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Consensus in Distributed SDN Control Plane
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Abstract—Software defined networking (SDN) promises
unprecedented flexibility and ease of network operations. While
flexibility is an important factor when leveraging advantages
of a new technology, critical infrastructure networks also have
stringent requirements on network robustness and control plane
delays. Robustness in the SDN control plane is realized by deploy-
ing multiple distributed controllers, formed into clusters for
durability and fast-failover purposes. However, the effect of the
controller clustering on the total system response time is not
well investigated in current literature. Hence, in this work we
provide a detailed analytical study of the distributed consensus
algorithm RAFT, implemented in OpenDaylight and ONOS SDN
controller platforms. In those controllers, RAFT implements the
data-store replication, leader election after controller failures and
controller state recovery on successful repairs. To evaluate its
performance, we introduce a framework for numerical analysis
of various SDN cluster organizations w.r.t. their response time
and availability metrics. We use Stochastic Activity Networks
for modeling the RAFT operations, failure injection and cluster
recovery processes, and using real-world experiments, we collect
the rate parameters to provide realistic inputs for a representative
cluster recovery model. We also show how a fast rejuvenation
mechanism for the treatment of failures induced by software
errors can minimize the total response time experienced by the
controller clients, while guaranteeing a higher system availability
in the long-term.

Index Terms—Performance analysis, stochastic activity net-
works, SDN, distributed control plane, RAFT, strong consistency,
fault tolerance, smart grid, OpenDaylight, ONOS.

I. INTRODUCTION

A. Background and Problem Statement

IN CRITICAL infrastructure, such as the utility [1], [2] and
automotive [3] domains, resilience of the communication

network is a necessary property and an important criterion
for adopting a new and disruptive network technology such
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as Software Defined Networking (SDN). In single controller
SDN scenarios, unavailability of the controller leads to loss of
control and monitoring channels with the network devices and
hence a system instability. The loss of network control may
further result in production and power outages (smart grid [1])
or even life-threatening scenarios (dependable automotive [3]).

To address the resilience issues, SDN controllers can be log-
ically coupled into controller clusters, where each instance of
the controller, referred to as replica hereafter, is responsible
for managing a number of switches in the network. A partic-
ular controller may exhibit its control only over the switches
to which it is assigned. In order to provide a fallback solu-
tion in case of another controller’s failure, it also keeps track
of the internal state information related to the switches man-
aged by other controllers. When a controller replica fails, a
different controller instance from the same cluster takes over
and resumes operation with some downtime. To keep the
backup replicas up-to-date w.r.t. the internal controller state,
controllers synchronize their state. Depending on the consis-
tency model which defines the ordering of synchronization
messages, the synchronization procedure imposes a varying
overhead on the control channel [4], [5]. The two major con-
troller platforms OpenDaylight [6] and ONOS [7] implement
the strong consistency model, which requires that the update
of a distributed state has been seen by the majority of the
cluster members before it is considered to be committed.

In a strongly consistent cluster, whenever an update request
is initialized by a cluster client at one of the controller repli-
cas, the receiving replica sends out the received request to the
current cluster leader. The leader is the controller instance
that orders all incoming state update requests, so as to allow
for a serialized history of updates and thus operational state
consistency at runtime. Following a state update at the leader,
the update is propagated using a consensus protocol to the
cluster replicas, and is committed to the data-store only after
the majority of replicas have agreed on the update.

A consensus algorithm ensures that all replicas always
decide on the same value (agreement), with the constraint
that only a value proposed by one of the replicas even-
tually becomes accepted after the synchronization proce-
dure (integrity). Google’s Chubby [8] is a distributed locking
service whose state-distribution and failure tolerance mech-
anism are based on a variation of the Paxos consensus
algorithm [9], [10]. OpenDaylight and ONOS implement the
more recent algorithm RAFT [11]. Unlike Paxos, RAFT also
provides for persistent logging and state reconciliation for
recovered replicas.
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In addition to the availability concerns, critical infrastruc-
ture providers often have very stringent requirements on the
experienced control plane delay. For example, the smart grid is
a delay-sensitive infrastructure that requires techniques which
identify and react on any abnormal communication network
changes in a timely manner. If the detection and responses
are not made promptly, the grid may become inefficient or
even unstable and cause further catastrophic failures in the
entire network [2]. Events in the grid may require rapid reac-
tion from the network controller - i.e., rerouting in case of
power grid failures, expedited diagnostics and alarm han-
dling [1]. Furthermore, network management systems in the
5G context can require bounded configuration times when
establishing on-demand network services [4]. However, the
frequently deployed strong consistency model in a clustered
SDN requires that, prior to any operation in the SDN con-
troller cluster, a cluster-wide synchronization must occur. The
response time of such a control plane is hence dependent on
parameters such as the cluster size, controller placement, pro-
cessing delays in different system components and the failure
vectors.

The clustered SDN controller solutions require estimations
of the worst-case response times and the expected availability
for arbitrary sets of configurations, before their deployment
can be considered in critical infrastructure networks. To our
best knowledge, no prior work has investigated these issues.
Hence, we fill the gap with an appropriate analytical study.

In the remainder of the introductory section, we give an
overview of our contributions. In Section II, we describe the
assumed multi-controller SDN architecture from the system
perspective. In the same section we specify the technique
of Stochastic Activity Networks-based (SAN) modeling and
outline the consensus algorithm RAFT. In Section III we
introduce and explain in detail the proposed SAN models for
response time, controller failure injection and cluster recovery
modeling. In Section IV we explain the evaluation methods
and parametrizations used to compute the results presented in
Section V. In Section VI we present existing work in the field
of distributed SDN control plane and consensus algorithms.
Section VII concludes the paper.

B. Our Contribution

In this paper, we present a system model of a distributed
SDN control plane that leverages the Stochastic Activity
Networks (SAN) modeling framework for the estimation of
cluster response time and availability measures. Our SANs
comprise the detailed sub-models of the RAFT consensus
algorithm, cluster failure and recovery. We also define the
parametrizations (studies) for different cluster configurations
in order to evaluate the introduced models. We further evalu-
ate a steady-state configuration of the distributed SDN control
plane using long-term failure rates for SDN controllers at sub-
module, process and hardware level, and short-term response
times experienced after immediate controller failures.

By assuming reliable event delivery and bounded network,
application and data-store commit delays, we can provide
stochastic delay guarantees for response handling times in

TABLE I
NOTATION USED IN SECTIONS II AND III. THE REMAINING MODEL

PARAMETERS ARE SPECIFIED IN TABLE II

non-failure, partial-failure and cluster-majority failure states.
Failures are modeled as stochastic arrival processes for long-
term, and deterministic occurrences for worst-case evaluations.
As per the nature of the modeled consensus algorithm RAFT,
the recovery process too is a combination of stochastic and
deterministic message and timeout delays. We further intro-
duce an enhancement to the current controller platforms for
enabling a fast recovery of controller bundles and processes.
We evaluate its benefits w.r.t. to the total expected response
time and cluster availability using the developed model. Our
SAN models are compiled into Continuous Time Markov
Chain (CTMC) state spaces. In contrast to existing works on
consensus algorithms that derive their performance analysis
from experiments, we provide analytical guarantees. To this
end, our numerical solutions cover the space of all possible
state combinations which an SDN cluster may be in.

II. SYSTEM MODEL, SAN PERFORMABILITY MODELING

AND THE RAFT CONSENSUS ALGORITHM

In this section, we introduce the assumed system model
that comprises the forwarding devices, multiple SDN con-
trollers for redundancy and controller clients. We then outline
the background on the formal concepts used in our modeling
and discuss the evaluated RAFT consensus algorithm in more
detail. The notation used henceforth is presented in Table I.

A. Generic System Model

We assume a set of C SDN controllers, collected in a single
cluster and deployed for the purpose of achieving fault-tolerant
operation [5]. Fig. 1 depicts a deployment of the redundant
control- and data planes in an exemplary industrial SDN net-
work. Control plane redundancy is realized by running C = 3
controllers simultaneously, and a number of disjoint paths in
between them for fail-over purposes in case of link and node
outages. In general, a deployment of C = 2 ∗ F + 1 con-
trollers tolerates a maximum of F controller failures before
the SDN cluster becomes unavailable. Thus, in Fig. 1 only a
single controller failure is tolerated before the cluster stops to
serve the clients’ requests (consult the explanation below). The
clients of the controllers, such as the network administrators,
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Fig. 1. An exemplary industrial SDN with redundant paths for majority of
controller-to-controller and controller-to-switch connections. The SDN con-
trollers execute the RAFT [14] agents, responsible for per-state-shard state
synchronization, leader election and cluster recovery after individual replica
failures. Red dashed lines represent the RAFT session exchanges between
the SDN controller replicas, blue dashed lines are the “client” connections
(switch-controllers, northbound interface client-controllers).

switches, network appliances and end-hosts, can trigger con-
troller events that lead to a cluster-wide state synchronization
and subsequent event processing in the cluster leader. Clients
communicate their requests (i.e., Remote Procedure Calls,
state updates, topology events etc.) to any live replica that is
a member of the SDN cluster. The replica then contacts their
current cluster leader to serialize (order) the request, which
in return distributes the request to other replicas, commits the
request and executes its local state machine (in zero-failure
case). The replica is then notified of the result of the request
execution and can respond to the client with an application
response. In the case of a leader failure during the request
processing, a new leader is elected by executing a consensus
algorithm and the synchronization process is re-initiated.

The limitation of supporting only F failures when 2 ∗ F + 1
replicas are deployed relates to the CAP theorem [12]. This
theorem states that any distributed system can provide a
maximum of two of the following three system properties
at the same time: consistency, availability and partition-
tolerance (CAP). Consensus algorithms such as RAFT [11]
and Paxos [9], [13] favor consistency and partition-tolerance
properties, and are able to forward their state consistently even
in the face of network partitions. A consistent operation of a
controller cluster ensures that the majority of controllers will
have the same controller state at any given time, and that no
two conflicting state updates are ever successfully committed
to the shared update history. Hence, controllers are in consen-
sus with regards to their state. Consistent and partition-tolerant
operation, however, comes at the cost of a lower availability,
since consistent operation in the face of network partitions can
only be guaranteed by disabling the operation of a partitioned
cluster minority while the majority continues to operate. In
the remainder of the paper we take this limitation into account
and consider the system as available only when the majority
of controller nodes are available and are mutually reachable.

In state of the art controller platform implementations with
a strong consistency model [6], [7], network configuration
requests facilitate a number of state changes and inter-
controller synchronization steps before coming to a consensus
in decision and actual execution of the configuration change.
For example, assuming an SDN module that subscribes and

reacts to topology changes (e.g., raises alarms to an adminis-
trator in case of link failures), the topology change would first
need to be committed across the majority of controllers, before
the subscribed SDN module could be notified of the com-
mitted change and execute the reaction. The duration of this
process obviously depends on the cluster size, the availability
of controllers and the controller-to-controller delays.

In the following subsections we describe the SAN frame-
work we use for modeling of the distributed SDN control
plane. We give an overview of the RAFT consensus algorithm
responsible for state synchronization, cluster leader election
and state recovery after failures.

B. Stochastic Activity Networks

In contrast to previously published methods on the evalu-
ation that provides a mean to evaluate an existing product or
deployment, e.g., by using measurement techniques, deductive
analysis allows for a system evaluation before the system is
actually deployed. Hence, significant savings can be achieved
if the deductive solutions are able to accurately predict the
real-world behavior of the future non-implemented system or
system extensions. With this in mind, contrary to the previ-
ously published methods on evaluation of the distributed SDN
control plane, which base their analysis on a limited number
of physical cluster configurations [15], [16], we opt for the
flexible and economical deductive solution.

Discrete-event simulation is, for example, partially applica-
ble to our problem. Simulation allows for a tunable quality
of the results by repeating execution of a given model and
derivation of the relevant output measures. However, the sim-
ulation methodology may not handle corner cases, which are
numerous in a consensus algorithm such as RAFT.

Another class of deductive analysis methods are the analytic
numerical methods, which are suitable when a closed-form
solution is not obtainable. Analytic numerical solvers allow
for an accurate evaluation of each system state configuration.
For this purpose, they require a manually or automatically gen-
erated model state space as an input. The additional overhead
of the state space generation, as well as the inclusion of each
state in the solution, generally leads to a higher computational
effort compared to simulation. Furthermore, the generation of
the state space may lead to a state explosion problem and
infeasible solving times. Therefore, we dedicate Section V-C
to specifically discuss the scalability of our models. Instead
of the manual state modeling, we automate the model gen-
eration process and hence avoid the issue of largeness [17]
of the resulting state space. For the purpose of the automated
model generation, we use the Stochastic Activity Networks
(SANs), one of the most prominent representatives of model
generation frameworks. We choose specifically SANs over
similar techniques, such as Generalized Stochastic Petri Nets
and Stochastic Reward Nets because of its practical extensions
for the inhibition of state transitions, as well as the flexible
predicate assignment to the gate abstractions (see below).

SANs are an extension of Petri Nets (PN) and an established
graphical language for describing the system behavior. SANs
have been successfully used in survivability and performability
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studies of critical infrastructures [18], industrial control sys-
tems [19] and telecommunication systems [20] since the late
1980s. We provide a brief summary of the most impor-
tant SAN concepts used in our modeling here, and refer
the more interested reader to comprehensive descriptions
in [17] and [21].

A SAN consists of places, activities, input gates and output
gates. Similar to PNs, places have a certain token assign-
ment associated with them. Every unique assignment of tokens
across the places uniquely defines a state of the SAN. These
states are called markings. In Markov Chain analogy, a sin-
gle marking represents a unique state of a Markov Chain. An
activity element of a SAN defines a transition with the corre-
sponding transition rates, and allows for controlling the flow
of tokens from a single SAN place into a different SAN place.
Furthermore, an activity allows for connecting a place to an
output gate where, on transition of a token from a place to
an output gate, a sequence of actions can be taken - e.g., “if
the number of tokens in place A > n → increment the num-
ber of tokens in place B by m”. Hence, compact state changes
(and a large number of unique markings) triggered by a par-
ticular transition may be modeled using a smaller number of
modeling elements, compared to a traditional Markov Chain.

When an activity fires, a number of tokens are removed
from the source place and transferred to a destination place
connected by the activity. An input gate serves as an inhibitor
of an associated activity. It specifies a boolean predicate which,
when evaluated true, enables an activity and allows the firing
of the activity. If the inhibitor evaluates false, the associated
activity is disabled. An instantaneous activity is enabled at all
times, and will fire whenever there are tokens available in its
input place. A timed activity, on the other hand, is assigned a
time distribution function which specifies the firing rate of a
specific activity. In our model, for timed activities we assign
the deterministic (Erlang-approximated) and exponential firing
rates, but also specify instantaneous activities where necessary.
An activity may further lead to a token transfer from a source
place to one of multiple destination places. This uncertainty
is modeled using a case definition for each destination state,
where each case is assigned a probability parameter.

To solve the SAN, it must first be transformed into a
discrete-state stochastic process [17]. We make use of the
flat state space generator implemented in the Möbius mod-
eling tool [22], to generate the Continuous Time Markov
Chain (CTMC) state space inherent to the evaluated SAN.
To derive instantaneous state probabilities of a CTMC, the
transient solver of Möbius implements the uniformization
method [17], [23]. In short, using uniformization, the transient
state probability vector π(t) of the CTMC can be expressed
in terms of a one-step probability matrix of a Discrete Time
Markov Chain (DTMC), so that all state transitions of a result-
ing DTMC occur with a uniform rate q. As a result of the
transformation, the desired state probability vector π(t) at time
t is governed by a Poisson variable qt and can be expressed
as follows:

π(t) ≈
i=r∑

i=l

v(i)e−qt (qt)i

i!
where v(0) = π(0) (1)

where v(i) represents an iteratively computed DTMC state
probability vector at step i. Lower and upper bounds, l and r,
govern the number of iterations required to compute the state
probability vector with an overall error tolerance of ε = εl+εr

and truncation points l and r, respectively.

C. Case Study: RAFT Consensus Algorithm

RAFT is a distributed consensus algorithm that provides
safe and ordered updates in a system comprised of multiple
running replicas. RAFT is the only consensus algorithm imple-
mentation in the two prominent open-source SDN controller
platforms OpenDaylight [6] and ONOS [7]. It tries to solve the
issues of understandability of the previous de-facto standard
consensus algorithm Multi-Paxos [9], and additionally stan-
dardizes an implementation of leader election and post-failure
replica recovery operations. A comprehensive description of
the algorithm can be found in [11] and [14].

A RAFT cluster comprises leader, follower and candidate
replica roles. The leader is the node that parses and distributes
incoming client updates (i.e., reads, writes, no-ops) to RAFT
followers and ensures safe commits. The majority of clus-
ter followers must confirm the acceptance of a new update
before the leader and the followers may commit the update
in the local commit log. Only after the update is commit-
ted, the SDN applications built on top of a RAFT agent can
continue their processing. After the application has computed
the operation related to state update, a response is forwarded
to a client (e.g., a switch or network management system).
RAFT guarantees that the applied state updates are eventu-
ally committed in every available replica in the cluster in the
right order. Furthermore, each update is applied exactly once,
hence enabling linearizable semantics [14] when operating
with the controller state. In the case of a leader failure, after an
expiration of an internal follower timeout, the remaining fol-
lowers automatically switch to a candidate role. A candidate
is an active replica which offers to become the new cluster
leader. To do so, it propagates its candidate status to the other
available replicas. If a majority of nodes vote for the same
candidate, this candidate node becomes the new leader.

Updates in RAFT require a single-round trip delay between
the leader and the preferred follower majority (the fastest to
reach followers). When a controller failure occurs, depending
on the role of the failed replica, additional delay overhead is
imposed. Failures in the RAFT leader during the processing
of a particular update lead to a new leader election after an
expired election timeout. After an exceeded client timeout, the
client retries its request. If instead of the leader a follower
had failed, depending on the follower’s type and the number
of active followers, we distinguish three scenarios:

• Failure of a follower that is not a member of the preferred
follower majority results in no additional imposed delays
between the leader and the cluster majority.

• Failure of a follower that is a member of the preferred fol-
lower majority leads to the RAFT leader having to include
an additional “slower” follower in the preferred follower
majority. This, in return, may negatively affect the update
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Fig. 2. A simplified lifecycle schema of a replica inside the RAFT cluster.
Adapted from [14] and extended for the purpose of detailed modeling.

commit times depending on the follower’s placement and
its distance to the RAFT leader.

• Failure of any follower that comprises the follower set,
with no backup followers available (stand-by RAFT
members), necessarily leads to the cluster unavailabil-
ity. The client update requests that were not successfully
committed must be repeated by the client.

After a successful recovery of the majority of the RAFT
members and the re-election of a new leader, RAFT is able
to forward its state and commit new updates. Depending on
the failure source and the repair time, as well as on the
RAFT recovery parameters (candidate and election timeout),
the recovery takes a non-deterministic period to finish.

Fig. 2 gives a high-level overview of the states a cluster
replica may traverse throughout its lifecycle. We present the
more detailed structural and behavioral models of RAFT in
zero- and multiple-failure cases in Section III. Section IV
details the timing variables used in our parametrization of
RAFT.

III. SAN MODELS

In this section, we present the SAN models for response
time, failure and recovery processes in the context of a RAFT-
enabled SDN control plane. We represent places as blue
circles, timed activities as thick blue vertical bars, instanta-
neous activities as thin blue vertical bars, and input and output
gates as thick red and black arrows, respectively.

A. RAFT End-to-End Delay SAN Model

The distributed SDN control plane model assumes C con-
trollers connected in a RAFT cluster, hosting one or multiple
SDN applications (referred to as bundles) that react to asyn-
chronous client events. The client device is external to the
SDN controller (e.g., an OpenFlow switch or a northbound
interface consumer). The client sporadically generates events,
such as flow requests or switch notifications which neces-
sitate data-store updates and its subsequent synchronization.
The client delivers these events in asynchronous and reliable
manner to the replicas in the cluster for processing. After the

controller cluster finishes the event processing, the client is
notified of the result. The SAN in Fig. 3 depicts this process.

The place IdleState models the initial system state
where no events are queued for internal processing. Following
a new event arrival at any of the RAFT replicas, the receiv-
ing replica is tasked with the propagation of the new event
to the current RAFT leader. New event arrivals increment
the token amount in the state EventQueuedForLeader,
where events are queued until a leader controller replica
becomes elected in the cluster. The input gates enumerated
LeaderAndMajorityUp# ensure that the transmission of
the event to the RAFT leader or replicas, as well as the
intermediate processing inside the cluster happens only in the
case where both the RAFT leader and the follower major-
ity are up and available in the cluster. Propagation of the
event from the furthest-away replica to the leader is mod-
eled by the activity delayToLeader using a deterministic
worst-case delay metric TR = TMworst (see below). On a
received event, the leader initiates the propagation of the
respective data-store state update to its followers. The delays
induced by the activities delayToMajorityFollowers
and delayFromMajorityToLeader correspond, in the
best-case to the leader-to-(preferred)-majority delay TMbest . In
the worst-case, to contact the follower majority, the leader
needs to contact the follower furthest away from it and hence
induce the worst-case uni-directional network delay TMworst .
Thus, the delay between the RAFT leader and the follower
majority is governed by the number of failed followers. We
model the non-constant leader-follower majority delay TM as
detailed below. When the follower majority has acknowledged
the state update, the leader continues committing the data-
store change locally, and the system eventually reaches the
CommitDone state. To prevent the leader from broadcast-
ing multiple unacknowledged updates, we ensure the input
gate DisableConcurrentUpdates enables the transition
delayToMajorityFollowers if and only if the distribu-
tion states of RAFT do not contain any outstanding tokens (no
synchronization in progress).

Alternatively, in the case of at least one replica that
necessarily comprises the cluster majority lags behind the
RAFT leader in terms of its commit log (see Section II-C),
the leader enforces additional steps in order to synchronize
the cluster majority with its local view. To this end, the
activity majorFollowerNotUpToDate fires and a token
is incremented in the place BringFollowersUpToDate.
The lagging followers are thus assigned the Follower
(Lagging) node status (depicted in Fig. 2). For each RAFT
term state that is missing in the lagging follower, an addi-
tional round-trip delay in the critical path between the leader
and replica is induced, hence adding 2 ∗ RM ∗ TM to the
overall delay, where RM is the maximum number of miss-
ing RAFT terms in the follower. This delay is imposed in
the definition of the activity lateBringUpToDateNodes.
To govern the activation of the instantaneous activity
majorFollowerNotUpToDate we make use of a state-
ful counter CounterFailures that is incremented on each
new logged replica failure (refer to Section III-B). We con-
sider the worst-case and hence assume that at any time after
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Fig. 3. The RAFT response time model depicting the sub-processes of: the receival of a client event at a follower proxy-replica; the event propagation
to the RAFT leader; the event propagation from the leader to the follower majority; the data-store commit of the client event and its subsequent processing in the
SDN application; and ultimately the propagation of the SDN application’s response from leader, through the proxy-replica, to client. Detecting a failure of the
RAFT follower majority or leader leads to the restart of the event handling process, starting at the place EventQueuedForLeader - but only after an added
deterministic delay of client timeout (see Table II). Furthermore, the extended sub-process of AppendEntries RPC, necessary to reconcile the RAFT followers
that lag behind the current RAFT leader in terms of their state, is included in the lower right part of the critical path (state BringFollowersUpToDate).

�(C − 1)/2� + 1 replica nodes have been disabled, out-of-
date replicas are automatically present in the majority of the
follower nodes required to confirm a leader update. Hence,
we infer the additional overhead of updating the lagging
nodes in the replica majority. The flag to enable the activity
majorFollowerNotUpToDate is cleared after the recon-
ciliation (as a side configuration of the gate resetCounter).

Following an applied data-store commit in the majority of
replicas, the leader commits the state locally and the SDN
application gets notified of the data-store event. The data-
store commit and the SDN application’s processing delay are
induced during the activity applyCommit and are modeled
as TC and TA in Table II, respectively. After the application has
completed its processing (system state ApplicationDone),
the leader notifies the replica that initially generated the update
event (thus adding once-more TR to the overall worst-case
delay), and the replica further forwards its response to the
client (thus adding TCR which is the client-replica delay). The
system then finally reaches the stable state SequenceEnd,
where the event is marked as successfully processed. In
case of a failure occurrence in the leader or follower major-
ity during the event processing, the activities named CH#
lead to a token being shifted from the current SAN place
to the EventQueuedForLeader place, using the output
gate increment action modeled by OGF#. Hence, the event
distribution procedure restarts as soon as the cluster is re-
established. The delay until a critical failure occurrence of
the leader or the follower majority is noticed by the client is
modeled using the client timeout TCL.

As previously noted, the delay from the RAFT leader to
the furthest-away replica from the follower majority will vary
depending on the availability and proximity of followers w.r.t.
the current cluster leader. We annotate the leader-majority
followers delay as TM . Assuming a deployment of C con-
troller nodes and a single leader L at any time, the set

SL = {DR1, DR2 . . . DR�C/2� } contains the maximum bounded
delays between the leader L and �C/2� follower nodes closest
to L w.r.t. delay between controller L and each of the avail-
able followers RI . Hence, we define the delay between leader
L and the follower majority as the delay between L and the
farthest follower in the majority TM = max{SL}.

To emphasize the effect of a failed preferred-follower con-
troller on the response time, in our exemplary evaluation, we
scale the delay value to contact the followers majority lin-
early with the number of currently available followers using a
scaling factor SF so that:

TM =
{

SF ∗ TMbest when Fup ≥ �C/2�
undefined otherwise

For the evaluation purposes we model the SF as a function
of the current marking of SAN so that SF = C−1

Fup
and thus:

TM =
{

C−1
Fup

∗ TMbest when Fup ≥ �C/2�
undefined otherwise

where Fup represents the number of currently available follow-
ers. In the best case where all nodes are up, the leader-majority
delay equals TMbest . In the worst case, the controller-majority
delay peaks at TMworst = TR = 2 ∗ TMbest when only �C/2� + 1
controller nodes (including the leader) are active.

Using a fixed scaling factor is an exemplary and non-optimal
representation, as the exact worst-case leader-majority delay is
equal to the delay between the leader and the farthest away
follower in the current follower majority, and hence neces-
sitates knowing the exact bounded delays between each two
SDN controllers in the network. We omit this level of model
granularity as the required parameters would require popula-
tion from an engineered network topology, and would further
rely on the optimality of the used controller placement tech-
nique. Nevertheless, the SAN model proposed here can be
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extended to take an arbitrary set of controller-to-controller
delay parameters with little effort.

Data-store sharding: The data-store of an SDN controller
(e.g., OpenDaylight) is shared into an arbitrary amount of data
shards at a flexible granularity (e.g., data shard for topology or
flow state). Separate RAFT sessions are responsible for each
data shard. We assume that all data shards are available on
all SDN controller replicas. Hence, each available controller
is an active member of each per-shard RAFT session. RAFT
can handle the updates of different data shards concurrently
and in isolation. This enhances the overall throughput of the
system as multiple asynchronous updates to different shards
are parallelized and executed in a non-blocking manner.

Batching of the data-store updates and latency considera-
tions: We assume that the clients specify their updates that
modify a shard either as a single state update or as a batch
of updates [24] for maximized throughput and minimized
response time. Thus, the worst-case occurs when the update or
a batch of concurrent updates is exchanged in a single frame
across the cluster and the majority of the cluster members fail
before the updates are committed successfully. If a new update
arrives during the processing of another update of the same
shard and a leader fails, we assume that the client updates are
in the worst-case batched with the previous non-committed
updates and are transferred in one round after the cluster has
recovered. This model is fitting for handling real-time events
(e.g., alarms) that should preferably never get queued.

B. Cluster Failure SAN Model

To evaluate the performance of the SDN distributed con-
trol plane and RAFT in the face of failures, we introduce
a dedicated failure model. For general long-term considera-
tions, we distinguish between hardware and software failures
with failure rates λFH and λFS , respectively. All specified non-
deterministic timeouts, failure and repair rates in our model
follow a negative exponential distribution. For software fail-
ures, we distinguish failures at the application bundle (i.e.,
an OSGI bundle in ONOS [7] and OpenDaylight [6] con-
trollers) and process level failures. Similarly, repair rates are
distinguished correspondingly as specified in Table II.

The SAN failure model is depicted in Fig. 4. The place
NodesUp contains the total number of available controllers
(nodes that are up, but not necessarily assigned a RAFT mem-
ber role). Depending on the failure type (at hardware, process
or bundle level), after an occurrence of a failure, a token is
placed into the respective NodesDown place. Furthermore,
each firing of a failure activity triggers a token addition
in the place NodeDownSelectFailure and results in
a subsequent evaluation in the instantaneous case activity
failureSelectRole. We distinguish between the safe-
follower (FSf ), follower-majority (FMj) and leader failures
(FLdr), with the following probabilities:

P(FSf ) =
{

Fup
Fup+1 when Fup ≥ 	(C − 1)/2 + 1
 ∧ Lup > 0

0 otherwise

P(FMj) =
{

1 when Fup < 	(C − 1)/2 + 1
 ∨ Lup == 0
0 otherwise

Fig. 4. The SAN model of the failure processes includes the long-term fail-
ure rates (Hw_F, Process_F and Bundle_F) and the controlled failure
injection (Inj_Hw_F, Inj_Process_F and Inj_Bundle_F). The fail-
ure type is decided based on a random selection process (bottom-left), and its
severity is a function of the current system state (bottom-right).

P(FLdr) =
{

1
Fup+1 when Fup ≥ 	(C − 1)/2 + 1
 ∧ Lup > 0

0 otherwise

where Fup and Lup are the counters of tokens in places
FollowersUp and LeaderUp before the failure occur-
rence, respectively. Failure of the follower-majority FMj, or
a leader failure FLdr during the event handling in controller,
results in a client timeout and subsequent restart of the event
handling process. On the other hand, failure FSf does not affect
the cluster availability as the reorganization of a stable cluster
majority is still possible with the remaining nodes, albeit with
an added delay (as per the definition of TM).

In order to observe the response time during and shortly
after the failure, we also model a procedure for controlled
failure injection of single and multiple-correlated transient
controller failures and observe the system performance over
a short-term time range at millisecond granularity. The cor-
related failures are modeled as bursty and may occur concur-
rently. In the past, correlated failures have been investigated in
the context of distributed systems [25], and represent a flexible
method to consider chained failure propagation, i.e., resulting
from a malfunctioning replicated SDN application. The fail-
ure injection process is depicted in the upper left part of the
SAN shown in Fig. 4. The place BurstyFailureTokens
initially holds a number of tokens corresponding to the num-
ber of simultaneous bursty failure injections. The activity
selectFailureType governs the probability distributions
for encountering a particular type of node failure.

As will be shown in Section V-A, in our response time
evaluation we distinguish the scenarios of mixed hardware and
software failure injection, as well as the single and multiple-
correlated failure injections at the granular level of controller
bundle, controller process or hardware.

Critical data plane failures: In a DTMC, the probability
of occurrence of an SDN controller element failure Fc or a
critical data plane element failure Fd corresponds to:

P(Fc ∩ Fd) = P(Fc) + P(Fd) − P(Fc ∪ Fd) (2)

In the continuous time domain, failure arrivals for the crit-
ical data plane elements that carry the controller-to-controller
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Fig. 5. The RAFT recovery SAN model depicts the inclusion of a previously
unavailable controller replica into the cluster. Depending on the current state,
the replica may become either the new RAFT leader or a follower. Duration
of the recovery process will affect the resulting event response time and the
cluster availability if the recovering replica is needed to establish a follower-
majority and elect a new RAFT leader.

flows, and failure arrivals for the SDN controller elements can
be represented as two independent Poisson processes Nd(t) and
Nc(t) with the unique firing rates λd and λc, respectively. Since
the two processes are independent, they also have independent
increments. Therefore, critical failure arrivals associated with
the summed process Nt(t) = Nd(t) + Nc(t) can be modeled
using the rate λt = λd + λc.

The failure rates for the critical data plane paths which carry
the network control flows can be embedded in the parametriza-
tion of our models without an additional modeling overhead
(see Table II). However, in this work we primarily focus
on studying the control plane consensus for the use case of
a highly redundant industrial network [26], [27]. Thus, we
intentionally decouple our work from the data plane reliability
studies and assume the reliable parametrization 1/λd = ∞.

C. RAFT Recovery SAN Model

The RAFT recovery SAN model in Fig. 5 depicts the
process of re-inclusion of a previously disabled controller
replica in the RAFT cluster. The place InitElectionPool
holds a token for each running controller replica that is
available but still needs to be admitted in the cluster. As
per RAFT design, the replica expects the RAFT leader of
the current term to announce its presence using a leader
heartbeat. If a leader is identified before the follower time-
out expires, the replica takes upon the follower role and a
token is assigned to the place AnnounceFollowerRole.
Alternatively, the replica switches to the candidate role (place
AnnounceCandidateRole). Three cases are now possi-
ble, each adding its specific delay to the overall response
time:

1) If the cluster majority is up (≥ �C/2�+1) and the repli-
cas acknowledge the candidate as a new leader before
the expiration of the candidate timeout, the candidate is
elected as the leader (output gate setLeaderUp). The
announcement of the candidate role from the candidate
to the cluster majority takes an additional round trip.

2) If another leader is identified while the replica
is in the candidate state, the candidate replica
becomes a follower and a token moves from
the AnnounceCandidateRole place to the
setNewFollowerUp output gate.

3) If the cluster majority sends no acknowledgment to the
candidate nodes during the candidate timeout (occurs
whenever a total of �(C/2)�+1 replicas are still down),

Fig. 6. Comparison of experimentally observed and modeled RAFT per-
formance with clusters of various sizes. Represented are the CDFs of
per-cluster-configuration measurements, with each measurement encompass-
ing 1000 sequential write operations. The observed delay considers a fixed
single-hop packet latency of 5ms in between the RAFT leader and replicas, as
well as a 1ms data-store commit time in the RAFT leader and replica major-
ity. Client and application delays were not considered in this experiment. The
measurements were taken in a zero-failure state of the RAFT cluster and
should serve as an initial indicator of the response time model fitness.

the candidate waits for the timeout to expire and then
repeats the candidate procedure.

If the replica becomes a RAFT leader, a token is assigned
to the LeaderUp place (previously empty), alternatively the
token is assigned to the place FollowersUp. In both cases,
the NodesUp token counter is incremented by 1.

IV. EVALUATION

A. Model Parametrization Using a RAFT Experiment

To evaluate the general fitness of our response time model,
we first compare the proposed model against an experimental
RAFT setup in a zero-failure scenario. For this purpose, we
implement a RAFT agent and deploy multiple copies thereof
in a RAFT cluster. For the RAFT backend implementation, we
use the open-source Java library libraft.1 The cluster was orga-
nized so that the controller nodes, acting as RAFT agents, were
reachable in an any-to-any manner over a single-hop Open
vSwitch instance. We configured the Open vSwitch to inject a
constant symmetrical delay of 5ms on each egress port and we
then used this value as a deterministic base leader-follower-
majority delay TM in the model parametrization. Furthermore,
based on the raftlib performance observations, we modeled the
commit delay parameter TA as an exponentially distributed
delay with a mean of 1ms. The resulting modeled response
time and the comparison with the experimental results for dif-
ferent controller cluster sizes are depicted in Fig. 6. As can
be noted, our model predicts the expected performance well.
To reflect the stochastic performance guarantees when replica
failures are concerned, we resort to using only SAN-based
analytical modeling for most accurate approximations.

B. Fast Recovery Mechanism for Bundles and Processes

In contrast to evaluating the system with purely
fixed software repair rates, as was done in relevant
past studies [28], [29], we utilize a recovery model
that reflects much closer the actual state-of-the-art SDN

1libraft - Raft Distributed Consensus Protocol in Java: https://libraft.io.
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controller implementations. We further propose an optimiza-
tion to enhance upon the standard repair time in the face of
controller failures. We assume a watchdog-like mechanism
implementation that monitors the critical controller compo-
nents’ health and correctness. The watchdog can monitor
both the granular SDN controller applications (bundles) and
the actual controller process (that comprises many bundles).
Whenever a bundle or a process fails, we assume an imme-
diate scheduling of a rejuvenation procedure that repairs the
affected software component.

Realization: While there may exist various designs to real-
ize a watchdog functionality for the purpose of monitoring
the liveness of a software or hardware component, we opted
to implement the watchdog as a software-agent external to
the OSGi container hosting the SDN controller bundles. We
deployed the watchdog agent on the same host machine as
the monitored SDN controller instance. Following a successful
start-up of both the watchdog and the SDN controller pro-
cesses, the watchdog establishes a connection to the OSGi
environment hosting different controller bundles. We make
use of the Apache Karaf’s2 Remoting mechanism to allow for
remote connections to a running Karaf instance.

Our agent periodically polls the status of a bundle’s lifecycle
and discovers that the bundle is in one of the following UP
states: {INSTALLED, STARTING, ACTIVE}; or DOWN states:
{UNINSTALLED, STOPPING, RESOLVED}. Upon discovery
of a bundle that is in a DOWN-state, the agent schedules a
bundle:start-transition for the affected bundle, in order to get
it up and running in an UP-state. In the case of an unsuccessful
remote connection to Karaf, the watchdog evaluates the current
list of processes for false positives and, if a missing Karaf
process is detected, it schedules an immediate restart of Karaf.

The watchdog process could also be executed externally to
the machine running the SDN controller. Hence, while not con-
sidered in our evaluation, the same mechanism can be applied
to schedule physical or VM reboots in case of a hardware or
hypervisor failure. On the other hand, hardware or hypervisor
issues may be a sign of misconfigurations or recurring defects
whose source should be diagnosed manually.

To collect the accurate real-world repair rates for controller
bundles and processes, we have used our watchdog agent
implementation to evaluate the bundle and process reboot
times in a clustered OpenDaylight (ODL) setup. We had
experimentally injected bundle- and process-critical failures
in sequence and then measured the subsequent recovery time
required to re-stabilize the system. The distinguished mean
bundle and software process repair times, measured during the
controlled rejuvenation of the critical RAFT component sal-
distributed-datastore and the ODL’s controller process, ticked
at 182.9ms and 26.9s respectively, far below the 3 minute
recovery intervals previously proposed in [28] and [30]. The
measured recovery time purposely does not include the time
needed to re-include the recovered node in the RAFT cluster,
since this is modeled as a separate non-deterministic process in
our SANs. The bundle and process reboots took place inside

2Apache Karaf - an OSGi distribution offered by the Apache Software
Foundation based on Apache Felix - https://karaf.apache.org.

TABLE II
SAN MODEL PARAMETERS USED IN OUR SOLUTIONS

a dedicated ODL VM that was part of a bigger ODL con-
troller cluster, virtualized on a modern Intel Xeon-based server,
with each of the ODL VMs assigned 4 vCores and 8 GB of
DDR4 memory. ODL was loading the OSGi bundles available
in the OpenFlowPlugin and Controller projects and had the
Clustering component enabled.

C. On Parameter Selection

To evaluate the expected response time metrics of vari-
ous cluster configurations, we vary the SDN cluster size and
hence the number of controller replicas that take part in the
RAFT algorithm as per Table II. The generalized long-term
software and hardware failure rates, as well as the hardware
repair rates are taken from Liu et al. [29]. As discussed in
Section III-B, to allow for granular worst-case response time
analysis, we model single and correlated failure injections
with varying number of failures, where following a failure,
a replica is temporarily excluded from the cluster until recov-
ered. To depict the benefits of failure source differentiation
and the proposed watchdog mechanism, we distinguish mixed
and software-only failures, and vary the number of failure
injections between 1 and �C/2�+1 (majority nodes down) con-
troller failures. The fact that the process of uniformization may
only be applied to exponentially distributed transition rates
makes our estimations slightly pessimistic. Thus at the cost of
the generated Continuous Time Markov Chain (CTMC) state
size and required solving time, we approximate every deter-
ministic message delay and timeout and minimize the total
distribution variance using a 20-stage Erlang distribution.

V. RESULTS OF OUR ANALYTICAL EVALUATION

In this section, we present the results of the analytical eval-
uations for various SDN cluster sizes and arbitrary numbers of
injected failures. We emphasize the benefits of a fast recovery
mechanism for the experienced worst-case response time of
an SDN cluster prone to software failures, and visualize its
advantages for the long-term system availability. Finally, we
discuss the complexity properties of our approach.
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Fig. 7. Varying probability of an event being successfully handled in a given
time period t for different SDN controller cluster sizes C. The probability of
the RAFT leader failing is inversely proportional to the cluster size.

A. Response Time Analysis

When a single random-role controller from the SDN cluster
fails as a result of a hardware, process or bundle failure (each
being equally probable), deploying a larger number of SDN
controller replicas ensures an overall lower expected response
time (see Fig. 7). This is related to the probability of a leader
being injected with a failure, hence necessitating a leader re-
election to move forward the state. The probability of a leader
failure becomes increasingly lower when larger clusters are
deployed (as explained in Section III-B).

Next, we evaluate the probability of meeting an event han-
dling deadline when the majority of nodes in the cluster have
failed. The expected response times where mixed hardware and
software failures, as well as exclusively bundle-level failures
may occur, are depicted with and without the watchdog (WD)
mechanism enabled in Fig. 8a and 8b, respectively. The watch-
dog mechanism enables faster recovery of replicas and hence
faster repeated processing of an event in the case of leader and
follower majority failures. An SDN cluster equipped with the
watchdog mechanism on average processes the events faster
and with a higher probability than the one without. Especially
when simultaneous hardware failures are improbable and soft-
ware failures are typical, the fast software recovery provides
obvious response-time benefits (Fig. 8b).

Fig. 9 depicts the effect of the consecutive failures on
the experienced response time in a 7-node controller cluster.
If the majority nodes remain available after each individ-
ual failure, the time to respond is governed by the case
where a cluster leader fails and a new leader election pro-
cedure is automatically initiated. There is no noticeable
difference in the convergence time regardless of the (non-)
usage of the watchdog mechanism in this particular case.
The lower the maximum number of induced failures induced,
slightly shorter is the expected response time. This may be
related to the fact that the follower timeouts are exponen-
tially distributed, hence a higher number of active nodes
that time out after a leader failure leads to an overall
lower expected time to select a candidate and repair the
cluster.

Fig. 8. Probability of receiving an event response during an observation
window, assuming a simultaneous occurrence of (a) NF mixed and (b) NF
software-bundle only controller failures in a cluster comprised of C con-
trollers. The failures are injected at rate NF ∗0.0333 (all correlated NF failures
are thus expected to be injected by time point t = 30ms).

Fig. 9. Resulting response time assuming an occurrence of 1 ≤ NF ≤
(�C/2� + 1) controller failures in a 7-node controller cluster. The response
time is governed by the duration of the leader election procedure. When the
majority of controllers are unavailable, the usage of the watchdog mechanism
(dashed) leads to important benefits w.r.t. expected worst-case response time.

B. Cluster Availability

Next, we emphasize the long-term advantage of an SDN
controller bundle/process watchdog mechanism by evaluating
the availability of a 3-node cluster configuration over an
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Fig. 10. Transient analysis of the SDN controller cluster unavailability over
a period of 1000 hours. The cluster size of exactly three controllers was con-
sidered in the transient analysis. As expected, the inclusion of a liveness guard
mechanism results in a lower overall expected unavailability. SDN controller
clusters that include five or a higher number of replicas per cluster have
shown to posses negligible availability concerns. This confirms the claims
made in [28], where authors discuss the minimal effect of long-term failure
rates on the experienced downtime of an SDN control plane.

observation period of 1000 hours. Fig. 10 depicts the unavail-
ability of a 3-node controller cluster setup. We define the
unavailability measure as the probability of encountering an
unavailable cluster of controllers at any time instant t as
PCU (t) = 1 − PCA(t). Here PCA(t) represents the probabil-
ity of encountering a system in a state where the RAFT
leader and the majority of RAFT followers are available and
have converged their leader-election processes. Software and
hardware failures are modeled using the long-term exponen-
tial hardware and software failure rates presented in Table II.
The approximated unavailability measure saturates after ∼85
hours, which is an expected mean failure time for the com-
bined software failures at bundle and process level, given the
individual exponentially distributed failures with a mean of
1 week (∼170 hours) for individual arrivals. We consider the
process and bundle failure arrivals as two independent Poisson
processes with variably configured rates. Hence, merging the
two independent processes with equal arrival rates results in an
approximately halved inter-arrival time between software fail-
ures. The usage of a watchdog that proactively rejuvenates a
system after a software failure leads to a shorter overall expe-
rienced downtime, and hence a lower expected RAFT cluster
unavailability in the long-term. Configurations with five or
more replicas guarantee a negligible unavailability of < 1e−9

and are hence not included in the figure.

C. Model Complexity and Solve Time

Compared to the manual Markov Chain modeling, SANs
allow for more compact modeling of complex scenarios.
Analytically, both options need to solve the same CTMC
and have to deal with an exponential increase in model size
which may result in inefficient or intractable analytical solu-
tions when complex models are concerned [31], [32]. The
model complexity dictates both the amount of computational
resources and the time required to solve the model.

Fig. 11 depicts the state space sizes of the generated
CTMCs. The generated state space is used by the transient
solver to find the transient solutions for short-term (NF lower

Fig. 11. Size of the CTMC state space generated using the SAN models
and parameters discussed in Sections III and IV, respectively. The lower the
number of controller failures of interest (i.e., where NF < C), the smaller the
resulting CTMC state space size. If the possibility of an eventual occurrence
of failures in all nodes is assumed, the state space grows correspondingly,
reaching up to 107 possible state space combinations with controller cluster
size set to C = 13 and the maximum accuracy ES = 15. Striped bars represent
the unsuccessful CTMC compilations where the flat state space generator fails
to compile the state space. However, by considering a lower number of Erlang
approximation stages ES, C = 19 and more controller replicas can be handled
with a limited inaccuracy (see Fig. 12). Similarly, a focused assumption on
the maximum number of possible failure occurrences helps the scalability of
the solution (where max(NF) < C).

than C) and long term (NF considers up to C failures) numeri-
cal analysis. The model complexity increases with the number
of possible combinations the system may occupy. For short-
term response time analysis we limit the complexity of the
model by considering only the injected correlated failures -
this is realistic as only a very short time period (1s < x < 2s)
is considered (see Figures 7 and 8). For long-term analysis,
additional system states, where more than just the majority
of nodes may fail could be of interest (consider Fig. 10).
Fig. 11 shows the CTMC state space sizes for the clus-
ter configurations up to C = 19. We observe that, for some
parametrizations, the compiled state space size grows expo-
nentially with the number of controller replicas. The number
of possible failure injections dictates the number of gener-
ated unique combinations. For the most accurate setting of
the ES = 20 (20 Erlang stages, see Section IV-C) and cluster
sizes of 17 and more replicas, we have encountered mem-
ory handling limitations in the flat state space generator in
Möbius. Namely, if the solution should cover for all theoreti-
cally possible system combinations, i.e., when failure of every
single node should be considered, the solution space eventu-
ally grows to an intractable amount of states for very large
cluster sizes. To cater for the scalability of our solution when
analyzing large control planes, we propose three options:

1) State space largeness avoidance by applying a scenario-
based approach to the worst-case modeling. For exam-
ple, one could consider a limited number of maximum
failure injections. By limiting the number of maximum
failure injections to NF = �C/2�+1, large-scale clusters
can be analyzed successfully (see Fig. 11).

2) State space largeness avoidance by trading solution
accuracy, e.g., by manipulation of the Erlang stages used
for the approximation of the deterministic transitions.

3) Faster convergence of the transient solver by raising the
error tolerance of the uniformization (see Equation 1).
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Fig. 12. Inaccuracies stemming from a decreased number of Erlang stages
ES used in the approximation of deterministic transitions are negligible.
Inaccurate approximation of a deterministic distribution lead to a higher vari-
ance for the random variable describing the failure arrivals. Hence, for small
ES the solver estimates a more relaxed (thus more pessimistic) latency bound.

Fig. 13. Overhead of the CTMC compilation for varying cluster sizes C,
failure injection counts max(NF) and Erlang parameterizations ES. While very
accurate and large-scale combinations may lead to intractable solutions, fea-
sible solutions can be presented even for the complex deployments of C = 19
controllers with various degrees of accuracy and all max(NF) combinations.

For completeness, we also evaluate the second option by
varying the Erlang stage parametrization. We take note of the
effect on the overall result accuracy for the transient analy-
sis of a 7-node cluster. Fig. 12 depicts the inaccuracy of the
latency bound introduced by lowering the number of Erlang
stages from EShigh = 20 to ESlow ∈ {5, 10, 15}. At ES = 5, the
generated state space size is decreased by a magnitude (see
Fig. 11) and is hence, in addition to the first option, an effec-
tive method of deploying our models in a scalable manner.
From this study, we conclude that the state space generation
process is scalable as long as the accuracy and failure injection
parameters are selected carefully for the use case at hand.

We next consider the performance overhead of the state
space generation in our approach. Fig. 13 shows how the
scenario where max(NF) = C with C = 19 and ES = 5 results
in a tolerable ∼ 103 seconds solving period.

Fig. 14 depicts the computation time to solve the presented
SANs. The duration of the solution computation of SAN will
vary depending on the model complexity (state space size), the
definition of the observed performance variable (reward func-
tion and the number and granularity of time measurements),
as well as the required accuracy and model stiffness (the range
of the expected action completion times) [33]. In the Möbius
modeling tool, the accuracy of the transient solver indicates the

Fig. 14. Computation time of the instant of time [22] transient solutions for
the state space sizes depicted in Fig. 11. The solution covers the target obser-
vation interval of 1 second at millisecond resolution - hence the transient
solver has computed the solutions for 1000 time-points. The computations
were executed on a commodity hardware equipped with a modern AMD pro-
cessor and 32GB of DDR4 memory. The required computation overhead for
the numerical solution is feasible for a short-term response time study.

degree of accuracy that the user wishes in terms of the num-
ber of decimal places. The solver execution times depicted in
Fig. 14 were observed for the accuracy parameter set to 9 and
an observation window of 1 second (1000 data points). The
largest generated state space for the purpose of modeling the
largest cluster size necessarily leads to the longest solution
computation times. For the analysis scenarios described here,
these computation times are feasible.

VI. RELATED WORK

In state of the art literature, availability and overhead
modeling of SDN has recently started to gain traction.
Nencioni et al. [28] investigate the impact of operational
and management failures on the availability in SDNs. They
focus on the long-term availability impact of adding additional
controllers, but do not include any response time analy-
sis nor consider the impact of controller synchronization at
micro-scale.

Tuncer et al. [34] enhance a controller placement heuris-
tic to cater for the optimality of the controller-network device
cluster unbalance. Given an arbitrary network topology, their
objective is to compute the number of controllers and the
fitting placement, as well as to declare the controller-device
assignments when considering a distance (e.g., delay) con-
straint. While the controller-switch assignment was specifi-
cally targeted in their work, the same solution could be applied
to planning an efficient controller cluster configuration. The
problem we solve is complementary to this, since we allow for
analyzing any given SDN cluster with regards to its worst-case
control plane performance at runtime.

Muqaddas et al. [5], [35] investigate the load overhead of
the intra-cluster communication in a 2- and 3-controller ONOS
cluster. They propose a model to quantify the traffic exchanged
among the controllers and express it as a function of the net-
work topology. They did not consider the effect of the transient
failures on the response time and availability.

Zhang et al. [36] describe the single-data ownership orga-
nizational model implemented by the RAFT algorithm and
propose an estimation formula for approximating of the flow
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setup time in a distributed SDN controller cluster. Their esti-
mation is however fairly simplistic as it models only the
average case. The worst-case estimations were not considered.

Ongaro [24] and Howard et al. [14] provide initial per-
formance evaluations of the RAFT consensus algorithm.
Howard et al. [14] further implement an event-driven frame-
work for prototyping of RAFT using experimental topologies.
Contrary to the analytical approach presented in our work,
their performance evaluation of RAFT is based on a limited
number of repeated experiments and focuses on evaluating
the RAFT leader re-election procedure following a failure.
Unfortunately, these works do not provide a good understand-
ing of how the overall system response time is affected after
a failure.

In two experiment-based studies, Suh et al. [15], [16] mea-
sure the throughput and the recovery time of a RAFT-enabled
SDN controller cluster with 1, 3 and 5 replicas. They put spe-
cial focus on the effect of φ accrual failure detector [37] on
the resulting performance footprint. The authors deduce that
the controller failover time increases as the value φ increases.
With higher φ, the OpenDaylight cluster becomes more con-
servative in determining a controller failure, hence in case of
failures, using a large φ values will generally lead to slow
failure discovery. Authors varied φ and measured the lowest
recovery time of ∼ 2, 6s, which is a non-satisfying recovery
time for many critical industrial applications. Instead of using
an adaptive scaling factor φ, we rely on a fixed follower time-
out variable with a mean of ∼ 225ms. We assume that the
controller-to-controller delays are bounded and will hence not
exceed this value except in the case where a controller failure
has occurred. This value is recommended by the authors of
the RAFT consensus algorithm, and was determined to be a
good trade-off between the recovery time and the signaling
overhead in their experiments [11].

The introduced watchdog mechanism for fast software sys-
tem recovery relates to the concept of software rejuvenation.
Several works have investigated the phenomenon of “soft-
ware aging” wherein the health of a software system degrades
with time [38], [39]. These papers conclude that a mechanism
which “rejuvenates” or “recovers” the software component to
its stable state, would provide long-term benefits in terms of
experienced system availability. In this work, we evaluate the
benefits of the reactive controller recovery where, following
a detected controller bundle or process failure, the affected
component is reinitialized in order to minimize the downtime.

Machida et al. [40] analyze the completion time of a job
running on a server that is affected by software aging, and con-
sider the benefit of the preemptive-resume operation, where a
job resumes execution from the point of interruption as soon as
the failed server recovers. Similar to this work, we investigate
the job completion time for a client request, but we consider
a distributed multi-server operation. We focus on the strategy
where, assuming a failure occurs, the request is handled from
the beginning instead of delegating it to the next server.

Apart from RAFT, Paxos [9] is another influential [8], [41]
consensus algorithm that eventually motivated the develop-
ment of RAFT. Paxos ensures that any two distributed servers
that are part of the same cluster may never disagree about

the value of a particular update, for any applied update in the
update history. In its optimizations, its performance is compa-
rable to RAFT, in that, assuming a stable cluster leadership,
committing a cluster-wide update takes a single round trip in
most cases [10]. Multi-Paxos [9], [13] is a prominent variation
of Paxos, that assumes a stable leader for an infinite number
of sequential cluster updates. This allows for one-round-trip
delay as the first phase of Paxos becomes unnecessary for the
majority of updates. Du et al. [42] evaluate an implementation
of Multi-Paxos and conclude that the overall performance of
Multi-Paxos is limited by the slowest node in the fastest clus-
ter majority. This is a valid observation for any quorum-based
consensus algorithm, hence we distinguish the leader failures
as critical for our analysis.

To minimize the effect of single-leader failure and maxi-
mize the load balancing of requests, Mencius [43] proposes
a round-robin-based update-handling by multiple leaders in a
Paxos cluster. While it enables higher throughput in the stable
case, the cluster will always run at the speed of the slow-
est elected leader as the new updates may be dependant on
previous updates that are assigned to be handled by the slow
node. EPaxos [10] is a recent leader-less take on Paxos that
tries to circumvent these issues. It keeps track of the ordering
and mutual dependencies between the client-initiated updates.
Hence, it is able to parallelize multiple update instances when
no collisions between concurrent client updates are expected.
Like RAFT, it requires a single round-trip in most cases to
commit a state update, and two round-trips if dependency con-
flicts arise. Contrary to RAFT and other leader-based Paxos
variations, the response time in an EPaxos cluster does not
suffer from unstable leaders since the clients may always
fall-back to any remaining live leader replica. However, the
algorithm adds additional complexity in state-keeping and log
compaction tasks because of the added dependency trees.

Since all available SDN cluster implementations focus on
a single master for any switch in its administrative domain
at runtime, we put focus on the evaluation of a single-
leader RAFT-based cluster and consider its direct compari-
son with multi-leader EPaxos [10] and eventually consistent
approaches [4], [44] as future work.

VII. CONCLUSION

SDN enables the necessary control plane robustness by
controller clustering and state replication. However, this repli-
cation incurs additional performance overhead. Indeed, it is
not always clear which particular cluster configuration would
best suit the application and network configuration at hand.
Existing performance studies of distributed SDN control plane
neglect the cluster’s response time and availability metrics.

Hence, we hereby propose the usage of Stochastic Activity
Networks (SANs) for modeling and numerical evaluation of
distributed SDN clusters. We put special focus on the prac-
tically relevant distributed consensus algorithm RAFT, but
generalize our model to be applicable to similar Paxos variants
(e.g., Multi-Paxos). RAFT is implemented in two dominant
open-source SDN platforms and is of practical relevance for
performance analysis of the distributed SDN control plane.
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We introduce and discuss the SAN-based models for response
time and availability evaluation, and include a failure injection
model for evaluation of the two metrics under the effect of an
arbitrary number of correlated controller failures. Using tran-
sient solver methods, we are able to provide a probabilistic
guarantee on the event handling response times and numeri-
cally evaluate the availability property of arbitrary SDN cluster
configurations. We have shown that, assuming a balanced
distribution of controllers in the network w.r.t. the controller-
to-controller delays, larger clusters provide lower worst-case
response times and higher system availability. With the help of
analytical modeling, the evaluation and optimization of cluster
configurations, in order to determine the best suited configura-
tion for the network at hand, becomes possible without costly
hardware setups for experimental evaluation or lengthy sim-
ulation runs. Analytical modeling further provides for corner
case inclusion and tighter stochastic guarantees than possible
using experimental sampling.

Finally, we have proposed the watchdog mechanism for fast
recovery from software failures in a distributed SDN con-
troller setting. Using transient solvers, we have proven its
benefits on the short-term response time and the long-term
availability properties of a controller cluster. The solutions to
our models are computationally feasible for both the typical
(3-5 controllers), and very complex clusters (∼20 controllers).

Extensions to support the novel leaderless Paxos variants,
such as EPaxos, require significant changes in the models used
and are thus considered as future work. Furthermore, we pro-
vide the response time metrics for a model that assumes an
accumulated distribution of RAFT state updates in the latency-
and throughput-optimized, batched mode. Extending the pro-
posed model to support a sequential distribution of updates at
high scale is non-trivial using SAN-based modeling, because
of the added state size complexity. Supporting the queueing
behavior when handling client-generated events requires inclu-
sion of additional concepts from classic queueing theory or
network calculus for practical value.
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