry). The method is robust
in front of burstiness in the time-series values (metrics),
since phases are identified as HMM regimes that can
be either stationary in terms of resource consumption or
include periods of oscillation in a metric.

We believe that the combination of these two contributions
is relevant for system management because phases character-
ize periods of a particular resource consumption pattern, and
therefore are suitable for use by resource managers and work-
load schedulers to implement workload co-location strategies
based on predictions.

The proposed method is evaluated using three different
datasets, which are described in detail in Section V. The
datasets comprise a mix of Big Data workloads involving
Hadoop and Spark applications extracted from two well-
established benchmarks: HiBench and TPCx-BB (BigBench).
They represent numerous real-world applications, including
MapReduce, Natural Language Processing, SQL and Machine
Learning workloads, with different job lengths and data scale
sizes. Additionally, and for sanity check purposes, the method
is also tested against a well-known dataset containing human
motion traces.

The experiments presented in this paper show that:
1) The combination of CRBMs and HMMs can be lever-

aged to automatically discover differentiated execution

behaviors in the workloads. CRBMs provide the means
to capture the time dimension of the input time series,
reduce data dimensionality and expose the compressed
data to the HMM. At the same time, the HMM extracts
inter-phase patterns and automatically tags phases.

2) HMMs have a slight advantage over other well-known
clustering techniques such as k-means in determining
the phase from outputs of the CRBM, when comparing
a-posteriori towards reference sources like changes in
the Hadoop stages and resource consumptions.

3) Each discovered phase corresponds to a set of resource
patterns.

4) Each different workload displays different phase pat-
terns, to be exploited towards scheduling and workload
characterization and identification.

The rest of the paper is structured as follows: Section III
summarizes the state of the art and related work. Section IV
presents the methodology, scenario and the techniques
employed. Section V provides a description of the used data
used for experimentation. Section VI shows the experiments
performed to validate this work, and finally Section VII
discusses the conclusions and future work.

II. MOTIVATION

Modern data centers keep growing in size on their way
towards exa-scale clusters, which results in vast amounts of
performance data (telemetry) being generated continuously.
Microsoft [14] claims that their large data centers consist of
more than 100,000 servers, each with a 10 to 40 Gbps network
connection. At high utilization levels, their aggregate traffic
can easily exceed 100 Tbps, and they perform analysis of
this packet-level network telemetry to understand the traffic
of their data centers. Netflix also reports that their Atlas [15]
Telemetry platform was used to monitor 2 million metrics
related to their streaming systems back in 2011, while in 2014
they reached 1.2 billion metrics, and these figures continue to
rise as reported by them.

In order to manage such scenarios, workload schedul-
ing mechanisms are leveraged to continuously optimize the
existing deployments. Existing resource-aware job schedul-
ing techniques [4], [5], [12], [13], [16]–[18] rely on the
use of job profiles containing information about the resource
consumption for each job.

Profiling is one technique that has been successfully used
in the past for MapReduce [19] clusters. Its suitability in
these clusters stems from the fact that, in most production
environments, jobs are run periodically on data corresponding
to different time windows [6]. Hence, profiles remains fairly
stable across runs [7].

In this section we take the work presented in [17] as an
example to illustrate the importance of accurate job profiles:
the authors propose a novel Hadoop [20] scheduler that can
allocate a variable number of tasks per node (TaskTracker in
Hadoop terminology), as opposed to the usual approach (rep-
resented here by Hadoop Fair Scheduler) that provides for a
static number of tasks per node. In the experiment, a combina-
tion of 8 different jobs are run using a standard FairScheduler
and a Resource Aware Scheduler. Each job was previously
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Fig. 1. Example of Workload Co-location in terms of CPU utilization:
(a) corresponds to Fair Scheduler using 4 slots per TaskTracker, with no
resource-awareness; (b) corresponds to a Resource aware scheduler that
determines a resource-aware strategy per TaskTracker that reduces resource
contention.

profiled, comprising CPU, memory and network resource con-
sumption over time. These profiles were made available to the
Resource Aware Scheduler, as well as the capacities of the
TaskTracker nodes. Under such circumstances, the Resource
Aware Scheduler was able to compute the optimal number of
tasks of each job that could be placed in each TaskTracker
node, as well as the best task placement strategy, in order
to make the most of the available resources. In practice, the
scheduler could determine the best task co-location strategies
and avoid resource over or under-commitment. The result of
the experiment is that the Resource Aware Scheduler was able
to complete the workload execution in a significantly shorter
time.

To explain the reason for the improvement in performance,
Figures 1(a) and 1(b) show the impact of performing a
resource aware scheduling in terms of resource usage. These
figures show the percentage of CPU time that TaskTrackers
spent running tasks (either in system or user space), and
the time that the CPU spent waiting. For each metric, we
show the mean value for the cluster and the standard devi-
ation across TaskTrackers. Wait time represents the time that
the CPU remains idle because all threads in the system are
either idle or waiting for I/O operations to be completed.
Therefore, it is a measure of resource wastage, since the
CPU remains inactive. While wait time is impossible to avoid
entirely, it can be reduced by improving the overlapping
of tasks that stress different resources in the TaskTracker.
It is noticeable that in the case of the Fair Scheduler the
CPU spends more time waiting for the completion of I/O

operations than the resource-aware scheduler. The reasoning
behind this result is that schedulers that are not resource-
aware do not consider the resource consumption of applica-
tions when making task assignment decisions, and therefore
they are not able to achieve good overlap between I/O and
CPU activity.

In this paper we propose a technique for ingesting teleme-
try data (CPU, Memory, IO consumption, among others)
to automatically characterize the behavior of workloads and
dynamically produce workload profiles that can be leveraged
by resource-aware resource schedulers. The proposed tech-
nique targets a highly dynamic environment, such as that
described in [17], in which new jobs can be submitted at any
time and in which workloads share physical resources among
them. As will be shown through the experiments, we have
verified that the method is suitable for workloads of different
types, including MapReduce, Natural Language Processing,
Machine Learning, and SQL queries. For this purpose we have
leveraged two different datasets containing workload activity
logs: one obtained from Hadoop jobs, and the other containing
Spark jobs running TPCx-BB, which contains several types of
applications. We used traces from on-premise clusters as well
as virtualized Cloud-based workloads.

While the metrics used in this paper are limited in num-
ber (mainly CPU, memory, disk and network usage), there are
many cases in which this list can be significantly longer. In
several studies, such as [21], low level processor information is
required to understand the root cause of performance degrada-
tion under different circumstances. Data provided by libraries
like PAPI [22], widely used in the field of performance charac-
terization and monitoring, can extract several hundred different
counters from modern processors. Many of them are interre-
lated, such as L1/L2/L3 memory cache misses, but they are
still relevant for many performance driven decisions. An exam-
ple of such importance is the emerging effort to develop novel
NUMA-aware [23] and GPU-topology-aware [24] placement
strategies for BigData and DeepLearning workloads, because
the topology of modern processors is extremely complex
and can significantly impact the performance of applications.
Furthermore works like [25] (which use the same features
as we do in our experiments) use dimensionality reduction
in order to facilitate parameter estimation. As the number of
features grows, the amount of data needed to generalize accu-
rately grows exponentially (this is known as the curse of the
dimensionality). In these situations, and especially when the
number of monitored features is large, techniques that pro-
vide dimensionality reduction like the one presented in this
paper are relevant for building models that capture the different
stages of execution of a given application.

III. RELATED WORK

Workload modeling has been widely explored in the litera-
ture to produce more efficient resource management methods.
Some existing works use simulations to generate models, such
as in [1], but these approaches are limited in their applicabil-
ity in real-world scenarios as they require complex simulations
to generate workload patterns. Other works use a black-box
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approach based on the generation of workload profiles from
previous executions, as in [2], where Esfandiarpoor et al.
perform efficient workload collocation to save data center
energy consumption. For this purpose they conduct VM analy-
sis to determine the requested MIPS and memory of each VM
arrived and VMs running on the system in each time interval.
In some cases, user-provided phases can be introduced by the
programmer, as in the case of [26], where Rosa et al. present
a tool for workload modelling and reproduction parallel appli-
cations in which the user is responsible for building a task
graph that is defined by a list of phases. Phases model dif-
ferent behaviours (CPU, IO, LOOP, FORK, JOIN). The main
objective of this work is provide a tool for programmers to
facilitate the understanding of parallel applications.

Other workload model construction techniques have been
explored in the literature, like hierarchical sparse coding (a
form of deep learning) to model user-driven workloads as
presented in [3]. In that work, the authors use hardware
performance counters to perform power scaling based on the
workload characteristics. By using this technique they can dif-
ferentiate different resource consumption phases on their tested
workloads. While their work is similar to the one presented in
this paper, they only focus on processor counters, while we go
beyond that method by including IO and memory consumption
metrics at a cluster level.

A relevant aspect related to workload modeling and schedul-
ing is the ability to predict workload interference in order to
define co-location and anti co-location strategies. This topic
has been studied in the literature, and several works address it
using different approaches. Mishra et al. [12] propose a novel
machine learning method to predict application interference.
They collect data from the performance counters of the proces-
sors to model interference and leverage the models to improve
scheduling efficiency. Nevertheless, they use synthetic appli-
cation kernels for the evaluation, ignoring the different phases
of resource consumption that can be observed in real-world
workloads, whereas in our work we use real applications, not
just kernels. A similar approach is used in [13], where a set
of benchmarks were used to quantify resource interference
across co-located workloads. Using a scheduling method, the
authors identify interferences and leverage that information to
improve workload management. Our work is complementary
to that one in the sense that adding precision to the workload
characterization, identified by phases in our work, would allow
for more fine grained scheduling decisions. Some existing
works rely on predictive behavior on resource sharing envi-
ronments to enforce Quality of Service (QoS) guarantees, as
in the case of [18]. Finally, other approaches on sandbox exper-
imentation perform real experiments in isolated environments
using real workloads to find optimal resource allocations, as
in [4] and [5].

The ability to make look-ahead predictions on expected
phase changes over time is an important control knob that
can be leveraged for more accurate resource management as
shown in [16] and already discussed in Section II. Phase detec-
tion has been extensively studied, using both supervised and
un- supervised techniques towards finding behavior changes
in workloads.

Ding et al. [27] focus on applications phase detection
and exploitation by means of two approaches, top-down and
bottom-up, also taking into account off-line and on-line phase
detection. In the top-down approach, execution is divided into
candidate phases, based on the high-level structure of the
source code. The beginnings of long-running subroutines and
loops mark the potential boundaries between phases. Such
an approach requires compile-time instrumentation to insert
marks at candidate phase boundaries. The bottom-up approach
starts with the behavior metrics observed during execution
and looks for recurring patterns and changes. The beginning
of long-running subroutines and loops marks the potential
boundaries between phases. This can be done with unmodified
program binaries, yet is likely to be strengthened considerably
by going back to the source code to correlate observed phase
transitions with certain groups of static instructions. However,
profile-driven strategies like the ones explained in such works
require the insertion of markers into the code, and this implies
being able to access it. In our current approach, we focus on
total non-invasion and preemptive knowledge, since the run-
ning application is presented as a black-box, where our data
comes from the profile of the resources accessed by it.

Pipada et al. [28] present a method for learning to iden-
tify workload phases from live traces using Support Vector
Machines (SVMs) to classify phases that have been manually
tagged from a Dataset of Storage traces. The ultimate goal of
the paper is to trigger phase-specific system tuning for disk
IO time series. The main drawback is that data must be man-
ually tagged, so in the scenario presented there the learning
process would require supervision from the application owner.
The method is evaluated using accuracy across all classes.

Hidden Markov Models are also used for phase analyses on
executions in works, as in [8], which uses HMMs to model
phase behavior via branch-instruction traces generated during
the program executions. The authors pre-process the branch-
instruction traces by binning together discrete observations
from windows into a vector. The vector for a given window
contains the number of times at each component that a partic-
ular symbol appeared. This process maps the windows discrete
observations into a single vector. The main drawback is that
the original ordering of symbols is lost at granularities smaller
than the window size. Since this is unsupervised learning, the
data does not contain tags for phases, as the user specifies
how many phases are expected to be found as hidden states
on the HMM. As in our work, they train the HMMs using the
Baum-Welch algorithm (which is the EM algorithm applied
to HMMs) [29]. The evaluation is conducted by measuring
how much variance can be accounted for by the language and
state probability transition matrices, then computing the accu-
racy with respect to their “prior-model“. In contrast with our
HMMs, their data consists of symbol time-series turned into
real values to feed modified HMMs (CD-HMM and the VQ-
HMM), while we use the CRBM representation of inputs to
feed our HMM.

Finally, Nagpurkar et al. [9] focus on on-line phase detec-
tion algorithms. Their work also uses the source code to
identify loops and repeated method invocations to build a base-
line solution. It then compares the proposed phase modeling
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against the baseline solution. In order to identify periods of
repetition (and then phases), loops and method invocations
are selected from the source code and the entrance and exit of
each repetition construct is recorded with a unique identifier.
Their unsupervised learning methodology uses the minimum
phase length as hyper-parameters, rather than determining the
number of expected phases to be found. They also require the
source code for such analyses.

As here explained, many methods attempting phase detec-
tion on application executions employ source code analysis or
marking. This involves several drawbacks: such a process is
tedious and specific to each source code; moreover, in pro-
vided data-center and “cloud” scenarios the source code is
not available, since applications are submitted as black-boxes.
Our approach focuses on attacking the problem from resource
usage logs and sensors, totally non-invasive towards the appli-
cation and available from the cloud provider point of view.
Also, instead of feeding HMMs with direct telemetry data,
we pre-process it using CRBMs, which have already been
used for modeling complex multidimensional sequential data
such as human motion data [10] or financial data [30]. To the
best of our knowledge, no other work has used CRBMs in
combination with clustering methods for phase detection.

IV. METHODOLOGY

Defining phases for time series is not a trivial task. Work-
load traces contain complex non-linear relationships between
the different components of CPU, RAM, Memory and Disk, so
defining phases of similar behavior over time becomes a very
challenging task. In order to facilitate this, we learn a repre-
sentation that maps slices of those multidimensional sequences
into vectors. This section describes how this is done using a
CRBM. Then we use a Hidden Markov Model trained on the
learned features to find meaningful phases in this new repre-
sentation. Finally we compare the predicted phases with the
meta-information we have obtained from workload indicators
to verify the results.

In scenarios like the one proposed, where no true labels
exist, or existing labels are either approximate, inaccurate or
too generalized, evaluating phase detection models is not triv-
ial. For example, Hadoop executions have labeled “stages”
indicating the predominant type of task being executed at
each moment (“map”, “reduce”, “shuffle”, ...). In this example,
throughout their execution Hadoop workloads present differ-
ent behaviors along their execution that change depending on
the stage and on the application itself. In other words, two dif-
ferent workloads will present different behaviors for the same
stage, but two similar ones will behave similarly.

Nevertheless, we can evaluate the quality of the phase
prediction on workloads by computing the accuracy between
predicted phases against labels on meta-data execution. Such
metrics will not be indicative of the phases to be discovered,
since this learning method is unsupervised for discovering
unlabeled behaviors. However, they will indicate how plau-
sible it is to use the produced phases to gauge the little
information the application is providing about their execution
stage. We would like to recall that the goal of this work is

to learn phases in situations where labels may not be avail-
able. So, in this case the Hadoop meta-data is used only for
side-validation but never as a target feature for supervised
learning.

To assess the quality of the phases proposed by the method,
we check the correspondence between detected phases and
different resource usage. In Section VI, comparisons will be
made to show how similar and different types of workload with
different execution stages each are detected and identified.

A. Representation Vectors

Let us consider a set of M sequences X. In our application
each sequence x = (x1, x2, . . . , xl) ∈ X will contain measure-
ments from the execution of a program. The length of x, is
equivalent to the execution time (in seconds) of the workload.
Each component xt is a vector in R

nv , where nv is the number
of features (or measurements) used to describe the sequence
at each time step. Notice that sequences are not required to
have the same length.

Instead of using directly the sequences from X, or man-
ually defining features that aggregate resource consumption
over time, we propose to learn a vector representation for our
sequence components. A vector representation is a function
φ : Rnv −→ R

nh that maps the original measurements of x at
time t, xt, to a vector of length nh. Given a sequence x ∈ X
we will map xt ∈ R

nv to φ(xt; θ) ∈ R
nh . The parameters θ of

the representation will be learned from the data, with the goal
of maximizing the probability of the sequences in X. The nh

value is a hyper-parameter of the representation.
Since our data is composed of sequences we would like the

mapping φ(xt; θ) to depend on θ but also on the previous
n components of the sequence. This means φ

(
xt; θ

) =
φ(xt; xt−1, xt−2, . . . , xt−n, θ). Notice that for the first n val-
ues we cannot use this mapping since there are not enough
measurements for φ. One way to fix this problem would
be to set the first history values to zero. Another option
is to simply not to use φ for the first n time steps. This
paper explores the use of a CRBM as a good candidate for
φ(xt; xt−1, xt−2, . . . , xt−n, θ).

B. Restricted Boltzmann Machine

A CRBM is an extension of a Restricted Boltzmann
Machine (RBM) especially designed to handle sequential data.
Before dealing with the time dependence, we will present how
to model static frames of the time-series data. The CRBM
presented in Section IV-C uses a Gaussian Bernoulli RBM
(GB-RBM) to model the static frames xt of the time series.
This work does not use a standard RBM, because the work-
load data used in the experiments is made of real valued
components and the standard RBM models binary valued data.

The GB-RBM is an Energy-Based Model with Gaussian
visible variables v and hidden Bernoulli variables h. Variables
in this type of models are also called “units” or “neurons”.
We used the same GB-RBM as in [10] and [31]. The joint
log-probability p(v, h) defined by the model is given by the
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Fig. 2. CRBM diagram.

following expression:

log P(v, h) =
nv∑

i=1

(vi − ci)
2

2σ 2
i

−
nh∑

j=1

bjhj −
nv∑

i=1

nh∑

j=1

vi

σi
hjwij + C (1)

where σi is the standard deviation of the Gaussian for unit vi,
wij is the weight connecting visible unit i with hidden unit j,
c is the bias of the visible units, b is the bias of the hidden
units and C is a normalization constant. We fixed, σi to 1 (for
all i), based on the works of Taylor et al. [10].

The model parameters are learned using mini-batch stochas-
tic gradient descent. The gradient of the log-likelihood of the
data can be approximated using the contrastive divergence
(CD-K) algorithm [32]. In our experiments we used 1 step
of Gibbs sampling to generate the negative phase (we used
CD-1 with momentum).

C. Conditional Restricted Boltzmann Machines

The CRBM is essentially a GB-RBM with some extra con-
nections used to model temporal dependencies. To model such
dependencies, the CRBM keeps track of the n previous visible
vectors, which are kept in Hisn. We will call Hisn the history
of the CRBM.

The parameters of the CRBM are θ = {W, A, D, c, b}.
W, A, D are matrices and c, b are the vectors of biases
for the visible and hidden units, respectively. W ∈ R

nh×nv

models the connections between visible and hidden units.
A ∈ R

nv×(nv·n) is the mapping from the history to the visi-
ble units. D ∈ R

nh×(nv·n) is the mapping from the history to
the hidden units.

Let us consider a multidimensional sequence v =
(v1, v2, v3, . . . , ). The history for v at time t, denoted by Hisn

t ,
is defined as (vt−n, . . . , vt−1) and contains the previous n vec-
tors from time t − 1 to t − n. At time t + 1, vector vt is
pushed into the history while observation vt−n is popped out.
Therefore Hisn

t+1 is (vt−n−1, . . . , vt). Notice again that such a
mechanism needs the first n observations of each time series to
have enough data to properly fill the history structure. Figure 2
shows a diagram of the CRBM.

TABLE I
CRBM GRADIENT OF THE PARAMETERS

Given a vector v, we can obtain the hidden activation h by
computing the sigmoid of incoming signal from v and Hisn,
weighted by W and D, respectively, and adding the bias of
hidden units:

h(nh,1) = σ
(

W(nh,nv) · v(nv,1) + D(nh,nv·n) · Hisn
(nv·n,1) + b(nh,1)

)

the subscripts in the previous line (written only for clarity
reasons) indicate the dimensions of the different matrices and
vectors. For brevity, we will express this without subscripts as

h = σ
(
W · v + D · Hisn + b

)

Notice that D defines a function from R
nv·n to R

nh and Hisn

is expressed as a column vector of length nv · n instead of a
matrix of shape (nv, n).

Inference in a CRBM is quite similar to an RBM. We can
use stochastic gradient ascent to find parameters that yield
models with high log-likelihood. Contrastive Divergence [32]
can be used to find approximate gradients of the loss with
respect to the parameters. Using CD-k, we end up with the
approximate gradients shown in Table I. In this table, vectors

v̂(k) and ĥ
(k)

are values after k steps of Gibbs sampling of
a vector v and h, respectively. All quantities in the Gradient
Approximation are taken at the same time t, which is omitted
for brevity. More details about the fundamentals of CRBMs
can be found in Taylor’s work [10].

D. Data Pipeline and Architecture

Once the CRBM is trained we can compute the vector rep-
resentation φ(xt; xt−1, xt−2, . . . , xt−nhis , θ), or simply φ(xt; θ),
at every time step t using (2).

φ(xt; θ) = σ
(
W · xt + D · Hisn

t + b
)

(2)

Then we can discretize the result to get a binary code. The
binary code is used as input to an HMM. We have chosen
HMMs, instead of simpler unsupervised algorithm such as k-
Means, because the HMM captures dependencies across time
and therefore is suitable for our sequential data.

Given a number of hidden states, which correspond to the
number of distinct phases we expect to exist, the parameters
of the HMM are found using the Baum-Welch algorithm [29].
Once the parameters are learned, the most likely state sequence
for a given observation sequence is efficiently found using the
Viterbi algorithm [33].

After having trained both the CRBM and the HMM, the
pipeline for a given sequence xm of length lm is composed of
the following steps.
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Fig. 3. Data pipeline schema showing how the resource monitoring data
(which contains the input and history data) passes through the CRBM and
the clustering method.

TABLE II
EXAMPLE OF DATA SLICE FROM THE ALOJA DATASET.
FOR NON-AVAILABLE VALUES, −1 IS USED INSTEAD

• Step one: the representation (φ(xm
n ; θ), . . . , φ(xm

lm
; θ)) for

the sequence xm is computed using (2).
• Step two: the Viterbi algorithm is applied to the

previous sequence to get the most likely state sequence
(yn, . . . , ylm).

This approach does not give phase assignment to the first n
components of the sequence, which we will consider as the
“initial phase”.

Figure 3 shows a diagram of the data pipeline. The input
data and the history data are fed to the CRBM (at every time
step). Then the CRBM gives a code the clustering method that
outputs a phase.

V. DATASETS

A. Workload Dataset Description

The workloads used in the following experiments belong
to the ALOJA Project1 [34], [35], a repository of Big Data
executions focused on benchmarking different infrastructure
as well as software components. For each registered execu-
tion, the dataset contains the obtained monitors from CPU,
memory, network and disks, among other execution details,
e.g., markers for Hadoop, Spark, Hive, etc, with more than a
record per second during the execution.

Table II shows a slice of 3 time steps from a workload
extracted from the data. Data is aggregated per second, aver-
aging the data when numeric. Column “instant” is used to
identify the time in the series, but it is not used as an
input for the machine learning pipeline. The selected features

1Obtained from ALOJA Time-Series http://bscdc-login.bsc.es/alojaml.

for this approach are “pc.user”, “kbmemused”, “rxpck.s” and
“tps”, corresponding to user process CPU usage (in % usage),
Memory usage (in kilobytes), Network usage (received pack-
ages per second), and Disk usage (transactions per second).

It is true that other features can be added such as transmitted
packages per second, or system process CPU usage, as well as
maximum and minimum values for each feature, in addition
to these. However, for this first proof of concept we decided to
keep the input simplistic by selecting the most representative
measurements from the workloads. The use of an extended
feature version of this approach is intended for future work.

To simplify the feature naming, we will refer to the features
as CPU, Memory, Net and Disk. As the workload is distributed
among machines and processors, the CPU % usage is a sum
over all used cores, and therefore can take values above 100.

B. Dataset A: Hadoop Workloads Using BigBench

The first dataset, extracted from ALOJA Hadoop Time-
Series Dataset v1, contains 182 series from Hadoop executions
(up to 22 different features at this time), from the Intel
HiBench [36] benchmark suite. These workloads contain Map-
Reduce algorithms for sorting (Sort and Terasort), word
counting (wordcount), machine learning (k-means and bayes),
input-output stress tests (dfsioe-read, dfsioe-write), etc. All the
jobs have been running in on-premise infrastructures, with
similar Hadoop configurations. Data generation jobs, usu-
ally accompanying workloads, have been excluded from the
experiments.

C. Dataset B: Spark Workloads Using TCPx-BB

The second dataset, extracted from ALOJA Spark Time-
Series Dataset v1, comprises 900 executions of 30 different
Spark applications contained in the TPCx-BB (BigBench [37])
benchmark. TPCx-BB contains 30 frequently performed ana-
lytical jobs in the context of retailers with physical and
online store presence. They represent different types of work-
loads (including Natural Language Processing, SQL queries,
Mapreduce jobs and Machine Learning workloads), comprise
different data types (Structured, Semi-Structured and Un-
structured data), provide a mix of long and short running jobs
and can run at different data scales (in our case, 1, 10 and
100GB). For each of the queries, we included 30 instances,
comprising the different data scales mentioned before. All the
jobs were run in the Microsoft’s Azure cloud using Spark 2 as
the engine. We used HDInsight PaaS to spawn the spark clus-
ters, running a 16-slave node cluster (plus several redundant
head nodes). Data was stored in the Azure Data Lake Store
of Azure.

D. Dataset C: Human Motion Dataset

For sanity check purposes, in the final experiment presented
in this paper we leveraged the well-established Motion dataset
from Hsu et al. [38], also used in Taylor’s CRBMs val-
idation [11], to validate our method against a well-known
dataset.
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TABLE III
CRBM TRAINING TIME, nv IS THE NUMBER OF HIDDEN UNITS.

ALL MODELS HAVE THE SAME DELAY, 50 TIME STEPS

VI. EXPERIMENTS

Here we introduce six experiments for validation and testing
of the presented approach. The following experiments describe
how the proposed methodology differentiates phases through-
out workload executions on different scenarios or types of
tested workloads. Notice that, for the following figures, two
kinds of plots are produced: detected phases and resources
usage. For the detected phase plots barplots are used, where
each phase is differentiated by color and also height, not as a
significant value but as a visual aid for differentiating classi-
fication over time. As for the obtained phases, we will refer
to as phases the tags given by the k-means algorithm and the
tags given by the HMM as regimes, representing what we use
from HMMs as phases.

In terms of datasets (see Section V), Experiments 1-4 use
dataset A (Hadoop workloads), and Experiment 5 uses dataset
B (Spark workloads). Experiment 6 uses dataset C (human
motion identification) as a sanity check of the proposed
method based on classical literature in the field.

A. CRBM Train Time

Table III shows the time needed to train a CRBM on the
presented dataset, having randomly selected 66% series for
training and 33% for testing, using a history length of 50
samples and different configurations of hidden units. All the
training times presented measure 300 epochs of stochastic gra-
dient descent with momentum of 0.4 and learning rate 0.001.
For benchmark purposes, no early stopping is applied and the
presented times use a single thread of CPU. Therefore, since
most of the time is consumed by Matrix multiplications, train
time can be speeded up approximately by a factor of the num-
ber of threads. The train time could be reduced by computing
all matrix operations using GPUs.

We have found that the reconstruction error plateaus during
the first 40 epochs and further training does not help. The
reconstruction error achieved by the model using 100 hidden
units is not significantly improved by models with more hidden
units and the same history size.

B. Exp1: Unsupervised Automatic Phase Detection

In order to understand the different behaviors found in the
predicted clusters given by the k-means and the HMMs, here
we show some workloads with the associated tag sequences
(the discovered phases). Although we have generated the study
for all the workloads available in the data-set, we display here
the most representative ones. After exhaustive experimentation
with the CRBMs, we selected n = 50 as required “history
length” to start encoding and predicting. The history period
is marked in Figures 4, 6, and 7 by a vertical red line in the
workload trace that marks the time n = 50.

Moreover, for the following experiments, several values of
k (for the k-means) and expected regimes (in the HMMs)
have been tested. The most distinctive value found for this
hyper-parameter is 5 (clusters), since for lower values of k the
algorithm displayed randomly-joined phases, while for higher
values it converged by returning empty or underpopulated clus-
ters. This led us to choose k = 5 as the fittest value for the
current kind of workloads. Notice that for other kinds, this
hyper-parameter must be tuned.

Figure 4 shows a couple of workload traces with the pre-
dicted phases R1, . . . , R5 given by the HMM. The right hand
side images from Figure 4(a) and Figure 4(b) contain the work-
load resource usage and the predicted phases in chronological
order. The left hand side images contain the same information
of CPU, Memory and Net traces, but grouped by the phase
tag in order to see how each resource behaves in each given
phase.

The aim of grouping the time-series elements by phase is
to display the general trend of consumption for each resource,
defining the phase. We have the supported hypothesis that each
discovered phase will be characterized by a trend in one or
more resources distinguishable from the other phases. The fact
that usage in some resources does not need to be constant is
covered by the encoding done through the CRBM. The left
hand side images provided in Figure 4 are precisely created to
visually aid distinction among different behaviors in the time-
series. For a detailed visual inspection, Figure 5 contains the
histograms of the different traces across all data, grouped by
R1, . . . , R5. Table IV contains the mean and standard deviation
of the different trace components grouped by R1, . . . , R5. The
following brief description is a simplified textual description
of those behaviors.

• R1 contains trace behavior with high CPU usage and
high variance across all other traces. This pattern may
be observed on the left-hand side workload in Figure 6,
which shows the model detecting phase R1 around time
step 1300, where there is a peak of CPU usage. Table IV
shows that R1 has the highest mean CPU usage.

• R2 is similar to R1, but the Memory usage under R2 is
higher and the CPU usage is slower. Table IV shows that
R2 contains the second highest mean Memory usage.

• R3 detects regions with low Memory usage with low CPU
usage. Table IV shows that R3 contains the lowest mean
Memory usage and the second lowest Net usage.

• R4 contains high Memory, high Net usage. Table IV
shows R4 as containing the highest mean Memory, Net
and Disk usage.

• R5 contains similar behavior to R2 but with lower
resource usage than R2.

C. Exp2: Phase Detection From Workload Traces

It is important to notice that Hadoop stages do not determine
the behavior of the CPU, Memory and Net traces. Figure 6
shows two workloads with different Map, Reduce and Shuffle
stages, containing similar behaviors in the traces for differ-
ent stages. The vertical boxes in the figure show a slice of
“R4” behavior with high Memory and above average Net usage
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Fig. 4. Both Workload A and Workload B contain, on the right hand side, the true traces and predicted regimes. On the left hand side are the traces clustered
by tag to facilitate visual inspection of similar trace behaviors. Red regions/lines mark the “delay” data required to start the encoding.

taking place in two different Hadoop stages (map for workload
1 on the left, and reduce for workload 2 on the right).

The presented methodology is not intended to detect
Hadoop stages as “phases”, but for the same kinds of work-
loads it detects the same phases for the same stages, while for
different workloads, for the same kind of behavior it detects
the Hadoop stages that behave similarly to one another. This
allows us to characterize applications according to sequences
of phases during the execution. As the methodology presented
herein never sees the Hadoop stages, it relies on the provided

resource traces, which makes it extensible to any other appli-
cation and framework.

D. Exp3: Accuracy Analysis Using Hadoop Logs: Mapping
Detecting Phases to MapReduce Phases

The Map-Reduce data used contains several tags at each
time-step. Tags have been used only for evaluation purposes
(not for training the algorithms). We have previously remarked
that Hadoop phases do not determine the resource consump-
tion, as can be seen in Figure 6. Nevertheless, we can make
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TABLE IV
MEAN AND STANDARD DEVIATION OF THE NORMALIZED TRACES UNDER THE DIFFERENT REGIMES

GIVEN BY THE HMM. VALUES IN BOLD ARE THE HIGHEST ACROSS THE COLUMNS

Fig. 5. Histograms for CPU, Memory, Net and Disk normalized traces under
each of the automatically generated phases (or regimes) R1, . . . , R5. The value
0 on the x axis can be interpreted as the mean value of a feature.

an approximate validation of our model by comparing the
predicted phases with the Hadoop phases. Moreover, we can
compare the phases given by the k-means and the HMM in
the learned representation.

The most representative phases of this type of workloads
are the map phase, the reduce phase and the shuffle phase.
We have codified the tags as integer values, which we will
refer to as the true tags. The codification of the true tags has
been performed as follows. Let us consider binary valued vec-
tors (m, s, r) where each index taking value 1 represents that
the data is in a particular state. The use of this form (1, 0, 0)

represents that the data is in a map state, (0, 1, 0) in a shuffle
state and (0, 0, 1) in a reduce state. Any other combination rep-
resents data in a combination of states; for example, (1, 1, 0)

would represent the data being in a map and shuffle phase.
Each possible binary vector has been assigned to an integer, the
equivalent number in binary form. For example, (0, 0, 1) = 1
and (1, 0, 1) = 5.

TABLE V
ACCURACY RESULTS OF THE BEST ALIGNMENT

BETWEEN TRUE AND PREDICTED PHASES

E. Exp4: Finding a Correspondence Between True Phases
and Predicted Phases

To assess numerically the quality of our phases, we find for
each value of k (number of clusters) the correspondence that
most closely matches the predicted phases and the true phases.
That is, we find a matching function f ∗ that maximizes the
accuracy of the predicted phases and the true phases across all
our data. Let Y be the set of sequences containing the correct
phases. Let ly indicate the length of a sequence of phase tags
y ∈ Y. Then, the best matching between the predicted and the
true phases is

f ∗ := arg max
f

∑

y∈Y

ly∑

j=1

1(yj=f (ŷj)) (3)

where f is an injective function from the first k integers to the
total number of true distinct phases. Notice that f has to be
injective, since we do not want to allow naive solutions where
two distinct predicted clusters are aligned to the same “true
cluster”. Results of the best alignments for k ∈ {2, . . . , 7} can
be found in Table V.

Both k-means and HMM models achieve similar results, but
the HMM obtains consistently better accuracy in both train-
ing and test sets across all number of clusters, which shows
that according to this intrinsic evaluation it is a better model
for this type of data. This result is consistent with our prior
knowledge about the model. The HMM hidden states take into
account the previous hidden states when generating a phase
sequence. The k-means is not aware of any time-dependencies
when proposing phases, although the representation that is fed
to the k-means summarizes historical information.

F. Exp5: Validity of Model Across Workloads

Here we present the application of the method for phase
detection results on more heterogeneous non-Hadoop set of
workloads (Spark dataset), to demonstrate that the presented
approach can be applied of different kinds of jobs, such
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Fig. 6. Two different workloads side by side. The vertical boxes mark two different Hadoop stages, a Map and a Reduce stage. One may see that, even
though the Hadoop stages are different, the workload traces are similar. Both show high Memory usage and high Net usage. The predicted regime captures
this resemblance on the workload trace.

as Machine Learning, SQL-query based, usual User Defined
Functions for databases, and Natural Language Processing
workloads.

The goal of this experiment is to validate the methodology
for different workloads. For that purpose, we use dataset B (see
Section V). In this particular case, we used 10GB data scale
samples of the 30 TPCx-BB jobs. For the learning process we
keep the same hyper-parameters from the previous experiment.

Figure 7 shows the phases predicted for three of the new
workloads: a Natural Language Processing (TPCx-BB query
19), an SQL-query based workload (TPCx-BB query 14) and a
Machine Learning workload (TPCx-BB query 20). As it can be
seen, similar to previous experiments different learned regimes
capture characteristic patterns that are consistent along work-
load traces. This set of experiments show that the pipeline can
be used not only in Hadoop traces, but also in other types of
workloads. The results provide learned regimes that match the
differenced behaviors that we would expect when looking at
the workload traces.

G. Discussion on Portability of the Model Across Workloads

A model trained on a specific type of workload might not
be suitable for use on another. This could be because the data

may be quite different in shape as well as in feature ranges.
For example, our experiments used CPU data with values in
the zero to 100 *(number of cores) range. If all the training
data contains workloads executed in a single core machine,
then all the phases will be learned in that range. Therefore, if
a new trace appears taking values outside that range, the model
may give unusable phase results. It is important to determine
the range of the features of the production/test data at which
we aim to apply the method.

H. Exp6: Validating the Method Against a Classical Phase
Detection Benchmark

To further validate the phase detection method, we have
used it to predict phases in human motion data from
Hsu et al. [38], a well known dataset used to validate learning
of multi-dimensional time-series. The data contains time-series
with information concerning humans performing different
movements. The time-series values correspond to measure-
ments of body parts; for example, one of the dimensions of
the data corresponds to the axis-angle rotation of the pelvis
joint. We have prepared a couple of tests involving different
motion styles, to show that the method is able to detect differ-
ent behaviors from different kinds of time-series. Both tests
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Fig. 7. Three different applications and the predicted phases. From left to right: a Natural Language Processing workload, a SQL query and a Machine
Learning Workload. Notice that they also represent a combination of different time-scales, from relatively short jobs in the range of few minutes, to a job
that takes around one hour to complete.

use the original data, which contains 108 features per time
step.

The first experiment illustrates the importance of the learned
representation given by the CRBM. We have taken two
sequences of length 2000 from the dataset, one containing
walking traces and the other jogging traces. We have con-
catenated the sequences to create a single example of length
4000. Then we have trained 30 k-means models (with differ-
ent random initializations); 15 models use the original data and
the other 15 use the processed data by the CRBM. Figure 8
shows the results of the phases given by the 30 models. The
top 6 outcomes correspond to the different results of the
15 k-means trained with the original data. The bottom two
outcomes correspond to the different results of the other 15
models. Notice that while raw data (six top series) produces
inconclusive results, passing data through the CRBM allows
k-means to discover a single stable pattern. The CRBM ver-
sion produces two patterns which are actually the same if we
flip the labels. Moreover, these two solutions match the walk-
ing and the jogging phases with some mixing around time step
3000.

For the second experiment, we have selected four traces
of length 500 containing “walking” at slow/normal speed and
“jogging” at slow/normal speed. Then we have concatenated
the traces to create a single sequence of length 2000. We
trained several times with different random initializations 3
types of pipelines. The first pipeline is a simple k-means using
the original trace. The second pipeline is a CRBM followed

Fig. 8. Results for different random initialization of k-means.

by a k-means. The third pipeline is a CRBM followed by an
HMM.

The first sequence in Figure 9 shows one of the several pos-
sible solutions of the k-means. As in the previous experiment,
the results depend greatly on the random initialization. The
second sequence shows one of the two possible outputs given
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Fig. 9. The lower plot shows the different tags for each of the four concate-
nated multidimensional time-series. The tags are Jogging and Walking. Both
tags contain two different speeds: medium (M) and slow (S).

by the CRBM k-means pipeline (the other is the same with
the labels flipped). The third sequence shows one of the two
solutions given by the CRBM-HMM pipeline (and again the
other is the same with the labels flipped).

We can see that the CRBM-HMM pipeline is able to cor-
rectly differentiate the walking phase from the jogging phase,
with some error around position 1500, where the trace behav-
ior changes from jogging at middle speed to jogging at slow
speed. Nevertheless the CRBM k-means pipeline proposes a
phase that does not match the label.

VII. CONCLUSION

In this work, we present a method for modeling and dis-
covering phases in time-series in an unsupervised way, by
using Conditional Restricted Boltzmann Machines to encode
nv dimensional feature input vectors into nh dimensional vec-
tors, taking the time dimension into account, and feeding them
to Hidden Markov Models. We understand as “phases” periods
of time displaying similar behaviors.

Workload profiling and resource consumption phase detec-
tion are very relevant problems in the areas such as High
Performance Computing and Cloud Computing. For this rea-
son, we validated the approach on a couple of datasets
containing traces from application executions on data-centers:
One dataset containing executions traces of Apache Hadoop
jobs and the other dataset containing Spark jobs. Such a
scenario implies multi-dimensional time-series data, without
either clear labels or clear expert methods for automatically
identifying phases. The proposed approach does not require
feature engineering, so it can be easily automated, thereby
helping decision systems when applications become more
complex. Moreover, we find no reason to consider that this
method can not also be used for other similar scenarios with
time-series.

To verify the validity of the phases, we have presented
some sequential performance data to the model, such as work-
load traces from the ALOJA dataset as a case of use towards
data-center management and application characterization. The
model is able to generate phases that, upon careful examination
on the workload traces, separate different behaviours found in
the telemetry traces. Further, as a known case towards a sanity

check, the Motion dataset used for evaluating time-series. The
proposed approach is able to identify distinct behaviors in both
cases. In the principal case for the workload traces, we are able
to verify that the proposed phases capture different properties
from the workloads, consistently characterizing executions by
resource consumption for different kinds of application. In the
case of the Motion data we are able to show that the pipeline
would differentiate walking from jogging traces.

From the experimental results, we have find that CRBMs
plus clustering algorithms are able to discover phases on differ-
ent workload executions, each one corresponding to a specific
resource usage pattern. Given that one of the used datasets
corresponded to Hadoop executions, we are able to compare
the discovered phases with the different Hadoop stages, with
the observation that different Hadoop workloads have different
behaviors on same phases. This enable us to identify charac-
teristic patterns not only for complete executions, but also for
parts of an execution. This method also allows us to generate
automatically a fingerprint for applications which can be used
to identify them.

We observed that Hidden Markov Models tend to yield
more robust results when compared to k-means, making phase
prediction less sensitive to noise than k-means (e.g., k-means
switch phases back and forth when a resource produces iso-
lated peaks). This behavior is probably a consequence of
the HMM, taking into account previous phase values when
predicting the next phase value.

Further improvements for this work include the addition of
new descriptive variables from the workload traces, describ-
ing the environment where applications are being executed.
Such additions will provide information about the performance
capabilities, allowing us to describe not only execution phases
but also status phases. Furthermore, a window mechanism
could be implemented on the method output to prevent hys-
teresis effects when two candidate phases repeatedly switch
in a brief period of time, thereby providing greater robust-
ness to the solution towards decision-making in application
scheduling. Finally, in scenarios where data is tagged with rel-
evant information, the method can be expanded by adding new
components at the output. For example, supervised learning
methods could be used to classify applications.
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