
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 4, DECEMBER 2017 1003

DetServ: Network Models for Real-Time
QoS Provisioning in SDN-Based

Industrial Environments
Jochen W. Guck , Amaury Van Bemten, and Wolfgang Kellerer , Senior Member, IEEE

Abstract—Industrial networks require real-time guarantees
for the flows they carry. That is, flows have hard end-to-end
delay requirements that have to be deterministically guaran-
teed. While proprietary extensions of Ethernet have provided
solutions, these often require expensive forwarding devices. The
rise of software-defined networking (SDN) opens the door to the
design of centralized traffic engineering frameworks for provid-
ing such real-time guarantees. As part of such a framework, a
network model is needed for the computation of worst-case delays
and for access control. In this paper, we propose two network
models based on network calculus theory for providing deter-
ministic services (DetServ). While our first model, the multi-hop
model (MHM), assigns a rate and a buffer budget to each queue in
the network, our second model, the threshold-based model (TBM),
simply fixes a maximum delay for each queue. Via a packet-level
simulation, we confirm that the delay bounds guaranteed by both
models are never exceeded and that no packet loss occurs. We
further show that the TBM provides more flexibility with respect
to the characteristics of the flows to be embedded and that it has
the potential of accepting more flows in a given network. Finally,
we show that the runtime cost for this increase in flexibility stays
reasonable for online request processing in industrial scenarios.

Index Terms—Access control, real-time, industrial network,
network modeling, network calculus, quality of service (QoS),
software-defined networking (SDN).

I. INTRODUCTION

A. Motivation: Industrial Networking Quality
of Service

INDUSTRIAL communications (e.g., machine-to-machine
(M2M) communications or production facilities networks)

have strict Quality of Service (QoS) requirements, mainly in
terms of end-to-end delay [1]. This means that flows have end-
to-end delay bounds that must not be exceeded. In this article,
such flows are referred to as real-time flows. A wide range of
proprietary solutions [2] and extensions of Ethernet [3] have
been developed for providing this strict QoS. However, these

Manuscript received March 19, 2017; revised July 22, 2017 and
September 11, 2017; accepted September 19, 2017. Date of publication
September 22, 2017; date of current version December 8, 2017. This
work was supported by the European Unions Horizon 2020 Research and
Innovation Programme under Grant 671648 (VirtuWind) and ERC Grant
647158 (FlexNets). The associate editor coordinating the review of this paper
and approving it for publication was F. De Turck. (Corresponding author:
Jochen W. Guck.)

The authors are with the Lehrstuhl für Kommunikationsnetze, Technical
University of Munich, 80290 Munich, Germany (e-mail: guck@tum.de;
amaury.van-bemten@tum.de; wolfgang.kellerer@tum.de).

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors.

Digital Object Identifier 10.1109/TNSM.2017.2755769

solutions typically require changes within the network proto-
col stack or impose restrictions on the topology that can be
deployed, which leads to expensive forwarding devices.

B. Basis: Centralized Frameworks Based on
Software-Defined Networking

Software-Defined Networking (SDN) is a new networking
paradigm that runs control functions on a centralized controller
which is then able to program the Ethernet forwarding ele-
ments in the network using a standardized interface such as
OpenFlow [4]. This central view offered by SDN allows to
perform traffic engineering based on the global knowledge
of the network. Because it only requires simple commodity
SDN forwarding elements that can be changed and updated
independently [5], SDN is considered as an inexpensive solu-
tion. Therefore, as elaborated in Section II, a plethora of work
has been considering the usage of SDN for the provision-
ing of QoS [6]–[18]. However, the QoS control provided by
these approaches is either too inaccurate or slow for industrial
applications [18].

As initiated by Jasperneite et al. [19], Guck et al. [16]–[18]
propose to overcome the two above-mentioned shortcomings
by using network calculus, a mathematical modeling frame-
work (introduced in Section III), to maintain a deterministic
model of the network state in the control plane. First, network
calculus being a deterministic framework, accurate bounds can
be computed on a per-flow basis. Second, keeping a determin-
istic model in the centralized control plane allows to avoid the
QoS control loop to go through the forwarding plane, thereby
allowing to quickly provision new flow requests [17]. As such,
the two drawbacks of existing approaches are overcome.

C. Contribution: DetServ: Network Models for
Deterministic Worst-Case Delay Computation
and Access Control

As elaborated in Section IV, a centralized industrial QoS
framework requires a network model for the computation of
worst-case delays and for access control. The core contribu-
tion of this article consists of two network models that can be
used as part of such QoS frameworks for providing determin-
istic services (DetServ). The first model, the multi-hop model
(MHM – Section V-D), assigns a rate and a buffer bud-
get to each queue in the network. This allows to compute
worst-case delays for any path in the network. This model

1932-4537 c© 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4673-5980
https://orcid.org/0000-0003-4358-8038

1004 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 4, DECEMBER 2017

corresponds to an updated version of a previously proposed
model [16], [18] which was not considering buffer consump-
tion and, hence, was potentially leading to packet loss. We
show that the MHM requires an a priori choice regarding the
characteristics of flows that are to be embedded based on the
trade-off between rate, buffer capacity and delay. The second
model, the threshold-based model (TBM – Section V-E), is
the main contribution of this article. It simplifies this trade-
off by only fixing a maximum delay for each queue in the
network, thereby avoiding the a priori assignment of rate and
buffer budgets. We show that the TBM automatically adapts
the allocation of rate and buffer capacity based on the type of
traffic (bandwidth or buffer demanding) and we find that this
gives it the potential to outperform the MHM, i.e., to accept
more flows and hence increase network utilization. However,
this increase in flexibility leads to an increase in the request
processing time by a factor corresponding to the number of
priority levels in the network. Further, we propose an exten-
sion to both models that considers the shaping introduced by
the limited capacity of the links in the network (Section V-G).
While beneficial for both models, we show that it has a higher
impact on the TBM, both in terms of increased runtime and
performance. We find that this runtime increase is reason-
able for industrial scenarios. Indeed, in our simulations, the
total request processing time of the TBM remains lower than
350 ms in 99% of the cases and never exceeds 620 ms.

The power of the proposed models resides in the fact that
they can be used with off-the-shelf switches supporting pri-
ority scheduling and any SDN protocol providing standard
enqueuing and forwarding primitives, e.g., OpenFlow 1.0 [20].

II. RELATED WORK

A. Legacy Industrial Networking Solutions

Initially, proprietary solutions (e.g., Profibus, Interbus or
CAN) have been specifically developed for real-time industrial
communications [2], [21]. These solutions often come with
a complete proprietary communication stack which requires
specialized and expensive hardware.

Later, Ethernet data transfer rates increased and Ethernet
became ubiquitous in local area networks (LANs) and the
Internet. Therefore, it attracted a lot of attention for indus-
trial deployments. However, because of its non-deterministic
medium access control (MAC) scheme, Ethernet was ini-
tially not considered as a suitable solution. The usage of
full duplex point-to-point links along with Ethernet switches
instead of shared buses and hubs allowed to avoid colli-
sions and hence the negative impact of the Ethernet MAC
protocol [3]. Nevertheless, this introduces buffering and pos-
sibly overflows, which were still considered to be a source
of non-determinism [3]. Despite this, using Ethernet in indus-
trial environments has major benefits, including simple and
cheap deployment, easy connectivity towards office networks,
the Internet or more generally any IP traffic, and usage of
off-the-shelf communication hardware. Hence, many industrial
control systems manufacturers decided to develop proprietary
extensions of Ethernet to achieve determinism [21], [22].
A broad overview of Ethernet-based real-time technologies,

including deterministic Ethernet standards, was provided by
Decotignie [3]. Unfortunately, these solutions require changes
within the network protocol stack or impose topology restric-
tions or both, which leads to more expensive forwarding
devices than with standard Ethernet.

B. SDN-Based QoS Networking Frameworks

The emergence of SDN as a new networking paradigm
providing a global view of the network in a centralized con-
trol entity provided a new opportunity for traffic engineering.
Hence, a wide range of work has been considering the usage
of SDN for QoS networking. In this section, we present an
overview of the state-of-the-art in QoS provisioning using
SDN and highlight the contributions of this article with respect
to the existing literature. We classify the existing approaches in
six categories for which we list a few representative examples.

1) High-Level Architectural Proposals: Several proposals
mainly focus on architectural issues such as interface design
and requirements analysis [23]–[26]. These approaches men-
tion that a method for access control and resource reservation
is needed but do not tackle the problem. The models we
propose in this article can be used as part of such frameworks.

2) OpenFlow Extensions: Other approaches consider the
enhancement of the OpenFlow protocol with QoS-related fea-
tures [10], [25], [27]. Because of the lack of standardization,
this potentially leads to higher cost and/or effort. In con-
trast, we propose new models which can be used with any
SDN protocol providing standard enqueuing and forwarding
programming primitives, e.g., OpenFlow 1.0 [20].

3) TDMA Solutions: Systems using time division multiple
access (TDMA) on top of Ethernet have also been
proposed [28], [29]. These solutions can potentially lead to
an optimal utilization of resources. However, because of the
need for synchronization, changes in the protocol stack of end-
points might be needed, thereby leading to expensive solutions
in terms of cost and effort. In comparison, our models do not
require any change at the endpoints.

4) QoS Frameworks Based on Data Rate Allocation:
Another class of proposals, mainly tailored for Internet
QoS, maps QoS requirements to equivalent minimum data
rates [6]–[9]. Such systems typically do not consider the
limited capacity of buffers and hence packet loss and queu-
ing delay. These approaches provide the scalability and QoS
level needed for wide-area networks but are not sufficient for
industrial scenarios, which require strict buffer management
as provided by our proposed models.

5) Measurement-Based Frameworks: A wide range of pro-
posals build the network state by retrieving it from the data
plane [9]–[15]. This step adds a non-negligible delay to the
flow request processing. Besides, these approaches suffer from
possible measurement errors. Thus, they can only provide soft
guarantees. While this is an efficient solution for multimedia
traffic, it does not fulfill the requirements of industrial commu-
nications. On the other hand, the determinism of our models
allow to provide hard, i.e., real-time, guarantees.

6) Model-Based Frameworks: The present article falls into
the category of model-based frameworks where a model of the
resources usage is kept in the control plane [6], [8], [17], [30].

GUCK et al.: DETSERV: NETWORK MODELS FOR REAL-TIME QoS PROVISIONING IN SDN-BASED INDUSTRIAL ENVIRONMENTS 1005

The state of the network can then be retrieved from the model
itself, avoiding the request processing loop to go through
the data plane, thereby reducing the request processing time.
The model only has to communicate with the data plane
at topology change events. While stochastic modeling could
be used for soft QoS requirements, a deterministic model
is needed for providing real-time guarantees. Duan [6] and
Tomovic et al. [8] proposed models based on data rate alloca-
tion which, as elaborated in Section II-B4, are not suitable
for industrial applications. For their part, Guck et al. [17]
mentioned the need of a model but did not present one and
King et al. [30] detailed a deterministic model but which
requires a flow embedding procedure that can lead to high
request processing time. The new DetServ models we propose
in this article are deterministic models that can be used as part
of a model-based QoS framework for fast request processing
in industrial scenarios. One of the models was already partially
described by Guck et al. [16], [18] but the limited capacity
of buffers was not considered. In this article, we present an
updated and more detailed version of this original model and
further introduce a new second model providing more flex-
ibility with respect to the characteristics of the flows to be
embedded.

It is worth mentioning that model-based approaches, and
hence our proposed models, can be used as part of the
path computation unit of Time-Sensitive Networking (TSN)
approaches, the emerging real-time networking standards.

III. MODELING BACKGROUND: NETWORK CALCULUS

A. Basics: Theory Principles

In order to provide a deterministic model of the network,
we propose to use network calculus. Network calculus [31]
is a system theory for communication networks. From mod-
els of a considered flow and of the service a so-called system
can offer, bounds on (i) the delay the flow will experience
traversing the system, (ii) the backlog the flow will generate
in the system, and (iii) the new model for the flow after it has
passed the system can be computed. A system can range from
a simple queue to a complete network. The theory is divided
in two parts: deterministic network calculus, providing deter-
ministic bounds, and stochastic network calculus, providing
bounds following probabilistic distributions. Since we strive
for deterministic modeling, we will only consider the former.

The modeling of a flow is done using a so-called arrival
curve α(t). α(τ) gives an upper bound on the amount of data
a flow will send during any time interval of length τ . The α

curve in Fig. 1 represents a token bucket flow: it is allowed to
send bursts of up to b bytes but its sustainable rate is limited
to r B/s. This type of arrival curve is denoted by γr,b.

The modeling of a network system is, for its part, done using
a so-called service curve β(t). Its general interpretation is less
trivial than for an arrival curve [32]. The particular service
curve β shown in Fig. 1 can be interpreted as follows. Data
might have to wait up to T seconds before being served at a
rate of at least R B/s. This type of service curve is denoted
by βR,T and is referred to as a rate-latency service curve.

Fig. 1. Example of graphical computation of delay, backlog and output
bounds using network calculus concepts. The delay and backlog bounds
respectively correspond to the horizontal and vertical deviations between the
arrival and service curves. In the particular case of an arrival curve γr,b and
a service curve βR,T , the output bound α∗ is obtained by shifting the initial
arrival curve α up by rT .

From these two curves, the three above mentioned bounds
can be computed (Fig. 1). The delay and backlog bounds
respectively correspond to the horizontal and vertical devia-
tions between the arrival and service curves [32]. In the general
case, the way to compute α∗, the arrival curve of the flow after
having traversed the system, is not straightforward [32]. In the
particular case where the arrival and service curves are γr,b and
βR,T , we have α∗ = γr,b+rT [32] (Fig. 1). This formula can
be interpreted as follows. Since the flow can possibly wait up
to T seconds before being served at a potentially infinite rate,
its burst size can increase by up to rT bytes – the maximum
amount of data that, by definition of the arrival curve of the
flow, will arrive during these T seconds of potential waiting
time.

B. Selected Results: Priority Scheduling

In the particular case of a non-preemptive strict priority
scheduler with n queues traversed by token bucket flows [33],
the service curve for priority queue i is given by [32]

βi(t) =
⎛
⎝Ct − t

i−1∑
j=1

rj −
i−1∑
j=1

bj − max
i+1≤j≤n

{
lmax
j

}
− lmax

i

⎞
⎠

+
,

(1)

where queue i = 1 is the highest priority queue, C is the
capacity of the output link, and rj, bj and lmax

j are the rate,
burst size and maximum packet size of the token bucket flow
traversing queue j. This formula can be interpreted as follows.
The service offered to a given queue i corresponds to the whole
link capacity (first term) from which the capacity used by
higher priority flows is deducted (second and third terms).
Since we assume a non-preemptive priority scheduler, data in
a high priority queue might have to wait for a packet of a lower
priority queue to be transmitted before being served (fourth
term). The fifth term models the store-and-forward behavior
of switches. Indeed, the scheduler must wait for each packet
to be completely received before serving it. Note that for cut-
through switches, only the header length should be used here.
Because the scheduler cannot provide negative service, the
negative part of the resulting curve is reduced to zero ((.)+
notation).

1006 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 4, DECEMBER 2017

Eqn. 1 corresponds to a βRi,Ti curve where

Ti =
∑i−1

j=1 bj + maxi+1≤j≤n

{
lmax
j

}
+ lmax

i

C − ∑i−1
j=1 rj

(2)

and

Ri = C −
i−1∑
j=1

rj. (3)

From Fig. 1, the delay and backlog experienced by the flow
traversing queue i are respectively bounded by

di =
∑i

j=1 bj + maxi+1≤j≤n

{
lmax
j

}
+ lmax

i

C − ∑i−1
j=1 rj

(4)

and

xi = bi + riTi, (5)

and the new burst of the flow after the system is given by

b∗
i = xi, (6)

while its rate remains unchanged.

IV. CONTEXT: MODEL-BASED QOS FRAMEWORK

We present the model-based framework proposed by
Guck et al. [16]–[18] (Sections IV-A to IV-E). However,
as mentioned in Section II, the models can be used with
any model-based framework. This leads to the definition of
an interface that the DetServ models have to implement
(Section IV-F). Section V then describes how this interface
is implemented for both models.

A. Parameter Considered: End-to-End Delay

There are numerous different QoS parameters that can be
considered in industrial environments, e.g., resilience, packet
loss, maximum jitter, average and maximum delay [34]–[36].
However, in most industrial cases, the most critical metric for
applications is the response time [1], [36]. Though response
time is also influenced by the processing time of the end
hosts, we here only deal with the influence of the network and
hence focus on guaranteeing maximum unidirectional end-to-
end delay requirements of flows without packet loss. We refer
to traffic requiring such guarantees as real-time traffic.

Along its path, a packet suffers from different types of
delays: processing, queuing, transmission and propagation
delays. Since the link characteristics are assumed to be known,
the propagation delay for each link is known. The process-
ing delay can usually be neglected. However, any assumption
on the worst-case behavior of the hardware would allow to
bound it at each node. Upper bounds on the queuing and
transmission delays can, for their part, be computed using the
network calculus results presented in Section III. The sum of
all these components along the route of a flow makes up the
total deterministic end-to-end worst-case delay bound for the
flow.

B. Queue Link Network Topology

Obviously, the (queuing) delay a packet experiences on its
way to its destination does not only depend on the path the
packet follows but also on how the packet is scheduled at each
output link. Because of its simplicity and ubiquity, we assume
that non-preemptive strict priority scheduling is used.

From this, the route selection process for a flow must con-
sider both the physical links the flow will traverse and the
queues at which the flow will be buffered at each output link.
As a consequence, Guck et al. [17], [18] introduced a queue
link network topology. From the physical network topology,
each directed physical link (u, v) is replaced by Qu,v queue
links, where u and v are the source and destination nodes
of the link and Qu,v is the number of priority queues at the
scheduler of the link. Each link in the queue link network
topology hence represents a physical link and a given queue
at the ingress of this physical link, i.e., a different QoS level
of transmission over this physical link. Route selection on this
queue link network thus determines both the path that a flow
takes through the physical network as well as the queue in
which the flow will be buffered at each physical link.

Performing route selection on the queue link topology
allows a flow to be assigned different priorities at each node,
thereby increasing flexibility compared to other legacy [1]
and SDN [7], [8], [13] approaches which usually assign fixed
priorities to flows along their complete path. However, route
selection is performed on a graph with a greater amount of
edges, thereby increasing the routing procedure complexity.

C. Consideration of Best-Effort Traffic

One benefit of using Ethernet for guaranteeing real-time
QoS is the interoperability with other IP networks such as
a company’s office network or the Internet itself. The traf-
fic exchanged with these networks might not have such QoS
requirements as the industrial traffic. The lowest priority queue
of each link can be used for serving this so-called best-effort
traffic. In this manner, the real-time traffic, which is only flow-
ing through the higher priority queues, is not influenced by the
best-effort traffic which is then only allowed to use resources
which are left unused by the real-time flows.

Since best-effort traffic is allocated a single queue at each
link, it can be routed using traditional SDN controller modules
for routing (e.g., layer-two learning switch).

D. Problem Formulation

From a set of flows and the paths they follow in the
queue link topology, the network calculus results presented
in Section III allow to compute end-to-end delay bounds for
each flow. Our initial problem is the following.

Problem 1: For a set of real-time flows F , find a route
through the queue link topology for each flow f ∈ F such that
the end-to-end delay requirement tf of each flow is satisfied.

As a result of the complexity increase due to the high
number of edges in the graph on which route selection is per-
formed, solving the problem using a mixed integer program-
ming (MIP) formulation leads to intractable runtimes. Already
hundreds of seconds or more are needed to solve the problem

GUCK et al.: DETSERV: NETWORK MODELS FOR REAL-TIME QoS PROVISIONING IN SDN-BASED INDUSTRIAL ENVIRONMENTS 1007

for small networks [17], [18]. Therefore, Guck et al. [17]
proposed an online approach to solve the problem. Flows are
taken one by one and embedded one at a time. They show
that this approach can lead to results close to those of the
MIP formulation in terms of number of embeddable flows,
however having a much lower runtime. In such an approach,
since the global goal of Problem 1 is to be able to embed all
the candidate flows, each flow has to be embedded such that
its consumption of resources is minimized, so as to maximize
the probability of acceptance of forthcoming flow requests. As
such, the following problem has to be solved.

Problem 2: For a given flow f , find a route through the
queue link topology such that (i) the end-to-end delay require-
ment tf of the flow is satisfied, (ii) the end-to-end guarantees
provided to previously embedded flows are still guaranteed,
and (iii) the probability of future flow requests acceptance is
maximized.

Compared to the overall approach, this online approach has
the additional advantage of being able to deal with scenarios
for which the requests are not known a priori but are rather
received at different points in time.

E. Interplay Between Routing and Resource
Allocation

As a result of this online approach, QoS routing is ini-
tiated by a query of the data plane. This can be done by
contacting the northbound interface (NBI) of the SDN con-
troller or by means of a PACKET_IN OpenFlow message [20].
The query should at least contain the flow characteristics (e.g.,
in our case, source, destination(s), burst, rate and maximum
packet size) and QoS requirements (e.g., in our case, maximum
delay). In case of queries coming from PACKET_IN messages,
these parameters can be inferred from the packet header (port
numbers, transport protocol, etc.). Based on this input and
on the current state of the network, routing can then be per-
formed. When this is done, the corresponding forwarding rules
are pushed to the data plane.

The embedding of a new flow must not violate the delay
guarantees provided to previously embedded flows. Indeed,
as shown by Eqn. 1, embedding a new flow updates the ser-
vice offered to other flows, which in turn updates the delay
bounds for these flows (Eqn. 4), which might potentially in
turn cause the violation of the end-to-end delay guarantees
already provided to these flows.

As a result, resources usage has to be taken into account
while routing. The approach proposed by Guck et al. [18] is
to split the problem into two subproblems that can be solved
separately.

• The resource allocation problem, which consists in find-
ing the amount of resources to allocate to all the different
queues at each link of the network, and

• the routing problem, which consists in finding a path
in the queue link topology for which the delay of the
new flow is guaranteed and that only uses resources that
are still available, thereby ensuring that the guarantees of
previously embedded flows are not violated.

Fig. 2. Operation and interface of the DetServ network models. A flow
request is handled by the QoS routing procedure whose task is to find a
suitable route in the queue link topology for the corresponding flow (i.e., to
solve Problem 2). While routing, the GETDELAY and HASACCESS methods
of the network model are used for the computation of worst-case delays and
for access control. The REGISTERPATH and DEREGISTERPATH functions are
for their part used to update the state of the network model to reflect the
embedding or removal of a flow.

F. Interface of a Generic DetServ Network Model

In this article, we consider that the resource allocation algo-
rithm has allocated resources to the different queues in the
network and that we have a routing algorithm able to look
for a delay-constrained path in the network ((i) in Problem 2)
using only resources that are still available ((ii) in Problem 2)
and in a way that consumes the least amount of resources
((iii) in Problem 2). For (iii), an option is for the rout-
ing algorithm to use a cost function whose minimization
maximizes the probability of future requests acceptance. A
delay-constrained least-cost (DCLC) routing algorithm is then
needed. For (i) and (ii), the network model has to provide an
interface to the routing algorithm. This interface consists of
the following four so-called model functions.

• GETDELAY: computes the worst-case delay of a given
queue link edge.

• HASACCESS: checks whether or not there are still enough
resources available for a given flow at a given queue link
edge.

• REGISTERPATH: updates the model state to reflect the
embedding of a new flow.

• DEREGISTERPATH: updates the model state to reflect the
removal of a previously embedded flow.

The processing of a flow request is then illustrated in Fig. 2.
Upon receipt of a flow request, the QoS routing algorithm
searches for a solution to Problem 2. While searching, the
algorithm uses the GETDELAY and HASACCESS methods to
obtain the delay of an edge and to check if enough resources
are available at an edge. Once a path has been found, the
REGISTERPATH method is used to update the state of the
model in order to reflect the embedding of the new flow.
Similarly, the DEREGISTERPATH method is used upon the
receipt of a flow termination notification in order to reflect
the removal of the corresponding flow.

How these methods are implemented depends on how and
which resources are allocated and managed at each queue. In
the next section, we present our two DetServ models imple-
menting these four model functions for providing deterministic
guarantees.

V. DETSERV: NETWORK MODELS

A. Notations

The physical and queue link graphs are respectively denoted
by P and G . The indices E and N are used to refer to the set of

1008 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 4, DECEMBER 2017

edges and nodes of the graphs. For example, PE corresponds
to the set of edges of the physical graph. The capacity of a
physical link (u, v) ∈ PE is denoted by Ru,v. We assume a non-
preemptive strict priority scheduler with Qu,v queues at the
physical link (u, v) ∈ PE. Edges in the queue link network are
denoted by (u, v, p), where (u, v) is the corresponding physical
link and p ∈ {1, . . . , Qu,v} is the priority of the corresponding
queue at the physical link, Qu,v being the lowest priority.

The set of active (i.e., embedded) flows in the network is
denoted by F . For a given embedded flow f ∈ F or for a
given flow f requesting an embedding,

• rf denotes the rate (as defined in Section III-A) of the
flow,

• bf [u, v, p] denotes the burst size (as defined in
Section III-A) of the flow at queue link (u, v, p) (as we
have seen in Section III-B that the burst of a flow changes
at each hop),

• tf denotes the end-to-end delay requirement of the flow,
• lmax

f denotes the maximum packet size of the flow, and
• Pf ⊆ GE denotes the set of queue link edges through

which the flow is routed (empty set if the flow is not
embedded yet).

We denote the maximum packet size in the network by Lmax.
If it is not known, the maximum Ethernet frame size can be
used.

For a given queue link edge (u, v, p) ∈ GE,
• Fu,v,p ⊆ F denotes the set of flows routed through the

queue link edge,
• UR[u, v, p] denotes the sum of the rates of the flows

routed through the queue link edge, i.e.,

UR
[
u, v, p

]
�

∑
f ∈Fu,v,p

rf , (7)

• UB[u, v, p] denotes the sum of the bursts of the flows
routed through the queue link edge, i.e.,

UB
[
u, v, p

]
�

∑
f ∈Fu,v,p

bf
[
u, v, p

]
, (8)

• lmax
u,v,p denotes the maximum packet size of the aggregate

flow traversing the queue link edge, i.e.,

lmax
u,v,p � max

f ∈Fu,v,p

{
lmax
f

}
, (9)

• T[u, v, p] denotes the worst-case delay of the queue link
edge,

• Bmax(u, v, p) denotes the worst-case backlog at the queue
link edge, and

• AB[u, v, p] denotes the buffer capacity of the queue
corresponding to the queue link edge.

Using these notations, Eqn. 2, 3, 4 and 5 can be respectively
rewritten as

Tu,v,p =
∑p−1

j=1 UB
[
u, v, j

] + max
p+1≤j≤Qu,v

{
lmax
u,v,j

}
+ lmax

u,v,p

Ru,v − ∑p−1
j=1 UR

[
u, v, j

] , (10)

Ru,v,p = Ru,v −
p−1∑
j=1

UR
[
u, v, j

]
, (11)

T
[
u, v, p

] =
∑p

j=1 UB
[
u, v, j

] + max
p+1≤j≤Qu,v

{
lmax
u,v,j

}
+ lmax

u,v,p

Ru,v − ∑p−1
j=1 UR

[
u, v, j

] ,

(12)

and

Bmax(u, v, p) = UB
[
u, v, p

] + UR
[
u, v, p

]
Tu,v,p, (13)

where βRu,v,p,Tu,v,p is the rate-latency service curve offered by
a queue link edge (u, v, p) ∈ GE.

B. Flows Requirements: Mathematical Formulation

First, in order to respect the QoS requirements of embedded
flows, we must have,∑

(u,v,p)∈Pf

T
[
u, v, p

] ≤ tf ∀f ∈ F . (14)

Second, in order to avoid any buffer overflow (and hence
any packet loss), we must have

Bmax(u, v, p) ≤ AB
[
u, v, p

] ∀ (u, v, p) ∈ GE. (15)

C. Requirement for the Models: Fixed Per-Queue Delay

Both bounds in Eqn. 12 and 13 depend on UB[u, v, j],
UR[u, v, j] and lmax

u,v,j for some j, i.e., on the burst size, rate and
maximum packet size of other flows embedded on the same
physical link. This means that, if a new flow is embedded on
a link (u, v) ∈ PE, the worst-case delay (Eqn. 12) and buffer
consumption (Eqn. 13) of some of the queues at the link will
be updated, thereby possibly violating requirements of some
previously embedded flows (Eqn. 14 and 15). As explained in
Section IV-E, we do not want to check that the delay require-
ments of the already embedded flows are still satisfied (i.e.,
check Eqn. 14) after a new flow embedding. That means that
the worst-case bounds T[u, v, p] have to be bounded indepen-
dently of the status of the network. In such a way, if Eqn. 14
for a given flow f was satisfied when the flow was embedded,
it will be kept satisfied for the whole runtime of the network.

The two different models we present in the next sections
differ in the way they fix the T[u, v, p] bounds. While the
multi-hop model upper-bounds the variable parts of Eqn. 12,
the threshold-based model fixes T[u, v, p] itself and lets the
variables vary until the fixed threshold is reached.

D. Multi-Hop Model (MHM)

Our first model, the multi-hop model (MHM), extends the
access control scheme proposed by Schmitt et al. [33] for
one aggregation node in order to consider multi-hop paths
and physical buffer limits. This extension was already par-
tially described by Guck et al. [18] but the limited capacity
of buffers was not considered. We here present an updated
version.

1) Network Calculus Developments: The model finds an
upper bound for T[u, v, p] by replacing the variable compo-
nents in Eqn. 12 with upper bounds for them.

Firstly, the packet size of a flow cannot be greater than the
maximum packet size in the network. That is,

l max
f ≤ Lmax ∀f ∈ F . (16)

GUCK et al.: DETSERV: NETWORK MODELS FOR REAL-TIME QoS PROVISIONING IN SDN-BASED INDUSTRIAL ENVIRONMENTS 1009

Secondly, the model assumes that the resource allocation
algorithm allocates a data rate AR[u, v, p] to each queue link
edge. The rate of the aggregate flow traversing a queue is then
limited by the access control scheme to the rate allocated to
this queue. That is,

UR
[
u, v, p

] ≤ AR
[
u, v, p

] ∀ (u, v, p) ∈ GE. (17)

From Eqn. 12 and 13, Eqn. 16 and 17 allow to compute the
following upper bounds for the worst-case delay and backlog
at a queue link edge.

T
[
u, v, p

] ≤
∑p

j=1 UB
[
u, v, j

] + 2Lmax

Ru,v − ∑p−1
j=1 AR

[
u, v, j

] (18)

Bmax(u, v, p) ≤ UB
[
u, v, p

]

+ AR
[
u, v, p

]∑p−1
j=1 UB

[
u, v, j

] + 2Lmax

Ru,v − ∑p−1
j=1 AR

[
u, v, j

]
(19)

Finally, the burst of the aggregate flow traversing a queue
has to be limited such that it does not generate any buffer
overflow. Mathematically, combining Eqn. 15 and 19, we have

UB
[
u, v, p

] + AR
[
u, v, p

]∑p−1
j=1 UB

[
u, v, j

] + 2Lmax

Ru,v − ∑p−1
j=1 AR

[
u, v, j

]

≤ AB
[
u, v, p

]
. (20)

If we refer to the maximum allowed burst at a queue as
MB[u, v, p], i.e.,

UB
[
u, v, p

] ≤ MB
[
u, v, p

] ∀(u, v, p) ∈ GE, (21)

these MB[u, v, p] bounds must be computed such that

MB
[
u, v, p

] + AR
[
u, v, p

]∑p−1
j=1 MB

[
u, v, j

] + 2Lmax

Ru,v − ∑p−1
j=1 AR

[
u, v, j

]

≤ AB
[
u, v, p

]
. (22)

Eqn. 22 allows to recursively compute the MB[u, v, p] values
independently of the state of the network. γMB[u,v,p],AR[u,v,p]
corresponds to the maximum arrival curve allowed to traverse
a given queue link (u, v, p). We will denote it as Mα[u, v, p].

As a result, Eqn. 18, can be rewritten as

T
[
u, v, p

] ≤
∑p

j=1 MB
[
u, v, j

] + 2Lmax

Ru,v − ∑p−1
j=1 AR

[
u, v, j

]

� TMHM[
u, v, p

]
, (23)

where TMHM[u, v, p] is the upper bound of the worst-case
delay T[u, v, p] of a queue link (u, v, p) ∈ GE used by the
MHM and that is independent of the state of the network.

2) Model Operations: From these developments, the four
model functions of the MHM are defined in Fig. 3.

The model uses UB[u, v, p] and UR[u, v, p] as state variables
for each queue (u, v, p) ∈ GE. The registration and deregistra-
tion methods simply consist in updating these variables. The
access control for a new flow simply consists in checking that
Eqn. 17 and 21 are always satisfied. Based on the rate allo-
cated by the resource allocation algorithm to each queue in

Fig. 3. The four model functions for the multi-hop model. The model uses
UB[u, v, p] and UR[u, v, p] as state variables for each queue (u, v, p) ∈ GE .
The registration and deregistration of a path in the network simply consists
in updating these variables. For its part, the access control simply consists in
checking that the state variables never exceed their respective limits, which
are defined is such a way that, if the variables stay below these limits, (i) the
maximum backlog at a queue will never exceed the buffer size of the queue,
thereby avoiding any buffer overflow, and (ii) the maximum delay for a queue
will never exceed the delay returned by GETDELAY for this queue.

the network, the MB[u, v, p] and TMHM[u, v, p] bounds can be
computed once for each queue link edge (u, v, p) ∈ GE and the
four model functions then require low computation overhead.

An example of the detailed operation of the model at a given
physical link (u, v) ∈ PE is given as supplementary material.
Basically, once the Mα[u, v, p] curves have been recursively
computed, flows will be accepted at a queue p of the link
as long as the resulting aggregate arrival curve traversing the
queue stays below the Mα[u, v, p] limit curve.

3) Limitations of the Multi-Hop Model: The MHM requires
a data rate to be allocated to each queue. These allocated data
rates then define the maximum rate and burst allowed at each
queue, as well as the maximum delay of each queue. The
access control checks the availability of two resources: burst
and rate. Hence, it can happen that the access to a queue is
blocked because its rate budget is exhausted, while its burst
limit is not reached. In such a situation, it would be beneficial
to artificially reduce the buffer size AB[u, v, p] of the queue.
Indeed, this would, by Eqn. 22, reduce MB[u, v, p] (which is
not a problem since the remaining burst budget will never be
used because of the data rate bottleneck) and lower priority
queues could then either (i) see their maximum delay reduced
(by Eqn. 23) or (ii) see their maximum allowed burst or rate
increased (by Eqn. 22).

From this observation, the resource allocation algorithm
should also assign a buffer capacity to each queue, thereby
being allowed to artificially reduce the capacity of a buffer in
order to trade it against lower delay or more rate or buffer
for other queues. Note that the opposite situation could also

1010 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 4, DECEMBER 2017

happen. That is, the buffer capacity could be the bottleneck, in
which case it would be beneficial to trade off rate in order to
increase the maximum allowed bursts or reduce the maximum
delays at other queues. In other words, the MHM requires the
resource allocation algorithm to be responsible for adjusting
the trade-off between the resources, that is, to make an a priori
choice between buffer space, data rate and delay. However,
adjusting this trade-off requires to know what is the bottle-
neck in the network or at a given link. Will flows be rejected
because there is no buffer capacity available anymore, no data
rate available anymore, or because their delay cannot be satis-
fied? Unfortunately, answering this question requires to know
the traffic demand, which is, because of our online approach
(see Section IV-D), not the case.

E. Threshold-Based Model (TBM)

The threshold-based model (TBM) solves the shortcoming
of the MHM by choosing between buffer capacity and data rate
as flows are added to the network, thereby allocating the rate
and buffer capacity resources only when needed rather than
pre-allocating them without knowing future flow requests.

1) Model Operations: In the TBM, the worst-case delay of
each queue (Eqn. 12) is simply fixed by defining a threshold
TTBM[u, v, p]. Then, flows are accepted in a queue as long as
the worst-case delay of the queues at the same link do not
exceed their respective thresholds.

This approach has two main benefits. First, as mentioned,
the data rate and buffer space resources are allocated only
when needed, rather than a priori, thereby leading to a better
utilization of the resources. Second, the resource allocation
algorithm is now simplified since it only has to optimize with
respect to one variable (the time) rather than two (buffer space
and data rate). In other words, the TBM replaces the three data
rate, buffer space and delay resources by a single one: delay.

Unfortunately, this comes at the cost of a higher compu-
tational complexity for access control. Indeed, as UR[u, v, p]
is not bounded anymore, it is not anymore possible to com-
pute a bound on the service curves offered to the different
queues (i.e., on the Tu,v,p and Ru,v,p parameters). Adding
a flow in a queue will update the service curve offered to
lower priority queues (by Eqn. 10 and 11). Hence, when
adding a flow in a queue (u, v, p), besides checking that
T[u, v, p] ≤ TTBM[u, v, p] for this queue, the access control
mechanism has to check that the thresholds of lower prior-
ity queues are also not exceeded. That is, the access control
mechanism has to check that

T
[
u, v, j

] ≤ TTBM[
u, v, j

] ∀ j : p ≤ j ≤ Qu,v. (24)

Besides, the access control scheme has to make sure that no
buffer overflow can be caused by the embedding of the new
flow, i.e.,

Bmax(u, v, j) ≤ AB
[
u, v, j

] ∀ j : p ≤ j ≤ Qu,v. (25)

Note that Eqn. 12 and 13 require the knowledge of the max-
imum packet size in lower priority queues. This means that,
when embedding a flow in a queue, higher priority queues also
have to be checked since the maximum packet size might have

Fig. 4. The four model functions for the threshold-based model. The thresh-
old for the delay of a queue is chosen by the resource allocation algorithm.
Access to a queue link edge (u, v, p) ∈ GE is then checked by checking that
the new worst-case bound does not exceed its threshold value. Besides, as the
state of a queue influences the state of lower priority queues, the access con-
trol mechanism also has to check that the worst-case bounds of lower priority
queues do not exceed their respective thresholds. Finally, the buffer capacity
also has to be checked for the different queues.

changed. However, because best-effort traffic flows through the
lowest priority queue, we cannot keep track of this value and
we hence replace it by Lmax. From this, we have

T
[
u, v, p

] ≤
∑p

j=1 UB
[
u, v, j

] + Lmax + lmax
u,v,p

Ru,v − ∑p−1
j=1 UR

[
u, v, j

] , (26)

and

Bmax(u, v, p) ≤ UB
[
u, v, p

]

+ UR
[
u, v, p

]∑p−1
j=1 UB

[
u, v, j

]+Lmax + lmax
u,v,p

Ru,v −∑p−1
j=1 UR

[
u, v, j

] ,

(27)

which only depend on the state of higher priority queues. As
a result, it is sufficient to only check lower priority queues
when embedding a new flow.

The four model functions of the TBM are given in Fig. 4.
As for the MHM, the registration and deregistration methods
simply consist in updating the state variables. However, we
here have one additional state variable: the maximum packet
size at each queue. The delay of a queue link edge is now the
one fixed by the resource allocation algorithm and the access
control scheme simply verifies that Eqn. 24 and 25 are still
verified for the subject queue and the lower priority queues if
the flow is embedded.

GUCK et al.: DETSERV: NETWORK MODELS FOR REAL-TIME QoS PROVISIONING IN SDN-BASED INDUSTRIAL ENVIRONMENTS 1011

An example of the detailed operation of the model at a given
physical link is given as supplementary material.

2) Shortcomings of the TBM: The TBM, though having
major advantages, presents two drawbacks. First, the complex-
ity of the HASACCESS model function is increased by a factor
of up to Qu,v. Because the HASACCESS function is called each
time the routing algorithm visits an edge, this might have a
considerable influence on the overall request processing time.
However, we will show in Section VI-B4 that the increase
in runtime is acceptable for industrial scenarios. Second, the
model presents an inherent blocking problem. Indeed, if a low
priority queue is close to its delay threshold, it will block fur-
ther embeddings in higher priority queues, even if these are
still far from their own delay threshold. Consequently, the rout-
ing algorithm has now to operate cautiously when embedding
flows in order to avoid such a blocking situation which would
inevitably cause resource waste.

F. Computation of the Burst Increase

1) Per-Flow Worst-Case Increase: Though we mentioned
that the burst of a flow changes at each hop, we did
not explain how these changes can be computed on a
per-flow basis and how this impacts delay computations. From
Section III, we know that an aggregate flow with arrival
curve γUR[u,v,p],UB[u,v,p] traversing a queue offering a service
curve βRu,v,p,Tu,v,p will see its burst UB[u, v, p] increased by
UR[u, v, p]Tu,v,p, i.e.,

U∗
B

[
u, v, p

] = UB
[
u, v, p

] + UR
[
u, v, p

]
Tu,v,p. (28)

U∗
B[u, v, p] is the new burst of the entire aggregate.

Nevertheless, the flows composing this aggregate might take
different routes at the next hop and the individual burst
increases of the individual flows composing the aggregate must
be computed. From Eqn. 7 and 8, Eqn. 28 can be rewritten as

U∗
B

[
u, v, p

] =
∑

f ∈Fu,v,p

(
bf

[
u, v, p

] + rf Tu,v,p
)
, (29)

which highlights the contribution of each individual flow to
the burst increase. Therefore, the burst of a flow f ∈ Fu,v,p

when entering a queue (s, t, q) ∈ GE after having traversed
queue (u, v, p) ∈ GE is given by

bf
[
s, t, q

] = bf
[
u, v, p

] + rf Tu,v,p, (30)

which depends, through Tu,v,p, on other flows traversing the
same physical link. This dependency of the burst increase
on other embedded flows is problematic. Indeed, this means
that, when a flow is embedded in a queue, the burst increases
of other flows traversing the same link might change, pos-
sibly violating already performed access control checks. As
explained in Section IV-E, such a situation must be avoided
and the burst increase of a flow must therefore be, as the worst-
case delay of a queue, independent of the network state. From
Eqn. 10 and 12, it is straightforward that

Tu,v,p ≤ T
[
u, v, p

] ∀(u, v, p) ∈ GE. (31)

Therefore, the burst increase of a flow f is such that

bf
[
s, t, q

] ≤ bf
[
u, v, p

] + rf T
[
u, v, p

]
, (32)

Fig. 5. Shaped arrival curve of an aggregate flow traversing a queue
(u, v, p) ∈ GE coming from an input link with rate R. The knowledge of
the physical properties of the input link of the flow allows to limit the burst
and rate of the aggregate respectively to the maximum packet size lmax

u,v,p of
the flow and to the maximum rate R of the link. Graphically, we can easily
see that such a shaping reduces the values of the backlog and delay bounds.

and the MHM and TBM can compute bf [s, t, q] using
bf [u, v, p] + rf TMHM[u, v, p] and bf [u, v, p] + rf TTBM[u, v, p],
respectively, which are independent of the network state.

2) Exception: We note that, if the cycle time (or
inter-arrival time of packets) of a flow is greater than its delay
bound, then the burst increase can be neglected. Indeed, in
such a case, a packet is ensured to reach its destination before
the following packet is sent. As a result, packets of the same
flow will not queue up at any queue and the burst of the flow
will never increase.

G. Input Link Shaping (ILS)

1) Towards Lower Bounds: So far, we considered that
the arrival curve of the aggregate flow entering a queue
(u, v, p) ∈ GE is γUR[u,v,p],UB[u,v,p], that is, that the burst of the
aggregate flow entering a queue is given by the sum of all the
bursts of all the flows composing the aggregate (see Eqn. 8).
Nevertheless, the individual flows come from physical links of
finite capacity. Hence, the amount of traffic entering a given
queue is further limited by the capacity of the links it is com-
ing from. Considering this new bound on the traffic entering a
queue, we can lower the corresponding arrival curves, yield-
ing lower bound values and thereby potentially accepting more
flows in the network.

The idea, to which we refer to as input link shaping (ILS),
is illustrated in Fig. 5 for a given queue (u, v, p) traversed by
a set of flows coming from a common input link of capacity
R. From the knowledge of the physical properties of the input
link, besides its traditional arrival curve, the aggregate flow is
additionally constrained by a token bucket arrival curve with
rate R and burst lmax

u,v,p. A better arrival curve for a flow con-
strained by two different token bucket arrival curves being the
minimum of these curves [32], the new arrival curve of the
aggregate flow is of the form shown in Fig. 5. We can see that
the backlog and delay bounds will always be smaller than if
shaping was not taken into account, highlighting the benefit
of ILS.

2) ILS Does Not Contradict Network Calculus: In
Section III, we have presented network calculus results for
computing the output arrival curve of a flow after it has tra-
versed a network node characterized by a given service curve.
We now propose to cut off a part of this arrival curve by shap-
ing it with the input link rate. Though this is intuitive, it might

1012 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 4, DECEMBER 2017

seem to contradict the network calculus results which say that
a big burst could happen. The justification is the following.
The results of network calculus theory are solely based on the
arrival and service curve concepts. While the service curve
gives a lower bound on the service a network node will offer
to a flow, it does not specify anything regarding the maximum
service the node could offer, hence potentially allowing infi-
nite service, i.e., infinite rate. Taking this into account, network
calculus results consider that an infinite service could instantly
output the current backlog as a single burst, which is why, in
Eqn. 6, the output burst corresponds to the worst-case backlog.
As a matter of fact, we know more than what the service curve
concept provides to network calculus theory. Indeed, we know
that the service provided by the network node can never be
higher than the link rate. The shaping we introduce is hence
augmenting network calculus results, rather than contradicting
them.

3) Adapting the Multi-Hop Model: In the MHM, the worst-
case delay of a queue is made independent of the network
state by statically defining the maximum arrival curves allowed
at each queue. Therefore, to keep the worst-case delay of a
queue static, ILS must be introduced in a way that is also
independent of the network state. For a given queue-link edge
(u, v, p) ∈ GE, the worst-case burst that could ever enter the
queue is nLmax where n is the number of links entering node
u. The worst-case rate is for its part given by the sum of the
rates of the individual incoming links. Therefore, the arrival
curve Mα[u, v, p] considered so far can be replaced by

MILS
α

[
u, v, p

] = min

⎧⎨
⎩

∑
x:(x,u)∈PE

(
γRx,u,Lmax

)
, Mα

[
u, v, p

]
⎫⎬
⎭.

(33)

Two options are then possible.
First, one can compute the maximum allowed bursts

MB[u, v, p] without considering ILS and then shaping the
obtained Mα[u, v, p] curves according to Eqn. 33 in order to
reduce the worst-case delay at each queue.

Second, one can compute the maximum allowed bursts
MB[u, v, p] using the already shaped curve. That is,
MB[u, v, p] is obtained as the maximum value such that the
worst-case burst generated by MILS

α [u, v, p] does not exceed
the allocated buffer capacity AB[u, v, p]. Because the shaped
arrival curve is lower or equal to the original arrival curve, the
obtained maximum allowed burst MB[u, v, p] will always be
greater than without considering ILS. The calculation of the
worst-case delay is then also done using the shaped arrival
curve MILS

α [u, v, p].
These two options once more highlight the trade-off

between the different resources in the MHM. While the first
option reduces delay, the second increases the maximum
allowed bursts.

Whichever option is considered, once these computations
are done, the four model functions described in Fig. 3 are left
unchanged.

4) Adapting the Threshold-Based Model: While present,
the benefits of ILS for the MHM are limited. Indeed, since
we only keep track of worst-case arrival curves, ILS also has

Fig. 6. Example of shaped arrival curve for the TBM. The aggregate flow
traversing queue (u, v, p) comes from two input links (m, u) and (o, u). Each
input link has shaped the traffic it carries as shown in Fig. 5 and the result-
ing aggregate, corresponding to the sum of the two shaped arrival curves, is
composed of three segments with decreasing slopes. The backlog and delay
bounds can then be reached at any angular point of both curves. The bounds
will always be lower than if shaping was not taken into account.

to be done worst-case, i.e., considering the worst-case packet
size and rates coming from each input link.

For the TBM, the arrival curves are computed live.
Therefore, the maximum packet size and rate for each incom-
ing link can also be computed on the fly. This can be
done by introducing three new state variables IR[m, u, v, p],
IB[m, u, v, p] and Ilmax [m, u, v, p] keeping track respectively
of the rate, burst and maximum packet size of the aggregate
flow coming from the physical edge (m, u) and traversing the
queue-link edge (u, v, p). Instead of considering the arrival
curve consisting of the sum of all the arrival curves of the flows
entering the queue, the contribution of each input link can now
be shaped individually. That is, the arrival curve considered at
a queue (u, v, p) is now

∑
x:(x,u)∈PE

(
min

{
γRx,u,Ilmax [x,u,v,p], γIR[x,u,v,p],IB[x,u,v,p]

})
,

(34)

i.e., a sum of shaped arrival curves.
An example for two input links is shown in Fig. 6. One can

see that the summed up arrival curve can have up to n knee
points, where n is the number of physical input links.

For the same reasons as for the MHM, but with increased
impact since shaping is done with the current real values, the
computed worst-case delay and backlog values will be lower.
As a consequence, the limits TTBM[u, v, p] and AB[u, v, p] will
be reached later, thereby potentially allowing more flows to be
accepted.

Obviously, the GETDELAY method in Fig. 3 does not
change. The REGISTERPATH and DEREGISTERPATH methods
have to be updated to keep track of the new state variables.
For its part, the HASACCESS method only has to be changed
at lines 6–7. Since the arrival curves are not token buckets
anymore, the formulas for computing the worst-case delay
T[u, v, p] and backlog Bmax(u, v, p) are not valid anymore
and these values have now to be computed geometrically
(see Section V-G7).

5) Burst Increase With Shaped Arrival Curves:
Unfortunately, when the arrival curve is shaped, the compu-
tation of the burst increase becomes mathematically much
more complex [32]. In particular, its decomposition into

GUCK et al.: DETSERV: NETWORK MODELS FOR REAL-TIME QoS PROVISIONING IN SDN-BASED INDUSTRIAL ENVIRONMENTS 1013

the contributions by the different flows as in Section V-F
becomes then much less trivial. For simplicity, we will there-
fore consider that the burst increase is still computed using
Eqn. 32.

6) Impact on the Performance of the MHM: As mentioned,
because the MHM performs shaping based on worst-case val-
ues, we expect the impact on the amount of flows that can be
embedded to be quite low. Nevertheless, as everything is com-
puted during initialization, the request processing time of the
MHM should not be affected by ILS. Hence, for the MHM,
ILS has only benefits, though limited.

7) Impact on the Performance of the TBM: On the contrary,
the TBM performs shaping based on the current traffic. Hence,
the impact of ILS on the amount of flows that can be accepted
in the network is expected to be greater than for the MHM.
While ILS does not slow down the MHM, the runtime of the
TBM should be much more affected. Indeed, the increased
amount of knee points in the arrival curves does not allow
anymore the computation of the worst-case delay and burst
with formulas. From the convexity of the region between the
curves (see Fig. 6), the delay (resp. backlog) bound can be
computed by comparing the horizontal (resp. vertical) devi-
ation at each knee point of the two curves. This inevitably
slows down the HASACCESS method. Hence, ILS is expected
to have a major impact on the TBM, both in terms of increased
performance and increased runtime.

VI. EVALUATION

The evaluation of the proposed models is separated in two
parts. First, in Section VI-A, we run a packet-level simula-
tion of one physical link managed by the different models
and observe the amount of flows that can be accepted at the
link and the delay experienced by the individual packets. The
goal is to confirm that the models respect the delay guaran-
tees provided to the different flows and to observe the higher
flexibility of the TBM. Although the simulation is performed
only at a single link, this also confirms that the models are
valid for end-to-end delays. Indeed, if the worst-case delay of
each queue is guaranteed, the end-to-end delay of each flow,
corresponding to the sum of the individual worst-case delays
of each queue visited by the flow, is also guaranteed. Second,
in Section VI-B, we run a network-wide simulation by gener-
ating series of flow requests for different network settings and
observe the request processing time for the different models,
along with the amount of flows they can accept. The goal is
to quantify the additional runtime required by the TBM and
hence to determine whether or not it is viable for online request
processing in industrial environments. Besides, we want to
observe the impact of ILS and confirm our expectations for-
mulated in Sections V-G6 and V-G7. Note that, for the MHM
with ILS, we used the first option described in Section V-G3.

A. Packet-Level Simulation: Confirming Correctness

1) Setup: Saturated Link Simulation: We simulate the
access control of a single 1 Gbps link with four priority queues
and varying amount of input links (1, 2, 3, 5 and 10). For each

model and amount of input links, we generate flow registra-
tion and termination requests during 100 seconds. We generate
requests at a rate high enough for saturating the link (250
requests per second) and hence for experiencing rejections of
requests.

2) Resource Allocation Algorithms: As we have seen in
Sections V-D and V-E, the two models require different types
of resource allocation algorithms. We define two algorithms
which lead to the same delays for the different queues. These
delay values are chosen so that they lead to a nice distribu-
tion of QoS levels among the queues in both models. The
algorithm for the TBM assigns the delays 0.487 ms (high pri-
ority), 1.437 ms, 3.035 ms, and 4.709 ms (low priority) to
the different queues. The algorithm for the MHM assigns the
rates 51.2 MB/s (high priority), 24.622 MB/s, 8.349 MB/s,
and 3.953 MB/s (low priority) to these same queues and the
buffer capacity of 60 KB to all of them.

3) First Configuration (The TBM Performs Better):
a) Request types: In a first configuration, each request

is defined by a data rate (between 50 KB/s and 150 KB/s), a
burst size (between 70 B and 150 B), a maximum packet size
(between 64 B and the burst of the flow) and a delay constraint
(between 10 ms and 100 ms) which are uniformly randomly
distributed in their respective ranges. These are values in line
with traffic traces observed in an operational industrial wind
park network in the context of the VirtuWind H2020 European
Project [37]. We consider Lmax as the maximum Ethernet
frame size including preamble, VLAN tag and inter-frame
gap, i.e., Lmax = 1542 B. Because the delay constraint is
always greater than the delay of any queue, the delay will
not influence the rejection or acceptance of requests. The rea-
son for this is that, since we are fully saturating the considered
link, having requests rejected because of their delay constraint
will not affect the amount of flows that can be embedded.
The generated flow requests are evenly distributed among the
different combinations of input link and queue of the con-
sidered link. Flow requests are characterized by a duration
which is randomly generated from an exponential distribu-
tion with an average duration of 100 seconds, representing
the long-duration characteristic of industrial flows.

b) Results: For each run, the amount of flows embedded
at the link was sampled every second. The left diagram of
Fig. 7 shows, for each amount of input link, the average and
the standard deviation of these sampled values. We observe
that the TBM considerably increases the amount of flows in
the system – by around 50%. This shows the flexibility of
the TBM. While it automatically adapted to the rate and burst
characteristics of the requests, the MHM did not because of
the a priori choice on the rate, buffer and delay trade-off.
We observe that ILS does not provide any benefit for both
models. For the MHM, since we use the first option mentioned
in Section V-G3, ILS only reduces the delay of the queues.
Since the delay does not influence the access control in our
simulation, ILS has no impact on the MHM. For the TBM, ILS
reduces both the delay and the maximum burst computation.
However, as shown in Fig. 6, the maximum burst computation
will be reduced only if one knee point of the arrival curve is
after the knee point of the service curve. In our particular setup

1014 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 4, DECEMBER 2017

Fig. 7. On the left diagram, results of the packet-level simulation when flows
are evenly distributed among the combinations of input link and queue. The
TBM performs 50% better than the MHM and the ILS has no influence on
the performance of both models. On the right diagram, one priority queue
received more traffic from a given input link and the traffic was more bursty.
The TBM still performs better than the MHM but the ILS now increases the
performance of the TBM when the amount of input link is low. No packet
loss nor deadline violation was observed in both scenarios.

of requests distributed evenly among the combinations of input
link and queue, the knee points of the arrival curves are always
before the knee point of the service curve, thereby explaining
why ILS has no impact in this configuration. During all the
simulations, out of 909,267,506 transmitted packets, no packet
loss was observed and the highest packet delay to deadline
ratio was 1.07%.

4) Second Configuration (Impact of ILS):
a) Request types: In a second configuration, we change

the requests generation. The data rate and burst size are now
varying between 7.086 KB/s and 8.086 KB/s and 879 B
and 889 B, respectively. That is, the traffic is more bursty.
Additionally, the requests are not anymore distributed evenly
among the combinations of input link and queue but we gen-
erate 10 times more requests from the first input link for the
highest priority queue than for all other combinations of input
link and queue. In such a way, because more flows will be
embedded in the high priority queue, the knee point of the
corresponding shaped arrival curve will be shifted towards the
right, thereby potentially reducing the maximum burst compu-
tation. Besides, since ILS shapes bursts, having more bursty
traffic should increase the effect of ILS.

b) Results: The right diagram of Fig. 7 shows the result
of the simulation for the second configuration. We can see
that the TBM still behaves better than the MHM, confirming
its higher flexibility: it adapted to the new characteristics of
the requests. For the same reason as for the previous simu-
lation, ILS has no impact on the MHM. On the other hand,
ILS improves the performance of the TBM when the amount
of input links is low. This is due to the fact that, when the
amount of input link increases, the ratio of requests from
the first input link for the high priority queue to the total
of requests decreases. Therefore, as increasing the amount of
input links leads to a more even distribution of requests among
the combinations of input link and queue (as in the first simu-
lation), the performance of ILS decreases. This shows that ILS
behaves better when the flows at one link are not distributed
evenly among the input links. During all the simulations, out of
36,747,129 transmitted packets, no packet loss was observed
and the highest packet delay to deadline ratio was 0.47%.

B. Monte Carlo Simulation

The first part of our evaluation confirmed that our models
are correct and showed that the TBM has the potential to out-
perform the MHM. Further, it has shown that the benefit of
ILS grows when the traffic entering a link is not distributed
evenly among the incoming links. However, we only observed
the impact of ILS on the allowed bursts. In order to observe
the impact of ILS on both the allowed bursts and the delay
computation, a global network simulation is required. As part
of a global QoS framework, the performance of a network
model depends on the associated components (resource allo-
cation and routing algorithms) and on the scenario (topology
and type of flow requests). As such, with the aim of observ-
ing the influence of the network model only, we run a Monte
Carlo simulation varying the different components (defined
in Section VI-B1) and scenarios (defined in Section VI-B2)
around the two models. In other words, we randomly vary the
context in which the models are used in order to isolate their
impact on the overall performance of the QoS framework.

1) Other Components (Resource Allocation and Routing
Algorithms):

a) Resource allocation algorithms: For simplicity,
resources are allocated among the queues identically for each
link and following the resource allocation algorithms used in
the first evaluation (Section VI-A).

b) Routing algorithms: As proposed in Section IV-E, we
use a DCLC algorithm. Among the plethora of such algorithms
available in the literature, we consider constrained Bellman-
Ford (CBF) [38] for its optimality, LARAC [39] for its good
average performance [40] and Dijkstra computing the least-
delay path (LDP) for its simplicity. We use different cost
functions based on the priority of a queue link, the amount of
average flows that can still be embedded in it or a combination
of those.

2) Scenario:
a) Topologies: We define two network topologies based

on lines and rings, which are typical structures for industrial
networks. The first topology consists of a ring of size m+1 to
which one programmable logic controller (PLC) and m lines
composed of n remotes I/Os are attached. The second topology
extends the first one by connecting another ring of size m+1 to
the former loose ends of the remotes I/Os lines. The (m+1)th
switch not connected to the lines is then connected to the PLC.
Communication is only considered from the remote I/Os to the
PLC. Both topologies can be scaled along the two n and m
dimensions (4 ≤ n ≤ 10, 4 ≤ m ≤ 10).

b) Flow requests: In order to generate a request for a
given topology, a random remote I/O is selected to communi-
cate with the PLC. Requests are defined as in Section VI-A3a.

3) Evaluation Metrics: For a given iteration of the Monte
Carlo simulation, i.e., for a given network model (and asso-
ciated resource allocation algorithm), cost function, routing
algorithm and topology, a binary search is started in order to
find, for this scenario, the greatest traffic intensity for which
every request can be embedded. Traffic intensity is defined
as the arrival rate of flows multiplied by their average dura-
tion (100 s, see Section VI-A3a), which also corresponds to
the amount of active flows in the network (when the system

GUCK et al.: DETSERV: NETWORK MODELS FOR REAL-TIME QoS PROVISIONING IN SDN-BASED INDUSTRIAL ENVIRONMENTS 1015

Fig. 8. Results of the evaluation. The left plot shows the empirical cumulative
distribution function (ECDF) of the average runtime of one complete request
life cycle (routing, embedding, deregistration) for the different models and
their corresponding variations with input link shaping (ILS). The right plot
shows the ECDF of the traffic intensity that the different models were able
to reach. As expected, ILS has a greater impact on the TBM, both in terms
of runtime and traffic intensity. We can observe that the TBM with ILS has
the potential of reaching a high traffic intensity, but at the cost of a higher
runtime.

converges). The traffic intensity associated to an iteration then
corresponds to the maximum traffic intensity that could be
reached. The runtime associated to an iteration corresponds to
the average runtime of a request routing plus the average run-
time of a path registration plus the average runtime of a path
deregistration, i.e., to the average runtime of a request process-
ing life cycle, that was observed during the complete binary
search. The runtime was measured on a machine equipped
with an Intel Xeon E5 2690v2 @ 3.00GHz processor.

4) Results: Fig. 8 shows the results of the Monte Carlo sim-
ulation. The left and right plot show the empirical cumulative
distribution functions (ECDF) of, respectively, the runtime and
the traffic intensity for the different models.

a) Runtime: As expected, the runtime of the MHM is
not much affected by the introduction of ILS. Indeed, as we
have seen in Section V-G6, the access control complexity of
the MHM is the same with or without ILS. The small runtime
difference in Fig. 8 is due to routing. As the delay values are
changed by ILS, the routing algorithm will behave differently
while searching for a path, hence possibly leading to slightly
different running times.

We also observe that the TBM exhibits a higher runtime than
the MHM. As mentioned in Section V-E2, this was expected
and is due to the increased complexity of the access control
method. More precisely, the TBM leads to an increase in the
runtime by a factor of 2 to 4. This is consistent with the fact
that the access control of the MHM checks only one queue,
while the TBM checks up to Qu,v queues, which is 4 in our
evaluation.

Contrary to the MHM, the runtime of the TBM is highly
affected by the introduction of ILS (slowed down by a fac-
tor of around 2). As elaborated in Section V-G7, this was
expected and is due to the increased complexity for comput-
ing horizontal and vertical deviations when introducing ILS
to the TBM. However, the runtime stays lower than 350 ms
in 99% of the cases and never exceeds 620 ms, which cor-
responds to a single-threaded worst-case performance of 1.6
requests per second, which is a reasonable performance for
industrial applications.

Furthermore, because the runtime shift between the models
stays roughly equal, Fig. 8 clearly shows that the network
model is the main driver for the runtime of the system.

b) Traffic intensity: We observe that the introduction of
ILS brings a performance increase to both models, however
more significant for the TBM. As elaborated in Section V-G4,
this is due to the fact that the MHM performs ILS with worst-
case values while the TBM performs ILS with the current
flow values, which are inevitably lower. Because ILS does not
affect the runtime of the MHM and sometimes improves its
performance, this confirms that ILS is always beneficial for
the MHM.

While Fig. 8 shows that the runtime is mostly influenced
by the network model, we observe that this is not true for the
traffic intensity. Indeed, the traffic intensity ECDFs present
crossover points, which means that other components used in
the Monte Carlo simulation have a significant impact on the
performance of the models. This contrasts with the simulation
in Section VI-A and shows that the MHM is able to outper-
form the TBM in some circumstances and hence that further
study is required in order to identify which set of compo-
nents (including the network model) is the most suitable for
a specific scenario.

VII. CONCLUSION

In this article, we provided a detailed description of two
network models (DetServ) for the provisioning of real-time
QoS (e.g., for machine-to-machine (M2M) communications or
production facilities) with SDN. The first model, the multi-hop
model (MHM), assigns a rate and a buffer budget to each
queue in the network. This model corresponds to an updated
version of the model previously presented in [16] and [18],
which was not considering the buffer consumption of flows,
i.e., not preventing packet loss. The second model, the main
contribution of this article, simply fixes a maximum delay
for each queue. We refer to this new network model as the
threshold-based model (TBM). We have shown that, by avoid-
ing an a priori choice on the trade-off between data rate and
buffer capacity, the TBM is more flexible with respect to the
characteristics of flows that are to be embedded in the network
but that this comes at the price of an increase in the request
processing time by a factor corresponding to the amount of
priority levels in the network. We also gave an insight on how
this increase in flexibility has the potential of reaching higher
network utilization.

One major benefit of the proposed models is that they
can be used with simple commodity switches supporting
priority scheduling and any SDN protocol providing standard
enqueuing and forwarding primitives, e.g., OpenFlow 1.0 [20].

We further introduced input link shaping (ILS), an exten-
sion to the two proposed models which takes into account the
shaping of the traffic by the limited capacity of the links in the
network. Our evaluations have shown that, while beneficial for
both models, this extension has a much higher impact on the
performance and runtime of the TBM. Our evaluations have
additionally shown that the runtime cost of the higher flexi-
bility and performance of the TBM with ILS stays reasonable

1016 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 4, DECEMBER 2017

for industrial scenarios. Indeed, the total request processing
time never exceeds 620 ms.

In order to be part of a QoS framework, these models have
to be combined with a routing procedure. This procedure was
not considered in this article but has been investigated in [40].
The evaluation of the peformance of the complete QoS frame-
work, i.e., of the combination of a routing procedure and a
network model is, for its part, left for future work.

ACKNOWLEDGMENT

The authors are grateful to Onur Ayan, Nemanja
Deric, Murat Gürsu, Mu He, Alberto Martínez Alba,
Petra Stojsavljevic, Samuele Zoppi, and the reviewers for their
useful feedback and comments.

REFERENCES

[1] Communication Delivery Time Performance Requirements for Electric
Power Substation Automation, IEEE Standard 1646-2004, pp. 1–24,
2005.

[2] T. Sauter, “The three generations of field-level networks—Evolution
and compatibility issues,” IEEE Trans. Ind. Electron., vol. 57, no. 11,
pp. 3585–3595, Nov. 2010.

[3] J.-D. Decotignie, “Ethernet-based real-time and industrial communica-
tions,” Proc. IEEE, vol. 93, no. 6, pp. 1102–1117, Jun. 2005.

[4] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[5] D. Henneke, L. Wisniewski, and J. Jasperneite, “Analysis of realizing
a future industrial network by means of software-defined networking
(SDN),” in Proc. IEEE World Conf. Factory Commun. Syst. (WFCS),
Aveiro, Portugal, 2016, pp. 1–4.

[6] Q. Duan, “Network-as-a-service in software-defined networks for
end-to-end QoS provisioning,” in Proc. 23rd Wireless Opt. Commun.
Conf. (WOCC), Newark, NJ, USA, 2014, pp. 1–5.

[7] S. Sharma et al., “Implementing quality of service for the software
defined networking enabled future Internet,” in Proc. 3rd Eur. Workshop
Softw. Defined Netw., London, U.K., 2014, pp. 49–54.

[8] S. Tomovic, N. Prasad, and I. Radusinovic, “SDN control framework for
QoS provisioning,” in Proc. 22nd Telecommun. Forum Telfor (TELFOR),
Belgrade, Serbia, 2014, pp. 111–114.

[9] M. Shen et al., “Joint optimization of flow latency in routing and
scheduling for software defined networks,” in Proc. 25th Int. Conf.
Comput. Commun. Netw. (ICCCN), Waikoloa, HI, USA, 2016, pp. 1–8.

[10] W. Kim et al., “Automated and scalable QoS control for network conver-
gence,” in Proc. Internet Netw. Manag. Workshop Res. Enterprise Netw.
(INM WREN), vol. 10. San Jose, CA, USA, 2010, p. 1.

[11] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS:
An OpenFlow controller design for multimedia delivery with end-to-end
quality of service over software-defined networks,” in Proc. Asia–Pac.
Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC), 2012,
pp. 1–8.

[12] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “PolicyCop:
An autonomic QoS policy enforcement framework for software defined
networks,” in Proc. SDN Future Netw. Services (SDN4FNS), Trento,
Italy, 2013, pp. 1–7.

[13] A. V. Akella and K. Xiong, “Quality of service (QoS)-guaranteed
network resource allocation via software defined networking (SDN),” in
Proc. 12th Int. Conf. Depend. Auton. Secure Comput. (DASC), Dalian,
China, 2014, pp. 7–13.

[14] D. Adami, L. Donatini, S. Giordano, and M. Pagano, “A network control
application enabling software-defined quality of service,” in Proc. IEEE
Int. Conf. Commun. (ICC), London, U.K., 2015, pp. 6074–6079.

[15] N. An, T. Ha, K.-J. Park, and H. Lim, “Dynamic priority-adjustment
for real-time flows in software-defined networks,” in Proc. 17th Int.
Telecommun. Netw. Strategy Plan. Symp. (Netw.), Montreal, QC, Canada,
2016, pp. 144–149.

[16] J. W. Guck and W. Kellerer, “Achieving end-to-end real-time quality of
service with software defined networking,” in Proc. 3rd Int. Conf. Cloud
Netw. (CloudNet), Luxembourg, Luxembourg, 2014, pp. 70–76.

[17] J. W. Guck, M. Reisslein, and W. Kellerer, “Model-based control plane
for fast routing in industrial QoS network,” in Proc. 23rd Int. Symp.
Qual. Service (IWQoS), Portland, OR, USA, 2015, pp. 65–66.

[18] J. W. Guck, M. Reisslein, and W. Kellerer, “Function split between
delay-constrained routing and resource allocation for centrally managed
QoS in industrial networks,” IEEE Trans. Ind. Informat., vol. 12, no. 6,
pp. 2050–2061, Dec. 2016.

[19] J. Jasperneite, P. Neumann, M. Theis, and K. Watson, “Deterministic
real-time communication with switched Ethernet,” in Proc. 4th Int.
Workshop Factory Commun. Syst., Västerås, Sweden, 2002, pp. 11–18.

[20] OpenFlow Switch Specification Version 1.0.0, OpenFlow Switch
Consortium, 2009. [Online]. Available: http://archive.openflow.org/
documents/openflow-spec-v1.0.0.pdf

[21] P. Gaj, J. Jasperneite, and M. Felser, “Computer communication
within industrial distributed environment—A survey,” IEEE Trans. Ind.
Informat., vol. 9, no. 1, pp. 182–189, Feb. 2013.

[22] J. Jasperneite and P. Neumann, “How to guarantee realtime behavior
using Ethernet,” in Proc. 11th IFAC Symp. Inf. Control Problems Manuf.
(INCOM), vol. 1. Salvador, Brazil, Apr. 2004, pp. 91–96.

[23] A. Kassler, L. Skorin-Kapov, O. Dobrijevic, M. Matijasevic, and
P. Dely, “Towards QoE-driven multimedia service negotiation and path
optimization with software defined networking,” in Proc. 20th Int. Conf.
Softw. Telecommun. Comput. Netw. (SoftCOM), Split, Croatia, 2012,
pp. 1–5.

[24] P. Sharma et al., “Enhancing network management frameworks with
SDN-like control,” in Proc. Int. Symp. Integr. Netw. Manag. (IM), Ghent,
Belgium, 2013, pp. 688–691.

[25] H. Owens and A. Durresi, “Video over software-defined networking
(VSDN),” in Proc. 16th Int. Conf. Netw. Based Inf. Syst. (NBiS),
Gwangju, South Korea, 2013, pp. 44–51.

[26] S. Gorlatch, T. Humernbrum, and F. Glinka, “Improving QoS in
real-time Internet applications: From best-effort to software-defined
networks,” in Proc. Int. Conf. Comput. Netw. Commun. (ICNC),
Honolulu, HI, USA, 2014, pp. 189–193.

[27] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém, “Control of multiple
packet schedulers for improving QoS on OpenFlow/SDN networking,” in
Proc. 2nd Eur. Workshop Softw. Defined Netw., Berlin, Germany, 2013,
pp. 81–86.

[28] E. Schweissguth, P. Danielis, C. Niemann, and D. Timmermann,
“Application-aware industrial Ethernet based on an SDN-supported
TDMA approach,” in Proc. World Conf. Factory Commun. Syst. (WFCS),
Aveiro, Portugal, 2016, pp. 1–8.

[29] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized zero-queue datacenter network,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 4, pp. 307–318, 2014.

[30] A. L. King, S. Chen, and I. Lee, “The MIDdleware assurance substrate:
Enabling strong real-time guarantees in open systems with OpenFlow,”
in Proc. 17th Int. Symp. Object Compon. Service Orient. Real Time
Distrib. Comput. (ISORC), Reno, NV, USA, 2014, pp. 133–140.

[31] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Heidelberg, Germany:
Springer, Apr. 2012.

[32] A. Van Bemten and W. Kellerer, “Network calculus: A comprehen-
sive guide,” Chair Commun. Netw., Tech. Univ. at Munich, Munich,
Germany, Tech. Rep. 201603, Oct. 2016.

[33] J. Schmitt, P. Hurley, M. Hollick, and R. Steinmetz, “Per-flow guarantees
under class-based priority queueing,” in Proc. IEEE Glob. Telecommun.
Conf., vol. 7. San Francisco, CA, USA, 2003, pp. 4169–4174.

[34] J. Åkerberg, M. Gidlund, and M. Björkman, “Future research chal-
lenges in wireless sensor and actuator networks targeting industrial
automation,” in Proc. 9th Int. Conf. Ind. Inf., Lisbon, Portugal, 2011,
pp. 410–415.

[35] V. C. Gungor et al., “Smart grid technologies: Communication tech-
nologies and standards,” IEEE Trans. Ind. Informat., vol. 7, no. 4,
pp. 529–539, Nov. 2011.

[36] R. H. Khan and J. Y. Khan, “A comprehensive review of the application
characteristics and traffic requirements of a smart grid communications
network,” Comput. Netw., vol. 57, no. 3, pp. 825–845, 2013.

[37] T. Mahmoodi et al., “Virtuwind: Virtual and programmable industrial
network prototype deployed in operational wind park,” Trans. Emerg.
Telecommun. Technol., vol. 27, no. 9, pp. 1281–1288, 2016.

[38] R. Widyono et al., The Design and Evaluation of Routing Algorithms
for Real-Time Channels. Berkeley, CA, USA: Int. Comput. Sci. Inst.
Berkeley, 1994.

[39] A. Jüttner, B. Szviatovski, I. Mécs, and Z. Rajkó, “Lagrange relaxation
based method for the QoS routing problem,” in Proc. 20th Annu. Joint
Conf. IEEE Comput. Commun. Soc. (INFOCOM), vol. 2. Anchorage,
AK, USA, 2001, pp. 859–868.

[40] J. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, “Unicast QoS
routing algorithms for SDN: A comprehensive survey and performance
evaluation,” IEEE Commun. Surveys Tuts., to be published.

GUCK et al.: DETSERV: NETWORK MODELS FOR REAL-TIME QoS PROVISIONING IN SDN-BASED INDUSTRIAL ENVIRONMENTS 1017

Jochen W. Guck received the Dipl.-Ing. degree in
Ingenieurinformatik from the University of Applied
Sciences Wuerzburg-Schweinfurt, Schweinfurt,
Germany, in 2009 and the M.Sc. degree in electrical
engineering from the Technical University of
Munich, Munich, Germany, in 2011. In 2012,
he joined the Chair of Communication Networks
with the Technical University of Munich as a
Research and Teaching Staff Member. His research
interests include real-time communication, industrial
communication, software-defined networking, and
routing algorithms.

Amaury Van Bemten was born in Liège, Belgium,
in 1993. He received the B.Sc. degree in engineering
in and the M.Sc. degree in computer science
and engineering from the University of Liège,
Belgium, in 2013 and 2015, respectively. He is cur-
rently pursuing the Ph.D. degree with the Technical
University of Munich, where he joined the Chair
of Communication Networks as a Research and
Teaching Staff Member in 2015. His current research
focuses on routing algorithms and the application of
software-defined networking for resilient real-time

communications in industrial environments.

Wolfgang Kellerer (M’96–SM’11) received the
Dr.-Ing. (Ph.D.) and Dipl.-Ing. degrees from
the Munich University of Technology, Munich,
Germany, in 1995 and 2002, respectively. He is
a Full Professor with the Technical University
of Munich, heading the Chair of Communication
Networks with the Department of Electrical and
Computer Engineering. He was for over ten
years with NTT DOCOMO’s European Research
Laboratories. His research resulted in over 200
publications and 29 granted patents in the areas

of mobile networking and service platforms. He currently serves as an
Associate Editor for the IEEE TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT and on the Editorial Board for the IEEE COMMUNICATIONS

SURVEYS AND TUTORIALS. He is a member of ACM and the VDE ITG.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

