
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 1

Marina: Realizing ML-driven Real-time Network
Traffic Monitoring at Terabit Scale

Michael Seufert, Katharina Dietz, Nikolas Wehner, Stefan Geißler, Joshua Schüler, Manuel Wolz,
Andreas Hotho, Pedro Casas, Tobias Hoßfeld, Anja Feldmann

Abstract—Network operators require real-time traffic mon-
itoring insights to provide high performance and security to
their customers. It has been shown that artificial intelligence and
machine learning (ML) can improve the visibility of telemetry
systems, especially with encrypted traffic. However, current
solutions cannot cope with high traffic rates and volumes in large-
scale networks. To realize the ML-driven network intelligence
paradigm at terabit scale, we design Marina, a system that
spreads monitoring over a highly efficient data plane, which
can extract traffic statistics at line rate, and a powerful ML
server, which can run monitoring inference using complex ML
models. We apply temporal microaggregation into sub-second
time slots and extract moment-based statistics. These allow to
flexibly obtain accurate ML-based monitoring decisions during
the next time slot. To demonstrate the scalability of our design,
we implement and evaluate a Marina data plane prototype on
a Barefoot Wedge 100BF-65X P4 switch, which can monitor
more than 520,000 concurrent flows at full switching capacity of
6.4Tbps. We validate the analytics capabilities enabled by our
Marina implementation for four ML-driven real-time monitoring
tasks with a broad set of standard ML models, achieving
comparable or better than state-of-the-art results.

Index Terms—Network monitoring, artificial intelligence, ma-
chine learning, encrypted traffic, real-time monitoring, P4, pro-
grammable data plane.

I. INTRODUCTION

The growing number of users, devices, and applications,
as well as the increasing complexity of networks, push net-
work operators to deploy broader and more efficient network
monitoring solutions to improve their visibility, to quickly
detect and resolve performance or security issues, as well
as to optimize resources. While flow-level network telemetry
approaches (e.g., NetFlow [1], sFlow [2], IPFIX [3]) provide
valuable insights on how a network is operating, they are
limited with respect to the monitoring capacity (amount of
traffic/flows), expressiveness (set of monitored statistics), and
accuracy (sampling). In addition, their coarse temporal granu-
larity (typically, export intervals are 1 minute or higher) does
not align well with real-time monitoring tasks. Thus, packet-
level monitoring capabilities and small temporal granularity

M. Seufert was with University of Würzburg, Würzburg, Germany for
this work, but is now with University of Augsburg, Augsburg, Germany. K.
Dietz, N. Wehner, S. Geißler, M. Wolz, A. Hotho, and T. Hoßfeld are with
University of Würzburg, Würzburg, Germany. J. Schüler was with University
of Würzburg, Würzburg, Germany for this work, but is now with Tesat-
Spacecom GmbH & Co. KG, Backnang, Germany. P. Casas is with AIT
Austrian Institute of Technology, Vienna, Austria. A. Feldmann is with Max
Planck Institute for Informatics, Saarbrücken, Germany.

Manuscript received May 26, 2023; revised December 18, 2023.

Figure 1: Design principles for the deployment of ML-based
network telemetry systems.

are desired for deriving actionable management decisions in
real-time.

Traditionally, deep packet inspection (DPI) has been used
on the full packet stream to identify applications or threats
in the network, and even to obtain application-layer infor-
mation regarding the health of applications such as voice
or video streaming. However, the increasing network and
application complexity and the wide adoption of end-to-
end traffic encryption are drastically limiting the visibility
of operators on the performance of services consumed by
their customers. This has given rise to a wider adoption of
artificial intelligence and machine learning (ML) technology
to improve traffic monitoring at scale. These approaches have
been successfully applied to flow-level data [4], [5], [6] and
packet-level (time series) data [7], [8], [9], even for the case of
encrypted network traffic [10], [11], [12], [13]. Still, running
ML-driven monitoring applications in real-time and at line
rate is challenging. The combination of fine-grained, per-flow
and per-session monitoring requirements with the high volume
of data observed in modern wide area networks (WANs),
data center networks (DCNs), or enterprise networks impose
difficult-to-meet targets, and the performance of deployable
solutions often falls short in large-scale networks.

In general terms, a typical ML-driven network traffic moni-
toring workflow consists of three consecutive steps, as depicted
in Figure 1. It starts by analyzing the (encrypted) network
traffic, followed by a feature extraction of this data into
a vector representation, which serves as input to the ML
data analytics model. Different design principles are applied

0000–0000/00$00.00 © 2023 IEEE

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 2

in the literature to integrate this ML workflow with tradi-
tional network telemetry approaches. Offline or out-of-band
processing (top part of Figure 1) is typically the starting
point for model development and academic endeavors (e.g.,
[14], [15]). For this, the monitored traffic has to be captured
or mirrored, and forwarded on an external server. Stream
processors are software-based and provide high flexibility in
terms of features and analytics. They can reach excellent
monitoring performance given sufficient compute resources
and time for computing features, as well as training and
applying complex models. However, limited traffic processing
capacities and absence of real-time monitoring capabilities
typically make this approach infeasible for deployment in
operational networks.

Many current network telemetry approaches leverage
novel capabilities in softwarized and virtualized networks
(SDN/NFV), using sophisticated software packet processing
technologies [16] and programmable data planes (PDP) [17],
[18]. They have opened the door for the conception of more
flexible, real-time monitoring capabilities using programmable
switches [19], [20] or commodity hardware [21]. These sys-
tems can analyze the massive traffic volumes in real-time, i.e.,
at line rate without impacting packet forwarding, and thus,
network performance. At the same time, they can be used to
implement in-network feature extraction to reduce the amount
of data forwarded to an out-of-band stream processor (middle
part of Figure 1). By deploying a powerful server, the data
analysis can be scaled to support complex models in real-
time, and can, in theory, leverage the full analytics flexibility
of software-based stream processors. In practice, however,
this flexibility in terms of number and types of realizable
monitoring tasks is limited or dictated by the extracted feature
set. Here, hardware and processing constraints of the network
device and potential service disruption during reprogramming
of the device significantly reduce the feature flexibility. There-
fore, the in-network feature extraction system has a pivotal
role.

In-network ML (bottom part of Figure 1) integrates the ML
model directly into the data plane, either offloading feature
extraction to an external system [22], [23], or by integrating
both the feature extraction process and the ML model [24],
[25], [26], in which case the monitoring system might provide
high capacities and real-time capabilities. However, in-network
ML requires heavy tailoring and simplification of the specific
ML model, given the limited operations supported by high-
speed programmable hardware, losing flexibility in terms of
feature and ML analytics capabilities.

To effectively manage large-scale traffic while offering rich
analytics capabilities, our focus is on efficient in-network
extraction of monitoring information and out-of-band process-
ing on a powerful server, as shown in the middle part of
Figure 1. However, in contrast to existing network telemetry
systems, we design our system Marina (MAchine-learning-
based Real-time Network traffic Analytics) explicitly for
ML-based real-time network traffic monitoring at terabit scale.
The rationale of Marina is to devote and max out the limited
data plane resources to extract statistics, which are useful for
ML-based traffic analytics, even in case of encrypted traffic.

All subsequent and more complex workflow tasks, i.e., feature
generation from the extracted statistics and model inference,
are executed on a powerful ML server. This is possible, as
ML models can be trained to leverage the generated feature
sets to achieve excellent performance for different real-time
traffic monitoring tasks. This includes traffic/device classifi-
cation, application health (e.g., Quality of Experience), and
fault/anomaly detection (e.g., intrusion detection), which we
demonstrate in this work.

We distinguish from existing solutions, which often apply
techniques like sampling (e.g., [1], [2], [27], [28]), sketching
(e.g., [29], [30], [31]), or filtering/querying (e.g., [32], [19],
[20], [21], [33]), and do not explicitly consider the ML-based
network intelligence paradigm. Instead, Marina implements
a temporal microaggregation of packets using sub-second
time slots and extracts moment-based traffic statistics. This
allows a fine-grained tracing of traffic characteristics for each
monitored flow at sub-second granularity. These statistics can
subsequently be mapped into a high-dimensional feature space,
which offers high visibility and discriminative power to the
downstream analytics and provides high flexibility for apply-
ing arbitrarily complex ML models for different monitoring
tasks. By controlling placement and compute resources of the
ML server, we can obtain actionable results for all monitored
flows within the next time slot, i.e., with sub-second delay.

The contributions of this paper are as follows:
1 Marina system design (§2): we present a novel concept

for data plane extraction of moment-based statistics at line rate
in combination with ML-based analytics on a powerful server.
Our design relies on temporal microaggregation of packets into
sub-second time slots and allows to flexibly realize different
ML-driven real-time monitoring tasks with high accuracy at
scale, even for encrypted traffic.
2 Marina data plane implementation (§3) and evaluation

(§4): our implementation of the Marina data plane on a
Barefoot Wedge 100BF-65X P4 switch maxes out the data
plane resources to monitor up to 6.4Tbps of traffic in 524,288
concurrent flows over 65 QSFP 100Gbps ports. It generates
less than 385Mbps monitoring traffic, and can keep monitor-
ing granularity and delay until obtaining monitoring results for
all flows as low as 500ms. For the sake of reproducibility and
as an additional contribution, we make Marina’s code publicly
available at: https://github.com/lsinfo3/Marina
3 Marina ML-based real-time traffic monitoring (§5):

we validate the analysis capabilities enabled by Marina for
four different use cases, namely, encrypted traffic classifica-
tion, video streaming application health/Quality of Experience,
intrusion detection, and IoT device classification. We achieve
comparable or better than state-of-the-art results with standard
ML models.

II. Marina SYSTEM DESIGN

Monitoring large networks with high traffic volumes and
rates, such as ISP, data center, or enterprise networks, faces
well known challenges (e.g., [34], [35], [33]). In particular,
our system design addresses the following challenges to enable
ML-driven real-time traffic monitoring at terabit scale.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/lsinfo3/Marina

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 3

Scalability: the monitoring system must be able to cope
with high traffic volumes in a large number of flows within
its hardware resources. Extracting the monitored information
from packets must happen at line rate, while ensuring that the
monitoring does not negatively impact the basic forwarding
mechanism, and thus, the network performance or stability.

Overhead: the telemetry system must keep the monitoring
overhead as low as possible. Resource allocation of the system
should be constant, i.e., constant memory per flow, and inde-
pendent of the traffic load. Traffic generated by the monitoring
system must not overload the management network or any out-
of-band consumer of the monitored data, such as compute or
storage servers.

Expressiveness: the monitoring system must provide sufficient
compute resources to support a wide range of performance-
and security-related telemetry tasks with high accuracy. It
must be able to provide monitoring results on different time
scales like real-time insights, records of terminated flows, or
periodic aggregate reports. Moreover, it must allow to consider
relationships between flows and provide monitoring results for
sets of related flows, e.g., a browser session using several
connections. As traffic encryption hides important information
contained in inner protocol header fields and payloads, the
monitoring system must make the best use of information that
is always available (i.e., information which cannot be hidden
by encryption). Consequently, monitoring must be independent
of traffic encryption by design, providing the same accurate
insights if the traffic is encrypted or not. Nevertheless, aiming
to overcome the limited visibility due to encryption, it must
allow to obtain valuable monitoring results for many different
monitoring tasks.

Flexibility: network operators require network telemetry to be
flexible, such that they can add or change monitoring tasks at
any time without affecting the network. They need to be able
to deploy Marina at different vantage points and combine the
monitoring results to obtain network-wide insights. Moreover,
it must be possible to store monitored information, e.g., to re-
visit or analyze the historical state of the network, to detect
changes, or to forecast trends.

Trade-offs: while scalability and extracted monitoring data
are limited by the data plane capabilities, there is a trade-
off between the number of monitored flows and the generated
traffic and load at the server. Additionally, the number and
complexity of generated features and executed ML models
impact the processing time at the server, depending on the
server’s compute resources. This results in a trade-off with
the monitoring granularity and real-time capabilities of our
system. We investigate these trade-offs in §4.

A. Design Principles

We design our system Marina for real-time traffic monitor-
ing at terabit scale by implementing three design principles:
1 The data plane must do the heavy lifting work and carry

most of the monitoring burden. Its task is to reduce the data
volume as early as possible, but at the same time extract
valuable information. To be able to observe Tbps traffic,

our system is designed to be deployed at a core network
element or gateway where many high speed links interconnect.
Data planes are built to forward high volumes of traffic, but
offer limited computational or storage resources. Nevertheless,
specialized devices (e.g., programmable switches, FPGAs, or
ASICs) can execute packet operations at line rate, such as
arithmetic calculations, without affecting the forwarding and
the network performance. We require such a specialized device
for Marina and install a data plane program to efficiently
forward and monitor at line rate for all ports. We allocate
constant memory to each flow, aiming to max out the data
plane resources to monitor as many flows in parallel as
possible. The controller should be located on the same device
for efficient communication with the data plane. It instructs
the data plane which flows to monitor and where to forward
packets by installing appropriate flow rules, and exports the
monitored data.
2 We move all complex operations to a powerful server. It

can efficiently take over the more sophisticated work on the re-
duced data, namely, generating feature sets and running model
inference for a large number of monitored flows and ML-
based monitoring models. The server can be equipped with
appropriate and specialized compute and storage resources,
which allows to further speedup tasks on many CPUs or GPUs
in parallel. To avoid overloading the server, its service rate
(processing of transmitted data and ML inference) has to be
higher than the arrival rate (export of monitored data from the
data plane). Controlling server placement, server resources,
and complexity of features and models allows to enforce an
upper bound on the service time, and thus, makes real-time
monitoring possible. A single server can serve one or more
data planes, or multiple servers can be combined into a server
cluster. This allows to merge data from multiple vantage points
and obtain network-wide insights. Finally, the server (cluster)
allows to offer a rich API for network operators to inspect and
visualize the stored data and monitoring results, as well as to
flexibly change or add monitoring tasks. As the monitoring
flexibility is on the controller or server side, we avoid having to
restart the data plane device to change the data plane program,
which would result in network downtime. The monitoring
results can then be sent to, e.g., a network management system.
Note that the development of a server API and the selection
of traffic engineering decisions based on the inferred results
are beyond the scope of this work.
3 The key to the success of our system is how to link the

first two design principles. In particular, we need to extract a
small amount of valuable information, which allows to realize
the monitoring tasks with high accuracy. To achieve this, we
perform temporal microaggregation on the data plane. We
temporally divide the packets per flow into fixed-length time
slots. We use statistical descriptors to characterize the traffic
within each time slot in constant memory. We read out and
reset the descriptors after each time slot, and export them to
the server. The stream of descriptors provides a fine-granular
approximation of the observed traffic, which allows the ML
models at the server to accurately infer the monitoring metrics.
However, it is important to configure the time slot duration
appropriately. As discussed above, to avoid overloading the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 4

server and allow for real-time monitoring, the time slot du-
ration has to be higher than the end-to-end monitoring delay
consisting of data plane register read, transmission between
controller and server, feature generation, and ML inference.
Additionally, the time slot duration not only defines the real-
time capability of the entire monitoring system, but it also
impacts the temporal granularity of the stream of descriptors,
and consequently, the accuracy of the monitoring. Thus, we
minimize the slot length to below 1 s.

B. Monitoring of Encrypted Traffic

As end-to-end encryption of Internet applications is becom-
ing the norm, enabled by protocols such as transport layer
security (TLS), we have no longer access to application-layer
information. This renders DPI ineffective without requiring
additional privacy-invasive methods (e.g., TLS interception),
and thus, substantially limits the visibility of many network
telemetry systems. Traffic encryption allows to only extract in-
formation from the IP and transport protocol (TCP/UDP) head-
ers. Available information includes the flow 5-tuple (src/dst IP
addresses and port numbers plus protocol type), packet size,
TCP flags, or header options. In addition, a network element
can track the inter-arrival time (IAT) of packets, i.e., the time
since the last packet of the same flow has been forwarded.
Despite this limited information, we can still derive temporal
and volumetric traffic information on a per-flow basis, i.e.,
how much traffic is transmitted over time. For this, it is
sufficient to inspect the 5-tuple and track packet sizes and
IATs. This information is highly valuable for performance- and
security-related network monitoring, as it allows, for example,
to identify characteristic device/application traffic patterns or
to detect when device/application traffic patterns deviate from
normal.

Since extracting and storing full time series of packet sizes
and IATs is infeasible at terabit scale, we employ temporal
microaggregation as discussed above and characterize their
distributions within each time slot using statistical descriptors.
We decide to use moments, i.e., sample moments about the
origin, as they provide valuable insights and can be computed
on the data plane in constant memory using only simple
arithmetic operations. To compute the k-th sample moment, it
is required to raise the observed values to the power of k, sum
the resulting powers, and divide by the total number of packets.
Note that this computation naturally allows to obtain packet
count and traffic volume. These raw moments may then be
converted into central moments and standardized moments, al-
lowing to compute the most important named properties of the
distribution (mean, variance, standard deviation, coefficient of
variation, skewness). It also allows to accurately approximate
the observed distributions (cf. truncated Hausdorff moment
problem [36]).

While higher-order moments are computationally expensive,
especially when considering the limited resources on the data
plane, we advocate for computing at least the first three
moments. The reason is that skewness (third standardized mo-
ment) describes where the distribution mass is concentrated,
e.g., towards small/large packets or towards bursty/isolated

packets. Skewness plays an important role in many monitor-
ing scenarios, also being one of the reasons why sketching
emerged decades ago (cf. AMS sketches [37]). The suitability
and generality of considering sample moments and derived
features is also confirmed when looking at related work, where
they are widely adopted for a multitude of use cases, such as
real-time anomaly/intrusion detection [38], [39], [40], traffic
classification [41], QoE inference [12], [10], or IoT device
fingerprinting [42], [43], [15].

We are not limited to use only the meta-information (times-
tamp, src/dst IP address and port number, protocol type) and
statistics (moments and derived features) of a single time slot
and flow as input for the ML-based monitoring prediction.
Instead, we can perform derivations/augmentations (e.g., infer
IP ranges, domain name, or service type from the meta-
information in the 5-tuple) and aggregations at the server
side. Considering the temporal dimension, for example, we
can aggregate the statistics of consecutive time slots (e.g., in
a sliding window fashion [12]) to cover larger time spans. For
this, the corresponding moments have to be multiplied with
their packet counter to obtain summed powers again, which
can then be added together. Moreover, we can consider a time
series of statistics from consecutive time slots as input to se-
quential ML models, such as popular recurrent neural networks
(RNNs). Besides the temporal dimensions, aggregations can
also be performed in the spatial dimension. For example, the
summation statistics of a matching pair of unidirectional flows
can be added or combined to derive features for bidirectional
traffic, e.g., ratio of uplink/downlink packets or volume, or
total traffic volume. It is also possible to merge or concatenate
feature sets of a larger set of related flows, such as multiple
TCP connections of a single application having the same
source IP address (e.g., using hierarchical embeddings [44]).
Similarly, feature sets from different vantage points, e.g.,
considering the same flows or the same types of service, can
be merged or concatenated to infer network-wide insights. In
short, as all data is gathered on the server, we can process the
collected meta-information and statistics as well as derived
and augmented information from single/multiple time slots,
single/multiple flows, and/or single/multiple vantage points on
the server as needed in order to obtain accurate monitoring
results for our desired monitoring tasks.

Depending on the generated features, many ML models can
be applied to realize the monitoring task. This ranges from
shallow ML (e.g., decision trees) to elaborate methods such
as deep learning (DL), or (deep) reinforcement learning (RL),
which can provide accurate traffic insights. The limitations
to feature generation and model inference are given by the
expressiveness of the extracted statistics and the time con-
sumption for processing on the ML server, which adds to the
end-to-end monitoring delay, and thus, affects time slot length.

III. Marina DATA PLANE PROTOTYPE

Figure 2 gives an overview of the Marina implementation.
To fulfill the hardware requirements of the Marina data
plane, we implement the prototype on a Barefoot Wedge
100BF-65X P4-enabled Tofino switch. As current P4 hardware

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 5

Packet
Forwarding

Packet
Classification

Statistics
Computation

Export
Module

ML Inference

Flow Instantiation

DNS to IP
Mapping

D
at

a
pl

an
e

Co
nt

ro
lle

r
Se

rv
erNetwork

Management

Forwarding
TCAM/SRAM

IP Database

Classification
TCAM/SRAM

Statistics
Registers

in
gr

es
s

egress

SYN, FIN, UDP*

DNS

PCIe
interface

network
interface

*Only first packet of new UDP flows

Feature
Generation

Figure 2: Implementation of Marina prototype.

exhibits several limitations in terms of stateful processing,
memory capacity, and the complexity of available operations,
we highlight workarounds and approximations that went into
developing the prototype implementation.

Packet Forwarding: the switch performs statistics extraction
in addition to (a) bridging the traffic, (b) L2 switching, or
(c) L3 routing. To do this, the Packet Forwarding component
(depicted at the bottom left) uses the Forwarding TCAM
(depicted above the packet forwarding component) or metadata
information attached to the ingress ports to identify the corre-
sponding egress port. The available TCAM memory limits the
number of forwarding flow rules to roughly 1.5 million flow
rules. If the switch is used as a bridge (man-in-the-middle
device), the number of forwarding rules is of no concern,
but the number of available ports is halved. Note that the
installation of forwarding rules is not part of the P4 controller
developed in this work.

Packet Classification and Flow Instantiation: after identi-
fication of the egress ports, packets pass through the Packet
Classification module, which uses the Classification TCAM to
identify flows requiring further processing. For this, we reuse
concepts known from reactive OpenFlow [45] applications.
We maintain the set of relevant flows to be monitored in the
Classification TCAM. If a packet is not matched, it either
belongs to an irrelevant flow and can be ignored, or is part
of a new flow. In the latter case, it needs to be sent to the
controller. Our design is not impacted by the well known
problems of reactive flow processing [46], [47], [48], as the
controller application runs on the switch’s host controller,
which communicates with the data plane over the internal
PCIe interface, offering minimal delay and a throughput of
up to 31Gbps (PCIe Gen3 x4). For TCP, new flows can be
easily detected based on TCP SYN flags. For UDP, we need
to track which flows have been already seen. We employ a
combination of a partitioned Bloom filter [49], [50] in the data
plane and a counting Bloom filter [51] at the controller. They
ensure that we can efficiently identify previously seen, but
irrelevant UDP flows with an acceptably small false positive
rate of below 1%, when packets of 400,000 irrelevant UDP
flows are present. This is expected, due to the probabilistic
nature of the applied Bloom filter. A false positive hit results
in missed relevant flows that are falsely classified as irrelevant
by the Bloom filter. Finally, all TCP SYN packets and the first
packets of unknown UDP flows are forwarded to the controller.

For each new flow, the controller checks whether it is
relevant for monitoring. If so, it assigns a flow id, inserts the

in
g

re
ss

e
g

re
ss

M
a
tc

h
 I
P

v
4

M
a
tc

h
 I
P

v
4

M
a
tc

h
 I
P

v
4

M
a
tc

h
 I
P

v
6

M
a
tc

h
 I
P

v
6

M
a
tc

h
 I
P

v
6

B
lo

o
m

 f
il
te

r

L
a
st

 p
k
t.

ti

m
e
st

a
m

p

IA
T

IA
T
 s

q
u

a
re

IA
T
 c

u
b

e
d

P
k
t.

 s
iz

e

P
k
t.

 s
iz

e

sq
u

a
re

d

P
k
t.

 s
iz

e

cu
b

e
d

Stage 0 1 2 3 4 5 6 7 8 9 10 11

P
k
t.

 c
o

u
n

te
r

S
u

p
p

o
rt

S
u

p
p

o
rt

S
u

p
p

o
rt

Figure 3: Data plane stages: register/table allocation. Support
registers are shown in gray.

corresponding rules into the data plane Classification TCAM,
and allocates register slots for the statistic computation. Ad-
ditionally, it stores the mapping between 5-tuple and register
slots, such that the 5-tuple can be exported together with the
corresponding statistics as meta-information. Likewise, flow
ids and allocated register slots are freed when a flow is con-
sidered ended. The removal of TCP flows is straightforward,
based on the tracking of packets with the TCP FIN flag or
a flow timeout. To remove a UDP flow from the counting
Bloom filter, we use a probabilistic aging technique [52]. It
decrements the corresponding entries of the counting Bloom
filter with an eviction probability that controls the retention
time. We configured it to obtain an average flow retention
time of 25 s. Any changes in the counting Bloom filter are
mirrored to the binary Bloom filter on the data plane.

The controller decides on the relevance of flows in the
Flow Instantiation module, e.g., based on flow 5-tuple or
IP range. Additionally, we might be interested to selectively
monitor the traffic of a certain application, e.g., to monitor
application health. To identify which flows may belong to
these applications, we rely on the hostnames of the contacted
servers, which we obtain from parsing DNS requests [53].
Therefore, all DNS responses are forwarded to the controller’s
DNS to IP Mapping module, where an IP Database with
relevant IP addresses is constructed. For example, to monitor
YouTube, the database is filled with all IP addresses for
googlevideo.com – the domain used by YouTube’s video chunk
HTTP requests. In case of DNS over TLS (DoT) or DNS over
HTTPS (DoH), where we no longer can leverage the clear
text from DNS requests and responses to differentiate between
flows, we use the Server Name Indication (SNI) field of TLS.
For this purpose, we forward TLS Client Hello packets to the
controller’s SNI to IP mapping module. As a result, we obtain
a similar database as for DNS. For example for YouTube
with DoT or DoH enabled, we therefore look for TLS Client
Hello packets having a SNI, which contain googlevideo.com.
As some applications like video streaming use several flows
in parallel, we additionally implement a session mode, which
assigns all flows with the same source IP to the same registers.
This allows to monitor the aggregated application traffic,
which saves data plane resources and facilitates downstream
analytics. The controller can seamlessly switch between flow
and session mode during runtime.

Statistic Computation: following our design principle, we
implement the calculation of sample moments for the distribu-
tion of packet size and packet inter-arrival time, while maxing
out the data plane resources. Figure 3 shows the allocation of

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 6

registers and matching tables on the data plane stages. The
packet first traverses the ingress pipeline (top), is switched to
the correct egress port, and finally traverses the corresponding
egress pipeline (bottom). The statistic computation is limited
by the number of stages of the switch – in total 24, 12 on
ingress and 12 on egress – and by the computation capabilities
of the ALUs at each stage. Resources are further limited
by the stages required for Packet Forwarding and Packet
Classification. Thus, we are able to realize only the first three
moments of the packet size and IAT distribution on our P4
switch. More specifically, as detailed in Table I, we count the
number of packets and compute (for both distributions) the
sums of (a) the raw values, the (b) square of the values, and
(c) the cubes of the values. We also track the timestamp of
the last arrival as a support statistic for the computation of the
inter-arrival times.

Here again, the hardware limitations of the switch forced us
to resort to certain abstractions for the computation process.
Consider computing the statistical moments of the packet size
distribution, i.e., the summed powers of the packet size. The
packet size can be easily computed by subtracting various
header lengths from the total packet size. However, recording
the sum of packet sizes using byte granularity in a 32 bit
register is likely to result in overflows, e.g., a flow sending at
100Gbps would overflow the register more than three times
per second. Moreover, the sum of squared packet sizes, which
allows to derive the variance, would overflow after just around
2000 packets of size 1500B. Additionally, as the data plane
supports only 32 bit addition and subtraction, we also need to
approximate multiplications by pre-computing TCAM rules
as shown in [54]. Although the P4 compiler supports 64 bit
registers, we cannot perform arithmetic operations on them.
Implementing 64 bit arithmetic would be possible using mul-
tiple registers with intermediate overflow detection. However,
we decided for a simpler approach, based on the assumption
that the magnitude of packet sizes and IATs could still provide
valuable information.

This was realized by using the logarithm of the packet sizes
and IATs instead of the actual value. This way, a 32 bit register
is sufficient to record the summed powers of logarithmic
values. As the logarithm is not natively supported by the ALUs
of the switch, it is computed using a ternary match table in
TCAM, constructed as described in [54], mapping input values
using a longest prefix match on the binary representation
to their approximate logarithm. Hence, the implementation
column in Table I denotes the approximated logarithm as log∗.
Note that register overflows can still occur on long-running
or large volume flows for these statistics. We investigate the
impact of these approximations on the performance of the
monitoring tasks in §5.

Monitored Flows: The number of concurrent flows that can
be monitored is effectively limited by the memory capacity of
the data plane and the selected statistics. The Barefoot Wedge
100BF-65X has 4 parallel pipelines with 12 stages. Each
stage contains 80 blocks of SRAM with 128 kbit each. 48 of
those blocks, i.e., 6Mbit, are available as stateful memory. A
register always occupies whole blocks, at most 35 blocks, and

requires one additional block for organizational purposes. If
the selected statistics are 32 bit values, the maximum number
of slots in a register is 35· 128·102432 = 143, 360. This is then the
theoretical maximum number of flows that can be monitored
in a single pipeline. However, there is a trade-off between
the number of monitored flows and the number of selected
statistics.

To simplify register addressing we use a power of two,
resulting in a flow capacity of 217 = 131, 072 flows per
data plane pipeline, thus, 4 · 217 = 524, 288 unidirectional
flows at most, as the switch has four independent data plane
pipelines. In session mode, we summarize all uplink/downlink
flows together by recording separate values for the aggregated
uplink/downlink traffic only. This allows us to monitor 218 =
262, 144 bidirectional sessions in parallel. These numbers are
derived using the memory capacities of the Intel Tofino 1
chipset. Next generation devices are expected to be equipped
with more memory for both SRAM and TCAM, and could
hence monitor more flows or compute additional statistics.

Export Module: the controller reads all data plane statistics
registers at regular time intervals, appends the corresponding
meta-information (5-tuple in flow mode, 3-tuple in session
mode), and transmits them via the 1Gbps management in-
terface of the switch to an external ML server. This results in
328 bit generated monitoring data per flow per time slot. Our
first approach of using the Apache Thrift interface provided
by the Tofino SDE failed, as it needed on average 3 s for
a complete read of all registers. Thus, we implemented a
custom controller library with access to internal functions
based on the suggestions of Yu et al. [55]. This allows us to
circumvent the Thrift layer and achieve a much smaller read
duration of 268ms, independently of the number of monitored
flows. Nevertheless, the number of monitored flows affects
the transmitted data volume, and thus, the minimal end-to-end
monitoring delay. As the end-to-end monitoring delay has to
be smaller than the time slot length for real-time monitoring,
there is a trade-off on how small the time slot can be set,
which we analyze in §IV.

Feature Generation and ML Inference: the server receives
the extracted statistics and meta-information collected from
the data plane and generates feature sets as input to ML
models. Depending on the monitoring task, different features
can be derived as discussed in §II-B and depicted in Table I.
The computed features are assembled into feature sets and
forwarded to ML models to infer the monitoring predictions. In
this work, we adopt the majority of features, which have also
been computed in [12], because they cover the most important
characteristics of the packet stream and can be computed in
an online fashion [12]. Note that, although there is basically
no limit to what and how many features and models can
be used, the feature generation and model inference times
impact the end-to-end monitoring delay. To preserve the real-
time properties of the entire monitoring system, the server
enforces a fixed upper bound on the end-to-end monitoring
delay to be less than the time slot length, which can be easily
achieved by controlling server placement, compute resources,
feature generation, and model complexity. Using a powerful

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 7

Statistic Implementation Derivable Features
Packet count Packet count Packet count, packet ratio
Last packet timestamp Last packet timestamp Packet inter-arrival time (IAT) → used only internally
Sum of inter-arrival time (IAT)

∑
log∗ (IAT) Mean of IAT

Sum of squared IAT
∑

log∗ (IAT2) Variance, standard deviation, coefficient of variation of IAT
Sum of cubed IAT

∑
log∗ (IAT3) Skewness of IAT

Sum of packet size (PS)
∑

log∗ (PS) Volume, volume ratio, mean of PS
Sum of squared PS

∑
log∗ (PS2) Variance, standard deviation, coefficient of variation of PS

Sum of cubed PS
∑

log∗ (PS3) Skewness of PS
Meta-information Flow 5-tuple (3-tuple) Src/dst IP addresses, (Src/dst port numbers), protocol type

Table I: Statistics and meta-information that can be computed at line rate by Marina on a Barefoot Wedge 100BF-65X. log∗

denotes the approximation of the logarithm based on lookup tables.

0 2000 4000 6000 8000 10000

Arrival Rate _ [sessions/s]

0.0

0.2

0.4

Bl
oc

ki
ng

Pr
ob

ab
ili

ty Duration [s]
30
60
120
300
600

_ = 4411_ = 441

Figure 4: Blocking probability for different mean session
durations for increasing session arrival rates.

server also ensures that the resulting ML predictions for all
sessions can be forwarded in real-time, e.g., to a network
management system. In addition, the server can offer an API
for network operators to inspect and visualize the stored data
and monitoring results, as well as to flexibly change or add
monitoring tasks at any time. This would instruct the Marina
controller to change which flows are classified as relevant, or
it would deploy another ML model on the server.

IV. PERFORMANCE OF Marina SYSTEM

To showcase the real-world performance of Marina, we first
highlight the isolated performance of all involved components
and subsequently demonstrate the total end-to-end monitoring
delay from collecting data plane statistics to obtaining ML
predictions. As described above, we deploy the Marina data
plane on a Barefoot Wedge 100BF-65X P4-enabled Tofino
switch with 65 QSFP 100Gbps ports for a total data rate
of 6.4Tbps. The controller application runs on the switch’s
host controller – an 8-core Intel Xenon CPU with 32GB
of memory running Ubuntu 18.04. Note that we do not
validate the total data rate of the switch through dedicated
measurements as it is a technical specification of the device.
Instead, we focus only on the performance of the controller
and data plane applications as well as the ML pipeline, as their
operations will ultimately limit the performance of the entire
Marina system to accurately monitor all relevant flows. Thus,
for the evaluations in our testbed, the switch was connected to
two servers – each equipped with 10-core Intel Xenon CPUs, a
Mellanox ConnectX-5 series NIC offering two 100Gbps ports,
200GB of memory, and running Ubuntu 18.04. The Marina
ML server is equipped with a 64 core Xenon CPU, 8 GPUs
(RTX 2080Ti 11GB), and 768GB RAM and is connected via
the 1Gbps network management interface of the switch.

Flow Arrival Rate: the P4 switch has enough memory for
Marina to support up to 524,288 unidirectional flows (or
262,144 bidirectional sessions) in parallel. We explore the

DNS

Pars
er

Bloom Filte
r

Update
Bloom Filte

r

Matc
h Pack

et

Handler

104

105

106

107

M
ea

n
nu

m
be

ro
fo

ps
/s Controller

2.34M 2.27M
3.84M 4.18M

Bloom Filte
r

Update
Insta

ll

Rule Rem
ove

Rule

Data Plane

0.26M

0.06M 0.09M

Figure 5: Mean operations per second for critical controller
and data plane operations.

impact of this limitation by assessing the probability to drop
incoming sessions when the system is in a steady state, given
a certain arrival rate of new, relevant sessions, for an average
flow duration ranging from 30 s to 600 s, see Figure 4.

We assume that the arrival process of new flows is a
superposition of multiple independent renewal processes that
can be modeled as a Poisson process with a total arrival rate λ,
according to the Palm-Khintchine theorem [56], [57]. Using λ
and the amount of available memory, we compute the blocking
probability of the system using the Erlang-B formula [56].
Thereby, we assume that the arrival rate to the four individual
pipelines of the switch is equally distributed.

For a mean session duration of 60/600 seconds, Marina
can handle 4411/441 new sessions per second while ensuring
a blocking probability below 1%. To put these results into
perspective, we use the data obtained in [58] on YouTube video
streaming characteristics, and assume a session duration of
600 seconds. This translates into approximately 14.2 million
users that can be handled by a single P4 data plane device
assuming an average request rate, and 3.5 million users when
considering the peak request rate reported in [58].

Controller Operations: to ensure real-time capabilities of the
control plane, we explore each involved operation in isolation.
To achieve this, we conducted stress tests on both the P4
switch control plane API and the controller. We employed
custom benchmark scripts written in C to execute the same
type of operation repeatedly in a loop. This allows us to
identify the maximum number of operations of a specific
type that can be supported per second, as shown in Figure 5.
Controller operations are evaluated on the left side – meaning
operations that do not involve the data plane (cf. Figure 2).
The DNS to IP Mapping component is able to parse 2.3 · 106
DNS responses per second. The Bloom filter used for the
Flow Instantiation component is able to handle 2.2 · 106
operations per second. The packet handler of Marina, which
is responsible for processing incoming packets of new flows,

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 8

200k 400k 600k 800k 1000k
No. of Flows

0.0

0.1

0.2

0.3

In
fe

re
nc

e
Ti

m
e

[s
]

F: 100, T: 10, D: Unl.
F: 100, T: 10, D: 5
F: 100, T: 100, D: 10
F: 100, T: 1, D: 10
F: 200, T: 10, D: 10
F: 10, T: 10, D: 10
F: 100, T: 10, D: 10

Figure 6: Random forest inference time on single GPU.

is able to handle almost 4.2 ·106 packets per second, showing
that none of the benchmarked operations form a bottleneck for
the system.

Data/Control Plane Interactions: regarding interactions with
the data plane – Figure 5 on the right – the controller is able
to perform around 260,000 Bloom filter write operations per
second. Moreover, it can execute up to 63,000 match table
insertions and 94,000 remove operations per second. Thus,
63,000 match table insertions per second are the bottleneck
of the data plane API. Similarly, we evaluate the maximum
rate at which flow modifications can be performed at runtime
to determine the maximum burst arrival rate of new flows.
For this, we used a sequence of TCP SYN and FIN packets,
which forced the continuous creation and removal of flows on
the data plane, and sent it over the switch at increasing rates.
Our benchmarks show that the controller is able to process
50,000 flow changes per second. This means that the total
set of 524,288 flows that can be monitored by the switch in
parallel can be replaced roughly every 20 seconds.

ML Inference Speed: the inference speed depends on the
number, type, and complexity of used ML models as well
as the compute resources of the server. The specific model,
which provides the highest accuracy, depends on the actual
monitoring task at hand, cf. results in §5. As random forest
models proved to provide a good trade-off between high
accuracy and fast inference speed, we evaluate the time to
infer predictions for a specific number of flows on a single
GPU depending on the model complexity. To be able to run
the trained scikit-learn model on GPU, we use Microsoft’s
Python library Hummingbird1, which converts the Random
Forest model to a PyTorch model under the hood. For the
analysis, we vary the number of input features (F), number
of trees (T), and tree depth (D) compared to a baseline. The
results in Figure 6 show that, even when using a large set of
100 features and an expensive model with 100 trees of depth
10, we can obtain monitoring predictions for one million flows
in less than 350ms on just one GPU. In the following, we
assume the performance of this model to perform a worst-
case analysis of the end-to-end monitoring delay.

End-to-End Monitoring Delay: the total time to read the
statistics from the data plane, to transmit them to the ML
server, to generate features, and finally, obtain the ML pre-
dictions is shown in Figure 7. Note again that this end-
to-end monitoring delay defines the real-time capabilities of
Marina and provides a lower bound on the monitoring time

1https://github.com/microsoft/hummingbird

100
k

200
k

500
k
100

0k
0.0

0.5

1.0

E2
E

M
on

ito
rin

g
D

el
ay

[s
] RTT: 0 ms

100
k

200
k

500
k
100

0k

RTT: 10 ms

100
k

200
k

500
k
100

0k

No. of Flows

RTT: 20 ms

100
k

200
k

500
k
100

0k

RTT: 50 ms

100
k

200
k

500
k
100

0k

RTT: 100 ms

Register Read Transmission Feature Generation ML Inference

Figure 7: Total end-to-end monitoring delay from data plane
statistics extraction to ML inference.

slot duration at the data plane. Thus, it is the most important
system parameter, which we need to minimize to improve the
monitoring granularity and accuracy of Marina. The register
read operation is performed by the controller through an API
call to the data plane and is independent of the number of
flows present in the system, as every call polls all registers
that have been defined at compile time. Naturally, the time to
transmit the polled statistics to the ML server scales with the
number of available flows, shown along the x-axis. We include
measurement values for one million flows to put the scalability
of our approach into perspective, even if current hardware only
supports 524,288 flows. Note that the register read duration
will actually be different when supporting one million flows
on a different hardware, which we do not reflect in the figure
for comparison purposes. In addition to the register read, we
investigate the transmission duration depending on the RTT
between the controller and the ML server to assess the need for
optimal server placement. Finally, the ML server augments the
raw statistics by computing a set of 100 derived features and
applies the pretrained random forest model. Here, we use all
available resources of our ML server, i.e., 64 cores for feature
generation and 8 GPUs for ML inference. The data shows that
the transmission between controller and ML server contributes
a significant fraction of the total end-to-end monitoring delay,
while simultaneously being one parameter for optimization.
It can be seen that even with an RTT of 100ms, we are
able to perform sub-second predictions, while predictions in
less than 500ms are possible for a local server. Specifically,
when monitoring 524,288 flows, Marina transmits a total of
21.5MB for every time slot and can achieve a minimum
time slot length of 429ms. Thus, when using a round-number
time slot length of 500ms, Marina generates 385Mbps of
monitoring traffic (including protocol overhead) per P4 switch
towards the ML server.

V. Marina’S ML-BASED REAL-TIME MONITORING
PERFORMANCE

We study the resulting monitoring performance, which can
be realized based on our Marina prototype, for four different
real-time traffic monitoring use cases, namely, traffic classifi-
cation, application health (video streaming), security/anomaly
detection (intrusion detection), and device classification (IoT).
As different ML models can benefit differently from the
extracted statistical features, we compare the performance
of several widely used ML models. The ML Inferencing
component uses either a shallow model, e.g., Decision Tree
(DT), Random Forest (RF), Extremely Randomized Trees

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 9

0
0.9

0.99
0.999 Marina (ideal)

E-Mail

Facebook (Audio)

Facebook (Chat)

Facebook (Video)

Hangouts (Audio)

Hangouts (Chat)

Hangouts (Video)
SFTP

Skype (Audio)

Skype (Chat)

Skype (File)

Skype (Video)
Spotify

YouTube
0

0.9
0.99

0.999 Marina (impl.)

H
it

Ra
te

SOTA DT RF ERT GB XGB KNN DNN

Figure 8: Hit rates for ISCXVPN2016 traffic classification into
14 applications/traffic types.

(ERT), Gradient Boosting (GB), XGBoost (XGB), or K-
nearest neighbor (KNN), or a Deep Neural Network (DNN),
namely, a simple feedforward network with three to eight hid-
den layers with 64 to 1024 neurons each and ReLU activation.
Model hyper-parameters are optimized during training, using
either sklearn’s GridSearch [59] for the shallow models, or
Optuna [60] for the DNN. We split the data sets into 80%
training, 10% validation, and 10% test data, balancing the
training data set by oversampling.

We use the features as described in Table I with Marina
monitoring time slot set to 1 s. We additionally perform
macroaggregations of time slots to consider these features on
three different time scales. We use features for the current
time slot, a trend macro time slot consisting of the three last
time slots, and a session macro time slot consisting of all
time slots since the beginning of the flow or session. Note
that we deliberately choose to use minimal feature engineering
and standard model selection to showcase a lower bound on
the ML performance that can be realized with Marina with
publicly available data sets. When deploying Marina in an
operational network, the ML workflow (feature generation,
model development) can easily be optimized for the actual
monitoring tasks at hand considering the available compute
resources at the server. This can be expected to further improve
the performance results presented here.

We will investigate the performance for two versions of
the feature set. First, we take the actual features as generated
from the statistics extracted by Marina. Since the prototype
has to use approximations due to the lack of certain ALU
operations and 64-bit arithmetic, we also consider an ideal
version with the same features, but without approximations.
Thus, this version indicates what performance Marina could
achieve on future data plane hardware using the same features,
but overcoming current feature computation limitations. We
will compare the performance of both feature sets to the best
state-of-the-art (SOTA) results from literature, which were
obtained using the same data sets. We are aware that ML
results from literature are never perfectly comparable since
they are influenced by data set splits (training, validation,
test set), feature selection and preprocessing, search space
for model selection and hyperparameter tuning, as well as
time budget for model training. Still, SOTA results provide
a numerical anchor, which helps to sort in the utility of our
Marina system for real-time traffic monitoring. All numerical
results are detailed in Tables III-VI in the appendix.

0

0.5

1 Marina (ideal)

No Stall. Stall.
Macro Avg.

Stalling

0

0.5

1

SD HD
Macro Avg.

Resolution

Marina (impl.)

RMSE MAE

Bit Rate

0

500

1000

0

500

1000

F1
Sc

or
e

Er
ro

rS
co

re
[k

bp
s]

SOTA DT RF ERT GB XGB KNN DNN

Figure 9: F1 scores for stalling/resolution classification, error
scores (RMSE and MAE) for bit rate inference.

1 Encrypted Traffic Classification: a vital part of network
management is the identification of ongoing network traffic,
as it enables more advanced tasks such as ensuring QoS and
anomaly detection [61]. It can be carried out with varying
granularity, such as identifying a specific application (e.g.,
Spotify versus Skype) or the traffic type (e.g., video versus
chat) [61], [62], [63]. We utilize the ISCXVPN2016 data
set [64] (only non-VPN traffic), which contains traces for
various encrypted traffic types like email, chatting, file trans-
fer, but also for various applications like Spotify, YouTube,
Skype, and Facebook. To investigate a more challenging and
fine-grained classification task, we also differentiate between
audio, chat, file transfer, and video traffic for the applications
Facebook, Hangouts, and Skype. We exclude some of the
applications like FTPS and SCP, because their single traces
are too short, not allowing us to generate a sufficient number
of valid training and test slots. We split the time slots into
short consecutive sequences of 30−120 s, and distribute the
sequences such that 80% of the time slots are training data,
10% validation data, and 10% test data. As SOTA comparison
we choose the results reported by Xie et al. [63]. The SOTA
approach here is DL-based, and instead of extracting features,
packet traces are treated like a sentence and information is
extracted similar to NLP tasks.

The performance of the various ML models is depicted in
Figure 8, where the hit rate, i.e., true positive rate, for each
traffic type and application is shown for ideal Marina and
implemented Marina. For each monitoring interval, Marina
performs a real-time prediction. The shown hit rate is com-
puted based on these predictions after the flow has ended.
Our system targets the lowest monitoring interval possible.
Therefore, we do not investigate the relationship between hit
rate and slot size/number of slots in this work, but leave this
for future work.

We observe that all ML models perform excellent on the
task and that the differences between ideal and implemented
are only marginal, i.e., the approximations did not cause
any performance loss. We also observe that our models’
performance is on a par or even better (e.g., RF, XGB) than
SOTA [63]. The results show that Marina can be effectively
used by network operators to monitor network traffic types
and applications.

2 Video Streaming Application Health/Quality of Expe-
rience: video streaming is a prime example of an application,
for which prevailing traffic encryption has substantially limited
the visibility of DPI-based network telemetry systems [65]. To

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 10

0
0.9

0.99
0.999 Marina (ideal)

Botnet

FTP-Patator

SSH-Patator
DDoS

DoS GoldenEye

DoS Hulk

DoS SlowHTTP

DoS Slowloris

Heartbleed

In�ltra
tion
Port Scan XSS

Brute Force

SQL Injectio
n

0
0.9

0.99
0.999 Marina (impl.)

H
it

Ra
te

SOTA DT RF ERT GB XGB KNN DNN

Figure 10: Hit rates for CIC-IDS2017 intrusion detection using
14 attacks.

win back visibility into video streaming application health or
Quality of Experience (QoE), ML-based approaches have been
conceived that seamlessly operate on traffic features extracted
from the encrypted stream of bytes [66], [14], [67], [10],
[11], [12]. In particular, standardized video streaming Quality
of Experience (QoE) models, such as ITU-T P.1203 [68] or
P.1204 [69], consider application-layer key performance indi-
cators for visual quality, such as resolution and bit rate, as well
as critical playback events such as stalling/re-buffering [70].
Accordingly, we tackle three separate ML tasks, i.e., stalling
and resolution – binary classification, and bit rate – regression.
We compare to the SOTA results in [12] using an extended
data set that was provided by the authors. It contains the
encrypted traffic of more than 16,000 YouTube video sessions
labelled with ground truth information obtained at the client
side. It was recorded on laptop devices from 2018 to 2019, at
different geographical locations and different networks. Note
that the authors retrained the model on this extended dataset
compared to the initial paper. The feature set is similar to
ours and the authors trained a multitude of ML models (e.g.,
DT, RF, KNN, and many more). The data set contains more
than 5,000,000 time slots of 1 s, annotated with ground truth
information obtained at the client side. We split into 80%
training, 10% validation, and 10% test data on a per-session
basis, balancing the training data set by oversampling.

Figure 9 summarizes the results. For stalling and video
resolution classification, we show the F1 score for the in-
dividual classes (no stalling/stalling and standard (SD) and
high definition (HD)) as well as the macro-averaged F1 scores,
where the F1 score of each class accounts equally to the overall
average F1 score independent of the number of available
samples. For bit rate regression, we show root mean square
error (RMSE) and mean absolute error (MAE). Overall, results
for the ideal Marina feature set are on a par with SOTA
results. For all stalling and resolution classes, multiple models
can reach similar performance to the SOTA models using
both ideal and implemented Marina. When considering the
bit rate regression, the performance of ideal and implemented
Marina is again close for DNN, but slightly worse than
SOTA. In general, the performance difference between ideal
and implemented Marina is marginal. These results confirm
that Marina allows network operators to accurately trace the
application health and subjective QoE of a large number of
video streaming users in real-time, while fully preserving the
encryption, and therefore, protecting end users’ privacy.

3 Intrusion Detection: the ever-growing number and com-
plexity of cyberattacks [71] pushes network operators beyond
static defenses, such as firewalls, to deeper Intrusion Detection
Systems (IDSs) [72], [73], relying on DPI technology to detect
and potentially block known malicious traffic. Despite the
complexities and limitations of ML in the networking security
realm [74], there is a growing interest on ML for malicious
traffic detection, in particular as a countermeasure against
attacks hiding in encrypted traffic [75], [38], [76]. We use the
CIC-IDS2017 data set [77], [78], featuring a small network
with a wide variety of attacks, labeled on a per-flow basis.
We are aware of the well-known limitations and issues with
this data set [79]. However, we chose to consider it, as it is
widely used and allows for comparison with SOTA results.
For the SOTA comparison, we use the results reported by
Ho et al. [80], which uses a DNN-based approach, utilizing
the original 78 flow-based features provided by the publishers
of the CIC-IDS2017 dataset in addition to the raw packet
captures. In our case and after processing the packet captures,
the data set contains more than 20,000,000 time slots with
labels from 15 classes: benign or attack, including brute force,
denial of service, web attack, etc. For the ML training, we
require a balanced dataset, where benign and malicious slots
appear equally likely so that the model is able to capture
the underlying relationships. As it would be unmanageable
to oversample all attacks to the size of the majority class
“benign” in this highly imbalanced dataset, it is common
practice to undersample the majority class instead. Thus, we
first undersample the benign slots by using only 10% of the
original slots. To obtain a balanced dataset, we then oversam-
ple the attack slots such that their count equals the number of
benign slots. We assign sequences of consecutive time slots of
30−300 s length into 80% training, 10% validation, and 10%
test data.

Figure 10 summarizes the results for this multi-class clas-
sification problem, reporting the hit rate per attack for all
ML models and both feature sets. Except for the cross-site
scripting (XSS) web attack, Marina detects all attacks equally
well, reaching an outstanding hit rate of above 99%, which
is on a par with SOTA results [80]. In this use case, we also
observe that the restrictions imposed by the P4 hardware have
hardly any impact, i.e., using the implemented Marina is close
to the performance of the ideal Marina variant. Additionally,
evaluations indicate that most ML models perform equally
good for all attack classes. All in all, we see that Marina
realizes high detection performance for different types of
attacks. Together with its high capacity, it is thus well suited to
support network operators’ security management, monitoring
and detecting intrusions at large, on high-speed links. As
intrusion detection is both a security and an anomaly detection
task, we expect results to transfer also to other anomaly
detection tasks, such as detecting faults or changes in the
network.

4 IoT Device Classification: the increasing number of non-
standard computing devices communicating with each other
on the Internet of Things (IoT) poses security and privacy
risks. Device classification can help network administrators to

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 11

SOTA DT RF ERT GB XGB KNN DNN
0

0.9

0.99

0.999
H

it
Ra

te

SOTA Marina (ideal) Marina (impl.)

Figure 11: Distributions and mean (▲) of per-class hit rate for
CIC-IOT2022 classification into 37 devices.

improve the network security by gaining an overview of the
network inventory [81], [82]. ML-based solutions have seen
great success for IoT device classification [15], [83], [84], [85].
We use the CIC-IOT2022 data set [86], in which 60 different
IoT devices have been monitored in different scenarios and
over many hours. Here, we focus on the idle and active exper-
iments with 37 distinct devices only. The goal is to identify
the IoT devices based on their traffic characteristics. This is
relevant in scenarios where IP addresses change dynamically,
or when multiple devices jointly communicate over a single
public IP address using NAT. The considered IoT devices in
this data set include various audio devices, camera devices,
home automation devices, etc., which are based on different
protocols like IEEE 802.11, Zigbee, and Z-Wave. We split the
traffic captures by MAC address to obtain traffic flows per IoT
device. We further ignore all empty time slots where devices
were inactive. We split the time slots into 80% training, 10%
validation, and 10% test data. For ML training, we randomly
sample only 5% of the original time slots and then balance the
IoT devices using oversampling. We compare our approach to
the SOTA results reported by Ma et al. [85], which utilizes a
DL-based approach using packet sequences.

Figure 11 depicts the hit rate distributions of the 37 classes
for the various ML models in the form of boxplots. Results
show that the multi-class problem of device identification
can be adequately solved with Marina, achieving average hit
rates above 93% for RF and ERT, for both the ideal and
implemented Marina feature sets. Compared to SOTA [85],
which proposes a flow-based approach based on embeddings
of packet sequences, Marina provides a superior performance.
Notably, the variance of the SOTA approach is a lot higher. It is
able to identify some devices perfectly, but it fails to recognize
others entirely, which also causes the high difference between
median and mean. Thus, Marina shows a more consistent
performance regarding all classes. It can also be seen that
for this use case implemented Marina often outperforms ideal
Marina, which seems kind of contradictory as the features are
supposed to become more inaccurate due to the approxima-
tions and transformations. The transformations, however, are
the root cause why implemented Marina performs better here.
They change the underlying distribution of the features, e.g.,
the variance inside the features, and simultaneously change the
co-variances in a beneficial way for the prediction in this case.
Note that while the transformations had a positive effect here,
it can also negatively affect the performance in other cases.

Additionally, providing hit rates of at least 91% for each of
the 37 IoT devices and considering its high capacity, Marina
is an appropriate tool for network operators to classify devices

on the growing Internet of Things.

VI. DISCUSSION

Denial of Service: using the controller to classify unknown
flows into flows that are relevant or irrelevant for monitoring,
forwarding the first packet of each flow to the controller,
has the potential to make the system susceptible to denial of
service attacks. For example, an attack may use SYN flooding
to overload the controller. While our prototype currently does
not implement any mitigation strategy, SYN flood detection
strategies are well known and can be implemented. Moreover,
a load dependent sampling mechanism for new flows can
be added to avoid controller overload. Note that due to the
use of the PCIe interface, there is ample network bandwidth
between the data plane and the controller, and the controller
is a reasonably powerful system by itself.

Traffic Completeness: Marina assumes that all traffic of a
user session is observed. Thus, performance might degrade
due to multi-path routing in combination with packet by
packet multiplexing, asymmetric routing, or other form of link
aggregation splitting the traffic. Assessing the impact of traffic
(in)completeness is beyond the scope of this paper.

DNS Poisoning and Encrypted DNS: the prototype can
rely on a database of IP addresses to decide which flows to
selectively monitor for a given use case. This database can
be either hard coded or dynamically updated using a mapping
of IP addresses to specific domain names of the application,
which are extracted from unencrypted DNS responses. DNS
poisoning, which may insert irrelevant IP addresses into the
IP database, may negatively impact the monitoring system.
In addition, the current implementation does not support
encrypted DNS, such as DNS over HTTPS (DoH) or DNS
over TLS (DoT). Still, the assumption that a network operator
has a way to identify relevant IP addresses seems reasonable,
even if DoH or DoT is used within their network, since most
use cases involve well known services.

Concept Drift: Marina relies on ML models which are trained
on labelled data sets for monitoring purposes. The challenge
is on the availability of such data sets. They need to be
representative and available offline for training, while at the
same time there is a need to detect and handle concept
drift during operation, i.e., long-term changes to the data
distributions over time. Possible examples for such changes are
updates of the application or the end user device, or changes
to network configuration. This may require the collection of
new labeled data sets and re-training of the ML models,
e.g., [87]. We note that this is not a problem specific to Marina,
but a generic problem involving ML models in operational
networks. As such, we did not evaluate the impact of concept
drift in this work.

Hardware Requirements: although the Marina data plane
prototype was implemented on a P4-based Tofino switch, our
design can be ported to any data plane device (programmable
switch, FPGA, or ASICs), which provides line rate forwarding
and arithmetic packet operations. Thus, in contrast to other
approaches, we are not affected by Intel’s recent cut of Tofino

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 12

network solutions [88].

VII. RELATED WORK

Traditional Solutions: classical flow-based telemetry ap-
proaches such as NetFlow [1], sFlow [2], or IPFIX [3] only
provide coarse-grained monitoring, as they collect statistics
over the whole flow, unsuitable for real-time applications.
In detail, NetFlow timeouts are configured in seconds, but
practical implementations often do not allow for finer granu-
larities < 30 s [89]. Additionally, they often rely on sampling
techniques, as monitoring the whole traffic at line rate is im-
possible, possibly skewing/falsifying the traffic observations.

Sketch-based Solutions: to gain a more fine-grained insight
into the network, sketching algorithms have been popularized
[30], [31], [90], [91], [92], [93], [94], [95], [96], [29], utilizing
customized data structures, e.g., for DDoS mitigation [97].
Sketches generally depict a trade-off between resource con-
sumption and accuracy [30], may only serve a special purpose,
and are not designed with ML-based traffic analytics in mind.

In-band Network Telemetry: orthogonal to sketching, INT
[98] and extensions, e.g., Probabilistic INT (PINT) [28]
emerged. Instead of approximations, INT makes use of pig-
gybacking strategies and dumps meta-data onto the packets.
As this imposes a significant overhead, newer proposals [99]
revert back to using lightweight sketchlets with INT.

Query-driven Languages: often building on INT and/or
sketches, query-driven languages [20], [100], [19], [33] aim
to provide expressive interfaces to run flexible streaming
queries. However, providing these interfaces often comes with
significant overhead, e.g., Sonata [20] renders short (< 3 s)
time slots undesirable due to updates of filter rules.

Software-based Solutions: to realize the above discussed
telemetry systems, either software- or hardware-based imple-
mentations are possible. With Marina, we opt for a hardware-
based solution. Though, several software-based academic (e.g.,
Retina [21]), commercial (e.g., Corelight [101]), or open-
source (e.g., Zeek [102], nProbe [103], Tstat [104]) solutions
exist. While some of them are capable of monitoring multi-
Gbps traffic, they do not scale to Tbps traffic, and/or are
tailored to a specific use case. Zhang et al. [105] provide
an overview of such software-based solutions that operate on
a Gigabit scale, but as mentioned by Sonchack et al. [106]
scaling these solutions to huge networks on a Terabit scale
requires a rack full of servers.

ML-driven Solutions: some monitoring solutions implement
the ML network intelligence paradigm, aiming to deploy
ML models or feature extraction on commodity hardware or
programmable switches. Nevertheless, after a vast review of
related literature (see Table II in the appendix for the full
taxonomy), we conclude that existing ML-based solutions are
not ready for deployment, as they have unclear performance,
e.g., in terms of overall latency of the whole ecosystem. Addi-
tionally, related works often only operate on data for a specific
use case, i.e., while some approaches might theoretically be
applicable for more than the described use case, it was not
evaluated in the corresponding paper.

VIII. CONCLUSION

We introduced Marina, a system for realizing ML-driven
real-time traffic monitoring in large scale networks. Marina
addresses the challenges of scalability up to terabit scale
while minimizing the monitoring overhead and providing
high flexibility, expressiveness, and accuracy for performance-
and security-related traffic monitoring tasks, even in case of
encrypted traffic. The design of Marina is based on spread-
ing the monitoring over a highly efficient data plane on a
programmable switch, FPGA, or ASIC, which can extract
monitoring data at line rates, and a powerful ML server,
which can run monitoring inference using diverse ML models.
We link both parts by applying temporal microaggregation
of packets per flow into sub-second time slots. We extract
a stream of sample moments of the packet size and inter-
arrival time distributions. This information is available even
for encrypted traffic and provides a valuable description of the
traffic in each time slot that can be leveraged by ML-based
monitoring models. The time slot duration both defines the
real-time capabilities and the monitoring accuracy of Marina,
and thus, must be kept as short as possible.

We implemented a Marina data plane prototype on a Bare-
foot Wedge 100BF-65X P4 switch and made the code publicly
available. As current P4 hardware exhibits several limitations,
we had to utilize a P4 bag of tricks to realize Marina and
to approximate the extracted statistics. The Marina prototype
maxes out the data plane resources to monitor up to 6.4Tbps
of traffic in 524,288 concurrent flows. It generates less than
385Mbps of monitoring traffic, and, in combination with a
powerful ML server, it can achieve a monitoring granularity
and end-to-end delay until obtaining monitoring results for all
flows as low as 500ms.

We validated the analysis capabilities provided by Marina
for four different and challenging ML-driven real-time mon-
itoring applications – encrypted traffic classification, video
streaming application health/Quality of Experience monitoring
from encrypted traffic, intrusion detection, IoT device classi-
fication – with a broad set of ML models. For all investigated
tasks, despite the approximations required due to P4 hardware
limitations, the ML inference results enabled by the Marina
prototype are on a par or better than state-of-the-art results.
We found that random forest models provide a good trade-off
between high monitoring accuracy and fast model inference
speed. However, in an operational deployment, the best ML
models can be selected and optimized depending on the
actual monitoring tasks and the available compute resources,
which can be expected to further improve the monitoring
performance. Considering its monitoring capacity at terabit
scale, this confirms that Marina allows to realize different ML-
driven real-time monitoring tasks in large-scale networks with
high accuracy.

ACKNOWLEDGMENT

This work was partly funded by the German Research
Foundation (Deutsche Forschungsgemeinschaft, DFG) under
grant SE 3163/3-1, project number: 500105691 (UserNet). The
authors alone are responsible for the content.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 13

REFERENCES

[1] B. Claise, “Cisco systems netflow services export version 9,”
Internet Requests for Comments, RFC Editor, RFC 3954, October
2004, http://www.rfc-editor.org/rfc/rfc3954.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3954.txt

[2] M. Wang, B. Li, and Z. Li, “sflow: Towards resource-efficient and agile
service federation in service overlay networks,” in 24th International
Conference on Distributed Computing Systems, 2004. Proceedings.
IEEE, 2004, pp. 628–635.

[3] B. Claise, B. Trammell, and P. Aitken, “Specification of the ip
flow information export (ipfix) protocol for the exchange of flow
information,” Internet Requests for Comments, RFC Editor, STD 77,
September 2013, http://www.rfc-editor.org/rfc/rfc7011.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc7011.txt

[4] M. F. Umer, M. Sher, and Y. Bi, “Flow-based intrusion detection:
Techniques and challenges,” Computers & Security, vol. 70, pp. 238–
254, 2017.

[5] T.-L. Huoh, Y. Luo, P. Li, and T. Zhang, “Flow-based encrypted
network traffic classification with graph neural networks,” IEEE Trans-
actions on Network and Service Management, 2022.

[6] W. Zheng, C. Gou, L. Yan, and S. Mo, “Learning to classify: A
flow-based relation network for encrypted traffic classification,” in
Proceedings of The Web Conference 2020, 2020, pp. 13–22.

[7] T. Kim and W. Pak, “Real-time network intrusion detection using
deferred decision and hybrid classifier,” Future Generation Computer
Systems, vol. 132, pp. 51–66, 2022.

[8] N. Borgioli, L. Thi Xuan Phan, F. Aromolo, A. Biondi, and G. But-
tazzo, “Real-time packet-based intrusion detection on edge devices,” in
Proceedings of Cyber-Physical Systems and Internet of Things Week
2023, 2023, pp. 234–240.

[9] J. Kampeas, A. Cohen, and O. Gurewitz, “Traffic classification based
on zero-length packets,” IEEE Transactions on Network and Service
Management, vol. 15, no. 3, pp. 1049–1062, 2018.

[10] M. H. Mazhar and M. Z. Shafiq, “Real-time Video Quality of Ex-
perience Monitoring for HTTPS and QUIC,” in IEEE INFOCOM,
Honolulu, HI, USA, 2018.

[11] C. Gutterman, K. Guo, S. Arora, X. Wang, L. Wu, E. Katz-Bassett, and
G. Zussman, “Requet: Real-time qoe detection for encrypted youtube
traffic,” in ACM Multimedia Systems Conference (MMSys), 2019.

[12] S. Wassermann, M. Seufert, P. Casas, L. Gang, and K. Li, “Vicrypt to
the rescue: Real-time, machine-learning-driven video-qoe monitoring
for encrypted streaming traffic,” IEEE Transactions on Network and
Service Management, vol. 17, no. 4, pp. 2007–2023, 2020.

[13] P. Casas, S. Wassermann, M. Seufert, N. Wehner, O. Dinica, and
T. Hoßfeld, “X-ray goggles for the isp: Improving in-network web
and app qoe monitoring with deep learning,” in 6th Network Traffic
Measurement and Analysis Conference, TMA 2022, June 27-30, 2022,
V. Bajpai, H. Haddadi, and O. Hohlfeld, Eds. IFIP, 2022.

[14] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,
“Measuring Video QoE from Encrypted Traffic,” in ACM Internet
Measurement Conference (IMC), Santa Monica, CA, USA, 2016.

[15] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo: I see your smart
home activities, even encrypted!” in Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
2020, pp. 207–218.

[16] D. Cerović, V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle,
“Fast packet processing: A survey,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 3645–3676, 2018.

[17] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[18] O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, “The programmable
data plane: Abstractions, architectures, algorithms, and applications,”
ACM Computing Surveys (CSUR), vol. 54, no. 4, pp. 1–36, 2021.

[19] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in ACM SIGCOMM Conference,
2017, pp. 85–98.

[20] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
ACM SIGCOMM Conference, 2018, pp. 357–371.

[21] G. Wan, F. Gong, T. Barbette, and Z. Durumeric, “Retina: analyzing
100gbe traffic on commodity hardware,” in Proceedings of the ACM
SIGCOMM 2022 Conference, 2022, pp. 530–544.

[22] C. Zheng, M. Zang, X. Hong, R. Bensoussane, S. Vargaftik, Y. Ben-
Itzhak, and N. Zilberman, “Automating in-network machine learning,”
arXiv preprint arXiv:2205.08824, 2022.

[23] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh, H. Haddadi,
G. Antichi, and R. Bifulco, “Running neural networks on the
NIC,” CoRR, vol. abs/2009.02353, 2020. [Online]. Available:
https://arxiv.org/abs/2009.02353

[24] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever,
“pforest: In-network inference with random forests,” arXiv preprint
arXiv:1909.05680, 2019.

[25] C. Zheng, Z. Xiong, T. T. Bui, S. Kaupmees, R. Bensoussane, A. Bern-
abeu, S. Vargaftik, Y. Ben-Itzhak, and N. Zilberman, “Iisy: Practical
in-network classification,” arXiv preprint arXiv:2205.08243, 2022.

[26] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
toward in-network classification,” in 18th ACM workshop on Hot Topics
in Networks, 2019, pp. 25–33.

[27] V. Sekar, M. K. Reiter, and H. Zhang, “Revisiting the case for a
minimalist approach for network flow monitoring,” in Proceedings of
the 10th ACM SIGCOMM conference on Internet measurement, 2010,
pp. 328–341.

[28] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzen-
macher, “Pint: Probabilistic in-band network telemetry,” in ACM SIG-
COMM Conference, 2020, pp. 662–680.

[29] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in 10th {USENIX} Symposium on Networked Sys-
tems Design and Implementation ({NSDI} 13), 2013, pp. 29–42.

[30] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in ACM SIGCOMM Conference, 2016, pp. 101–114.

[31] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in ACM SIGCOMM Conference, 2018, pp. 561–575.

[32] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao et al., “Packet-level telemetry in large
datacenter networks,” in ACM SIGCOMM Conference, 2015, pp. 479–
491.

[33] C. Misa, W. O’Connor, R. Durairajan, R. Rejaie, and W. Willinger,
“Dynamic scheduling of approximate telemetry queries,” in 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22). USENIX Association, Renton, WA, 2022, pp. 701–717.

[34] M. Yu, “Network telemetry: towards a top-down approach,” ACM
SIGCOMM Computer Communication Review, vol. 49, no. 1, pp. 11–
17, 2019.

[35] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos,
and A. Madeira, “Flowlens: Enabling efficient flow classification for
ml-based network security applications.” in NDSS, 2021.

[36] J. A. Shohat and J. D. Tamarkin, The problem of moments. American
Mathematical Society (RI), 1950, vol. 1.

[37] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of
approximating the frequency moments,” in Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, 1996, pp.
20–29.

[38] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an
ensemble of autoencoders for online network intrusion detection,” in
25th Annual Network and Distributed System Security Symposium
(NDSS), 2018.

[39] F. Musumeci, V. Ionata, F. Paolucci, F. Cugini, and M. Tornatore,
“Machine-learning-assisted ddos attack detection with p4 language,”
in ICC 2020-2020 IEEE International Conference on Communications
(ICC). IEEE, 2020, pp. 1–6.

[40] F. Musumeci, A. C. Fidanci, F. Paolucci, F. Cugini, and M. Tornatore,
“Machine-learning-enabled ddos attacks detection in p4 programmable
networks,” Journal of Network and Systems Management, vol. 30, no. 1,
pp. 1–27, 2022.

[41] M. H. Pathmaperuma, Y. Rahulamathavan, S. Dogan, and A. M. Kon-
doz, “Deep learning for encrypted traffic classification and unknown
data detection,” Sensors, vol. 22, no. 19, p. 7643, 2022.

[42] A. J. Pinheiro, J. d. M. Bezerra, C. A. Burgardt, and D. R. Campelo,
“Identifying iot devices and events based on packet length from
encrypted traffic,” Computer Communications, vol. 144, pp. 8–17,
2019.

[43] A. Sivanathan, H. H. Gharakheili, and V. Sivaraman, “Managing iot
cyber-security using programmable telemetry and machine learning,”
IEEE Transactions on Network and Service Management, vol. 17, no. 1,
pp. 60–74, 2020.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

http://www.rfc-editor.org/rfc/rfc3954.txt
http://www.rfc-editor.org/rfc/rfc3954.txt
http://www.rfc-editor.org/rfc/rfc7011.txt
http://www.rfc-editor.org/rfc/rfc7011.txt
https://arxiv.org/abs/2009.02353

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 14

[44] N. Wehner, M. Ring, J. Schüler, A. Hotho, T. Hoßfeld, and M. Seufert,
“On Learning Hierarchical Embeddings from Encrypted Network
Traffic,” in NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2022, pp. 1–7.

[45] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[46] W. Braun and M. Menth, “Software-defined networking using open-
flow: Protocols, applications and architectural design choices,” Future
Internet, vol. 6, no. 2, pp. 302–336, 2014.

[47] M. P. Fernandez, “Comparing openflow controller paradigms scal-
ability: Reactive and proactive,” in 2013 IEEE 27th International
Conference on Advanced Information Networking and Applications
(AINA). IEEE, 2013, pp. 1009–1016.

[48] B. Isyaku, M. S. Mohd Zahid, M. Bte Kamat, K. Abu Bakar, and
F. A. Ghaleb, “Software defined networking flow table management
of openflow switches performance and security challenges: A survey,”
Future Internet, vol. 12, no. 9, p. 147, 2020.

[49] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
1970.

[50] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better bloom filter,” in European Symposium on Algorithms.
Springer, 2006, pp. 456–467.

[51] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scal-
able wide-area web cache sharing protocol,” IEEE/ACM transactions
on networking, vol. 8, no. 3, pp. 281–293, 2000.

[52] J.-J. Lim and K. G. Shin, “Gradient-ascending routing via footprints
in wireless sensor networks,” in 26th IEEE International Real-Time
Systems Symposium (RTSS’05). IEEE, 2005, pp. 10–pp.

[53] I. N. Bermudez, M. Mellia, M. M. Munafo, R. Keralapura, and
A. Nucci, “Dns to the rescue: Discerning content and services in a
tangled web,” in Internet Measurement Conference, 2012, p. 413–426.

[54] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nel-
son, and S. Peter, “Evaluating the power of flexible packet processing
for network resource allocation,” in 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), 2017,
pp. 67–82.

[55] L. Yu, J. Sonchack, and V. Liu, “Mantis: Reactive programmable
switches,” in ACM SIGCOMM Conference, 2020, pp. 296–309.

[56] L. Kleinrock, Queueing Systems – Volume I: Theory. John Wiley,
1975.

[57] D. P. Heyman and M. J. Sobel, Stochastic Models in Operations
Research: Stochastic Processes and Operating Characteristics. Dover
Publications, 2003.

[58] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of youtube
network traffic at a campus network–measurements, models, and im-
plications,” Computer networks, vol. 53, no. 4, pp. 501–514, 2009.

[59] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and Édouard Duchesnay, “Scikit-learn: Machine learning in python,”
Journal of Machine Learning Research, vol. 12, no. 85, pp.
2825–2830, 2011. [Online]. Available: http://jmlr.org/papers/v12/
pedregosa11a.html

[60] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A
next-generation hyperparameter optimization framework,” in Proceed-
ings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, 2019, pp. 2623–2631.

[61] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and
M. Saberian, “Deep packet: A novel approach for encrypted traffic
classification using deep learning,” Soft Computing, vol. 24, no. 3, pp.
1999–2012, 2020.

[62] T. Shapira and Y. Shavitt, “Flowpic: Encrypted internet traffic classifi-
cation is as easy as image recognition,” in IEEE INFOCOM 2019-IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2019, pp. 680–687.

[63] G. Xie, Q. Li, Y. Jiang, T. Dai, G. Shen, R. Li, R. Sinnott, and S. Xia,
“Sam: Self-attention based deep learning method for online traffic
classification,” in Proceedings of the Workshop on Network Meets AI
& ML, 2020, pp. 14–20.

[64] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and vpn traffic using time-related,” in
Proceedings of the 2nd international conference on information systems
security and privacy (ICISSP), 2016, pp. 407–414.

[65] P. Casas, M. Seufert, and R. Schatz, “Youqmon: A system for on-
line monitoring of youtube qoe in operational 3g networks,” ACM
SIGMETRICS Performance Evaluation Review, vol. 41, no. 2, pp. 44–
46, 2013.

[66] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: Toward Quality-of-Experience Estimation for Mobile
Apps from Passive Network Measurements,” in 15th Workshop on Mo-
bile Computing Systems and Applications (HotMobile), Santa Barbara,
CA, USA, 2014.

[67] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “A Machine
Learning Approach to Classifying YouTube QoE Based on Encrypted
Network Traffic,” Multimedia Tools and Applications, vol. 76, no. 21,
pp. 22 267–22 301, 2017.

[68] International Telecommunication Union, “ITU-T Recommendation
P.1203: Parametric Bitstream-based Quality Assessment of Progressive
Download and Adaptive Audiovisual Streaming Services over Reliable
Transport,” 2017. [Online]. Available: https://www.itu.int/rec/T-REC-
P.1203/en

[69] ——, “ITU-T Recommendation P.1204: Video Quality Assessment
of Streaming Services Over Reliable Transport for Resolutions up
to 4K,” 2020. [Online]. Available: https://www.itu.int/rec/T-REC-
P.1204-202001-P/en

[70] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-
Gia, “A survey on quality of experience of http adaptive streaming,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–
492, 2015.

[71] Check Point Research, “Cyber Security Report 2022,”
Check Point Research, Tech. Rep., 2022, accessed: 2023-
02-08. [Online]. Available: https://www.checkpoint.com/downloads/
resources/cyber-security-report-2022.pdf

[72] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on
sdn based network intrusion detection system using machine learning
approaches,” Peer-to-Peer Networking and Applications, vol. 12, no. 2,
pp. 493–501, 2019.

[73] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019.

[74] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in 2010 IEEE
symposium on security and privacy. IEEE, 2010, pp. 305–316.

[75] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo, “Prac-
tical real-time intrusion detection using machine learning approaches,”
Computer Communications, vol. 34, no. 18, 2011.

[76] N. Gray, K. Dietz, M. Seufert, and T. Hossfeld, “High performance
network metadata extraction using p4 for ml-based intrusion detection
systems,” in 2021 IEEE 22nd International Conference on High
Performance Switching and Routing (HPSR). IEEE, 2021, pp. 1–7.

[77] Canadian Institute for Cybersecurity. (2017) Intrusion Detection
Evaluation Dataset (CIC-IDS2017). (accessed 2023-02-08). [Online].
Available: https://www.unb.ca/cic/datasets/ids-2017.html

[78] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
ICISSp, vol. 1, pp. 108–116, 2018.

[79] G. Engelen, V. Rimmer, and W. Joosen, “Troubleshooting an intrusion
detection dataset: the cicids2017 case study,” in 2021 IEEE Security
and Privacy Workshops (SPW), 2021, pp. 7–12.

[80] S. Ho, S. Al Jufout, K. Dajani, and M. Mozumdar, “A novel intrusion
detection model for detecting known and innovative cyberattacks using
convolutional neural network,” IEEE Open Journal of the Computer
Society, vol. 2, pp. 14–25, 2021.

[81] C. Kuzniar, M. Neves, V. Gurevich, and I. Haque, “Iot device fin-
gerprinting on commodity switches,” in NOMS 2022-2022 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 2022, pp.
1–9.

[82] H. Jmila, G. Blanc, M. R. Shahid, and M. Lazrag, “A survey of smart
home iot device classification using machine learning-based traffic
analysis,” IEEE Access, 2022.

[83] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi,
and S. Tarkoma, “Iot sentinel: Automated device-type identification
for security enforcement in iot,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2017,
pp. 2177–2184.

[84] L. Yu, B. Luo, J. Ma, Z. Zhou, and Q. Liu, “You are what you broad-
cast: Identification of mobile and {IoT} devices from (public){WiFi},”
in 29th USENIX security symposium (USENIX security 20), 2020, pp.
55–72.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://www.itu.int/rec/T-REC-P.1203/en
https://www.itu.int/rec/T-REC-P.1203/en
https://www.itu.int/rec/T-REC-P.1204-202001-P/en
https://www.itu.int/rec/T-REC-P.1204-202001-P/en
https://www.checkpoint.com/downloads/resources/cyber-security-report-2022.pdf
https://www.checkpoint.com/downloads/resources/cyber-security-report-2022.pdf
https://www.unb.ca/cic/datasets/ids-2017.html

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 15

[85] J. Ma, Y. Sang, Y. Zhang, X. Xu, B. Feng, and Y. Zeng, “An
adaptive ensembled neural network-based approach to iot device
identification,” in Collaborative Computing: Networking, Applications
and Worksharing: 18th EAI International Conference, CollaborateCom
2022, Hangzhou, China, October 15-16, 2022, Proceedings, Part II.
Springer, 2023, pp. 214–230.

[86] S. Dadkhah, H. Mahdikhani, P. K. Danso, A. Zohourian, K. A. Truong,
and A. A. Ghorbani, “Towards the development of a realistic multi-
dimensional iot profiling dataset,” in 2022 19th Annual International
Conference on Privacy, Security & Trust (PST), 2022, pp. 1–11.

[87] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM computing surveys (CSUR),
vol. 46, no. 4, pp. 1–37, 2014.

[88] D. Harris, “Time to save: Intel stopped development of
network switches and ended the support program for chip
designers on RISC-V,” 2023, accessed 2023-02-07. [Online].
Available: https://technewsspace.com/time-to-save-intel-stopped-
development-of-network-switches-and-ended-the-support-program-
for-chip-designers-on-risc-v/

[89] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “Opensample:
A low-latency, sampling-based measurement platform for commodity
sdn,” in 2014 IEEE 34th International Conference on Distributed
Computing Systems. IEEE, 2014, pp. 228–237.

[90] Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and
G. Zhang, “Sketchvisor: Robust network measurement for software
packet processing,” in ACM SIGCOMM Conference, 2017, pp. 113–
126.

[91] Q. Huang, P. P. Lee, and Y. Bao, “Sketchlearn: relieving user burdens
in approximate measurement with automated statistical inference,” in
ACM SIGCOMM Conference, 2018, pp. 576–590.

[92] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in ACM SIGCOMM Conference,
2019, pp. 334–350.

[93] Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu, R. Zhang,
and J. Jiang, “Cocosketch: High-performance sketch-based measure-
ment over arbitrary partial key query,” in Proceedings of the 2021
ACM SIGCOMM 2021 Conference, 2021, pp. 207–222.

[94] H. Zheng, C. Tian, T. Yang, H. Lin, C. Liu, Z. Zhang, W. Dou,
and G. Chen, “Flymon: enabling on-the-fly task reconfiguration for
network measurement,” in Proceedings of the ACM SIGCOMM 2022
Conference, 2022, pp. 486–502.

[95] Q. Huang, S. Sheng, X. Chen, Y. Bao, R. Zhang, Y. Xu, and G. Zhang,
“Toward nearly-zero-error sketching via compressive sensing,” in 18th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 21), 2021, pp. 1027–1044.

[96] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste,
“SketchLib: Enabling efficient sketch-based monitoring on
programmable switches,” in 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22).
Renton, WA: USENIX Association, Apr. 2022. [Online]. Available:
https://www.usenix.org/conference/nsdi22/presentation/namkung

[97] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks with
programmable switches,” in the 27th Network and Distributed System
Security Symposium (NDSS 2020), 2020.

[98] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM Conference, vol. 15, 2015.

[99] Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu, N. Zheng, R. Wang,
H. Wu, Y. Wang et al., “Lightguardian: A full-visibility, lightweight,
in-band telemetry system using sketchlets.” in NSDI, 2021, pp. 991–
1010.

[100] Q. Huang, H. Sun, P. P. Lee, W. Bai, F. Zhu, and Y. Bao, “Omnimon:
Re-architecting network telemetry with resource efficiency and full
accuracy,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 404–421.

[101] Corelight, “Corelight,” 2022, accessed 2023-02-08. [Online]. Available:
https://corelight.com/

[102] Zeek, “Zeek,” 2022, accessed 2023-02-08. [Online]. Available:
https://zeek.org/

[103] ntop, “nProbe,” 1998, accessed 2023-12-06. [Online]. Available:
https://www.ntop.org/products/netflow/nprobe/

[104] T. N. G. P. di Torino, “Tstat TCP STatistic and Analysis Tool,” 2008,
accessed 2023-12-06. [Online]. Available: http://tstat.polito.it/

[105] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, and D. Rossi,
“Flowatcher-dpdk: Lightweight line-rate flow-level monitoring in soft-
ware,” IEEE Transactions on Network and Service Management,
vol. 16, no. 3, pp. 1143–1156, 2019.

[106] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboflow:
Information rich flow record generation on commodity switches,” in
13th EuroSys Conference, 2018, pp. 1–16.

[107] J. Bai, M. Zhang, G. Li, C. Liu, M. Xu, and H. Hu, “Fastfe:
Accelerating ml-based traffic analysis with programmable switches,”
in Workshop on Secure Programmable Network Infrastructure, 2020,
pp. 1–7.

[108] C. Hardegen, “Scope-based flow monitoring to improve traffic analysis
in programmable networks,” in 2022 18th International Conference on
Network and Service Management (CNSM). IEEE, 2022, pp. 254–260.

[109] P. Schmitt, F. Bronzino, R. Teixeira, T. Chattopadhyay, and N. Feam-
ster, “Enhancing transparency: Internet video quality inference from
network traffic.” TPRC, 2018.

[110] B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello,
“Programmable switches for in-networking classification,” in IEEE
INFOCOM 2021-IEEE Conference on Computer Communications.
IEEE, 2021, pp. 1–10.

[111] ——, “Map4: A pragmatic framework for in-network machine learning
traffic classification,” IEEE Transactions on Network and Service
Management, 2022.

[112] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of
intelligent network data plane,” in 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA: USENIX Association, 2023.

[113] R. Kamath and K. M. Sivalingam, “Machine learning based flow clas-
sification in dcns using p4 switches,” in 2021 International Conference
on Computer Communications and Networks (ICCCN). IEEE, 2021,
pp. 1–10.

[114] T.-N. Dao and H. J. Lee, “Stacked autoencoder-based probabilistic
feature extraction for on-device network intrusion detection,” IEEE
Internet of Things Journal, 2021.

[115] T.-N. Dao, V.-P. Hoang, C. H. Ta et al., “Development of lightweight
and accurate intrusion detection on programmable data plane,” in 2021
International Conference on Advanced Technologies for Communica-
tions (ATC). IEEE, 2021, pp. 99–103.

[116] A. T.-J. Akem, M. Gucciardo, M. Fiore et al., “Flowrest: Practical
flow-level inference in programmable switches with random forests,”
in IEEE International Conference on Computer Communications, 2023.

[117] G. Xie, Q. Li, Y. Dong, G. Duan, Y. Jiang, and J. Duan, “Mousika:
Enable general in-network intelligence in programmable switches by
knowledge distillation,” in IEEE INFOCOM 2022-IEEE Conference on
Computer Communications. IEEE, 2022, pp. 1938–1947.

[118] Q. Qin, K. Poularakis, and L. Tassiulas, “A learning approach with
programmable data plane towards iot security,” in 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2020, pp. 410–420.

[119] J.-H. Lee and K. Singh, “Switchtree: in-network computing and traffic
analyses with random forests,” Neural Computing and Applications,
pp. 1–12, 2020.

[120] M. Zang, C. Zheng, R. Stoyanov, L. Dittmann, and N. Zilberman,
“P4pir: in-network analysis for smart iot gateways,” in Proceedings of
the SIGCOMM’22 Poster and Demo Sessions, 2022, pp. 46–48.

[121] A. T.-J. Akem, B. Bütün, M. Gucciardo, and M. Fiore, “Henna:
hierarchical machine learning inference in programmable switches,”
in Proceedings of the 1st International Workshop on Native Network
Intelligence, 2022, pp. 1–7.

[122] D. Sanvito, G. Siracusano, and R. Bifulco, “Can the network be the ai
accelerator?” in 2018 Morning Workshop on In-Network Computing,
2018, pp. 20–25.

[123] C. Zheng and N. Zilberman, “Planter: seeding trees within switches,”
in Proceedings of the SIGCOMM’21 Poster and Demo Sessions, 2021,
pp. 12–14.

[124] X.-H. Nguyen, X.-D. Nguyen, H.-H. Huynh, and K.-H. Le, “Realguard:
A lightweight network intrusion detection system for iot gateways,”
Sensors, vol. 22, no. 2, p. 432, 2022.

[125] A. Ahmim, L. Maglaras, M. A. Ferrag, M. Derdour, and H. Janicke,
“A novel hierarchical intrusion detection system based on decision tree
and rules-based models,” in 2019 15th International Conference on
Distributed Computing in Sensor Systems (DCOSS). IEEE, 2019, pp.
228–233.

[126] L. Reuter, O. Jung, and J. Magin, “Neural network based anomaly
detection for scada systems,” in 2020 23rd Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN). IEEE, 2020,
pp. 194–201.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://technewsspace.com/time-to-save-intel-stopped-development-of-network-switches-and-ended-the-support-program-for-chip-designers-on-risc-v/
https://technewsspace.com/time-to-save-intel-stopped-development-of-network-switches-and-ended-the-support-program-for-chip-designers-on-risc-v/
https://technewsspace.com/time-to-save-intel-stopped-development-of-network-switches-and-ended-the-support-program-for-chip-designers-on-risc-v/
https://www.usenix.org/conference/nsdi22/presentation/namkung
https://corelight.com/
https://zeek.org/
https://www.ntop.org/products/netflow/nprobe/
http://tstat.polito.it/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 16

Michael Seufert (Senior Member, IEEE) is a Full
Professor at the University of Augsburg, Germany,
heading the Chair of Networked Embedded Sys-
tems and Communication Systems. He received the
Bachelor’s degree (2018) in economathematics and
the Diploma (2011), PhD (2017), and Habilitation
(2023) degrees in computer science from the Uni-
versity of Würzburg, Germany, and holds the First
State Examination degree (2011) in mathematics,
computer science, and education for teaching in sec-
ondary schools. His research focuses on user-centric

communication networks, including QoE of Internet applications, AI/ML for
QoE-aware network management, as well as group-based communications.

Katharina Dietz is a Research Assistant at the Chair
of Communication Networks at the University of
Würzburg, where she is pursuing her PhD. She stud-
ied computer science at the University of Würzburg,
Germany and received her Master’s degree in 2020.
Her research mainly focuses on managing and secur-
ing communication networks with machine learning-
based approaches, ranging from performance predic-
tion to anomaly detection.

Nikolas Wehner studied computer science at the
University of Würzburg, Germany, where he re-
ceived a Master’s degree. In 2018, he started to work
as a Research Engineer at the Center for Technology
Experience at the AIT Austrian Institute of Technol-
ogy in Vienna, Austria. Since October 2019, he is
a doctoral researcher at the Chair of Communica-
tion Networks of the University of Würzburg. His
interests are user-centric communication networks,
focusing on the QoE of Internet applications, and
machine learning for networks in general.

Stefan Geißler Stefan Geißler received the PhD
degree for his thesis “Performance Evaluation of
Next-Generation Data Plane Architectures and their
Components” from the University of Würzburg,
Würzburg, Germany, in 2022. He is a Research
Associate with the Chair of Communication Net-
works, University of Würzburg, where he leads the
Cloud Applications and Networks Research Group.
His current research is focused on the analytical and
simulative performance evaluation and optimization
of next-generation communication technologies, in-

cluding TSN, 5G, and Internet of Things.

Joshua Schüler received the Master’s degree in
computer science from the University of Würzburg,
Würzburg, Germany, where he also worked as a
student research assistant at the Chair of Communi-
cation Networks. He is currently a Digital Systems
Engineer at Tesat-Spacecom GmbH & Co. KG,
Backnang, Germany, where he works on network
equipment for satellites. His research interests in-
clude artificial intelligence applications in computer
networks and fault tolerant embedded systems.

Manuel Wolz received the Bachelor’s degree in
computer science from University of Würzburg,
Würzburg, Germany in 2020, and is currently study-
ing towards the Master’s degree. Since 2018 he is
working as student research assistant at the Chair
of Communication Networks of the University of
Würzburg with a focus on network simulation,
benchmarking, and P4.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 17

Andreas Hotho holds the Chair of Data Science
at the Julius Maximilian University of Würzburg
and is the spokesperson of the Centre for Arti-
ficial Intelligence and Data Science (CAIDAS) at
the University of Würzburg. In recent years, he
has conducted research in various areas of data
science. Core research areas include NLP with the
integration of knowledge into language models, the
study of historical novels in cooperation with the
digital humanities, the analysis of corporate data for
recommendation systems or anomaly detection, e.g.

the analysis of network flow data, as well as studies based on sensor data on
air pollution, climate modelling and bee behaviour.

Pedro Casas (Member, IEEE) received the Electri-
cal Engineering degree from the Universidad de la
República, Uruguay, in 2005, and the Ph.D. degree
in computer science from Télécom Bretagne, in
2010. He is currently a Senior Scientist in AI/ML for
Networking, with the AIT Austrian Institute of Tech-
nology, Vienna. He was a Postdoctoral Researcher
with the LAAS-CNRS, Toulouse, from 2010 to
2011, and a Senior Researcher with the Telecom-
munications Research Center Vienna, from 2011 to
2015. His work focuses on machine learning-based

approaches for networking, big data analytics and platforms, Internet network
measurements, network security, and anomaly detection, as well as Internet
QoE monitoring. He has published more than 200 networking research papers
in major international conferences and journals, and received 18 awards for his
work, including eight Best Paper Awards. He is the General Chair for different
actions in network measurement and analysis, including the IEEE ComSoc
ITC Special Interest Group on Network Measurements and Analytics.

Tobias Hoßfeld is professor at the Chair of Com-
munication Networks at the University of Würzburg,
Germany, since 2018. He finished his PhD in 2009
and his professorial thesis (habilitation) ”Modeling
and Analysis of Internet Applications and Services”
in 2013 at the University of Würzburg, where he
was also heading the ”Future Internet Applications
& Overlays” research group. From 2014 to 2018, he
was head of the Chair ”Modeling of Adaptive Sys-
tems” at the University of Duisburg-Essen, Germany.
He has published more than 100 research papers

in major conferences and journals, receiving several best conference paper
awards, 3 awards for his PhD thesis, and the Fred W. Ellersick Prize 2013
(IEEE Communications Society) for one of his articles on QoE. He is member
of the editorial board of IEEE Communications Surveys & Tutorials, Springer
Quality and User Experience, ACM SIGMM Records and elected chairperson
of the ITG/VDE expert group ”Communication Networks and Systems” within
the German society of Information Technology (ITG).

Anja Feldmann got her Ph.D. from Carnegie Mel-
lon University in 1995. The next four years she
did research work at AT&T Labs Research, before
taking professor positions at Saarland University,
the TU Munich, and TU Berlin. From 2012 to
2018 she served on Supervisory Board of SAP SE.
Since the beginning of 2018, Anja is a director at
the Max Planck Institute for Informatics in Saar-
bruecken, Germany. She is a member of multi-
ple academies and on the steering committees of
CoNEXT and IMC. She was TPC-chair of Sigcomm,

IMC, CoNEXT, as well as HotNets.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 18

APPENDIX
A. Appendix – Taxonomy of ML-driven Solutions

System Monitoring Task Performance Implementation

TC QoE ID IoT UCA Parallel Flows Line Rate Platform CA Task of PDP in ML Pipeline ML Algorithm

Marina (this work) ✔ ✔ ✔ ✔ ✔ 524,288 100 Gbps HW ✔ Time slot-based moments Various

FastFE [107] ✘ ✘ ✔ ✘ ✘ (✘) 40 Gbps HW ✘ Time slot-based statistics Neural Networks (NN)
Musumeci et al. [39], [40] ✘ ✘ ✔ ✘ ✘ (✘) 10 Gbps SW ✘ Time slot-based statistics RF, KNN, SVM, no NN

Sivanathan et al. [43] ✘ ✘ ✘ ✔ ✘ (✘) (✘) (✘) ✘ Time slot-based statistics Random Forest
Gray et al. [76] ✘ ✘ ✔ ✘ ✘ 65,536 100 Gbps HW ✔ Flow-based statistics Random Forest
FlowMoni [108] ✘ ✘ ✔ ✘ ✘ ∼352k - 2Ma (✘) SW ✔ (Sub)flow-based statistics RF, DNN

PoirIoT [81] ✘ ✘ ✘ ✔ ✘ (✘) 40 Gbps HW ✔ Rule-based metadata extraction DBSCAN
NetMicroscope [109] ✘ ✔ ✘ ✘ ✘ (✘) (✘) (✘) ✘ ML-based session quality inference Regression (various)

Xavier et al. [110], [111] ✘ ✘ ✔ ✔ ✘ (✘) 10 Gbps HW ✔ ML-based flow/packet classification Decision Trees
IIsy [25] ✘ ✘ ✔ ✘ ✔ (✘) 100 Gbps HW (✔)e ML-based flow/packet classification Various, no NN

NetBeacon [112] ✔ ✘ ✔ ✘ ✔ 65,536 100 Gbps HW ✔ ML-based flow/packet classification Decision Trees
SMASH [113] ✔ ✘ ✘ ✘ ✘ (✘) (✘) SW ✔ ML-based flow classification Decision Trees

Dao et al. [114], [115] ✘ ✘ ✔ ✘ ✘ (✘) 30 Mbps (✘) ✘ ML-based flow classification Neural Networks
FlowLens [35] ✔ ✘ ✔ ✘ ✔ >250kb 100 Gbps HW ✔ ML-based flow classification Various, no NN
pForest [24] ✘ ✘ ✔ ✘ ✘ ∼250k - 1Mc (✘) HWd ✘ ML-based subflow classification Random Forest

Flowrest [116] ✔ ✘ ✔ ✔ ✔ (✘) 100 Gbps HW ✔ ML-based subflow classification Random Forests
Mousika [117] ✔ ✘ ✔ ✘ ✔ (✘) 100 Gbps HW ✔ ML-based packet classification Decision Trees

IIsy (prototype) [26] ✘ ✘ ✘ ✔ ✘ (✘) 10 Gbps HW ✔ ML-based packet classification Various, no NN
Qin et al. [118] ✘ ✘ ✔ ✘ ✘ (✘) (✘) SW ✔ ML-based packet classification Neural Networks

SwitchTree [119] ✘ ✘ ✔ ✘ ✘ (✘) (✘) SW ✔ ML-based packet classification Random Forest
P4pir [120] ✘ ✘ ✔ ✘ ✘ (✘) (✘) SW ✘ ML-based packet classification DT, RF, no NN
Henna [121] ✘ ✘ ✘ ✔ ✘ (✘) 100 Gbps HW ✔ ML-based packet classification Decision Trees

BaNaNa [122] ✘ ✘ ✘ ✘ ✘ (✘) (✘) HW ✔ ML-based classification, no FE Neural Networks
N3IC [23] ✘ ✘ ✔ ✘ ✘ (✘) 40 Gbps HW ✘ ML-based classification, no FE Neural Networks

Planter [123], [22] ✘ ✔ ✔ ✘ ✔ (✘) 100 Gbps HW ✔ ML-based classification, no FE Various
atheoretically approximated for Intel Tofino 3 chip architectures, bminimum, no upper limit discussed, cper 10 MB memory, derived from SW, donly
limited functionality of software implementation, eonly the same code as for the prototype available

Table II: Related ML-driven monitoring systems. (TC – traffic classification, QoE – application health/Quality of Experience,
ID – intrusion detection, IoT – Internet of Things, UCA – use case agnostic, HW/SW – hardware/software platform, CA –
code available, FE – feature extraction, ✔ – fulfilled, ✘ – not fulfilled, (✔) – partially fulfilled, (✘) – unknown)

B. Appendix – ML Benchmark Results
Facebook Hangouts Skype

Model Features Mail Audio Chat Video Audio Chat Video SFTP Audio Chat File Video Spotify YouTube

SOTA [61] 0.820 0.950 0.980 1.000 0.990 0.980 0.990
[63] 0.990 >0.999 0.943 >0.999 0.995 0.997 0.992

DT Marina (ideal) >0.999 0.993 0.965 0.993 0.998 0.967 >0.999 0.998 >0.999 0.998 >0.999 0.998 >0.999 0.998
Marina (impl.) 0.976 0.987 >0.999 0.993 0.998 >0.999 >0.999 0.974 >0.999 0.980 0.998 >0.999 >0.999 0.998

RF Marina (ideal) >0.999 >0.999 >0.999 0.996 0.998 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.996 0.998
Marina (impl.) 0.974 0.993 >0.999 0.993 0.998 >0.999 >0.999 0.974 >0.999 >0.999 >0.999 >0.999 >0.999 0.998

ERT Marina (ideal) >0.999 0.996 >0.999 0.993 0.998 0.998 >0.999 >0.999 >0.999 0.996 0.996 >0.999 >0.999 0.998
Marina (impl.) 0.998 >0.999 >0.999 0.996 0.998 >0.999 0.998 0.996 >0.999 >0.999 0.996 >0.999 0.998 >0.999

GB Marina (ideal) >0.999 >0.999 >0.999 0.996 0.998 >0.999 >0.999 >0.999 >0.999 >0.999 0.998 >0.999 0.998 0.998
Marina (impl.) 0.976 0.998 >0.999 0.996 0.998 >0.999 >0.999 0.95 0 >0.999 >0.999 0.972 >0.999 >0.999 0.996

XGB Marina (ideal) 0.976 0.998 >0.999 0.993 0.996 >0.999 >0.999 0.976 >0.999 >0.999 >0.999 >0.999 0.993 0.998
Marina (impl.) >0.999 0.998 0.998 0.998 0.996 >0.999 0.998 0.998 >0.999 >0.999 0.998 >0.999 >0.999 >0.999

KNN Marina (ideal) >0.999 0.999 >0.999 >0.999 0.998 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.998 >0.999 0.998
Marina (impl.) 0.972 >0.999 >0.999 0.996 0.998 >0.999 0.998 0.967 0.998 >0.999 0.987 >0.999 0.998 >0.999

DNN Marina (ideal) >0.999 0.998 >0.999 0.991 0.998 >0.999 >0.999 >0.999 >0.999 >0.999 0.993 >0.999 0.987 0.984
Marina (impl.) 0.980 >0.999 >0.999 0.996 0.998 >0.999 0.998 0.967 0.9998 >0.999 0.987 >0.999 0.998 >0.999

Table III: ML performance of Marina for encrypted traffic classification. Hit rates for traffic classes.

Model Features Stalling Resolution Bit Rate

F1 - No Stalling F1 - Stalling F1 - Macro F1 - SD F1 - HD F1 - Macro RMSE [kbps] MAE [kbps]

SOTA [12]* 0.993 0.875 0.934 0.851 0.819 0.837 331 231

DT Marina (ideal) 0.965 0.612 0.789 0.827 0.797 0.812 607 363
Marina (impl.) 0.966 0.609 0.787 0.828 0.807 0.817 667 424

RF Marina (ideal) 0.993 0.870 0.931 0.825 0.791 0.808 474 286
Marina (impl.) 0.976 0.691 0.834 0.836 0.826 0.831 476 293

ERT Marina (ideal) 0.992 0.863 0.927 0.815 0.784 0.800 537 358
Marina (impl.) 0.982 0.685 0.834 0.832 0.831 0.831 564 364

GB Marina (ideal) 0.974 0.679 0.826 0.837 0.807 0.822 471 293
Marina (impl.) 0.967 0.612 0.789 0.844 0.831 0.837 551 347

XGB Marina (ideal) 0.983 0.762 0.872 0.832 0.796 0.814 456 271
Marina (impl.) 0.959 0.550 0.755 0.862 0.844 0.853 495 309

KNN Marina (ideal) 0.988 0.809 0.899 0.807 0.763 0.785 663 428
Marina (impl.) 0.970 0.567 0.768 0.813 0.774 0.793 705 454

DNN Marina (ideal) 0.987 0.788 0.887 0.848 0.817 0.832 337 241
Marina (impl.) 0.983 0.748 0.865 0.849 0.841 0.846 341 250

Table IV: ML performance of Marina for video streaming application health/Quality of Experience monitoring from encrypted
traffic. F1 scores for binary stalling and resolution classification, RMSE and MAE for bit rate regression. *SOTA results are
not exactly as given in [12] as authors provided an extended data set and retrained their model to obtain comparable results.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, NO. X, DECEMBER 2023 19

Model Features Bot FTP-P. SSH-P. DDoS GE Hulk SH SL Heartb. Infil. Port XSS BF SQL

SOTA

[80] 0.664 0.997 0.993 >0.999 >0.999 >0.999 0.996 0.997 1.000 0.917 >0.999 0.928 0.995 0.810
[124] 0.985 >0.999 >0.999 1.000 >0.999 0.985 0.995 >0.999 N/A >0.999 >0.999 N/A N/A N/A
[125] 0.465 0.996 >0.999 0.999 0.676 0.968 0.938 0.978 1.000 1.000 0.999 0.306 0.733 0.500
[114] 0.000 0.936 0.505 0.922 0.882 0.733 0.771 0.577 0.200 0.000 0.994 0.000 0.048 0.000
[111] N/A N/A N/A N/A 0.870 1.000 0.940 0.950 N/A N/A 0.940 N/A 0.950 N/A
[126] 0.314 0.542 0.608 0.991 0.870 0.992 0.769 0.635 N/A N/A 0.971 0.235 0.185 N/A

DT Marina (ideal) >0.999 0.990 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.997 0.957 0.262 >0.999 >0.999
Marina (impl.) >0.999 0.990 >0.999 >0.999 >0.999 0.988 >0.999 >0.999 >0.999 0.997 >0.999 0.234 >0.999 >0.999

RF Marina (ideal) >0.999 0.990 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.997 >0.999 0.241 >0.999 >0.999
Marina (impl.) >0.999 0.990 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.997 >0.999 0.207 >0.999 >0.999

ERT Marina (ideal) 0.959 0.918 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.950 >0.999 0.600 >0.999 >0.999
Marina (impl.) 0.921 0.918 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.950 >0.999 0.448 >0.999 >0.999

GB Marina (ideal) >0.999 0.990 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.997 >0.999 0.214 >0.999 >0.999
Marina (impl.) >0.999 0.990 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.997 >0.999 0.207 >0.999 >0.999

XGB Marina (ideal) >0.999 0.990 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.997 >0.999 0.214 >0.999 >0.999
Marina (impl.) >0.999 0.990 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.997 >0.999 0.207 >0.999 >0.999

KNN Marina (ideal) 0.996 0.990 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.997 >0.999 0.572 >0.999 >0.999
Marina (impl.) >0.999 0.990 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.997 0.989 0.662 >0.999 >0.999

DNN Marina (ideal) >0.999 0.985 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.997 >0.999 0.703 >0.999 >0.999
Marina (impl.) >0.999 0.990 >0.999 >0.999 >0.999 >0.999 0.984 >0.999 >0.999 0.997 0.995 0.531 >0.999 >0.999

Table V: ML performance of Marina for intrusion detection. Hit rates for attack detection (Bot – Botnet, FTP-P. – FTP-Patator,
SSH-P. – SSH-Patator, DDoS – Distributed Denial of Service, GE – DoS GoldenEye, Hulk – DoS Hulk, SH – DoS SlowHTTP,
SL - DoS Slowloris, Heartb. – Heartbleed, Infil. – Infiltration, Port – Port Scan, XSS - Cross-site Scripting, BF - Brute Force,
SQL – SQL Injection).

Model Features Mean Min 5% 25% 50% 75% 95% Max

SOTA [85] 0.682 0.000 0.007 0.200 0.947 0.998 1.000 1.000

DT Marina (ideal) 0.860 0.719 0.743 0.850 0.866 0.895 0.917 0.939
Marina (impl.) 0.898 0.804 0.856 0.889 0.901 0.914 0.920 0.931

RF Marina (ideal) 0.930 0.817 0.853 0.925 0.934 0.946 0.964 0.971
Marina (impl.) 0.952 0.917 0.924 0.947 0.954 0.961 0.967 0.974

ERT Marina (ideal) 0.933 0.833 0.847 0.925 0.941 0.954 0.98 0.972
Marina (impl.) 0.945 0.914 0.920 0.938 0.947 0.956 0.960 0.970

GB Marina (ideal) 0.666 0.329 0.450 0.558 0.631 0.803 0.892 0.960
Marina (impl.) 0.709 0.407 0.510 0.600 0.695 0.849 0.931 0.942

XGB Marina (ideal) 0.884 0.789 0.814 0.852 0.888 0.917 0.939 0.958
Marina (impl.) 0.926 0.879 0.898 0.916 0.928 0.940 0.950 0.955

KNN Marina (ideal) 0.727 0.550 0.600 0.701 0.737 0.763 0.816 0.847
Marina (impl.) 0.922 0.876 0.895 0.908 0.924 0.936 0.949 0.953

DNN Marina (ideal) 0.454 0.146 0.168 0.283 0.398 0.658 0.911 0.960
Marina (impl.) 0.772 0.476 0.554 0.692 0.766 0.880 0.978 0.985

Table VI: ML performance of Marina for IoT device classification. Mean and percentiles of the hit rate distribution for the
detection of 37 IoT devices (classes).

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3382393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Marina System Design
	Design Principles
	Monitoring of Encrypted Traffic

	Marina Data Plane Prototype
	Performance of Marina System
	Marina's ML-based Real-time Monitoring Performance
	Discussion
	Related Work
	Conclusion
	References
	Biographies
	Michael Seufert
	Katharina Dietz
	Nikolas Wehner
	Stefan Geißler
	Joshua Schüler
	Manuel Wolz
	Andreas Hotho
	Pedro Casas
	Tobias Hoßfeld
	Anja Feldmann

	Appendix
	Appendix – Taxonomy of ML-driven Solutions
	Appendix – ML Benchmark Results

