
278 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

On-Demand Discovery of Software Service
Dependencies in MANETs

Petr Novotny, Bong Jun Ko, and Alexander L. Wolf, Fellow, IEEE

Abstract—The dependencies among the components of service-
oriented software applications hosted in a mobile ad hoc net-
work (MANET) are difficult to determine due to the inherent
loose coupling of the services and the transient communication
topologies of the network. Yet understanding these dependencies is
critical to making good management decisions, since dependence
data underlie important analyses such as fault localization and
impact analysis. Current methods for discovering dependencies,
developed primarily for fixed networks, assume that dependencies
change only slowly and require relatively long monitoring periods
as well as substantial memory and communication resources, all of
which are impractical in the MANET environment. We describe a
new dynamic dependence discovery method designed specifically
for this environment, yielding dynamic snapshots of dependence
relationships discovered through observations of service interac-
tions. We evaluate the performance of our method in terms of
the accuracy of the discovered dependencies, and draw insights
on the selection of critical parameters under various operational
conditions. Although operated under more stringent conditions,
our method is shown to provide results comparable to or better
than existing methods.

Index Terms—Network and service management, wireless and
mobile networks, enabling technologies for management, software
services.

I. INTRODUCTION

UNDERSTANDING the dependencies among the compo-
nents of a distributed system is critical to making good

operational and maintenance decisions. For example, fault
localization and change impact analysis are tasks enabled by
accurate and timely data on component dependencies. The
importance of dependence information increases with the com-
plexity of the system, both in terms of the number of interacting
components required to carry out a given computation and the
nature of the environment in which the system operates.

In service-based systems, such as those based on the Service-
Oriented Architecture (SOA) or Web Services frameworks,
computations are structured as a set of services that respond
to requests, where a request typically originates at a user-facing
client. Fig. 1 illustrates such a system, with client applications
and services deployed across the nodes of a network. The
computation required to fulfil each request results in a cascade
of further requests across some subset of the services; services

Manuscript received September 1, 2014; revised February 1, 2015; accepted
February 25, 2015. Date of publication March 5, 2015; date of current version
June 12, 2015. The associate editor coordinating the review of this paper and
approving it for publication was X. Fu.

P. Novotny and A. L. Wolf are with the Department of Computing, Imperial
College London, London SW7 2AZ, U.K.

B. J. Ko is with IBM T. J. Watson Research Center, Yorktown Heights,
NY 10598 USA.

Digital Object Identifier 10.1109/TNSM.2015.2410693

make requests on other services to fulfil the requests made
upon them. Obtaining dependence information in such a system
is made difficult by the inherent loose coupling of services,
as many dependencies are unknown at design time, and only
established at run time through a dynamic, run-time service
binding mechanism (so-called “service discovery”). This run-
time dynamisim is felt even more so when the service-based
system is deployed on the mobile nodes of an ad hoc network,
where the mobility itself can force reconfigurations of service
bindings. The consequence is that the dependencies among run-
time instances of services are not something that can be reliably
specified before execution, but instead must be discovered
during or after execution.

Existing dependence discovery methods focus on statically
structured systems operated in fixed networks [2]–[6], [9], [11],
[14], [20], [23]. A critical assumption made by these methods
is that the dependence data, although changing, is relatively
stable over time. The significance of the stability assumption
is that the methods can make use of statistical techniques based
on data collected over long execution periods. Furthermore, by
operating in the context of a fixed-network environment, the
methods can assume no practical limits on the storage, compu-
tational, and communication resources needed to support those
statistical techniques.

The context for our work is instead service-based systems
deployed on mobile ad hoc networks (MANETs) [1], [10],
[16], [21]. Mobility and ad hoc networking bring increased dy-
namicity to service dependencies, beyond those caused by the
basic run-time service-binding regime of SOA or Web Services.
Moreover, the MANET environment is typically characterized
by severe limitations on the resources available for dependence
discovery. Existing methods based on the stability assumption
cannot adequately cope with such high levels of dynamicity nor
stringent resource constraints.

We have formulated a relatively simple dependence discov-
ery method that is nonetheless more suitable for services oper-
ating in the challenging MANET environment. Our intuition
is that dependence discovery must be focused on capturing
snapshots of dependence data relevant to each service request
of concern, rather than on the tradition of determining statistical
averages for long-term, system-wide dependencies as a whole.
Furthermore, the method must be lightweight in its resource
usage, which to our thinking means that dependence data
should be collected locally, aggregated locally, and drawn to
some central location only when and if needed. We have de-
signed the method to allow engineers to trade accuracy against
cost (i.e., data collection overhead), yielding probabilistically
accurate dependence graphs that nonetheless support useful

1932-4537 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

NOVOTNY et al.: ON-DEMAND DISCOVERY OF SOFTWARE SERVICE DEPENDENCIES IN MANETs 279

Fig. 1. Hosting service-based systems on MANETs.

Fig. 2. Monitoring architecture.

analyses. In particular, the method has been successfully used in
design of a probabilistic fault localization analysis [17] (briefly
sketched in Section IV) and a cross-layer performance anomaly
diagnosis [22].

Our approach is based on the use of monitors deployed onto
the mobile nodes, as illustrated in Fig. 2. The monitors collect
dependence data by observing the message traffic between
services and extracting relevant information. The data collected
by the monitors provide only a local view of the dependence in-
formation. When a more global picture of the dependence rela-
tionships among the services is required (e.g., to carry out some
particular analysis), the monitors are contacted by a central dis-
covery element charged with integrating the data. Importantly,
only the monitors relevant to a particular analysis question typ-
ically need to be contacted, and therefore communication can
be reduced. Moreover, the monitors can aggregate the data they
collect, and can impose limits on the amount of data they store.

Three prerequisites must be met to use our method. First, to
obtain complete dependence information, the monitors should
be deployed on the nodes that are either the source or the
target of service messages; intermediate nodes in the network
used only to store and forward network-level messages are not
involved in data collection. Second, the monitors need access
to synchronized clocks to allow consistent time-stamping of the
collected dependence data. Clock synchronization in MANETs
is a well-researched topic, with techniques available to achieve
precision of tens or even single microseconds [15], [24]. The
smallest time scale we use to time stamp aggregated data is

on the order of a few milliseconds, well within this precision.
Third, the monitors must be able to observe service messages
and obtain certain information from those messages, including
such things as client and service identifiers. On the other hand,
there is no need for the monitors to have access to the payload
of messages. This kind of general information is typically
available and visible, since it is used by the underlying service
infrastructure to manage service interactions.

In this paper we introduce our dependence discovery method
and evaluate its sensitivity to a distinguishing aspect of
the MANET environment, namely time-dependent behavior.
Clearly, the method is subject to inaccuracies due to such effects
as the delay between data collection and data analysis, storage
constraints that might require monitors to “forget” some data,
and failures in nodes and links. The essence of the present
work is to understand how these effects impact the accuracy
of dependence discovery, subject to tuning and environmental
parameters. Because no benchmarks yet exist for MANET-
hosted service-based systems, we develop synthetic data to
explore the space of independent variables. The dependent
variables in these experiments are the true positives and false
positives in the discovered dependence relationships.

Our evaluation is carried out through a series of simulation-
based experiments under a realistic usage scenario: advanced
software services supporting the collaborative activities of a
group of 50 mobile users, such as a military unit, a team of fire
fighters, or an emergency rescue squad, operating in a confined
area without access to an infrastructure network. Each group
member is equipped with a mobile computer device providing
mission applications that access a range of services, such as
those for constructing and rendering street maps, surface topog-
raphy, group-member locations, tasking orders, sensors, and the
like, hosted both locally and on other nodes in the network. The
services vary in their degree of interdependence. Our results
for this scenario indicate that for a system of 30 services, with
dependence chains ranging from two to eight services deep,
our method provides nearly perfect accuracy (true positives),
with only a minor proportion of falsely included dependencies
(false positives) as compared to existing methods requiring
significantly more data and resources. Moreover, our method
appears to be less sensitive to network mobility and workload
factors, and hence robust to variations in operational conditions.

280 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

We next review prior and related work. Section III presents
our dependence discovery method and its underlying depen-
dence model, and Section IV a sample analysis, fault local-
ization, that is based on the dependence data provided by the
method. Section V describes the experimental approach we
used to evaluate the method. We then present our experimental
evaluation in Section VI. We conclude with a summary, and
a brief look at on-going and future work in Section VII.
The present paper extends a preliminary version appearing
elsewhere [18].

II. BACKGROUND AND RELATED WORK

Existing dependence discovery methods can be generally
classified as to whether they operate at the network level or at
the (application) service level. Network-level discovery [2]–[5],
[11], [12], [14], [19] focuses on coarse-grained dependencies
between network hosts. Network-level dependencies are usu-
ally described in terms of IP addresses and port numbers. They
can be augmented with additional information, such as port
mappings [9] or a classification of client applications [20]. On
the other hand, service-level discovery [6]–[8], [23] focuses
on the detection of fine-grained relationships between services.
Services are hosted in application containers, such as J2EE
or .NET, and typically associated with application identifiers,
such as URIs.

Our dependence discovery method, although informed by the
network level, operates at the service level in the sense that we
wish to discover service dependencies that can be used for fault
localization in service-based software systems. In particular, we
focus on discovering service-level dependencies in MANETs,
where dependencies may change at a rapid rate. It is important
to point out that we do not assume the availability of prior
information, such as a port mapping, application categories, or
even a specification of the services, nor do we require changes
in existing software components to support discovery, as as-
sumed for other methods [5], [8].

Many of the service-level discovery methods apply statistical
techniques to traffic traces collected by network hosts and
monitors. The statistical techniques correlate network packets
or service-level messages and identify co-occurrences of mes-
sages across different services. While the particular statistical
techniques may differ (e.g., correlation based on a time window
[2]–[4], delay distribution [9], time difference of messages
[6], or timing and frequency of packet flows [11]), all of the
methods share the same limitation: they require a long period
of time to collect statistically stable data and, therefore, are in-
appropriate in highly dynamic environments such as MANETs.

Alternatives to statistical approaches exist. For example,
Macroscope [20] samples and analyzes a subset of packets
and network connections to identify relationships between
network flow data and applications. Lu et al. [14] collect
system log data and correlate the events in the logs using data-
mining techniques. Magpie [5] instead correlates events based
on input from (human) network operators. These methods,
however, require the transfer of large amounts of trace data
from the collection points to a central analysis element, which
is prohibitive in resource-constrained MANETs. In contrast,

our method transfers dependence information selectively and
on demand, contacting only the monitors that are potentially
relevant to the events of interest (e.g., the possible receivers of
a failed service request). In addition, our monitors aggregate the
dependence data before they are transferred to the analysis node
(e.g., they may transfer only the number of messages exchanged
between two services, rather than sending the content of those
messages).

Pinpoint [8] uses a technique for correlating messages
that resembles the one found in our method. The technique
uses identifiers to uncover the flows of end-to-end processing
through application servers hosted in a fixed network. Pin-
point requires servers to insert the identifiers into the headers
of messages sent over extensible protocols such HTTP or
SOAP. The identifier is passed across processing threads within
components and inserted into messages. Monitors deployed
in the network record requests into traces from which the
paths are reconstructed, post hoc, and further aggregated into
dependencies. Similar to Pinpoint, we make use of what service
frameworks call conversation identifiers appearing in messages.
However, beyond the common use of some sort of identifier
scheme, the Pinpoint method for inferring dependencies differs
substantially from ours and, indeed, is not viable in the con-
strained environment of a MANET: Pinpoint assumes a single,
global respository to hold large amounts of data to statisti-
cally detect any occurences of, and changes to, dependencies,
whereas our method stores and draws only a small portion of
the data to a central analysis point, and then only on demand as
needed.

III. DEPENDENCE DISCOVERY AND REPRESENTATION

In this section we present our dependence discovery method.
We begin by describing two types of dependencies in which we
are interested. We then describe how we discover dependencies,
represent dependencies, and construct the representation.

A. Service Dependencies

In service-based systems, a dependence is a relation between
services defined by the message flow induced by a client
request. (As an edge case, a dependence is also the relation
between a client and a service. Without loss of generality,
we mainly focus here on relations among services.) When a
dependence relation exists between two services S1 and S2,
one service is considered the source and the other the target.
In general, sources issue requests on targets, thus defining a
directionality to the dependence.

We are concerned with two types of dependencies over
a given set of services: inter-dependencies and intra-
dependencies. An inter-dependence is the basic dependence
relation that exists between the requester of a service and
the receiver of that request. Fig. 3 illustrates a set of inter-
dependencies in a hypothetical system, where the arrows in-
dicate the directionality of the dependencies, from sources to
targets. For instance, service S3 is directly dependent upon ser-
vices S9, S11 and S20, and indirectly dependent upon services
S10, S12, S15, S21, S22, S23, and S25. Each inter-dependence

NOVOTNY et al.: ON-DEMAND DISCOVERY OF SOFTWARE SERVICE DEPENDENCIES IN MANETs 281

Fig. 3. Inter-dependencies among a set of services. The conversation originat-
ing at client C3 is highlighted.

Fig. 4. Intra-dependencies of service S9 in Fig. 3.

in which a particular service is engaged can be classified as
either incoming or outgoing. Service S9 has incoming inter-
dependencies with S2 and S3, and outgoing inter-dependencies
with S10 and S12. The figure highlights the subset of services
and dependencies involved in single conversation originating at
client C3. In this conversation, service S3 uses services S9 and
S20 to complete the request, while service S11 is presumably
used by S3 in processing other conversations.

An intra-dependence is a more complex relation between ser-
vices that relates an incoming inter-dependence to an outgoing
inter-dependence. In this sense, intra-dependencies reflect more
detailed insight into the nature of the dependencies between
services than do the basic inter-dependencies. This is illustrated
in Fig. 4, which shows the dependencies among S2, S3, S9, S10,
and S12 resulting from the four given inter-dependencies (solid
arrows) and the three given intra-dependencies (dashed arrows).
It is instructive to compare the information gained from Fig. 4
to that available in Fig. 3. We can see that S2 is (indirectly)
dependent upon S10 and S12, while S3 is only (indirectly)
dependent upon S12. This is not evident from Fig. 3.

B. Discovering Dependencies

As mentioned above, dependencies arise from the flow of
messages among services. To discover dependencies, we must
therefore track these flows. Because our aim is to be minimally

intrusive, we restrict ourselves to observing the message traffic
(i.e., messages that contain service requests and responses) as
it occurs. Our method makes use of monitors deployed within
the network to observe messages and record information about
the flows. A convenient place to deploy a monitor is within
a service’s container. The monitor is then easily aware of the
associated service’s identity, as well as being provided a context
in which to execute.

The main advantage of an approach based on monitors is
that it allows the discovery of dependencies instantaneously
and precisely, with minimal delays between dependence occur-
rence, detection, and the availability of the dependence infor-
mation. Moreover, we can do so without having to modify the
services themselves. Monitors can also minimize data storage
and communication requirements, since they can aggregate the
data. Thus, our approach can be thought of as a process for
collecting evidence of dependencies, which is in sharp contrast
to methods that require storage and transfer of large amounts of
data for later statistical analysis.

Inter-Dependence Discovery: The source and target service
pairs that induce inter-dependencies can be identified from the
flow of messages exchanged between the services. In fact,
an individual monitor needs to witness only outgoing inter-
dependencies, since the inter-dependencies of a system can be
reconstructed by integrating over the sets of outgoing inter-
dependencies recorded at individual monitors. This assumes,
of course, that services are uniquely identified and, universally,
this is the case. For instance, the Web Services framework uses
URIs for this purpose.

In practice, a monitor is aware of the identity of the source
service with which it shares a container, so it can record the
outgoing inter-dependence simply by extracting the identifier
of the target service from any outgoing request messages origi-
nating at the service. The target service identifier is an essential
field present in all request messages, such as plain HTTP or
SOAP requests. Outgoing inter-dependencies are therefore eas-
ily discoverable in all existing service invocation protocols such
as SOAP, REST or even from plain HTTP requests, without
requiring any modifications to existing systems.

Intra-Dependence Discovery: Conceptually, an intra-
dependence is a correlation at a given service between an
incoming and an outgoing inter-dependence. We already saw
how outgoing inter-dependencies are recorded. Incoming
inter-dependencies are a bit more involved, as they require
request messages to contain the unique identifier of the
requesting service. This is satisfied by most service standards
(e.g., the WS-Addressing standard provides the fields wsa : To
and wsa : From). Alternatively, when a field containing the
identifier of the requesting service is not present in the request
message, we must make the stronger assumption that we can
modify the message in flight to insert the additional header field
into a request message at the requesting service. In practice,
this should rarely be necessary.

Notice, however, that simply having the incoming and outgo-
ing inter-dependencies between services is not sufficient to cor-
relate the specific incoming and outgoing inter-dependencies
within a service that give rise to intra-dependencies. For this
purpose we rely on the presence of conversation identifiers

282 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

Fig. 5. Bit flag settings in the time slots maintained by a monitor.

within messages. In service-based systems, a conversation is
the set of all messages exchanged during the processing of
a single client request. Typically, the conversation is iden-
tified across the messages using tags inserted into message
headers. Of course, since the notion of “conversation” is an
application-specific semantic concept, conversation identifiers
must be implemented explicitly by service programmers. For-
tunately, this is a relatively routine task, as there are several
existing standards for doing so, including WS-Addressing,1

WS-SecureConversation,2 and WS-Coordination,3 that are in-
creasingly used in current-day applications. Discovering an
intra-dependence then reduces to having a monitor relate in-
coming and outgoing messages using the conversation identi-
fiers appearing in both.

C. Storage of Dependence Data

Extracting the source and target fields of messages is a
simple read-only operation causing a minimal computational
overhead. Of greater concern is the amount of required data
storage. Under our method, a monitor will only record the
history of the dependencies it has seen for some bounded period
of time. In particular, the dependence data are stored with a
sliding expiration window such that only a limited history is
maintained, using a fixed-size data structure to represent sliding
time slots, as illustrated in Fig. 5.

Entries for each time slot maintain Boolean data about
whether or not a given dependence occurred within that time
slot. Each dependence is associated with a set of those time
slots, such that when the monitor detects the occurrence of a

1http://www.w3.org/2002/ws/addr/
2http://www.ibm.com/developerworks/library/specification/ws-secon/
3http://www.ibm.com/developerworks/library/specification/ws-tx/

dependence, it signifies this by setting a 1-bit flag in the corre-
sponding data structure. It also records identifying information
about the source and target of the dependence. Of course, the
size of the time slot affects the precision of the data maintained.
For example, a time slot of 0.1 seconds will provide up to
10 times more data per second as compared to a time slot of
1 second, but will require 10 times more space to store those
data. Hence, a time slot of 0.1 seconds provides a finer gran-
ularity of information than a time slot of 1 second; there are
10 times more data entries created within the same period
of time.

Beyond the size of the time slot, the size of the whole history
can be controlled through the pruning of expired time slots.
Notice that multiple messages reflecting the same dependence
occurring within the time slot (e.g., t1) result in only a single
aggregate record of the dependence.

The length that each time slot represents can be configured
according to a desired level of resolution. When combined with
the time period and the size of each dependence entry, the data
storage needs for each monitor can be calculated. We estimate
the required bytes of storage space S per monitor as:

S=
Th

Ts
× (Ninter+Nintra)

8
+(BinterNinter+BintraNintra)

where Th is the length in seconds of the time period, Ts is
the length in seconds of a time slot, Ninter and Nintra are
the average number of inter-dependencies (both incoming and
outgoing) and intra-dependencies recorded by a monitor during
the time period, and Binter and Bintra are the maximum sizes
of the identifiers of inter- and intra-dependencies. We use this
equation to evaluate the data storage needs of our experimental
scenarios in Section VI.

The aggregation of observed service interactions can cause
the monitors to “forget” some of the details necessary to recon-
struct fully accurate dependence information. This is the case
when internal behaviors of a service that are not visible to the
monitor can generate seemingly identical interactions in aggre-
gate. As an example, consider the incoming inter-dependence of
S2 on S9, and the outgoing inter-dependencies on S10 and S12,
shown in Fig. 4. The incoming inter-dependence could in fact
be the result of aggregating two separate conversations between
S2 and S9, where the first resulted in a message to S10 and the
second resulted in a message to S12. The aggregate dependence
information held by the monitor will not, depending on the size
of the time slot, record the true dependencies regarding these
individual conversations.

D. Dependence Graph

The integration of the data recorded by individual monitors
results in a dependence graph. A dependence graph (DG) is
a directed acyclic graph constructed from a set of nodes rep-
resenting services and a set of edges representing direct inter-
dependencies.4 The direction of an edge represents the direction

4The acyclic structure of the DG is a limitation of the current method. In
practice, however, cyclic dependencies of requests occurring within a single
conversation are rarely to be expected and likely result from poor design.

NOVOTNY et al.: ON-DEMAND DISCOVERY OF SOFTWARE SERVICE DEPENDENCIES IN MANETs 283

of the inter-dependence, from source to target. Each node can
be annotated with intra-dependence information, conceptually
adding directed edges between the incoming and outgoing
inter-dependencies of the service.

The DG maintains information concerning a specific time
window, reflecting only the dependence information collected
by (or perhaps available from) monitors during that period.
The time window is a property of the interaction between the
application behavior, the network behavior, and the information
accessible to monitors. The size of the time window has many
effects on the results of analysis. For example, a small time
window serves to reduce the size of the DG, but some critical
service interactions might be missed. A large time window
provides a more complete record of dependencies, but might
include stale or irrelevant interactions (e.g., those belonging
to conversations other than the target conversation for the
analysis).

Conceptually, a DG could be used to represent the full set
of dependencies of an entire application system. In practice,
many analysis techniques only require a subgraph of the full
dependence graph related to a specific node or subset of nodes.
For example, a failure impact analysis might examine only the
nodes that can reach (i.e., are dependent upon) a given node,
and a fault localization analysis might examine only the nodes
that are reachable from a given node.

E. Dependence Graph Construction

Our method uses a set of distributed monitors that provide
information to a dependence discovery element, as illustrated
in Fig. 2. The intent of this architecture is to minimize resource
utilization, while still providing timely data. The monitors per-
form continuous dependence discovery and maintain aggregate
dependence data. The dependence discovery element itself can
be hosted on any node of the network. In fact, since the depen-
dence discovery element is a small software component, it can
be hosted on multiple nodes of the network. For example, every
node that hosts some client application is a good candidate for
also hosting a dependence discovery element.

The discovery element will construct a DG on demand,
querying the relevant monitors to harvest their local dependence
data for the time window of interest. The harvesting algorithm
is designed to incrementally construct the DG—typically a
subgraph of the full application dependence graph—by visiting
only the monitors considered relevant based on the data seen
to that point. In this way, the amount of data transmitted over
the network can be significantly reduced compared to existing
methods. Of course, the most common case of DG construction
is for a particular client, revealing the services upon which that
client depends directly or indirectly.

Conceptually, the data are harvested by a straightforward
walk rooted at the monitor associated with the client. The first
round of the harvesting algorithm adds root dependencies to an
empty DG. The root dependencies might be limited to a single
root dependence, which is useful when discovering the DG for a
particular conversation, such as for a fault localization analysis.
Otherwise, the root dependencies include all of the root depen-
dencies occurring within the time window. This is useful when

Listing 1. Java implementation of a harvesting algorithm.

discovering the set of all services involved in requests during a
particular time period, such as for a composition analysis. In the
following, recursive rounds, the algorithm issues harvesting re-
quests based on the outgoing dependencies of newly discovered
dependent services so that their dependencies can be added to
the DG.

Listing 1 demonstrates how the harvesting algorithm could
be implemented as a simple, sequential, breadth-first process in
Java. constructDG has as input parameters the identifier of a
root node (i.e., client) and timestamps for the beginning and
end of the relevant time window. It uses a helper function,
getDepsForNode, to query a monitor for its outgoing depen-
dencies. constructDG initially creates an object to represent the
DG, which has a single root node to represent the client.

For each node in the DG, getDepsForNode queries the
corresponding monitor to retrieve any recorded dependencies.
For every dependence added, a new node representing the target
service is created, if does not already exist. Obviously, more
sophisticated implementations are possible, such as one that
harvests the data from multiple monitors in parallel.

The accuracy of DG construction mostly depends on the
time window and workload. With a short time window and a
small workload (i.e., infrequent interactions among services),
we may not observe some critical dependencies. With a long
time window and a large workload, we may include obsolete
and irrelevant interactions (e.g., dependencies belonging to con-
versations that are not of interest). In Section VI, we investigate
the impact of these and other factors on the accuracy of the
DG obtained by our method. We then suggest ways to select
parameter values to optimize the discovery process.

IV. AN EXAMPLE APPLICATION

Dependence information forms the basis for a variety of
important system-level analyses. As an example, we have ex-
perience in using the dependence information obtained from
the discovery method presented here to develop a new fault
localization aid for the operators of service-based systems
deployed on MANETs [17]. Describing this experience in detail
is beyond the scope of the present paper. However, for purposes
of illustration we briefly sketch its basic design.

Fault localization (sometimes also referred to as fault iden-
tification) in general refers to a technique for identifying the

284 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

Fig. 6. Experimental framework.

likely root causes of failures observed in systems formed from
components. Fault localization in systems deployed on
MANETs is a particularly challenging task because these sys-
tems are subject to a wider variety and higher incidence of faults
than those deployed in fixed networks, the resources available
to track faults are severely limited, and many of the sources of
faults in MANETs are by their nature transient (e.g., a mobile
host that temporarily moves out of radio range). Further com-
plicating the situation is that faults at the network level may not
even manifest themselves as failures at the service level, since
some of those faults may occur outside of the time during which
the relevant services are communicating, or involve communi-
cation outside of the relevant conversation. Moreover, service-
based systems are typically designed to tolerate certain kinds
of faults through mechanisms for dynamic service (re)binding.
Therefore, fault localization must be especially adept at sifting
through noisy data.

Our technique uses service-level dependence relationships as
the basis of the analysis. We envision being given a failure
report in terms of a failed client conversation. Then, as de-
scribed in the previous section, the data needed to construct
the dependence graph are collected by using the client as the
root of a walk. The technique also makes use of fault symptoms
recorded in logs, as well as a fault propagation pattern built
from a classification of the failures that can be experienced
by a client. The pattern indicates how the symptoms can be
propagated through the system from root causes to clients.
The specific pattern associated with a given failed conversation
is then mapped onto the discovered dependence graph corre-
sponding to the conversation, resulting in a fault propagation
model (FPM) that represents how specific faults propagate
through the individual services involved in the conversation.
The FPM is combined with the occurrence times of the relevant
symptoms. This allows the technique to reconstruct the possible
fault propagation paths, both in time and in space, and thus
to form a set of plausible hypotheses about the causes of the
failure. The hypotheses are represented as a causality graph.

After the causality graph is constructed, a ranking algorithm
is applied to the faults in the hypothesis set based on their
likelihood of being the root cause of the failure. We have
devised two alternative approaches to ranking. The first is a
simple timing-based approach that ranks hypotheses based on
the time difference between possible root causes and the failure.
The second is a probabilistic method that uses a Bayesian net-
work to infer independent probabilities of individual root-cause
hypotheses. We obtain the Bayesian network by combining the
FPM with fault propagation rules that represent conditional

probability distribution parameters. The algorithm infers the
posterior probability of a hypothesis being a root cause given
the evidence of the failure.

Our results show that the timing-based ranking is very
effective in localizing the failures caused by explicit service
exceptions, while the Bayesian-based ranking is more effective
in the case of implicit timeout failures. The accuracy of the
discovered dependence graph plays a major role in determining
the quality of the outcome from either ranking. However, this
effect is particularly significant in the presence of a high ratio of
false positives in the discovered dependencies when attempting
to locate the root of exception faults [17].

V. EXPERIMENTAL SETUP

The evaluation of our dependence discovery method is based
on a simulation framework for service-based systems operated
in MANETs. As shown in Fig. 6, the framework first gener-
ates message and fault traces according to various simulation
parameters and scenario configurations. These traces are stored
in a database to hold the results of the simulation runs. Depen-
dence discovery is prototyped as a query over this database. In
addition, we derive the “ground truth” used in Section VI to
evaluate our method.

Without loss of generality, we make the assumption that
faults occur only at the network level, and that the services
themselves are error free. From an observational point of view,
any non-Byzantine service-level fault can be simulated by a
corresponding network-level fault (e.g., whether the absence
of a response message is due to a service fault or a network
fault is indistinguishable to a service waiting for that response).
Therefore, this assumption does not materially impact our
results, but does allows us to concentrate on simulating the
effect of the network on service interactions.

A. Simulation Engine

The simulation engine is built on top of the discrete-event
network simulator NS-3,5 which provides a comprehensive net-
work simulation using detailed implementations of low-level
network protocols. However, the highest abstraction provided
by NS-3 is that of sockets and network packets. We therefore
extend NS-3 with higher-level abstractions for simulating ser-
vice entities and their interactions. We do this by first encap-
sulating the socket layer into a messaging layer that provides

5http://www.nsnam.org/

NOVOTNY et al.: ON-DEMAND DISCOVERY OF SOFTWARE SERVICE DEPENDENCIES IN MANETs 285

the abstraction of service-level messages. The messaging layer
itself is then encapsulated into a service layer that provides
abstractions for services, clients, and their service-oriented
interactions. Finally, we provide a means to configure and run
the extended simulation.

B. Simulation Models

Service-level scenarios are created using several basic mod-
els and associated parameters.

Entity Models: These models provide the building blocks
of service-based systems: clients and services. Clients behave
autonomously, making requests on specific services at config-
urable times (see the workload model, below). Services provide
methods that can be requested by clients or other services. Each
method contains a specification of its behavior, consisting of
delays to simulate computations, and a set of steps for making
further requests on other services.

Deployment Model: The deployment model specifies where
in the network the clients and services are hosted.

Interconnection Model: The interconnection model defines
the (dynamic) binding of clients to the methods of services, and
of each method to the methods of other services.

Message Model: Three types of messages are exchanged
between entities: requests, responses, and exceptions. Requests
are used to invoke methods in other services, while responses
are sent by services back to the requester upon completion
of the requested processing. Exceptions are used to propagate
fault symptoms caused by failures. As described in Section III,
the flow of messages related to an original client request is
called a conversation. In the simulation, all messages contain
a conversation identifier, possibly available to the dependence
discovery element (according to what we assume about the
discovery process), but always available to establish the ground
truth for dependence relationships.

Workload Model: The workload is determined by the rates at
which clients send requests to services. Currently, our simulator
implements workloads in which clients, at uniformly random
times, request a method chosen uniformly at random from its
set of currently bound methods.

Fault Propagation Model: Two mechanisms are used to
propagate a fault from its root cause back to the client that ini-
tiated the failed conversation: exceptions and timeouts. Excep-
tions are explicit messages sent by services to their requesters
to notify them of a failure to fulfil a request. Typically, they
engender a cascade of such messages. Timeouts are implicit
indications of faults detected by the requesters upon the lack
of a response from services. Timeouts engender an implicit
propagation cascade.

The simulation scenarios are constructed by a configuration
generator. NS-3 defines the available network parameters, while
the models above provide the service parameters.

VI. EVALUATION

In our dependence discovery method, DGs are constructed
on demand by a discovery element. The graphs are rooted at a
given client, beginning at a given time instant, and for some

time window. Therefore, the data provided to the discovery
element will include both relevant and irrelevant information,
since a monitor will provide data about all interactions travers-
ing its associated service during the time window and, thus,
involve not just the interactions of the given conversation of
interest, but also those of others. Under such circumstances
it would be difficult for any dependence discovery method
to provide a perfect result. Moreover, our method by design
loses information (e.g., monitors retain only aggregate data, not
individual messages).

Thus, the evaluation questions of interest center on the
accuracy of the resulting DG. In particular, we examine the
following factors that should influence accuracy in this setting.

Time Window Size: The size of the time window is the main
parameter of the method. With a short time window we may not
observe some critical dependencies and with a long time win-
dow we may include obsolete and irrelevant dependencies. We
measure the impact of time window size as the ratios of false
positive and true positive dependencies (see Section VI-A).

Degree of Service Connectivity: The degree of service con-
nectivity represents the complexity of a service-based system.
The higher the degree of interconnection between the services,
the larger the number of services and overlap among conversa-
tions, and the more noise in the dependence data.

Dynamics of Service Interconnection: Service dependencies
change (i.e., adapt) in response to the dynamics of the network.
A higher rate of change in service dependencies should lead
to a greater number of irrelevant dependencies included in the
discovered DG.

Client Workload Rate: We examine the sensitivity of the
method to a range of rates at which clients issue service
requests. We would expect that as the rate increases, the higher
the overlap among conversations, and the more noise in the
dependence data.

Mobility Speed: We also examine the sensitivity of the
method to a range of node mobility speeds. We would expect
that as nodes move faster, the method will have increasing
difficulty maintaining consistent results.

Notice that the degree of service connectivity, the dynam-
ics of service interconnections, and the client workload rate
are application properties, the mobility speed is an operating
environment property, and the time window size is a tuning
parameter for the method.

In addition to these basic factors, we evaluate three other
aspects of the method.

Inter vs. Intra Dependence: We would like to under-
stand whether supporting intra-dependence discovery pro-
vides improved accuracy when compared to using only inter-
dependence discovery, since the former makes greater assump-
tions about the service implementation than the latter.

Data Storage and Transfer: Given the limited resources
available in mobile devices, we evaluate the data storage and
data transfer requirements of our method.

Comparison With Existing Methods: Performing a compar-
ative analysis is difficult, since we do not have access to
implementations of other methods. Nevertheless, we make an
effort to simulate their designs so as to produce a basic, coarse-
grained comparison in terms of true and false positives.

286 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

TABLE I
NETWORK-LAYER PARAMETERS

A. Evaluation Metrics and Parameters

Our experiments focus on a particular hypothetical conver-
sation C. A good result for our method would be that it can
discover as many dependencies of C as possible, while not
including the dependencies of other conversations. We use two
metrics to characterize the quality of our results, namely the
ratio of true positives (TP) and the ratio of false positives (FP),
defined as follows:

TP ratio =
|D(C)

⋂
GT (C)|

|GT (C)|

FP ratio =
|D(C)−GT (C)|

|D(C)|

where D(C) is the set of discovered dependencies, and GT (C)
is the set of ground-truth dependencies. The true positives are in
the intersection of these two sets, and false positives are in the
set difference. The TP ratio represents the fraction of discovered
dependencies as compared to the actual dependencies in the
conversation, and is therefore equivalent to the recall metric
of information retrieval (taking “ground truth” as “relevance”).
The FP ratio represents the fraction of discovered dependencies
not belonging to C, and is therefore the complement of preci-
sion. We assume D(C) and GT (C) are non-empty.

A high TP ratio indicates that most of the dependencies
in C have been discovered. A high FP ratio indicates that
the discovery result mistakenly includes a large number of
dependencies of conversations other than C. These irrelevant
dependencies need to be minimized to improve the accuracy of
the DG.

Table I summarizes the basic network-layer parameters used
in our simulations. These are standard settings used widely in
the networking community and embodied in the NS-3 simu-
lator. Specifically, we use the log distance model with path-
loss exponent 3 for wireless signal propagation, reproducing
a network operated in an urban area [13]. We set the spatial
mobility bounds to a 75 meter square, which is a limitation
imposed by the chosen WiFi standard, as larger regions induce
long-term network partitioning. Another important parameter is
the mobility speed of the mobile hosts. For most of the experi-
ments we set the mobility speed of all nodes to 10 m/s. This is
a challenging scenario that allows us to simulate environments
in which message exchanges between the nodes are materially
affected by the temporary disruptions in communication at the
network layer. In Section VI-E we report results in which we
vary this parameter from 0 m/s (i.e., a “stationary” wireless
network) to 15 m/s.

TABLE II
SERVICE-LAYER PARAMETERS

TABLE III
DEPENDENCIES INDUCED BY CONNECTIVITY

Table II summarizes the basic service-level parameters used
in our simulations. The message sizes and timeouts are de-
rived from standard values found in SOA and Web Services
implementations. Note that the number of methods in each
service is not significant from a simulation point of view, as
long as we have at least two methods available so that we
can examine the impact of intra-dependence information on
dependence discovery.

For the interconnection model, we use a 2-tiered topology.
The first tier consists of the connections between the clients
and a set of “front end” services, while the second tier consists
of the connections between the services themselves. In our
simulations, we use 50 clients, five front-end services, and 25
“back end” services. When starting a conversation, each client
invokes a method selected uniformly at random from all meth-
ods provided by the five front-end services. We experimented
with other topologies, including a single-tier topology in which
there are no designated front-end services, and with different
numbers of clients and services, but found that the results were
consistent. We therefore only report results based on the 2-tier
topology.

Of particular importance is the degree of connectivity among
the services. We configure the simulations to capture three
different connectivity scenarios, denoted as “Low”, “Medium”,
and “High”. The connectivity degree is induced by the proba-
bility that a method in one service invokes a method in another
service; the higher the probability, the denser the interconnec-
tion topology.

The effect of different connectivities on the resulting ground-
truth dependencies for each scenario is shown in Table III.
Because the 50 clients will always invoke the five front-end
services over the course of an experimental run, there will be
250 client-to-service dependencies in all scenarios. However,
the total number of unique service-to-service dependencies
increases with the connectivity probability, from 30 depen-
dencies for low connectivity to 130 dependencies for high
connectivity. Also increasing with the connectivity probability
is the resulting number of dependencies per conversation (i.e.,
the number of arcs appearing in the ground-truth DG rooted
at a given client). The average and standard deviations for the

NOVOTNY et al.: ON-DEMAND DISCOVERY OF SOFTWARE SERVICE DEPENDENCIES IN MANETs 287

Fig. 7. Cumulative distribution of conversation lengths (based on request
messages) for three connectivity scenarios.

conversations occurring in the three scenarios are given in the
table. Notice that a high standard deviation in this case indicates
a good mix of different kinds of conversations.

An artifact of having more services involved in a conver-
sation due to a higher degree of connectivity is that it in-
creases the time it takes to complete the conversation. This is
borne out by Fig. 7, which gives the cumulative distribution
of the conversation lengths in our simulations for the three
connectivity scenarios. For example, 80% of the conversa-
tions in the low connectivity scenario are completed in under
0.2 seconds, whereas the top 20% of the conversations in the
high connectivity scenario take longer than 4 seconds.

Service dependencies may change not only due to normal
computational progress, but also to optimize the use of oth-
erwise equivalent services. In this way the service system
adapts to the network dynamics, such as a large fluctuation
in communication quality and availability. To see the impact
of this form of dynamic service rebinding, we introduce into
our experiments a service-switching behavior. Every service
is given two designated alternative services, and every depen-
dent service then switches among these three services after
a randomly selected time period. In Section VI-C we report
results in which we vary the switching-time parameter in incre-
ments from 10 seconds on average (representing an extremely
dynamic behavior) to infinite (representing a non-switching
behavior).

We collect our results from 30 minutes of simulated execu-
tion time after excluding 30 seconds of warm up. Each com-
bination of parameters in our experiments results in thousands
of conversations occurring during the simulated 30-minute ex-
ecution. For instance, the low, medium, and high connectivities
combined with 10-minute switching-time periods and 10 m/s
mobility speeds result in 8440, 8139, and 7165 conversations,
respectively. The results given below are averages over the data
collected from these conversations, where each conversation is
then a statistical sample subject to the random variables.

B. Impact of Time Window Size and Service Connectivity

We first look at the impact of the time window size and con-
nectivity degree on the accuracy of the results. We hypothesize
that as the time window size grows, so too should the TP ratio,

Fig. 8. Accuracy, given as TP ratio, for different time window sizes.

Fig. 9. Accuracy, given as FP ratio, for different time window sizes.

Fig. 10. Trade off between TP and FP ratios for different time window sizes.

since more dependencies will be captured. However, increasing
the time window size should also increase the FP ratio, since
there is a greater chance that messages belonging to other
conversations are included in the DG. For a given time window
size, we expect the TP ratio to be negatively correlated with the
connectivity degree, since a higher connectivity increases the
conversation length, which in turn increases the chances that
some dependencies are missed. Similarly, we would expect the
FP ratio to be higher in densely connected service configura-
tions, since dependencies in other conversations are more likely
to overlap those of the subject conversation.

We calculate the TP and FP ratios for both inter- and intra-
dependence discovery separately. Figs. 8, 9, and 10 depict the
results, where each data point is the ratio averaged over all
conversations. Here we consider only fixed service bindings
(i.e., non-switching behavior). The variances of the TP and FP
ratios are small, and therefore omitted from the figures. For
example, the largest 95-percentile confidence intervals for TP
and FP ratios in the medium connectivity scenario are 0.006
and 0.0053, respectively.

288 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

Fig. 11. FP ratio for intra-dependence discovery under medium connectivity
for various switching-time periods and time window sizes.

As shown in Fig. 8, increasing the time window size in-
creases the TP ratio, both for inter- and intra-dependencies. A
larger window will include more messages and thus discover
more dependencies. However, increasing the time window size
also increases the FP ratio, as shown in Fig. 9. A larger window
will include more messages from other conversations. The same
figures also confirm our hypotheses about the impact of the
connectivity degree: the TP ratio decreases and the FP ratio
increases as the service topology becomes denser. Notice, too,
that intra-dependence discovery has a significantly lower FP
ratio than inter-dependence discovery. This is due to the fact
that it can precisely correlate incoming and outgoing inter-
dependencies, something to which inter-dependence discovery
is blind (recall Fig. 4). To directly display the trade off between
the TP and FP ratios under various time window sizes, we plot
them against each other in Fig. 10, where each point represents
the given time window size.

C. Impact of Dynamic Service Rebinding

We now investigate the sensitivity of the method to dynamic
service rebinding (i.e. the dynamics of service interconnec-
tions). For a given time window size, we would expect a
high switching rate to cause many dependencies belonging to
irrelevant conversations to be included in the discovered DG,
thereby increasing the FP ratio. In contrast, we would expect the
TP ratio to be insensitive to the switching rate because once a
message is seen, any additional messages, relevant or irrelevant,
should not increase that ratio.

We ran experiments using seven different average switching-
time periods, from 10 seconds up to a case in which no
switching occurs; a lower value results in a faster switching
rate. Fig. 11 shows the intra-dependence FP ratio in the medium
connectivity scenario. (As hypothesized, the TP ratio is essen-
tially unaffected by the switching rate, so we do not show that
result here.) The effect on FP ratio is most noticeable when the
switching-time period is on the same order as the time window
size, which indicates possibly many service switches happen
within the time window, rendering the resulting dependencies
irrelevant from the discovery element’s point of view.

Fig. 12. TP ratios for inter-dependence discovery under four workloads.

Fig. 13. FP ratios for inter-dependence discovery under four workloads.

Fig. 14. FP ratios for intra-dependence discovery under four workloads.

D. Impact of Client Workload

We define the workload to be the rate at which clients
issue service requests. We hypothesize that the workload has
a positive correlation with the FP ratio, since a high workload
will generate more messages that are part of irrelevant conver-
sations. In contrast, we expect the TP ratio to be insensitive to
the workload. This is because the TP ratio is related to the fact
of messages being exchanged between services, rather than to
the volume of those messages. In other words, once a message
is seen to have been exchanged between two services, any
additional messages, relevant or irrelevant, should not increase
the TP ratio.

Using the high dependence scenario, we experiment with
four different workload rates: 10 s, 20 s, 40 s, and 80 s. Each
rate represents the average of a uniformly random waiting time
from the completion of a given service request by a client to
the issuance of the next request by that client. A lower value
therefore indicates a higher workload.

NOVOTNY et al.: ON-DEMAND DISCOVERY OF SOFTWARE SERVICE DEPENDENCIES IN MANETs 289

Figs. 12, 13, and 14 present our results. Overall, the effect of
the workload appears to be minor, with only slight differences
in TP and FP ratios evident as the length of the time window
increases. This is what we expected to see for the TP ratio,
but the very weak correlation for the FP ratio is a somewhat
surprising result. We hypothesize that this is an artifact of the
particular service configuration used in the experiments.

E. Impact of Mobility Speed

The next set of experiments investigate the impact of node
mobility speed on the inter-dependence discovery TP and FP
ratios. We work with four different mobility speeds: 0 m/s
(amounting to a fixed network), 5 m/s, 10 m/s, and 15 m/s.

We would expect that as the speed of the mobile nodes in-
creases, the quality of the links between them should deteriorate
and, consequently, the failure rate of message exchanges should
increase. Higher message failure rates should in turn increase
conversation lengths, as more messages must be resent in an
attempt to complete the conversations. Therefore, increasing
the mobility speed should have the effect of decreasing the
TP ratio, since messages require longer time periods to be
exchanged and detected. This, however, should not impact
the FP ratio, since the proportions of relevant and irrelevant
messages remain unaffected.

The results are reported in Figs. 15, 16, and 17. As expected,
the TP ratio generally has a positive correlation with mobility
speed, with the fixed network (0 m/s) exhibiting the highest
ratio. Furthermore, we observe that the lengths of the conver-
sations increase with mobility speed (and network failure rate),
which is visible in the TP ratios between the 0.006 s to 0.6 s
time windows. However, for longer conversations, the time
windows of 6 s and 60 s are long enough to capture all cases.
The FP ratios are virtually unaffected. This coincides with our
understanding that the ratio of relevant and irrelevant messages
remains the same.

F. Comparison With Existing Methods

We now compare the accuracy of our dependence discovery
method to that of existing methods. We make this comparison
by implementing two alternative methods to represent the two
major classes of existing approaches: those that perform discov-
ery at the service level [6], [8] and those that perform discovery
at the network level [2]–[5], [11], [14]. These implementations
are, like our own method, prototyped as queries over the trace
database (see Section V). The service-level alternative discov-
ers a global system dependence graph by observing all the
service messages exchanged over the whole execution period
and, from this, builds DGs for the individual client conversa-
tions. The network-level alternative works similarly, but only
observes the flow of messages by inspecting the information
contained in the headers of packets exchanged over the relevant
IP ports. It then builds DGs using external information provided
to it about the deployment of clients and services on hosts.

We compare our method against the two alternatives us-
ing the medium connectivity scenario, a 10 minute service-
switching time period, a 10 m/s mobility speed, and workload

Fig. 15. TP ratios for inter-dependence discovery under four mobility speeds.

Fig. 16. FP ratios for inter-dependence discovery under four mobility speeds.

Fig. 17. FP ratios for intra-dependence discovery under four mobility speeds.

rate of 10 s. The average number of ground-truth dependencies
is 3.21 (see Table III). We configure our method to use a 60
s time window size, which is large enough to capture all such
dependencies (see Fig. 7). The comparison then reduces to one
based on the absolute number of false dependencies appearing
in the discovered DGs.

As we discuss in Section II, the existing service- and
network-level methods are designed for use in fixed networks
and for relatively stable service configurations. Therefore, since
both these alternative methods build DGs from long-term ob-
servations, we do not expect them to adequately filter out stale
dependencies caused by the dynamics of the scenarios, result-
ing in higher false positives than with our discovery method.
Moreover, the network-level method should include even more
false positives than the service-level method because it builds
DGs from coarser-grained information.

The results are reported in Fig. 18, where a vertical line is
used to separate the results for our method on the left from the
results for the alternative methods on the right. We give the FP
ratio, as well as a count of the false dependencies appearing

290 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

Fig. 18. Comparison of methods in medium connectivity scenario. Results for
existing methods are to right of dashed line.

in the DG. Both are computed as the average over the total
number of conversations (8139) occurring in the 30-minute
execution period. As expected, our method provides DGs hav-
ing a significantly lower FP ratio than the alternative methods.
Furthermore, although the FP ratio for our inter-dependence
discovery is similar to that of the alternative methods, the
actual number of false dependencies is significantly lower. We
note that experiments using various other workloads produced
similar comparison results.

G. Estimates of Data Storage and Transfer Needs

We conclude our evaluation of the dependence discovery
method by investigating the data storage requirements placed
on the monitors, and the data transfer requirements placed on
the network. We do this by positing a representation for the
data, analyzing the space requirements of that representation,
and computing the total for a particular experimental scenario.

Consider the medium connectivity scenario, where the av-
erage number of inter- and intra-dependencies per service is
12 and 53, respectively. Assume a maximum size for identi-
fiers of 256 single-byte characters, which corresponds to the
Web Services framework’s use of the maximum URL length.
With a time slot length of 0.01 seconds (an especially precise
configuration) maintained for a time period of 10 minutes, we
calculate the required data storage (using the formula given in
Section III-B) to be approximately 506 kilobytes per monitor.

The estimates above are in some sense worst case. In prac-
tice the identifiers will be smaller (certainly smaller than the
maximum allowed URL length). Moreover, the storage used
for intra-dependence identifiers can be significantly reduced,
simply by maintaining them as references to the corresponding
incoming and outgoing inter-dependencies.

While the monitors locally store data describing all depen-
dencies detected during the time period, the data transferred
over the network to the discovery element contains only the
data for the desired time window. This time window is typically
much shorter than the stored time period.

Consider again the medium connectivity scenario. The typ-
ical data bundle transferred by an individual monitor contains
data for approximately one outgoing inter-dependence and one
intra-dependence. This amounts to a maximum of 512 bytes
of data per service. The average number of services involved

in a client request is 3.21, so the discovery element will issue
on average 4.21 requests (including the initial request to the
client’s monitor) for dependence data to construct the DG.
This results in a total of approximately 1.6 kilobytes of data
transferred over the network, which is substantially less than
the total amount of dependence data stored by the monitors.

H. Discussion of Results

The experiments presented above establish how the time win-
dow size, degree of service connectivity, dynamics of service
interconnection, client workload rate, and mobility speed affect
the accuracy of our dependence discovery method. In addition
to these results, we have also experimented with several other
parameters, such as the rate of service faults. However, they do
not seem to have a significant impact on the accuracy of the
method, so are not reported here.

In general, the results for intra- and inter-dependence dis-
covery indicate consistently equivalent accuracy as measured in
terms of TP ratio. On the other hand, the FP ratio is significantly
lower for intra-dependence discovery compared to that for
inter-dependence discovery. Both the TP and FP ratios are
significantly affected by the selection of the time window size:
as the time window size increases, so do the TP and FP ratios.
The TP ratio, however, tends to reach a maximum value at a
certain time window size, whereas the FP ratio degrades (i.e.,
increases) unabated beyond that value. This implies that the
time window can be selected such that it will yield a discovery
result striking a good balance between true positives and false
positives.

We can also see that the FP ratio is significantly affected by
the service-switching time period. This factor depends on the
service discovery and selection technique used in the system.
In general, however, as TP ratio is relatively insensitive to
the service interconnection dynamics, one can select the time
window size after taking into account the service switching rate,
which in a MANET is typically related to the dynamics of the
network.

In contrast to time window size, the accuracy of the depen-
dence results appears to be less sensitive to network mobility
and workload factors, assuming the service interconnection
dynamics are at a given level. This implies that our method is
relatively robust to variations in operational conditions.

The comparison with existing methods validates our hy-
pothesis that MANET-hosted service-based systems require
a fundamentally different approach to dependence discovery.
Particularly striking is the difference in FP ratio between our
method’s intra-dependence discovery and that of the other
methods. While our method provides approximately one false
dependence on average per DG, the existing approaches yield
DGs significantly larger and constructed mostly from false
dependencies. This is especially evident in the network-level
approach, which yields DGs containing almost the entire set of
services, rendering dependence discovery virtually useless.

Finally, our estimates for the method’s storage requirements
fall well within the capabilities of today’s mobile devices.
Moreover, the method’s aggregation of data results in an ex-
tremely low requirement for data transport.

NOVOTNY et al.: ON-DEMAND DISCOVERY OF SOFTWARE SERVICE DEPENDENCIES IN MANETs 291

I. Threats to Experimental Validity

The results reported are a selection from the experiments we
have conducted. This selection focuses on particular aspects of
the method, as detailed above. The results withheld support the
results reported.

The threats to the validity of the results derive from the
prerequisites listed in Section I and the experimental parameter
values detailed above. We have chosen these values based on
the joint experiences of the NS-3 community of users, and on
the recommendations of commercial SOA and Web Services
providers. Where specific community experience was lacking
in the choice of values (e.g., the absence of a benchmark),
we attempted to broadly sample in the space of values. We
made use of uniformly random distributions in several instances
(e.g., the request behavior of clients), which are a simplification
that is a methodologically accepted practice at this stage of
investigation. This yields statistically sound results, as each data
point in our results is an average over all arising conversations,
each of which is a statistical sample subject to the random
variables.

We make no claim that the results generalize beyond the re-
ported experiments, but overall they give us confidence that the
method is a viable approach to service dependence discovery in
the challenging MANET environment.

VII. CONCLUSION

We have presented an on-demand method to discover the de-
pendencies among services operated in the highly dynamic and
resource-constrained environment of MANETs. Unlike existing
approaches, the method does not require stable dependence
relationships, nor does it require that large amounts of evidence
data be collected over long periods. Through an extensive set of
simulation-based experiments, we have evaluated the accuracy
of the method in terms of operational factors characteristic of
both service-based systems and MANETs. The method exhibits
good behavior when subjected to the stress of a changing
underlying network topology. Furthermore, its data storage and
data transfer requirements scale well with the number and
connectivity of the services involved.

Dependence information is not particularly useful in and of
itself, but instead serves as an indispensable building block
for important analysis capabilities. Based upon the dependence
discovery method presented in this paper, we are currently
developing such analyses, including those for probabilistic fault
localization, as briefly sketched in Section IV, and cross-layer
performance anomaly diagnosis [22].

ACKNOWLEDGMENT

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence and was accom-
plished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of
the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry

of Defence or the U.K. Government. The U.S. and U.K. Gov-
ernments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
hereon.

REFERENCES

[1] F. Al Shahwan and K. Moessner, “Providing SOAP web services and
RESTful web services from mobile hosts,” in Proc. 5th Int. Conf. Internet
Web Appl. Serv., May 2010, pp. 174–179.

[2] P. Bahl et al., “Discovering dependencies for network management,” in
Proc. 5th Workshop Hot Topics Netw., Nov. 2006, pp. 97–102.

[3] P. Bahl et al., “Towards highly reliable enterprise network services via
inference of multi-level dependencies,” in Proc. Conf. Appl., Technol.,
Architect., Protocols Comput. Commun., Aug. 2007, pp. 13–24.

[4] P. Barham et al., “Constellation: Atomated discovery of service and host
dependencies in networked systems,” Microsoft Res., Mountain View,
CA, USA, Tech. Rep. MSR-TR-2008-67, 2008.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using Magpie for
request extraction and workload modelling,” in Proc. 6th USENIX Symp.
Oper. Syst. Des. Implementation, 2004, pp. 259–272.

[6] S. Basu, F. Casati, and F. Daniel, “Toward web service dependency dis-
covery for SOA management,” in Proc. IEEE Int. Conf. Serv. Comput.,
2008, pp. 422–429.

[7] C. Chen, A. Zaidman, and H.-G. Gross, “A framework-based runtime
monitoring approach for service-oriented software systems,” in Proc. Int.
Workshop Qual. Assurance Serv.-Based Appl., 2011, pp. 17–20.

[8] M. Y. Chen et al., “Path-based faliure and evolution management,” in
Proc. Symp. Netw. Syst. Des. Implementation, 2004, pp. 1–14.

[9] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl, “Automating network
application dependency discovery: Experiences, limitations, new solu-
tions,” in Proc. 8th USENIX Symp. Oper. Syst. Des. Implementation, 2008,
pp. 117–130.

[10] P. Choudhury, A. Sarkar, and N. Debnath, “Deployment of service ori-
ented architecture in MANET: A research roadmap,” in Proc. 9th IEEE
Int. Conf. Ind. Informat., Jul. 2011, pp. 666–670.

[11] D. Dechouniotis, X. Dimitropoulos, A. Kind, and S. Denazis, “Depen-
dency detection using a fuzzy engine,” in Proc. 18th IFIP/IEEE Int.
Workshop Distrib. Syst.—Oper. Manage., 2007, pp. 110–121.

[12] M. Ding, V. Singh, Y. Zhang, and G. Jiang, “Application dependency
discovery using matrix factorization,” in Proc. IEEE 20th Int. Workshop
Qual. Serv., Jun. 2012, pp. 1–4.

[13] I. K. Eltahir, “The impact of different radio propagation models for Mobile
Ad Hoc Networks (MANET) in urban area environment,” in Proc. IEEE
2nd Int. Conf. Wireless Broadband Ultra Wideband Commun., Aug. 2007,
pp. 1–9.

[14] J.-G. Lou, Q. Fu, Y. Wang, and J. Li, “Mining dependency in distributed
systems through unstructured logs analysis,” SIGOPS Oper. Syst. Rev.,
vol. 44, no. 1, pp. 91–96, Jan. 2010.

[15] S. Mo, J. Hsu, J. Gu, M. Luo, and R. Ghanadan, “Network synchronization
for distributed MANET,” in Proc. IEEE Mil. Commun. Conf., Nov. 2008,
pp. 1–7.

[16] H. Neema, A. Kashyap, R. Kereskenyi, Y. Xue, and G. Karsai, “SOA-
MANET: A tool for evaluating service-oriented architectures on mobile
ad-hoc networks,” in Proc. IEEE/ACM 14th Int. Symp. Distrib. Simul.
Real Time Appl., Oct. 2010, pp. 179–188.

[17] P. Novotny, A. L. Wolf, and B.-J. Ko, “Fault localization in MANET-
hosted service-based systems,” in Proc. 31st Int. Symp. Rel. Distrib. Syst.,
Oct. 2012, pp. 243–248.

[18] P. Novotny, A. L. Wolf, and B. J. Ko, “Discovering service dependencies
in mobile ad hoc networks,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw.
Manage., May 2013, pp. 527–533.

[19] B. Peddycord, III, P. Ning, and S. Jajodia, “On the accurate identification
of network service dependencies in distributed systems,” in Proc. 26th
Int. Conf. Large Installation Syst. Admin.—Strategies, Tools, Tech., 2012,
pp. 181–194.

[20] L. Popa, B.-G. Chun, I. Stoica, J. Chandrashekar, and N. Taft, “Macro-
scope: End-point approach to networked application dependency discov-
ery,” in Proc. 5th Int. Conf. Emerging Netw. Experiments Technol., 2009,
pp. 229–240.

[21] F. Sailhan and V. Issarny, “Scalable service discovery for MANET,”
in Proc. 3rd IEEE Int. Conf. Pervasive Comput. Commun., Mar. 2005,
pp. 235–244.

[22] S. Tati et al., “Diagnosing degradation of services in hybrid wireless
tactical networks,” presented at the SPIE Defense, Security, Sensing,
Baltimore, MD, USA, 2013, Paper 874 210.

292 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 2, JUNE 2015

[23] S. Wang and M. A. M. Capretz, “A dependency impact analysis model
for web services evolution,” in Proc. IEEE Int. Conf. Web Serv., 2009,
pp. 359–365.

[24] D. Zhou and T.-H. Lai, “An accurate and scalable clock synchronization
protocol for IEEE 802.11-based multihop ad hoc networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 18, no. 12, pp. 1797–1808, Dec. 2007.

Petr Novotny received the M.Sc. degree in soft-
ware systems engineering from University College
London and the Ph.D. degree in computing from
Imperial College London, and was a graduate intern
at IBM Research. He is a post-doctoral Research
Associate in the Department of Computing at Im-
perial College London. His interests are in software
engineering and networking.

Bong Jun Ko received the B.S. and M.S. degrees
from Seoul National University in South Korea
and the Ph.D. degree in electrical engineering from
Columbia University in 2006. He is a research staff
member in the Cloud-Based Networking Department
at IBM T.J. Watson Research Center. He received
the best paper awards at the ICNP 2003 and IM
2013 conferences. His research interests include data
analytics, cloud computing, mobile networking, and
distributed systems.

Alexander L. Wolf (M’85–SM’09–F’11) received
the B.A. degree in geology and computer science
from the City University of New York and the M.S.
and Ph.D. degrees from the Department of Com-
puter Science at the University of Massachusetts
at Amherst. He is a Professor in the Department
of Computing at Imperial College London. He was
previously a professor at the University of Lugano,
Switzerland, the C.V. Schelke Chair at the Univer-
sity of Colorado at Boulder, and a member of the
technical staff at AT&T Bell Laboratories in Murray

Hill, New Jersey. His research interests span the areas of distributed systems,
networking, and software engineering. He served on the editorial boards of
the ACM Transactions on Software Engineering and Methodology and the
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. He currently serves as
President of the ACM. Wolf is a Fellow of the ACM and BCS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

