
1

Interpretable Feature Learning in Multivariate Big
Data Analysis for Network Monitoring
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Abstract—There is an increasing interest in the development
of new data-driven models useful to assess the performance of
communication networks. For many applications, like network
monitoring and troubleshooting, a data model is of little use if
it cannot be interpreted by a human operator. In this paper,
we present an extension of the Multivariate Big Data Analysis
(MBDA) methodology, a recently proposed interpretable data
analysis tool. In this extension, we propose a solution to the
automatic derivation of features, a cornerstone step for the
application of MBDA when the amount of data is massive.
The resulting network monitoring approach allows us to detect
and diagnose disparate network anomalies, with a data-analysis
workflow that combines the advantages of interpretable and
interactive models with the power of parallel processing. We
apply the extended MBDA to two case studies: UGR’16, a
benchmark flow-based real-traffic dataset for anomaly detection,
and Dartmouth’18, the longest and largest Wi-Fi trace known to
date.

Index Terms—Interpretable Machine Learning, Multivariate
Big Data Analysis, Anomaly Detection, Big Data, UGR’16,
Dartmouth Campus Wi-Fi, Network Monitoring

I. INTRODUCTION

In the Big Data era, there is an increasing interest in the
development of new data analysis methods to improve the
performance of communication networks, in tasks like network
monitoring, troubleshooting and optimization [1]. The current
trend in data analysis is towards highly complex black-box
methodologies, like deep learning [2]. These methodologies
learn models of the data intended to be used automatically,
and with little or no human supervision or interaction. Unfor-
tunately, for many network applications, a model of the data
is of little use if it cannot be interpreted by a human operator.

The relevance of interpretable models in several applications
has raised a lot of attention in the research community in recent
years [3]. There are two basic approaches to the derivation
of interpretable models from data. On the one hand, the
need for the interpretation of black-box models has given
rise to concepts like interpretable or explainable machine
learning [4], where strategies to explain black-box models or
to calibrate more interpretable black-box models are pursued.
An alternative approach is to use data analysis methods that
are themselves interpretable, rather than black-box [5]. This
paper lies in the second category.
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Just like their black-box counterparts, interpretable models
can be useful in classification, regression and anomaly detec-
tion tasks. However, a major advantage of interpretable models
is that they also provide information about why a model gives
a certain output. There are many situations in which an answer
is not of practical use, without knowing the “why”. Network
monitoring is an example: network operators desire to detect
unwanted events during the network operation, but they also
need to understand their root causes and troubleshoot them as
soon as possible.

Multivariate analysis has been recognized as an outstanding
data analysis approach in several domains, including industrial
monitoring [6], network security [7], marketing [8], weather
modeling [9], bioinformatics [10], food research [11], and
so forth. In this paper, we are interested in a multivariate
methodology for data interpretation: matrix factorization with
component models. In this methodology, visualization, inter-
pretation and data interaction are the principal tools for an
analyst to understand the problem the data reflects. Two are
the main features that make matrix factorization an appealing
methodology for the analysis of complex data: i) most matrix
factorization models are simple to interpret, because they are
based on linear algebra, and ii) they generate factors that
simplify the visualization of data. Another advantage is that,
even if a model is created to respond to a specific question
(e.g., anomaly detection), the interaction of the analyst with
the data through the model can bring much more information,
like the derivation of new, unexpected findings (e.g., network
misconfiguration or sub-optimal functioning). This property is
a useful one that black-box models do not normally provide.

Researchers have been quite active in the extension of
machine learning methodologies to Big Data. Unfortunately,
the extension of multivariate analysis to Big Data while
retaining the capabilities of visualization, interpretation and
data interaction has received little attention. In this context, the
Multivariate Big Data Analysis (MBDA) tool [12] is a recent
multivariate anomaly detection and data analysis approach
suitable for Big Data. It is based on three modules: the
upstream module, which transforms a Big Data stream into a
small feature data; the analysis module, where the analyst can
interact with the featured data to analyze and interpret anoma-
lies; and the downstream module, useful to map anomalies to
the original logs in the Big Data stream, so that operators
can derive full understanding of their root causes. MBDA
works as a magnifying glass into massive amounts of data,
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Fig. 1: Illustration of a simple multivariate example.

with a configurable trade-off between the level of detail for
data visualization and the capability for data compression. The
key to this trade-off is the upstream module, where we set the
features and the time resolution for the subsequent analysis. In
the original MBDA proposal [12], the features were manually
defined, which is a sub-optimal solution and complicates its
application to truly massive volumes of data.

In this paper, we define an automatic feature learning
procedure that can be specially useful in combination with
MBDA. This enhancement improves the performance in rela-
tively massive datasets, and is fundamental in datasets massive
and/or complex enough so that manual features cannot be
properly defined due to inherent limitations in the screening of
raw data. To illustrate the resulting methodology, we present
two case studies: i) a capture from a real network of a tier 3
Internet Server Provider (ISP) [13], and ii) a campus-wide
Wi-Fi network [14]. We include both data sets to provide
a general evaluation of our feature learning approach. The
first data set includes labeled test data with a number of
attacks that we leverage to assess the convenience of the
automatically generated features in anomaly detection using
standard performance measures. The second data set has
never been visualized due to its challenging nature except by
univariate time series [14], and we use it to showcase how our
approach can help improve the understanding of the data.

Our contributions in this paper are as follows.
• We contribute an automatic feature-learning procedure,

consistent with the MBDA methodology.
• We integrate this procedure into a Python tool and make it

available for the community. This Python tool allows the
parallelization of the computation in high-performance
processing centers.

• We showcase the extended MBDA approach with feature
learning in two real case studies, one from structured
netflow data and one from unstructured SNMP data,
highlighting what the method can provide to network
operators and presenting the workflow in detail.

The rest of the paper is organized as follows. Section II con-
textualizes our research in the literature. Section III discusses
the interpretable and interactive characteristics in multivariate
analysis. Section IV presents the MBDA methodology. Sec-
tions V describes the interpretable learning approach proposed
in this paper. Section VI introduces the materials and methods

of the experimental study. Sections VII and VIII walk through
the case studies. Section IX provides final conclusions.

II. RELATED WORKS

Due to the increasing complexity of networks and the grow-
ing trend in network traffic, network monitoring has become
increasingly challenging [15]. The literature is rich in data
sources and methods for monitoring [16], [17], [18]. Fuentes-
Garcı́a et al. [19] discuss the framework of data integrators
in network security monitoring, with the notable example of
Security Information and Event Management (SIEM) Systems.
In such systems, sensors of different nature (sensors of traffic,
logs and system state, and security sensors) deployed through-
out the network send data to a centralized integrator that
unifies it for event correlation and alarm triaging. The Network
Telemetry Framework (NTF) [20] is a standardization effort
to enable real-time and fine-grained network monitoring for
autonomic networks [21], [22]. An example of application of
this concept is presented in [23]. In [24] the authors present the
results of experiments on programmable telemetry. The notion
of network observability has been behind network monitoring
and management practices from the early times. In the era
of Big Data, observability is not only a matter of devising
the best data measurement techniques, but also of properly
engineering good practices for data visualization, exploration,
and understanding. The methodology proposed in this paper
responds to this need by allowing the automatic identification
of relevant features that can be integrated within MBDA
to provide full network observability through massive data
analysis, following a systematic and data-agnostic workflow
for exploration and diagnosis.

Feature learning is an important topic in machine learning
research [25]. N-gram models represent the traditional feature
learning approach in natural language processing (NLP), prob-
ably one of the most popular machine learning applications.
N-grams are counts extracted from a corpus of text for series
of N adjacent letters (or other language units), where N is
user-defined. Thus, letter-based N-grams treat words as atomic
units. Word2vec [26] is an extremely popular feature learning
approach for NLP tasks that extends N-gram models by
defining word embeddings, that is, transformations from words
to feature vectors that capture the relationship among words
in the sentences of a corpus of text. Word2vec looks for a
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compromise between computational complexity and modelling
performance in comparison to (deep) neural networks, where
the word embedding is part of the machine learning model
itself [27], [28]. By separating the feature learning from the
model training, word2vec is capable of extracting general
features that can be used in different NLP applications and
models. There are several word embedding strategies that
follow a similar approach [29], [30], [31], [32]. The proposal
of this paper is similar in philosophy to the N-gram approach,
and relays in multivariate analysis to model the relationship
among words. This allows for a benefit in computing power,
and derives features that are even more application agnostic
than those from word2vec. Most importantly, our features are
as interpretable as N-grams, which is a major goal of this
paper. Unlike N-grams, our approach neither intends to model
all possible combinations of N letters, nor assumes a specific
number of letters for each feature. This is achieved through the
definition of the concepts of variable and feature, as we discuss
below. This approach makes feature vectors more flexible and
parsimonious, but yet very powerful for data modelling thanks
to the concept of default features, which allows us to model
residual information of variables that is not included in any
learned feature.

A special type of feature learning is the one specifically
defined for networks of interconnected nodes, like social
networks, biological networks, and communication networks.
This methodology, often referred to as network feature learn-
ing, assumes that the data represents the information shared
among network nodes, which is appropriate for traffic data
and many forms of security data, but not for application
and system logs. A popular approach for network feature
learning, inspired in the word2vec algorithm, is node2vec [33].
Network feature learning with node2vec and related node
embeddings [34], [35] can be useful in tasks such as graph,
node or link classification, prediction, and anomaly detection.
Generally speaking, our approach has a wider applicability
than network feature learning, since it can be applied to any
form of monitoring data.

Interpretablity is a major need in network operations, espe-
cially when there is a need for accountability of management
decisions [36]. For proper accountability, a full understand-
ing of the behavior of the network is required. As already
discussed, there are two basic approaches to the derivation
of interpretable models: interpretable or explainable machine
learning [4], [37], [38], [39], [40] and the use of data analysis
methods that are themselves interpretable [5], [41], [6]. More-
over, it is worth noting that the self-explaining AI approach
has also been proposed as a solution to interpretability [42].
An example of explainable feature learning in the network
context can be found in [43], where node2vec is combined
with reinforcement learning. The basic idea of such approaches
is to maintain the performance of the learning methodology,
but provide means of explanation of model outcomes. In
this paper, we are more interested in the alternative research
avenue, where we retain the interpretability of white-box
models but look for an improvement of performance through
learning.

There are other interpretable methods different to multivari-

ate analysis through matrix factorization; see for instance [3].
Useful interpretations can be derived from statistical methods
(e.g., wavelet analysis, covariance matrix analysis), clustering
methods (KNN, k-means), decision trees, decision rules and
bayesian methods, among others. While the use of PCA for
dimensionality reduction is well-known, the interpretability
capabilities of PCA [44] have not been exploited in the
network domain. In this paper, we develop our feature learning
approach so that interpretability is maintained at the expense of
generating feature vectors of large dimensionality, which can
be easily accommodated by multivariate analysis. This makes
our learning features especially well suited for PCA but also
other multivariate approaches, like Partial Least Squares (PLS)
regression [45], ANOVA Simultaneous Component Analysis
(ASCA) [46], Parallel Factor Analysis (PARAFAC) [47] or
Sparse methods [48], [10], to mention just a few.

III. INTERPRETABILITY AND INTERACTION IN
MULTIVARIATE ANALYSIS

This section is intended to motivate why and how multivari-
ate analysis can be useful in the analysis of Big Data streams.
The core of the original MBDA [12] is the Multivariate Sta-
tistical Network Monitoring (MSNM) [41] approach, which is
originally based on Principal Component Analysis (PCA) [9],
[49]. PCA is the most extended, most simple and most general
matrix factorization. Here, simple and general are interesting
features, since PCA will be easy to interpret and applicable
to almost any data set. MSNM is a PCA-based approach for
anomaly detection grounded on the theory of statistical control
developed in the process industry by the end of the previous
century [50], [51], [52]. Interpretability and data interaction
constitute the foundation of this methodology.

A. The benefit of going multivariate

Most network datasets are originally multivariate, in the
sense that they are formed by a number of distinct variables
(like number of flows, number of packets, delay measure-
ments, etc.) or by the same variable captured in different
locations. Even if a dataset is originally a univariate time
series, like a traffic capture, it can be transformed into a
multivariate feature dataset by properly computing a number
of features, as it is done in the Netflow protocol.

In Figure 1, we illustrate with a very simplistic example the
advantage of looking at data from a multivariate perspective.
Let us take an hypothetical example of traffic in a single
network link, collected using flow-level statistics. The leftmost
plot in the figure shows a scatter plot of eleven flows in terms
of the number of packets and bytes. These numbers are most
often correlated, so that the number of bytes tend to grow with
the number of packets, while the exact correlation will differ
from link to link and in time. In this hypothetical sample of
flows, most of them follow the same trend, except for the one
highlighted in red color, which clearly includes a lower number
of bytes than the one expected from the number of packets.
Note this specific behavior does not need to be relevant from
a management standpoint, but it showcases a pattern that
can only be observed from a multivariate perspective. To see
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this, we included hypothetical upper and lower bounds on
the numbers of bytes and packets, that can be observed as
dashed horizontal and vertical red lines. For the red flow, both
the number of packets and of bytes are within the normal
range, so looking at each variable separately will not allow to
identify that the red flow is singular. In general, any univariate
time series model or statistical chart does not allow to identify
multivariate patterns.

A multivariate model of the sort we consider in this paper is
represented by the green arrow in the second plot in Figure 1.
The model is automatically trained to approximate the blue
points as much as possible, and so the latent multivariate
structure represented by them. The model of the example is
very simple, but in a real situation very complicated solutions
can be automatically implemented.

From the multivariate model we can compute multivariate
statistics and control charts capable to automatically adapt to
the latent structure in the data, and to find complex anomalies
that do not follow such structure. One simplistic approach to
build a multivariate statistic is to measure the distance of each
point to the model (arrow). In our example, this would give
us the rightmost plot in Figure 1, in which we can add a
control limit to identify anomalous flows. In this plot, the
distance to the model of a flow is represented by the height
of the corresponding bar, and the red flow (bar) can be clearly
identified as anomalous.

This multivariate approach scales very nicely with the
number of original variables, and allow us to automatically
train multivariate models that capture the latent multivariate
trends in the data, and to find objects that do not follow those.
These patterns are abundant in traffic, and generally in network
data, and they cannot be spotted by looking at univariate series
and charts, like traditional boxplots.

B. PCA Matrix Factorization for Interpretation

Let us take a data matrix X with N rows and M columns.
The rows represent the observations (a.k.a individuals, objects
or items). Generally speaking, observations are the elements
one would like to compare, in order to understand their
differences and commonalities. The columns of the data matrix
represent the variables (a.k.a. features) that are measured per
observation.

PCA transforms matrix X into a number A << M
of uncorrelated features: the so-called principal components
(PCs). The PCs are ordered by captured variance. PCA follows
the expression:

X = TA ·Pt
A +EA, (1)

where TA is the N×A scores matrix containing the projection
of the observations in the PCs sub-space, PA is the M ×
A loadings matrix containing the linear combination of the
variables represented in each of the PCs, and EA is the N×M
matrix of residuals.

We call model (1) a matrix factorization, since the infor-
mation in X is factorized into the scores in TA, the loadings
in PA and the residuals EA. While in the Machine Learning
discipline, PCA has been traditionally regarded as a simple

pre-processing mechanism to handle high-dimensional data,
the matrix factorization in Eq. (1) is especially useful for
the visualization of complex data. Thus, we can explore the
distribution of the observations (rows) and of the variables
(columns) of X in separate plots of TA and PA, respectively.
The latter are of much lower dimension than X, and hence
easier to visualize, while they retain most of the information
in the data.

The plots of TA are called score plots, while the plots of
PA are called loading plots. Clusters, trends or outliers can
be identified in the plots. We can also combine scores and
loadings in a single plot, commonly called a biplot [53]. Well-
designed biplots allow us to establish the interaction between
observations and variables. If one observation is located close
to a variable in the biplot, we expect this observation to have
a high value (load) of that variable. This property is useful to
draw connections between the patterns of observations and
variables: e.g., to identify which variables make an outlier
different from the rest of observations. The interested reader
can find an example of exploratory analysis with PCA in the
Supplementary Materials.

The matrix factorization in PCA can be extremely useful
to understand data sets of high dimensionality, with up to
thousands of variables or even more. Data interaction is also
central in matrix factorization, due to its reduced computa-
tional burden: we can create a specific model to study in detail
any pattern we find, or we can discard the data in a pattern in
order to find new and more subtle patterns.

C. MSNM for Interpretable Anomaly Detection

MSNM is an extension of the Multivariate Statistical Pro-
cess Control developed in the past century, and originally
inspired by the pioneering work in industrial quality control
by Walter Andrew Shewhart [41]. MSNM is based on the
PCA analysis of network data (traffic, logs, etc.), previously
codified as interpretable counters. As part of statistical theory,
interpretation has been a major cornerstone of MSNM.

MSNM handles the high-dimensional network data with
PCA. From the scores and residuals in PCA, the data is further
compressed in a pair of statistics, the D-statistic (D-st) and Q-
statistic (Q-st), that represent the normality level of an observa-
tion in the model and residual sub-spaces of PCA, respectively.
Upper control limits (UCLs, thresholds) are defined for each
statistic to facilitate the detection of anomalies [41]. UCLs
leave below-normal observations with a certain confidence
level, e.g., 99%. An anomaly is detected if either its D-statistic
or its Q-statistic exceed the corresponding control limit. An
illustration of a multivariate chart of an statistic like the D-
statistic and the Q-statistic is in the rightmost plot of Figure
1.

The D-statistic and the Q-statistic for observation n are
computed with the following equations:

Dn = tn · (ΣT )
−1 · ttn (2)

Qn = en · etn (3)

where tn is a 1×A vector with the scores for observation n,
en is a 1×M vector with the residuals, and ΣT represents the
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covariance matrix of the scores. In order to detect anomalies,
the number of PCs to use has to be determined. There are
many methods to aid in that decision [49], [54].

Once an anomaly is detected, its interpretation is necessary
for root cause analysis. Interpretation of anomalies in MSNM
can be done following different diagnostic approaches [55],
[56], but all of them amount to identifying a subset of variables
associated with the specific anomaly. Generally speaking,
diagnostic plots are plots where the contribution of the set of
variables to a single statistic (D-st or Q-st) can be inspected.

IV. MULTIVARIATE BIG DATA ANALYSIS

The MBDA approach is depicted in Figure 2. It consists of
three stages: upstream, analysis and downstream:

1) In the upstream stage, we transform the Big Data in-
put stream, coming from structured and/or unstructured
sources, into time-resolved counters. The input stream
is the data collected from the network (e.g., through a
Security Information and Event Management system):
typically a massive amount of logs and messages stored
in a collector, potentially including different sources
like network traffic, routing logs, SNMP, etc. [19]. We
transform this data into a compressed form we refer to as
the feature data. If several sources of data are considered,
the features of the different sources of data are combined
into a single feature data stream [41].

2) In the analysis module, we visualize the feature data
to identify anomalies in time using PCA and MSNM.
For each anomaly, we find the associated features with
a diagnosis plot, which provides a fast first hint to
understand its root causes. The output of this second stage
is a list of anomalies identified in time and the associated
features.

3) De-parsing: Using both detection and diagnosis informa-
tion, we identify the original raw data records out of the
massive input data that are related to the anomalies. This
list of records allows a more detailed diagnosis, providing
information about specific IPs, ports, etc. involved in
the anomaly. The original MBDA paper [12] reports an
accuracy above 0.99 in presenting anomalous records,
drastically reducing the amount of information to inspect
by the human operator.

MBDA makes use of two open software packages avail-
able on Github: the MEDA Toolbox [58], [59] and the FC-
Parser [60]. The FCParser is a Python tool for the parsing
of both structured and unstructured logs. The MEDA Toolbox
is a Matlab/Octave toolset for multivariate analysis and data
visualization. The FCParser is used in the upstream and
downstream modules, potentially on top of a computer cluster
with enough computing power to handle the Big Data stream.
The MEDA Toolbox is used in the analysis module in a regular
computer, simplifying the interactive analysis by the human
operator.

Basically, the upstream module transforms a Big Data
stream into a manageable feature data set, that can be analyzed
interactively in a traditional computer with multivariate analy-
sis tools. Any interesting pattern found during the analysis can

then be contrasted with the raw data thanks to the downstream
module. Following this approach, we retain the interpretability
and interactive nature of multivariate methods for the analysis
of Big Data streams. These characteristics constitute a major
advantage of MBDA over other Big Data methodologies, in
particular black-box models.

A. Feature-as-a-counter parsing

In the upstream stage, network logs are transformed into
feature data. MBDA makes use of the feature-as-a-counter
(FaaC) approach [7], described below.

In FaaC, each feature contains the number of times a given
event takes place during a pre-defined time interval. Examples
of suitable features are the counts of a given word in a log
or the number of traffic flows with given destination port in a
Netflow file. This flexible feature definition makes it possible
to integrate, in a suitable way, most sources of information, and
it is similar to state-of-the-art approaches in Natural Language
Processing, where n-grams and words are regularly used.

To implement the FaaC, the FCParser defines variables
and features. Variables represent general entities in the raw
data. In the previous two examples, the variables would be
word and destination port. The features are defined for a
specific value or regular expression of a variable. Examples
of features would be word=‘food’ and destination port=‘80’.
This representation in variables and features has the relevant
advantage that allows for the definition of default features,
e.g., word=<ANY OTHER>, useful to count the instances of
a variable that have not been considered in another feature.

Variables and features are defined using regular expressions
in configuration files, where we also set the time resolution of
the parsing. Each configuration file typically contains several
variables and several features per variable. The FCParser
applies this configuration to the data to compute a feature
vector for each interval of time present in the original data.
This operation is done using a multi-threading configuration
to speed-up computation. By selecting the time resolution and
the features, we define the trade-off between level of detail
and compression. Defining more features and/or using a lower
time resolution result in more detail, while defining fewer
features and/or using a higher time resolution lead to more
compression.

A couple of examples of the FaaC approach can be found
in Supplementary Materials. A more detailed example can be
found in the FCParser manual [60].

V. FEATURE LEARNING IN THE UPSTREAM STAGE

MBDA relies on the definition of the features in the config-
uration files of the FCParser. To write such configuration files,
the analyst needs to get familiarized with the data. Unfortu-
nately, in a practical Big Data problem like the ones under
analysis, the data capture is simply too massive and complex,
with varying information along time, for direct inspection. If
we want to obtain a good description of the content, we may
apply an automatic feature-derivation technique. The definition
of this technique is not straightforward, since it needs to be
consistent with the subsequent multivariate analysis, so that
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Fig. 2: Multivariate Big Data Analysis diagram: upstream phase, analysis phase and downstream phase. The first and last
phases are performed in a cluster of computers or powerful server. The analysis can be performed on a regular computer.
Comic image from www.slon.pics [57] in Freepik.

we maximize compression while retaining the interpretability
required for anomaly detection and root cause analysis. There
are two basic properties we would like to have in the learning
procedure in consistency with PCA and MSNM: i) the main
sources of variance (patterns of change within the data) need
to be captured, and ii) uncommon characteristics with low
variance should also be modeled somehow, in a summary
of residual information. Furthermore, since we are using
multivariate analysis, we can define relatively large numbers
of features. Actually, the more features we define, the more
descriptive the root cause analysis.

The main contribution of this paper is a learning algorithm
to automatically identify a list of common FaaC features in a
Big Data set. We also included that algorithm in the FCParser
repository at Github with the name fclearner.py. The
learning algorithm is depicted in Algorithm 1. It takes as
input a data set and a configuration file with the regular
expressions of the variables. The learning algorithm starts
from this definition of the variables, learns features that show a
minimum prevalence in the data, and automatically adds them
to the configuration file. This configuration file is then used
in the upstream phase to transform the raw data into counters
using the FaaC approach. The prevalence of a feature is defined
as the portion of log entries where the feature appears in the
raw data. Thus, if for instance the input configuration file
includes the variable destination port, the algorithm will make
a list of all possible destination ports in the data, and retain
(learn) only those that are present in more than a predefined
percentage of log entries.

In our algorithm, we define two prevalence user-defined
thresholds. A feature needs to satisfy both thresholds to
be included in the configuration file. The thresholds assess
the local and global prevalence, Tl and Tg , respectively. Tl

controls the minimum prevalence in a single time interval,
hence the name local. Any feature that shows a prevalence
of at least Tl in a single time interval satisfies this threshold,
regardless this feature is not found in any other interval. Tg

controls the minimum prevalence in the whole data capture.

Take the hypothetical example in Table I, where the flow-
level traffic of a link is broken down in some specific destina-
tion ports. Let us assume we would like to automatically learn
features in this data for the input variable “destination port”,
that we define Tg = 0.05 and Tl = 0.2, and that no other
destination port that is not listed in the table is relevant. The
most prevalent port is clearly HTTP. Its global prevalence
is 408/976 = 0.418, and its maximum local prevalence is
44/82 = 0.5366, yielded in the last interval. Since those two
values are above the corresponding thresholds, HTTP (destina-
tion port 80) is included as a feature in the output configuration
file. SMTP attains a global prevalence of 99/976 = 0.1014
and a maximum local prevalence of 11/82 = 0.1341, also
for the last time interval. In this case, the global prevalence
satisfies Tg , but the maximum local prevalence is below Tl,
reason why SMTP (destination port 53) is discarded and not
included into the set of learned features. Finally, SSH attains
a global prevalence of 66/976 = 0.0676 (above Tg) and a
maximum local prevalence of 20/81 = 0.2469 (above Tl)
found in time interval 8. Even if this feature has less global
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TABLE I: Hypothetical example of the learning algorithm.

Time interval Total Flows HTTP (80) SMTP (53) SSH (22)

1 89 40 9 6
2 101 39 10 5
3 107 41 9 5
4 126 41 9 6
5 93 37 10 5
6 102 40 12 5
7 99 39 9 5
8 81 43 10 20
9 96 44 10 5
10 82 44 11 4

Total 976 408 99 66

prevalence than SMTP, it is indeed more interesting given
the abnormally high value in a single interval. Since SSH
(destination port 22) satisfies both thresholds, the learning
algorithm includes it in the final set of features. Note that
an interesting property of this learning algorithm, unlike
alternative feature engineering approaches like Word2Vec [26],
[61], is that all learned features can be easily interpreted as a
single realization of a variable of the list we provide as input,
e.g. for variable “destination port”, a potential feature would
be “destination port 80”. This interpretability is a cornerstone
for the combination of the proposal with MBDA.

Both local and global thresholds are complementary. The
local threshold Tl needs to be satisfied at least in one time
interval. The global Tg needs to be satisfied in the complete
data set. Satisfying both thresholds implies that any feature
learned has to show a prevalence above Tl in at least one
interval and a global prevalence above Tg . That way, we
learn those features that may be related to anomalous patterns
in a handful of intervals, but with enough relevance to be
considered a main source of change, meeting our first afore-
mentioned requirement (i)). Those non-learned counters will
still be integrated into the default features, so that we still
have (arguably limited) observability of low variance patterns,
meeting our second requirement (ii).

The learning algorithm works as follows. For each variable
in the configuration file, the algorithm extracts its different
features (F 1

j to F f
j ) and the number of records in which

they are found (counts #F 1
j to #F f

j ) and store them in
Pj . The features which prevalence is above Tl in at least
one interval are included in list Fj . At the last part, features
with a global prevalence below Tg or that are not in the
list are discarded and their prevalence accumulated in the
corresponding default feature (F def

j ) of the variable. Finally,
the learning algorithm outputs all the features that satisfy both
thresholds and the default features. The fclearner.py tool
that implements this algorithm automatically transforms this
output in a FCParser configuration file. In turn, this file can
be used in the upstream stage of MBDA.

VI. MATERIALS & METHODS

Below we describe the experimental case studies and the
computational architecture used.

Algorithm 1: Pseudocode for the learning algorithm.

INPUT:
V← {V1, ..., Vv}: Regular expressions of variables
D← {D1, ..., Dd}: Data files of disjoint time intervals
Tl: Local threshold
Tg: Global threshold

Initialization:
Set C = 0: global counter of entries
For each variable j

Set Pj = ∅ : pairs of features and counts
Set Fj = ∅ : list of features above threshold
Set #F def

j = 0: count for default feature

Algorithm:

For each data file Di : parallelize at this point
For each time interval Di(t) in Di

Ci(t)← count entries(Di(t))
C ← C + Ci(t)
For each variable j
{(F 1

j ,#F 1
j )..., (F

F
j ,#FF

j )} ←Match(Vj , Di(t))

Pj ← combine(Pj , {(F 1
j ,#F 1

j )..., (F
f
j ,#FF

j )} )
For F f

j in {F 1
j ..., F

F
j }

If (#F f
j /Ci(t)) > Tl

Fj ← Fj ∪ F f
j

For each variable j

For F f
j in Pj

If (#F f
j /C) < Tg OR F f

j ̸∈ Fj

#F def
j ← #F def

j +#F i
j

Pj ← discard(Pj , (F
i
j ,#F i

j ))

OUTPUT: Pj for all variables

A. The UGR’16 Case Study

The UGR’16 dataset [13]1 was captured from a real network
of a tier 3 Internet Server Provider (ISP). The data collection
was carried out with Netflow between March and June of
2016 under Normal Operation Conditions (NOCs), meaning
that the network was used normally by the ISP clients.
This allowed to model and study the normal behavior of
the network, and to unveil certain anomalies such as SPAM
campaigns. The flows of the dataset were labelled indicating
if they were “background” (regarded as legitimate flows), or
“anomalies” (identified as non-legitimate flows). In addition,
another capture was made between July and August of 2016,
including some controlled attacks that were launched to obtain
a test dataset for validation of anomaly detection algorithms.
To do this, twenty five virtual machines were deployed within
one of the ISP sub-networks. Five of these machines attacked
the other twenty. The type of attacks were Denial of Service

1Dataset available online at https://nesg.ugr.es/nesg-UGR’16/
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TABLE II: Characteristics of the calibration and the test sets
in UGR’16.

Feature Training Test

Capture start 10:47h 03/18/2016 13:38h 07/27/2016
Capture end 18:27h 06/26/2016 09:27h 08/29/2016
Attacks start N/A 00:00h 07/28/2016
Attacks end N/A 12:00h 08/09/2016
Number of files 17 6
Size (compressed) 181GB 55GB
# Connections ≈ 13,000M ≈ 3,900M

(DOS), port scanning in two modalities: either from one
attacking machine to one victim machine (SCAN11) or from
four attacking machines to four victim machines (SCAN12),
and botnet traffic (NERISBOTNET). In this second capture,
the “anomalies” correspond to the synthetic attacks, and the
rest of flows are categorized as “background”.

As of today, the UGR’16 has been referenced in more than
180 research papers (according to Google Scholar) and it
can be considered a benchmark in the research of anomaly
detection in real traffic data for cybersecurity. The general
characteristics of the dataset are provided in Table II. To obtain
more details on the data, the reader is referred to the original
paper [13].

Using the FaaC approach, we performed anomaly detection
at 1 minute intervals rather than at flow level. A total of
134 features were extracted per interval. The process of
feature extraction was based on two steps: i) binary files were
transformed to flow-level csv files with the nfdump tool, and ii)
csv files were transformed to feature vectors with the FCParser.

The UGR’16 data set was used to evaluate MBDA in
its original work [12]. This application of MBDA, follow-
ing a completely unsupervised anomaly detection approach,
showed high performance in the detection of attacks with
exception to the NERISBOTNET. Later, the detection perfor-
mance was improved by using a semi-supervised extension of
MBDA [62] based on Partial Least Squares (PLS) [63][64].
More recently, we showed that better performance than using
semi-supervised methods can yet be achieved by properly
performing outlier isolation in the background traffic [65].
Importantly, comparing MBDA to the One-Class Support
Vector Machine (OCSVM), a widely used black-box anomaly
detection approach, we found that outlier isolation impacts by
far more than the specific anomaly detection method. We will
benchmark the performance of the feature learning approach
proposed in this paper against all these previous results.

Intensive Big Data analysis requires a parallel computer. We
used a multi-GPU DGX-1 server with dual 20-core processors
(80 threads) and 512GB RAM. Python scripts using the
FCParser run on top of the parallel hardware as grid jobs.
The paralellization of the upstream phase, from learning to
parsing, is straightforward. We can split data in parallel jobs
in agreement with the data file partition (see Algorithm 1),
and the result is simply appended. This approach can also
be applied in the downstream phase. The analysis stage was
performed with the MEDA Toolbox in a regular laptop.

Both the anonymized raw data and the corresponding fea-

ture data of UGR’16 can be found at https://codas.ugr.es/
animalicos/en/downloads.php.

B. The Dartmouth Wi-Fi network Case Study

Dartmouth College has a compact campus with over 200
buildings on 200 acres. The original evolution of the network
is documented in the series of early papers [66], [67], [14].
The number of students, staff, and academic faculty reached
near 6,500, 3,300 and 1,000, respectively, at the end of 2018,
and the number of Access Points (APs) was above 3,000.
Researchers at Dartmouth have been capturing data about the
usage of the network for many years, providing a perfect case
study for tools like MBDA.

In this paper we analyze a data capture containing the
connections of users to the network in the seven years: from
2012 to 2018 [14]. To collect the trace, the Dartmouth network
operators configured the Cisco network controllers to forward
a record of network activity to the research team’s servers in
the form of Simple Network Management Protocol (SNMP)
traps [68] (see an example of trap in the Supplementary Mate-
rials). During the seven-year period, the network infrastructure
(comprising Cisco network controllers and access points) was
reasonably consistent. The capture is thus a trace comprising a
sequence of records (“traps”); each record includes a trap type
(TT) and a set of fields labeled with object identifiers (OIDs).
Anonymized data identifies who associated to the network
with an anonymous tag, when the association took place, the
(anonymized) device and APs involved in the connection and,
thus, the approximate location and movement of each device
and user throughout the capture. No traffic content is provided
in the data.

The capture reveals the statistics in Table III. The data set
contains a total of 5 Billion traps and 7 TB of data. A total
of 38K authenticated users and an undetermined number of
non-authenticated users have been connected to the network
in the last seven years, using 600K devices. The network
infrastructure supports several SSIDs, primarily Dartmouth
Secure, the WPA2-Enterprise authenticated college network,
Dartmouth Public, a public-access network, and eduroam, the
world-wide roaming network for educational institutions [69].
Dartmouth Secure was entirely replaced by eduroam in the
final months of the capture.

TABLE III: Details of the SNMP trap capture at Dartmouth
College.

Statistic Number
Capture period Jan 1st 2012 - Dec 31st 2018

(2556 days)
log entries (SNMP traps) 5 Billion
Data Size (raw) 7 TB
Access points 3,330
Authenticated Users 38,096
Stations 624,903
SSIDs 20

We used the Anthill Compute Cluster hosted by the Com-
puter Science Department at Dartmouth for both the upstream
and the downstream phase. Again, the analysis stage was
performed with the MEDA Toolbox in a regular laptop.
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The anonymized raw data in JSON format can be provided
by request to Prof. Kotz. The corresponding feature data can
be found at https://codas.ugr.es/animalicos/en/downloads.php.

C. Ethical statement

Raw data were anonymized following state-of-the-art prac-
tices, as explained in the original papers [13], [14]. FAAC
feature data, due to its nature, do not contain any personal
information.

VII. UGR’16

Let us start with the application of the MBDA pipeline in
the first case study. Our goal in this case is to automatically
identify the attacks in the capture.

A. Upstream

1) Feature learning: We can think of at least two alternative
ways to assess our approach for feature learning with the
UGR’16 data set. One intuitive approach would be to learn the
most prevalent features of background traffic in the training
dataset, and then apply them for the detection of the attacks in
the test set. This approach would render a purely unsupervised
MBDA, equivalent to the work in [12]. Unfortunately, the
background traffic also contains unlabeled anomalies and real
attacks, and the evaluation based only in the artificial attacks
may not be conclusive [65]. An alternative and arguably more
objective option is to learn the features from part of the flows
corresponding to the artificial attacks themselves, and assess if
they provide an improved performance in the detection of the
remaining flows of those attacks. This is the choice we take
in the paper, which corresponds to a semi-supervised MBDA
approach similar to the one in [62]. In a practical situation,
the analyst would apply this approach when she wants to
optimize the anomaly detector for specific (common) attacks.
Still, given the unsupervised nature of the core of MBDA,
MSNM, we retain the ability to detect unknown attacks.

In agreement with the semi-supervised version of MBDA
in [62], we performed the feature learning on the raw files
of the attacks corresponding to the first third of the test
dataset, i.e., the first 4 days of attacks. The learning algorithm
fclearner.py was launched in parallel in 24 processing
jobs, one per hour in the day. The sampling interval, consis-
tently with previous work, is set to 1 minute, and we set Tl =
0.01 and Tg = 0.001. Input variables were the source and des-
tination port, the protocol and the tcp flags. Given the Netflow
data is structured, the regular expressions of the variables are
simply the location of the variable in the entries of the csv
file with the raw dataset. The learning process resulted in a
total of 396 features, most of them related to individual ports,
and approximately 3 times the number of features in previous
papers (134 manually selected features) [12], [62], [65]. We
also considered a second set of learned features obtained for
Tl = Tg = 0.01, which resulted in a subset of the first set
with a total of only 17 features. The whole learning process
using the parallel hardware took 33 hours. In the training
dataset we have a total of 4.8B of words. This represents a

learning speed of 6.1·106 words/CPUhour in parallel mode. As
a reference, word2vec [26] initial computations reflect a best
case in parallelization of 6B words processed in 140 CPUs and
2 day time, that is, 8.9·105 words/CPUhour. In the conclusions,
authors report an optimized C++ multi-thread, single CPU,
implementation that can provide speed in the order of 109

words/CPUhour. Taking into account that C++ is between 1
and 2 orders of magnitude faster than Python [70], [71], and
that fclearner.py was not optimized for performance, it
follows that a new package programmed on a faster language
would be an interesting future contribution.

2) Parsing: We use FCParser to generate feature vectors
with two variants of configuration files learned from the data:
with 396 and 17 features, respectively. In agreement with the
learning phase, we consider feature vectors for intervals of one
minute. This generates a total of approx. 160K observations
of 396/17 features, which can be handled with the Big Data
version of the MEDA Toolbox in a regular computer [12].
Recall that we can vary the level of detail by using different
time resolutions: if we use 1 hour intervals rather than 1 minute
intervals, the number of observations would be reduced 60-fold
to approx. 2,7K, but the resolution of detection would also be
reduced.

The parsing was parallelized again in 24 processing jobs,
one per hour in the day, and the whole process took 20 days.
While this is a lengthy process, considering that the trace
corresponds to 4 months of data, we can conclude that the
parsing approach can be implemented in real time. In any case,
this time can be reduced using a larger computer and properly
arranging the input data for parallelization (see Algorithm 1).

B. Analysis
We focus on the ability of MBDA to identify the attacks in

the part of the test set not used for the feature learning, that is,
the last 8 days. To benchmark the anomaly detection perfor-
mance with previous results, we compute the false positive rate
(FPR) and true positive rate (TPR) of detection, and in turn the
Receiver Operating Characteristic (ROC) curves, that shows
the evolution of the TPR versus the FPR for different values of
the anomaly detection threshold. A practical way to compare
several ROC curves is with the Area Under the Curve (AUC),
a scalar that quantifies the quality of the anomaly detector.
The anomaly detector should present an AUC as close to 1 as
possible, while an AUC around 0.5 corresponds to a random
classifier.

Figure 3 shows the comparison of a number of different
MBDA variants (see also Table IV), including:

• MBDA: The original, unsupervised approach [12] trained
with the complete training dataset using manually se-
lected features.

• MBDA Opt: The semi-supervised extension of
MBDA [62] trained with the complete training dataset
using manually selected features and optimized with
Partial Least Squares (PLS) using the attacks of the first
four days of the testset.

• MBDA WoJ: The unsupervised MBDA with manually
selected features trained without June, where an anomaly
with a similar pattern as a botnet was found [65].
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• MBDA FL0.001: The semi-supervised MBDA trained
with the complete training dataset and with the 396
features learned for Tg = 0.001 using the attacks of the
first four days of the testset.

• MBDA FL0.01: The semi-supervised MBDA trained with
the complete training dataset and with the 17 features
learned for Tg = 0.01 using the attacks of the first four
days of the testset.

• MBDA WoJ FL0.01: The semi-supervised MBDA trained
without June and with the 17 features learned for Tg =
0.01 using the attacks of the first four days of the testset.

Figure 3(a) presents the general ROC curves, obtained for
the four types of attacks, and Figure 3(b) represents the AUCs
per attack type, where each AUC is computed comparing
normal data with the specific type of attack, leaving out the
observations corresponding to the other attack patterns.

Our proposal for feature learning generally outperforms
other methods based on manually selected features. We can see
that the improvements are mainly on NERISBOTNET attacks,
while the performance for SCAN attacks is generally better for
versions of MBDA with manually selected features.

We can obtain more information about the root causes for
aforementioned performance differences among the models
when detecting specific attacks. For that purpose, we use the
approach presented in [65] that combines diagnosis plots [56]),
univariate box plots and t-tests for statistical inference. We
compare MBDA Opt and MBDA FL0.01 as representatives of
models with manual features and learned features, respectively,
since both are semi-supervised and trained with the complete
training dataset.

The diagnosis plots for NERISBOTNET attacks are shown
in Figure 4. Diagnosis plots are obtained by comparison
of the anomaly with the normal data using a specific model
(MBDA Opt and MBDA FL0.01). It is represented as a bar
diagram of the features. Positive bars identify features in
which the anomaly has higher value than normal data, and
negative bars represent the opposite (only positive bars are
found in the figure). MBDA Opt emphasizes irc and telnet
ports, while MBDA FL0.01 focuses on ports 2077 and 45062.
All selected features yield statistically significant differences
between background traffic and NERISBOTNET attacks, as
illustrated in Figure 5, which shows boxplots and t-tests
significance results between normal data (Neg) and the attacks
(Pos). However, according to AUC results, learned features
provide a more powerful detection.

We repeat the same procedure for SCAN11 attacks, shown
in Figures 6 and 7. MBDA Opt emphasizes kpasswd and
telnet ports, while MBDA FL0.01 focuses on the TCP flags,
in particular Sync and the combination of Reset and Sync. In
this case, the manual selection of features provides a more
powerful detection in terms of AUC. However, neither pattern
of detection is perfect: in SCAN attacks, the attacker sends
probing messages to find open ports, and does that for a large
number of different ports. MBDA Opt only detects the attack

2The fclearner.py tool combines the label of the variable with the
regular expression learned to create the label of a feature. This is why we
only see numbers in the labels, unlike in manual features.

because there is one single port of those tested, kpasswd,
with negligible background traffic, but the diagnosis does
not reflect the true pattern of attack. MBDA FL0.01 provides
limited performance because the learning approach based on
prevalence and counting features cannot capture the pattern
of the attack. Future work may look at different learning loss
functions other than prevalence and/or alternative definitions
of features that capture distributional information of a variable,
like the number of different ports in a time interval.

A reasonable question would be if the learned features
with our proposal are only useful for MBDA or they can be
used in combination with other Machine Learning approaches.
Following previous work [65], we assess the performance of
the one-class support vector machine (OCSVM) [72], [73]
based on radial basis functions (RBF), the most extended
kernel choice, with manual and automatically learned features.
OCSVM is a non-linear tool, and therefore has the advantage
over MBDA to model non-linear behavior in the model of
normal traffic, but it does not (in principle) have the same
capability to handle highly multivariate feature data as MBDA.
Thus, both methods have very different nature. The results are
presented in Figure 8. We can see that the performance of
OCSVM is very similar to that of MBDA, and it significantly
improves with the automatically learned features. This is an
interesting result, since even a blackbox model like OCSVM
with RBF can get useful explanations with new interpretation
tools like SHAP [74].

C. Downstream

The previous analysis compared the accuracy of detection at
time interval (1 minute) level. As an illustrative example of the
downstream step, we compare here the accuracy of detection
of the NERISBOTNET attack at flow-level by MBDA Opt
and MBDA FL0.01. Results are presented in Table V in terms
of the number of true positives (TP) and negatives (TN),
the number of false positives (FP) and negatives (FN), the
accuracy ((TP+TN)/Total) and the False Discovery Rate (FDR
= FP /(TP+FP)). While accuracy levels are close to 1.00, like
those reported earlier [12], the FDR is a more relevant statistic
to assess the difficulty in the process of root cause analysis.
The FDR gives us an estimate of the relative number of false
alarms an analyst will have to face in the process of alarm
validation. In the example, we can see that the MBDA based
on feature learning reduces the relative number of false alarms
to only 1.8%, which is a competitive statistic and much lower
that the one using manual features.

It should be noted that while the FDR is adequately low for
MBDA FL0.01, the number of FN is still very high (yet lower
than in the case of the manually based MBDA), which renders
the flow-level sensitivity of the method undesirably low. A low
FDR with a low sensitivity means that the system will provide
the security analyst with a list of alarms that only contains a
subset of security-relevant flows, but that most flows in the
list are going to be truly relevant in terms of security. While
this means that there is still margin for improvement, this
is indeed a promising result considering that most industrial
security appliances (e.g., SIEMs or IDSs) are severely affected
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TABLE IV: MBDA variants under study.

Name Type Features June in training data

MBDA unsupervised manual Yes
MBDA Opt semi-supervised manual Yes
MBDA WoJ unsupervised manual No
MBDA FL0.001 semi-supervised learned (Tg = 0.001) Yes
MBDA FL0.01 semi-supervised learned (Tg = 0.01) Yes
MBDA WoJ FL0.01 semi-supervised learned (Tg = 0.01) No
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Fig. 3: ROC curves (a) and attack-type based AUC results (b) for a set of different solutions based on MBDA.

TABLE V: Comparison of MBDA Opt and MBDA FL0.01 in the downstream step in the detection of the NERISBOTNET
attack. We present the number of true positives (TP) and negatives (TN), the number of false positives (FP) and negatives
(FN), the accuracy ((TP+TN)/Total) and the False Discovery Rate (FDR = FP /(TP+FP)). The total number of flows in the
test data (the part used for performance evaluation, that is, the last 8 days) is 1,074,221,524, and the number of attack flows
in the same data is 1,074,493 (0.1% of the total).

Method TP TN FP FN Accuracy FDR
MBDA Opt 33,613 1,073,101,984 45,047 1,040,880 ≈ 1.00 0.570
MBDA FL0.01 61,261 1,073,145,928 1,103 1,013,232 ≈ 1.00 0.018

by false alarms, which reduce their practical usefulness. On the
other hand, we previously found in Figure 3 that the MBDA
approach based on feature learning is very accurate at time
interval-level (both in terms of sensitivity and specificity),
which leads to conclude that most real threats are detected
by the system, but only a small subset of related flows are
recovered in the Downstream.

VIII. DARTMOUTH WI-FI

Let us move on to the analysis of the Dartmouth Wi-Fi
capture. Our goal here is to visualize and understand the main
factors of variance in the connection data.

A. Upstream

1) Feature learning: We performed the learning strategy in
two steps to identify high variance features in the Wi-Fi data.
First, the learning algorithm fclearning.py was launched
in parallel in 2556 processing jobs, each one for a different
day in the capture, using a sampling interval of 1 day and a
threshold values Tl = 0.05 and Tg = 0.01. Input variables

TABLE VI: First 10 SNMP OIDs with more prevalence in
the data. CLAM refers to CISCO-LWAPP-AP-MIB, AWM
to AIRESPACE-WIRELESS-MIB and CLDCM to CISCO-
LWAPP-DOT11-CLIENT-MIB.

Label Type Presence
CLAM::cLApDot11IfSlotId OID 0.45
AWM::bsnAPName OID 0.41
AWM::bsnStationMacAddress OID 0.39
AWM::bsnStationAPIfSlotId OID 0.39
AWM::bsnStationAPMacAddr OID 0.39
AWM::bsnStationUserName OID 0.39
CLAM::cLApName OID 0.36
CLDCM::cldcClientMacAddress OID 0.22
CLDCM::cldcApMacAddress OID 0.22
AWM::bsnDot11StationAssociate TT 0.20

were the regular expressions for a SNMP object identifier
(OID) and for the trap type (TT) (see Supplementary Materials
for more detail). The output is 2556 configuration files, one
per day, with the set of most prevalent OIDs and TTs in each
day. That way, we learn as features all those OIDs or TTs
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Fig. 4: Profile of detection of NERISBOTNET attacks with
MBDA Opt (a) and MBDA FL0.01 (b) using oMEDA.
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Fig. 5: Boxplots and ttests of selected features in background
traffic (Negative) versus NERISBOTNET traffic (Positive).

with a daily prevalence above the 5% in at least one day and
a total prevalence above 1%. This resulted in a total of 90
features, including prevalent OIDs, TTs and default features.
The ten most prevalent features are shown in Table VI, where
we make the distinction between OIDs representing trap types
(TTs) and the rest.

The whole learning process using the parallel hardware and
multi-threading (4 threads per processor) took 12 hours, during
which a maximum of 150 jobs were processed in parallel. This
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Fig. 6: Profile of detection of SCAN11 attacks with MBDA
Opt (a) and MBDA FL0.01 (b) using oMEDA.
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Fig. 7: Boxplots and t-tests of selected features in background
traffic (Negative) versus SCAN11 traffic (Positive).

means that the processing time could be further reduced 17-
fold using a larger computer cluster, where as many as 2556
jobs could be run in parallel. Computing the number of words
is more tricky in this case. Considering that each field in a
trap has an average of 50 characters, we can estimate a total
of 140B words. Considering that each trap has an average
of 20 fields, we obtain an estimate of 100B words, which
is reasonably close. Using the lowest estimate, the learning
speed is of 5.6 · 107 words/CPUhour, again competitive in
computational time for a non-optimized Python tool.
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2) Parsing: We use the FCParser to generate the feature
vectors with the aforementioned configuration file learned
from the data. In agreement with the learning phase, we
consider feature vectors for intervals of one day. To the set of
90 learning features, we added the total number of traps and
OIDs per day. This results in a compression of the data from
7TB to less than 1MB, yielding 2556 observations (days) of
92 features each in matrix X. The compression conveniently
transforms a Big Data set into a handleable data set in a
common computer. Again, we can vary the level of detail by
using different time resolutions or number of features.

The parsing was parallelized in 2556 processing jobs, one
per day, and the whole process using the Anthill Computer
Cluster and multi-threading (with a maximum of 150 jobs)
took 15 hours. The resulting feature data is available on request
from the authors.

B. Analysis
1) Analysis with PCA: Figure 9 depicts the plots corre-

sponding to the first two PCs in matrix X (refer to Supple-
mentary Materials for other patterns found in subsequent PCs).
Recall that matrix X contains 2556 rows, representing days
of the capture, and 92 features. We present the score plot at
the left of the figure and a bi-plot at the right. In the score
plot, points represent the 2556 days of the data capture and
are colored according to the year. In the bi-plot, (red) points
represent the 92 features and the (gray) shadow represent the
scores.

The first two PCs represent 68% (45% + 23%) of the
variance in the data. Because variance is a measure of the
degree of change within the data set, these two PCs show
the main patterns of change in X. As a matter of fact, a
variance of 68% roughly indicates that only 1/3 of the patterns
of change in the data is missing in this plot, giving an idea of
how powerful PCA is for visualization.

The score plot at Figure 9(a) shows that the dots (days) with
different colors are in different locations. This means that they
are different in content, from which follows that there are large
differences in prevalence of OIDs in different years.

To interpret the bi-plot at Figure 9(b), recall that the location
of an observation (a day) will approach more the location of a

feature (which represents counts of a specific OID) as the value
of that feature increases in the observation. Thus, days with a
large content on specific OIDs will be located closer in the plot
to the loading representing that OID. The bi-plot shows that a
large majority of the features are located far from the center of
coordinates towards the right side. Therefore, any day toward
the right in the score plot will have a generally higher content
of OIDs. Thus, as we traverse from left to right in the score
plot, the days will have more connection activity. Busy periods
are represented towards the far right of the plot, and vacations
are clustered to the left, and we could say that the first PC (the
horizontal direction in the score and loading plots) represents
the general activity in the network. We annotated this in both
plots using a horizontal arrow.

The bi-plot in Figure 9(b) also shows that the variables
are distributed from the bottom to top, and we see a similar
distribution for the different years in the score plot: the first
two years are in the bottom and the last two in the top, with
middle years in between. We also see a separated cluster of
days in 2018, highlighted with a circle. A closer look reveals
that all the days in the cluster belong to the period from
September to November, when eduroam replaced Dartmouth
Secure. The vertical pattern in the loading and score plots
shows that the distribution of traps has changed across the
years: days towards the top have a higher content of traps and
OIDs represented by the features in the top and less of those
in the bottom, and vice-versa. Again, we annotated this in the
score plot and the bi-plot using a vertical arrow. Questioned
about this difference, the network operators replied that there
was an update in the controllers’ software, which changed
the types of SNMP traps that were collected. This variability
in traps for different temporal periods makes the analysis of
the data a real challenge. If OIDs prevalence changes over
time and we manually select a subset of OIDs as features by
screening limited portions of the massive data, we may arrive
at a different selection of features depending on which period
of the data we visualize. Furthermore, the traps variability
may go unnoticed if we manually select features that are
only prevalent in one specific period. Our automatic learning
approach solves this issue.

Regarding processing burden, the analysis performed in
this section is completely interactive in a regular computer,
meaning that the time to obtain each of the plots is on the
order of seconds.

2) Analysis with MSNM: After the inspection of score and
loading plots, one can visualize a summary of the whole
data distribution in one single plot using MSNM: a scatter
plot of the observations in terms of the D-statistic and the
Q-statistic. The MSNM plot for the Wi-Fi data is shown
in Figure 10. Anomalies are expected to surpass any of the
two control limits: the vertical one for the D-statistic or the
horizontal one for the Q-statistic. This plot is optimized for
anomaly detection. Note that with only one visualization, the
operator can identify the main patterns of change in 7TB of
data. Clearly, in the plot we miss other details, like yearly
and seasonal patterns and the difference in trap contents. A
main advantage of this plot is that it also includes residuals,
containing the remaining 6% of the variance that is not
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Fig. 9: PCA scores and loadings for PC1 vs PC2.

TABLE VII: Pre-diagnosis of the excursions of 2013 and 2017 with oMEDA.

Timestamps Features selected
2013-12-14 – 2013-12-16 bsnDot11StationAuthenticateFail, bsnAuthenticationFailure, bsnDot11StationAssociateFail,

bsnStationReasonCode, bsnAuthFailureUserType, bsnAuthFailureUserName
2017-10-16 – 2017-10-30 ciscoLwappApIfUpNotify, ciscoLwappApIfDownNotify

cLApAdminStatus, cLApSysMacAddress, cLApPortNumber
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Fig. 10: Multivariate Statistical Network Monitoring (MSNM)
plot: D-statistic vs Q-statistic. At the top, zoomed image of
the bottom left corner.

accounted for in the six PCs (including those shown in the
Supplementary Materials). The Q-statistic, which comprises
a summary of the residuals, clearly identifies anomalies in
2012 and 2013, while the D-statistic finds several anomalous
intervals in 2012 and 2017.

Note that the parsing (and thus of the learning process)
has a principal impact in the visualization and anomaly
detection of MBDA. For instance, we can detect anomalies
(e.g., excursions) only at the day level when using one-day
resolution. If we want to detect anomalies in other time
resolutions, we can modify the parsing configuration and

re-run the upstream stage. Furthermore, differences in OID
content can only be directly visualized if we include features
for those OIDs (recall default features will still represent such
differences to a certain level). Therefore, learning features of
high variance is paramount to obtaining accurate insights of
the data distribution.

To illustrate the use of oMEDA in the diagnosis, we selected
the anomalies in 2013 and 2017, which we found to be the
main outliers in the Q-statistic and in the D-statistic, respec-
tively. The plots are shown in Figure 11. The high bars identify
the features that make the anomalous intervals different to the
normal days. Each of the intervals are related to a different set
of features. Table VII lists the specific features. We can see that
the anomalies found are multivariate, since they are connected
to multiple features, and it is this multivariate pattern that
allows a better diagnosis of the anomaly. We determined
that the first anomaly (2013) is related to a large number
of Authentication Fails, which in a subsequent analysis (not
shown) we determined these fails were one order of magnitude
higher than usual during the detected anomalous interval. The
second anomaly (2017) is related to an unprecedentedly high
number of re-starts of APs, two orders of magnitude higher
than usual.

As for 2018, the network operators did not have any records
of these old anomalies, but they suggested that the second one
could be related to the installation of a security patch after
the publication of a vulnerability. Effectively, October 16th
of 2017, the famous KRACK attack against WPA2 [75] and
the corresponding patch was released to the public. Even if a
restart is necessary after a patch installation, the number and
duration (15 days) of the event is remarkable, evidencing that
a major management problem took place that went unnoticed
into the massive stream of SNMP traps.
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Fig. 11: Pre-diagnosis of the anomalies in 2013 and 2017 with
oMEDA.

Like the PCA analysis, the MSNM analysis is fully inter-
active and easily done in a regular computer.

C. downstream

We applied the downstream stage with the FCParser to
the anomalies in 2013 and 2017 in the Wi-Fi data set. We
parallelized the processing using the Anthill Computer Cluster
and multi-threading (4 threads per processor), with as many
parallel jobs as days in the excursions. The first anomaly
took 30 minutes to be processed, and the second one 135
minutes. The output is a file per anomaly, containing the traps
involved, which represent a subset of total set of traps in
the corresponding periods of time. Table VIII provides some
statistics of the deparsing. The human operator can use the
output files to retrieve more information about the anomalies,
like the main actors (APs, users, devices) involved.

IX. CONCLUSION

In this paper, we introduce a new feature learning ap-
proach especially suited for the Multivariate Big Data Analysis
(MBDA), an interpretable data analysis tool optimized to ana-
lyze Big Data streams. MBDA has shown high capability for
anomaly detection, diagnosis and network data understanding,
but its application to Big Data problems is limited by the fact

that it requires a manual definition of the data features. In this
work, we overcome this limitation by proposing an approach
for automatic learning of interpretable features that is shown
to improve the performance of MBDA while maintaining
its interpretability. Our learning approach is demonstrated in
two real case studies: a Netflow trace from a TIER-3 ISP
and a connection trace from a campus Wi-Fi network. The
results illustrate that the tandem of feature learning and MBDA
can bring light into massive data sets for network-monitoring
purposes.

Unlike alternative feature learning approaches, like
Word2Vec, our method is centered on interpretability.
Furthermore, we learn features using prevalence as our
main optimization criteria. As a result, our approach is
not particularly optimized for regression, classification or
anomaly detection tasks. However, we show in the ISP case
study that the method can be leveraged for such a purpose
(in our case anomaly detection, but extensions to regression
or classification are straightforward) by properly choosing
the training data from which we obtain the features, and
that performance improvements can be extended to Machine
Learning methods other than MBDA. However, a major
contribution of the combination of our proposal with MBDA
is the possibility to visualize massive datasets in a sensible
and interpretable way, as we show in the campus Wi-Fi case
study.

Our proposal, although promising, is far from perfect. We
found that the integration of feature learning with MBDA can
provide very accurate detection of anomalous events, and the
diagnosis can recover related records with high specificity, but
the sensitivity at record level can still be much improved.
Furthermore, the diagnosis is only accurate when suitable
features for that diagnosis are learned, for which prevalence
may not be the optimal criteria and other learning criteria
may be studied. Finally, it should be noted that the proposed
learning algorithm can only provide meaningful individual
features, but it is not capable to yield grouping features, e.g.,
a feature that counts the prevalence of a group of destination
ports or a subnet of IPs. Future work on these topics can be
an interesting means to improve numerical and interpretational
performance.

ACKNOWLEDGEMENT

This work was supported by Dartmouth College, and in
particular by the many network and IT staff who assisted
us in configuring the Wi-Fi network infrastructure to collect
data, and who patiently answered our many questions about
the network and its operation. We furthermore appreciate the
support of research colleagues and staff who have contributed
to our data-collection and data-analytics infrastructure over the
years: most notably Wayne Cripps, Tristan Henderson, Patrick
Proctor, Anna Shubina, and Jihwang Yeo. Jose Manuel Garcı́a-
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