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Abstract—The problem of shared node selection and cache
placement in wireless networks is challenging due to the dif-
ficulty of finding low-complexity optimal solutions. This paper
proposes a new approach combining Lyapunov optimization and
reinforcement learning (LoRL) to address content sharing in
heterogeneous mobile edge computing (MEC) networks with
base station (BS) and device-to-device (D2D) communication.
Device in this network can choose to establish D2D links with
neighboring devices for content sharing or send requests directly
to the base station for content. Content access and energy
consumption of shared nodes are modeled as a queuing system.
The goal is to assign content sharing nodes to stabilize all queues
while maximizing D2D sharing gain and minimizing latency,
even in the presence of unknown network state distribution
and user sharing costs. The proposed approach enables edge
device to independently select associated nodes and make caching
decisions, thereby minimizing time-averaged network costs and
stabilizing the queuing system. Experimental results show that
the proposed algorithm converges to the optimal policy and
outperforms other policies in terms of total queue backlog trade-
off and network cost.

Index Terms—Edge cache, content sharing, device-to-device
communication, deep reinforcement learning, Lyapunov opti-
mization.

I. INTRODUCTION

THE increasing number of smart devices joining wireless
networks has led to a surge in wireless multimedia traffic

[1]. However, a significant portion of this traffic consists of
repeated requests for popular content such as news articles
and TV shows. To address this issue, mobile edge computing
(MEC) technology has emerged as a promising solution,
allowing content retrieval from edge storage nodes like base
stations or clouds. However, this approach often results in
redundant data transmission within a short timeframe and is
constrained by the cache capacity of edge devices.

To mitigate the limitations of storage capacity and duplica-
tion in edge devices, collaborative caching has been recognized
as an effective solution [2]. The progression of integrated
circuits has led to the integration of storage and computing
abilities into edge devices. Consequently, content sharing via
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device-to-device (D2D) communication has become feasible.
Furthermore, the integration of D2D communication with
MEC caching can yield additional benefits such as improved
spatial frequency reuse and boosted cellular network through-
put. These benefits can lead to reductions in transmission and
backhaul loads while augmenting the service probability of
tasks [3] [4].

Extensive research has focused on optimizing user perfor-
mance in Mobile Edge Computing (MEC) networks through
collaborative caching and device-to-device (D2D) caching.
Content cache placement strategies have been specifically
studied [5]–[11]. However, there are still unresolved issues that
require attention. Firstly, existing studies mainly concentrate
on improving cache performance through effective placement
strategies. While this approach proves beneficial, there is a lim-
itation on the amount of content a device can transfer within
a given time frame. When simultaneous content requests ex-
ceed the transmission capacity, it causes delays and increases
retrieval latency. To tackle this challenge, researchers propose
using a virtual queuing system to represent access requests
[10], [11]. This allows for optimization of queue management
to mitigate transmission delays. Secondly, in collaborative net-
works, forwarding content sharing node requests incurs energy
consumption costs. Virtual queues effectively represent node
energy consumption dynamics. Therefore, ensuring stability
in the consumption queue becomes crucial for overall system
stability.

The selection of shared content delivery nodes and cached
content replacement in a D2D-assisted MEC network are key
issues. When a user’s local cache cannot fulfill a request, it
is necessary to determine which cache node (e.g., neighboring
user node, local/base station, neighboring base station) should
handle the request and how to cache the content [3]. User
requests can be routed to other users or accessible edge nodes,
and dynamic queues represent the content access and energy
consumption of all edge nodes. The objective is to select
shared nodes for unsatisfied requests, ensuring the stability of
the request and energy consumption queues. However, there
are three main considerations when deciding on shared nodes
and caching. Firstly, the data rate for content sharing via D2D
links depends on user distance and channel conditions. User
preferences can be challenging to understand, but machine
learning methods can be employed to learn and predict pref-
erences for better decision-making. Secondly, content sharing
incurs transmission costs, necessitating consideration of both
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request delay and network cache node energy consumption to
ensure network stability. Lastly, the cache replacement policy
should adapt to the evolving wireless network environment,
facilitating optimal replacement decisions based on changing
network conditions.

Note that when confronted with a large number of users,
simultaneously selecting shared nodes and making caching
decisions for each user in the system poses a significant chal-
lenge. However, this challenge can be addressed by employing
a stochastic Lyapunov optimization method that does not rely
on prior knowledge of the network state distribution. Neverthe-
less, in our case, the uncertainty surrounding the user’s mobile
location, network channel state, and user preference further
complicates the problem. This increased complexity arises
from the need to stabilize all the queues while also considering
cache decision problems. Therefore, We introduce context-
aware preference learning strategies and propose dynamic
shared node selection and cache replacement methods that
combine Lyapunov optimization and reinforcement learning
(LoRL). Thus, the main contributions of this paper are as
follows:

• Our approach integrates Lyapunov optimization theory
and reinforcement learning to develop a novel method
for shared node selection and cache replacement. By
considering random fading channels and data arrival, our
method enables intelligent decision-making for user de-
livery node selection and cache replacement. The primary
objective is to minimize user request latency and energy
consumption while ensuring the stability of user request
and energy consumption queues.

• We analyze the factors influencing the establishment
of D2D links between users, considering both physical
conditions and user preference similarity. To improve the
effectiveness of D2D links, we propose a user preference
model based on AutoEncoder. This model captures and
measures the similarity in user preferences, enabling us
to optimize the formation of D2D links based on shared
interests.

• We integrate Lyapunov and reinforcement learning op-
timization techniques to address network optimization
problems. Our approach involves deriving an upper bound
for the drift plus cost function using Lyapunov opti-
mization, which guides the training of the reinforcement
learning model. By doing so, we enable the model to
maximize user service quality while ensuring the stability
of the system.

II. RELATED WORK

Existing research on edge cache optimization can be divided
into: i) accuracy improvement of popularity prediction models;
ii) joint optimization of edge caching and wireless resources;
iii) collaborative caching.

A. Popularity Prediction

Due to the repetitive nature of content requests in the net-
work, edge caching should cache content with high popularity.
Cache placement policies based on popularity prediction have

demonstrated caching effectiveness, and reactive caching [12]
[13] or proactive caching [14] [15] by analysing past historical
request information to obtain request patterns has been exten-
sively investigated. Hassine et al [16] used Auto-regressive
and Moving Average (ARMA) models for centralised content
popularity prediction. To overcome the sparse nature of user
requests, chen et al [17] proposed a popularity prediction
scheme based on weighted clustering and also described an ex-
plicit relationship between cache performance and popularity
prediction accuracy. In addition, considering the private nature
of user data, a federated learning approach is used for edge
caching policy optimization [3] [18]. Due to the consumption
caused by learning-based approaches, some online popularity
prediction approaches that do not require a training phase have
also been proposed [12] [19]. However, while the improvement
of the accuracy of the popularity prediction model can improve
the caching performance to a certain extent, the channel condi-
tions as well as the network state in mobile edge networks can
have an impact on the quality of service (QoS) of the users.
Therefore, the relationship between cache performance and
prediction accuracy is implicit, and the impact of popularity
prediction errors on cache performance is difficult to estimate.
The most popular (MP) algorithm with a priori popularity
knowledge of the user request model is compared with the
proposed algorithm in Qian et al. [21], and this is verified by
the poor performance exhibited by the MP algorithm.

B. Joint Caching and Resource Optimization

The decentralization of cache capacity in MEC networks
leads to strong coupling between cache strategies and wireless
communication resource management. From the perspective of
limited cache and wireless resources, study the caching prob-
lem. Existing research approaches to caching policies are clas-
sified as optimization-based, reinforcement learning-based and
deep learning-based, and game-theory-based. Optimization
based caching strategies are usually designed to maximize
certain performance metrics within the constraints of network
resources. For the optimization problem of complex joint
wireless resources and caching, simple heuristic algorithms
often require a long time and can only obtain sub-optimal solu-
tions. Therefore, in existing research, a Lyapunov optimization
method for online joint utility maximization and stability
control framework has been proposed. This method decouples
multi-stage stochastic optimization problems into continuous
deterministic sub-problems for each stage, while providing
theoretical guarantees for the long-term stability of the system
[13] [20]. Strategies based on reinforcement learning and
deep learning use observable user data or environmental
states, such as user contextual information, channel gain or
cache state, for online caching decisions and resource alloca-
tion. Wireless channels have a finite amount of data that can be
transmitted per unit time, and proactive caching strategies are
investigated in order to maximise bandwidth utilisation [21]–
[24]. However, when the user request or environment state
space is large, centralised Reinforcement Learning caching
strategies are complex and difficult to handle, hence distributed
reinforcement learning approaches are proposed [25]. Game
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theoretic caching strategies have been used for caching and
computing resource allocation in MEC network environments,
where service providers or users compete among themselves
for limited computing and bandwidth resources to meet their
own interests [26], [27].

C. Collaborative Caching

In MEC networks, collaborative caching is an effective
approach to reduce network service load, improve service
latency, and enhance spectrum usage efficiency by expanding
cache capacity. Existing research divides collaborative caching
into two types based on cache location: Coordinated Multi-
Point (COMP) and D2D caching. COMP involves obtaining
requested content from adjacent devices, base stations, or other
caching devices. The optimization goal in this context is to
jointly optimize content caching and delivery decisions, con-
sidering network constraints and aiming to minimize service
latency or content retrieval costs [28], [29]. To address the
joint optimization problem of user collaboration nodes and
cache placement, a decoupling approach can be employed for
dual-scale joint optimization [30] [31].

Decentralised cooperative sharing methods address the chal-
lenges of diverse network states in wireless networks. They
aim to solve the node selection problem in centralised cooper-
ative transmission effectively [32]. These methods decentralise
decision-making, allowing nodes to independently select co-
operative partners and make transmission decisions based on
local information. In networks with caching capabilities on
the user side, collaborative sharing can be performed between
D2Ds by establishing D2D communication [33]. Furthermore,
the uncertainty of user requests and movement patterns makes
it challenging to establish D2D connections. Therefore, based
on learning methods, the user’s movement trajectory as well as
user request patterns are predicted to enable dynamic delivery
of content [8]. Further, user data information is private and
has the property of not being willing to be shared, while
an effective local caching policy requires knowledge of user
preference information. Therefore, to maximise the benefits for
users, D2D content sharing approaches with social awareness
and incentives have been proposed in existing studies [6]
[27]. Moreover, in addition to horizontal collaboration between
network cache nodes, vertical inter-tier collaboration between
cache nodes is also an important solution to achieve service
demand by expanding cache capacity. Similarly, some D2D-
assisted heterogeneous collaboration approaches have been
proposed to maximise spectrum efficiency and reduce request
latency [3].

D. Our Contribution

Based on the aforementioned categorization, similar to the
works in [3], [8], and [12], this paper investigates heteroge-
neous collaborative caching strategies supporting D2D assis-
tance. Similar to the contributions in [14] and [15], we predict
user preference popularity by analyzing historical request in-
formation. Similar to the contributions in [23], [24], [25], [26],
[27], and [28], we utilize reinforcement learning for dynamic
cache decision optimization. However, what sets our work
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Fig. 1. D2D-assisted network architecture for heterogeneous collaborative
edge caching.

apart from these contributions is that we employ predicted user
preferences for D2D shared node selection. Furthermore, we
combine Lyapunov optimization with reinforcement learning
for user-associated node selection, cache decision-making, and
maintaining stability in the request latency queue and cost
consumption within the requesting network nodes.

III. SYSTEM MODEL

A. Network Model

Consider a wireless D2D-assisted heterogeneous collabo-
rative network architecture, as shown in Fig.1. The network
architecture includes three types of cache nodes, namely user
equipment (UE), base stations (BS) and cloud servers. The
cloud server connects to all BS via backhaul links to provide
services to users, and the BS serve users via cellular links.
In addition to the traditional BS-to-User use of the BS’s
wireless spectrum for content delivery, the considered network
architecture allows for D2D links between users for content
sharing. Given the abundant storage and computing resources
of cloud servers, we assume that the cloud server has access
to all the content that users may request within the storage
area, denoted as F = {1, 2, 3, . . . , F}, where F represents the
total number of contents [2] [3] [5], and its size is denoted as
(s1×F

f ). Each UE and BS has a restricted cache capacity to
store content with high content popularity. The cache capacity
of user device u is Mu, where ∀u ∈ N = {1, 2, ..., N} is
the set of tags of users. To simplify the model, we consider
the existence of one BS in the network, serving the UE. In
particular, the BS have the limited cache capacity, denoted as
MB .

To meet generality, the capacity of the network’s cache
nodes is Mu ≤ MB ≤ F . All cache nodes in the net-
work architecture, except for cloud nodes, are represented
as H = {N ∪ B}. In the network under consideration,
operations are organized based on a time slot framework,
represented as T = {1, 2, 3, ...., t}. The time axis is divided
into equal time intervals, referred to as slots, with a small
duration denoted as △t and t ∈ T . Within a time slot t,
all network parameters (e.g., user location, channel quality,
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content prevalence) remain constant. This time-slot-based or-
ganization enables the analysis and optimization of network
performance within well-defined and consistent time intervals.
Let us define the position of user u during time slot t as lu,t,
denoted by lu,t = {xu,t, yu,t}. Here, xu,t and yu,t represent
the coordinates of user u in the given time slot. It is essential
to emphasize that within any time slot t, each user can make
at most one request, and this request must be fulfilled prior to
the commencement of the subsequent time slot.

B. D2D Sharing Mode

In the considered heterogeneous collaborative network,
cache node content sharing has a restricted physical range, so
it is assumed that the service range of the base station is RB

and the range of D2D is bounded by the radius Ru and satisfies
Ru ≤ RB , i.e., πR2

u ≤ πR2
B , and cache nodes exceeding the

service range cannot establish connections. In addition, user
requests have the characteristics of being numerous and di-
verse. Therefore, in order to improve the effectiveness of D2D
links, we will model the D2D connections from the physical
domain and user similarity respectively in the following.

Physical domain: Due to physical limitations such as signal
attenuation between D2D, only users within the user coverage
can communicate [34]. Therefore, similar to [10], a graph
Gp = {N,Yp} is introduced, where N represents the set of
vertices of all users and Yp = {(u, v)|epu,v = 1,∀u, v ∈ N}
represents the edge set. When epu,v = 1, it means that the
distance between user equipment u and user equipment v
is Lt

u,v < Ru, that is, within the communication range
of the user, where Lt

u,v =
√
(xu,t − xv,t)2 + (yu,t − yv,t)2.

Otherwise, epu,v=0.
User similarity: Humans are herd animals and tend to have

a herd mentality for content acquisition, and each person has
a different request preference Pu. Therefore, the concept of
cosine similarity is introduced to represent the relationship
between users’ preferences. The cosine similarity between user
u and user v is

Sv
u =

Pu · Pv

∥Pu∥∥Pv∥
. (1)

A user with a high preference similarity indicates that the
content stored in the cache is more similar, and therefore, the
content requested by the user is more likely to be stored.

User sharing probability: Based on the physical map
and user similarity obtained above, we get the connection
probability Ru,v = epu,v · Su

v between users, and define Ru =

(Ru,v)
1×N . Finally, we normalize Ru by Ru,v∑

u∈N Ru,v
→ Ru.

In the next sections, user preferences are predicted using an
stack AutoEncoder (SAE)-based algorithm, and then content
delivery and latency models for D2D-assisted heterogeneous
networks are investigated in Section III-D.

C. User preference learning

In order to obtain the similarity between users, a hypothesis
is made that, within a time frame, users send preference
information to surrounding cache nodes. User preferences, i.e.,
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Fig. 2. A framework for learning user preferences based on contextual
information.

the request popularity of a user, are uncertain and therefore
obtaining numerical results for their popularity probability is
very complex. Additionally, we assume that the preferences
of users for the requested content follow an independent
and identically distributed process. Unsupervised learning is
a feasible approach to solve this problem. Therefore, in order
to obtain the preference probability Pu of user u to further
obtain the sharing probability Ru,v between users, we propose
a contextual information-based preference learning framework
based on an unsupervised learning-hybrid filtering neural
network model, as shown in Fig. 2.

The core of the proposed model is to minimise the dis-
crepancy between the input and output, thus training a single
hidden layer neural network to reconstruct the input data from
the latent representations. The model consists of two main
components: (i) an encoder that receives the input data and
(ii) a decoder that outputs the results. The difference between
the input and output is measured by the loss function FL

FL(D, D̃) =

d∑
i=1

(D̃i −Di), (2)

where {D1, D2, ...} is the input dataset, D(i) ∈ Rd represents
the dimension d of each element in the dataset, mainly
including the user’s contextual information, such as name,
gender, age, movie, movie rating and etc. The input data is
represented implicitly using the encoder through the activation
function h(x) for the input mapping as hw,b(Di) ≈ D̃i, where
{D̃1, D̃2, ...} is the output of the corresponding encoder and
the parameters w and b are the weight matrix and bias vector,
respectively.

The training of user preferences means that the model
is to be continuously updated and used to minimise the
reconstruction error of the input data set. By training the SAE
neural network, the hidden features encoding z of the training
data are obtained and these features are used to calculate the
user similarity. Since what content is needed in the future,
i.e., the popularity of the user’s request, may depend on the
user’s context. Therefore, by combining the hidden feature
encoding z with the user’s contextual information, the user’s
preferences, i.e., the user’s own content request popularity, are
obtained.

D. Content Transmission and Delay Model

In a heterogeneous collaborative network, a user’s cache list
in time slot t can be represented as xu = {xu,f ∈ {0, 1}, u ∈
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N , f ∈ F}. xu,f = 1 means that content f is stored in the
cache, otherwise, if xu,f = 0, it means that the user does not
store content f . When the user’s requested content f cannot
be satisfied locally, the user selects a node for content sharing
from the network. We define bu,t = {bnu,t ∈ {0, 1}|u ∈ N , n ∈
H/u} to denote the set of associated candidate nodes for user
u. bnu,t = 1 indicates that user u selects cache node n to
process user requests. Specifically, b0u,t = 1 indicates that
users directly obtain content requests from the base station.
Therefore, in D2D assisted heterogeneous networks, there are
several methods for obtaining content.

1) The user’s request is saved in the local cache list, i.e.,
the request is satisfied in the local cache. Therefore, the
corresponding user request delay dLu,t is 0.

2) If a user request is not saved in the local cache list,
we can establish a D2D link to obtain the request from
nearby users n. In line with the approach taken in many
existing studies [3][5][6], we adopt orthogonal models
to allocate non-overlapping radio resources for D2D
transmission. This allocation scheme involves dividing
the bandwidth of each node into equal sub-bands and
assigning equal sub-bands to each node while ensuring
no interference among them. Thus, the request delay
dD2D
u,t =

sf
rnu,t

, where sf denotes the size of the user re-
quest file and rnu,t denotes the data transfer rate between
user u and user n. rnu,t = BDlog2(1+gDt hD

t /Ln
u,t), with

parameters BD, gDt , hD
t denote the inter-user channel

bandwidth, transmission power consumption and chan-
nel gain, respectively.

3) The user u can also send a request to the local base
station for content retrieval. If the base station can fulfill
the request, the delay for file f is given by dBu,t =

Sf

rBu,t
.

The transmission rate is calculated using the formula
rBu,t = BB log2(1 +

gB
t hB

t

LB
u,t

), where LB
u,t represents the

path loss between user u and the base station at time
slot t. Here, rBu,t represents the transmission rate from
user u to the base station at time slot t. It is determined
by parameters such as the bandwidth BB , transmission
power consumption gBt , and channel gain hB

t associated
with the user-to-base station link.

4) Eventually, when content cannot be obtained through
direct sharing or local caching, the base station forwards
the request to the cloud server. The latency of fetching
the content from the cloud server is the sum of the base
station delay dBu,t and the transmission time required to
transfer the content from the cloud server. This can be
expressed as dcu,t = dBu,t +

sf
rc

, where sf is the size of
the requested content and rc is the constant transmission
rate between the base station and the cloud server.

Therefore, the request latency for the user of the above fetch
request method satisfies dLu,t ≤ dD2D

u,t ≤ dBu,t ≤ dcu,t. When the
user makes the selection decision bnu,t, if the selected content
sharing cache node cannot meet the request, it will obtain the
request from the same or upper layer cache node by the above
collaborative method.

IV. QUEUE MODEL AND CACHING PROBLEM

A. Queuing Model

When user u initiates a request, if the request cannot be
fulfilled locally, a content sharing node bnu,t is selected. Based
on the chosen delivery node bnu,t, the content access queue
associated with node n is denoted as Qn(t). The dynamic
backlog of all queues in the network is captured by the vector
Q(t) = {Qn(t)|n ∈ H}. The arrival rate of Qn(t) represents
the total size of content shared by node n as selected by users.
Therefore, the arrival rate of queue is

An(b
n
u,t) =

∑
u∈N ,n∈{H/u}

bnu,tsf . (3)

The service rate of the queue Qn(t) is expressed as the
average rate at which the current request is satisfied. Based on
the above description, the dynamic request queue {Qn(t)}Hn=1

at any time slot t can be dynamically described as

Qn(t+ 1) = max{Qn(t) +An(b
n
u,t)− rnu,t, 0} (4)

Specifically, at the initial stage, the request queue main-
tained by user n is set to Qn(0) = 0. In addition, since the
system state is random, the system-dependent queuing vector
process{Qn(t)}t∈T is also random.

When users select nodes, there is a cost associated with
content sharing. This cost is related to the delivery rate of
the content from the user to the selected node. We assume
that the transmission cost is proportional to the data rate,
which is a general performance metric that can be converted
to other metrics such as battery life, transmission delay, and
interference. Following similar calculations in prior studies
[10], we assume that the transmission cost is charged per
unit of data rate. Therefore, at any given time slot t, the
transmission cost from the selected node n to the user u can
be expressed as:

Cn(b
n
u,t) = bnu,t · ptransu,n · rnu,t, (5)

where ptransu,n is denoted as the transmission power consump-
tion from user u to node n. To deal with the network cost
of the delivery nodes in the network, virtual cost queues
Y (t) = {Yn(t)|n ∈ H} are introduced. Specifically, at the
initial stage, the cost queue maintained by user n is set to
Yn(0) = 0. Based on the above description, at any time slot
t, the dynamic cost queue {Yn(t)}Hn=1 can be dynamically
described as

Yn(t+ 1) = max{Yn(t) + Cn(b
n
u,t)− ϵv, 0}, (6)

where ϵ is a positive scaling factor. Dynamic queue Yn(t) can
be seen as a random energy consumption Cn(b

n
u,t) and a fixed

service rate ϵv.

B. Problem Formulation

In this paper, the overall objective is to make dynamic node
selection and caching decisions that maximise D2D sharing
gains while minimising user request latency. The specific
problem under consideration can be formulated as
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1) D2D shared gain: If the user’s request cannot be
satisfied locally (i.e., xu,f = 0), then by selecting the
content sharing node bnu,t establishes a D2D link with
adjacent user n to meet user requests, where n > 0.
Therefore, the gain obtained through the D2D sharing
method can be expressed as

Gt
u,1 =

∑
n∈N

sf ·Ru,n · bnu,t · xn,f · (1− xu,f ),

∀u ∈ N ,∀n ∈ H,∀t ∈ T ,∀f ∈ F .

(7)

2) Content fetch gain: To account for the fact that a User
Equipment (UE) can only share content with a chosen
node during a time slot, we introduce an average queue
delay that is directly proportional to the serving UE.
Consequently, the network’s benefit from user acquisi-
tion requests can be expressed as follows:

Gt
u,2 =


τe−dL

u,t , Local Cache

τe−dD2D
u,t , D2D Communication

τe−dB
u,t , Communication to BS

τe−dc
u,t , Cloud Service

(8)

Where τ represents the introduced parameter, we ob-
serve a negative exponential function that highlights
the inverse relationship between user request delay and
channel gain. In simpler terms, when the user request
delay is low, a larger gain is obtained. By using this
formulation, we can analyze the impact of user request
delay on the network’s benefit.

Based on the above description, the gain of the obtained
content is represented as

G(bnu,t, xu,f ) =

N∑
u

{λ1G
t
u,1 + λ2G

t
u,2}, (9)

where λ1 and λ2 is the two introduced parameters, which sat-
isfy the condition λ1+λ2 = 1 , where 0 ≤ λ1, λ2 ≤ 1. These
parameters represent the weights or proportions assigned to
D2D gain and delay, respectively. Therefore, the goal of this
article is to optimize the problem P1, can be expressed as

max G(bnu,t, xu,f ) (10)

For ease of understanding, the notation used in this article
is summarized in Table I.

V. DYNAMIC CONTENT CACHE AND NODE
SELECTION ALGORITHM

A. Stochastic Lyapunov Optimization

Directly solving the aforementioned problem P1 becomes a
challenging task without prior knowledge of the system’s sta-
tus, queue backlog, and network cost distribution. In addition,
the choice of content sharing delivery nodes creates an imbal-
ance in the request queue and delivery cost of caching nodes
in the network. In order to tackle the aforementioned chal-
lenges, we employ stochastic Lyapunov optimization methods

TABLE I
MODELING PARAMETERS AND NOTATIONS

t Index of the time slot.
N = {1, 2, . . . , N} Set of user labels.
H = {N ∪ B} All the cache node set in network and B is base

station node.
F = {1, 2, . . . , F} Set of all contents.
Mi, MB Cache capacities of UE-i and the MEC server,

respectively.
lu,t = {xu,t, yu,t} User u position in time slot t and xu,t and yu,t

is the coordinate of user u, respectively.
Ru,RB Service scope of users and base stations.
Pu User preferences.
gnt , g

B
t Channel gain.

Sv
u Preference similarity between user u and user v.

xu User cache state.
bnu,t = 1 Indicates that user u selects cache node n to

process user requests.
sf Request the size of file f .
rnu,t The transmission rate processed by node n for

user u.
dLu,t, d

D
u,t2D, dBu,t, d

c
u,t Transmission delay.

An(bnu,t) Arrival rate of queue n.
Q(t), Y (t) Dynamic of the queue backlog and virtual cost

queue for delivery nodes.
hu(t) Channel gain between user u and other nodes.
Cn(bnu,t) The transmission cost from the selected node n

to the user u.
ptrans
u,n Transmission power consumption from user u to

node n.
ϵv fixed service rate .

to regulate the selection of content sharing nodes. The primary
objective of this approach is to minimize the average network
latency while ensuring the stability of both the request and
cost queues within the network, all without relying on any
prior knowledge. We started by defining the functions used in
our analysis.

Definition 1 (Quadratic Lyapunov Function): In order to
jointly control the request and network cost queues of any time
slot t, the total queue is defined as Z(t) = {Qn(t), Yn(t)},
where {Qn(t)}Hn=1 and {Yn(t)}Hn=1. The quadratic Lyapunov
function L(Z(t)) of the random queuing process is equal to
half the sum of the squares of the backlogs of all current
queues, which is

L(Z(t)) =
1

2

( ∑
n∈H

Qn(t)
2 +

∑
n∈H

Yn(t)
2
)
. (11)

The Lyapunov function is a scalar measure of the total queue
backlog in the network, with a smaller L(Z(t)) indicating a
lower queue occupancy in the network.

Definition 2 (Conditional Expectation Lyapunov Drift): At
any time slot t, the conditional expectation Lyapunov drift
∆Ht represents the expectation of the time slot difference of
the Lyapunov function, namely

∆Ht = E{L(Z(t+ 1))− L(Z(t))|Z(t)}, (12)

which ∆Ht describes the variation of the quadratic Lyapunov
function, i.e., the degree of fluctuation of the function. A
smaller ∆Ht indicates a more stable queue in the network
system. Therefore, we choose to minimise ∆Ht for each time
slot t to stabilise the whole system network. However, if
one wishes to stabilize the request and energy consumption
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queues in the network while minimizing average latency, one
must add the expected cost E{G(bnu,t, xu,f )} to ∆Ht [10] and
then, transform the function that minimises ∆Ht, into a cost
function that maximises the dift-plus-cost

V · E{G(bnu,t, xu,f )|Z(t)} −∆Ht, (13)

where the weights V ≥ 0 to balance the impact on network
cost and network stability. In the following, to obtain an upper
bound on the drift plus cost in (13) within an arbitrary time
slot t. Firstly, we have

Qn(t+ 1)2 = Qn(t)
2 + 2Qn(t)(An(b

n
u,t)− rnu,t)+(

An(b
n
u,t)− rnu,t

)2
,

(14)

Yn(t+1)2 = Yn(t)
2+2Yn(t)(Cn(b

n
u,t)−ϵv)+

(
Cn(b

n
u,t)−ϵv

)2
.

(15)
Secondly, by combining equation (4)(6), equation (12) can

be rewritten as

∆Ht =
∑
n∈H

1

2
E{

(
An(b

n
u,t)− rnu,t(b

n
u,t)

)2
+Qn(t)·

(
(An(b

n
u,t)− rnu,t)|Qn(t)

)
+

1

2
(Cn(b

n
u,t)− ϵv)2

+Yn(t) ·
(
(Cn(b

n
u,t)− ϵv)|Yn(t)

)
}.

(16)

Therefore, at any slot t, the drift-plus-cost function in (13)
is upper-bounded by

V · E{G(bnu,t, xu,f )|Z(t)} −∆Ht ≤ V · E{G(bnu,t, xu,f )|Z(t)}

−(B +
∑
n∈H

Yn(t) ·
(
(Cn(b

n
u,t)− ϵv)|Yn(t)

)
+

∑
n∈H

Qn(t)·(
(An(b

n
u,t)− rnu,t)|Qn(t)

)
),

(17)

where B is a constant independent of V and the Qn(t)
and Yn(t) in the total queue Z(t) = {Qn(t), Yn(t)} are
independent of each other. Therefore, define B = B1 + B2,
where B1 and B2 can be obtained separately from

1

2
E{

∑
n∈H

(
An(b

n
u,t)− rnu,t

)2} ≤ 1

2

∑
n∈H

E[(An(b
n
u,t))

2 + (rnu,t)
2]

≤ 1

2
N · (sf )2 +

∑
n∈H

(rnu,t)
2 = B1,

(18)

1

2
E{

∑
n∈H

(Cn(b
n
u,t)− ϵv)2} ≤ 1

2

∑
n∈H

E[(Cn(b
n
u,t)

2 + (ϵv)2]

≤ 1

2

∑
n∈H

(ptransu,n · rnu,t)2 +N · (ϵv)2 = B2.

(19)

The terms of the second inequality in (18) and (19) relate
to the content sharing node bnu,t selected by user u. Instead of
minimizing the dift-plus-cost function in (13), we minimize
its upper-bound function. Therefore, in order to minimize the

right-hand side of the inequality (17), it is necessary to con-
sider the current historical request queue Q(t) and energy cost
queue Y (t) in time slot t. This can be achieved by selecting
the appropriate shared delivery Node bnt . Then, we obtain the
following optimization problem P2 max Ω(bnu,t, xu,f |Z(t)),
where the objective function

Ω(bnu,t, xu,f |Z(t)) = V · E{G(st, at)|Z(t)} −
N∑
u

∑
n∈H

Qn(t) ·An(b
n
u,t|stu)− Yn(t)Cn(b

n
u,t|stu) =

N∑
u

(
∑
n∈H

(sf ·Ru,n · bnu,t · xn,f · (1− xu,f ) + τe−dn
u,t−

Qn(t) · bnu,t · sf − Yn(t) · bnu,t · ptransu,n · rnu,t)).
(20)

s.t. bnu,t, n ∈ {N ∪B}/u, u ∈ N (19a)∑
n∈{N∪B}

bnu,t = 1 (19b)

B. Deep Reinforcement Learning for Shared Delivery Node
Selection and Cache Replacement

Notice that the problem P2 is linear and, therefore, decom-
posable. In particular, we can then decompose this problem
into N subproblems, given by

Ωu(bnu,t, xu,f |Z(t)) =
∑
n∈H

(
V · (sf ·Ru,n · bnu,txn,f · (1− xu,f )

+τe−dn
u,t)−Qn(t) · bnu,t · sf − Yn(t) · bnu,t · ptransu,n · rnu,t

)
,

(21)

for all users u ∈ N , which can be solved in parallel by the
users separately. Therefore, solving P2 is synonymous with
finding the optimal content delivery node and caching policy,
i.e.,

P3 arg max Ωu(bnu,t, xu,f |Z(t)). (22)

It is worth noting that users need to make dynamic node se-
lection and caching decisions under constantly changing chan-
nel conditions. We transform the joint optimization problem
P3 of content delivery node selection and cache replacement
into a Markov decision process (MDP) , as shown below:

State: The state of user at time t can be expressed as
stu = {Yu(t), Qu(t), Ru, hu(t)}. Yu(t), Qu(t) denote the
energy consumption queue and request queue of user u,
respectively. In addition, Ru is the probability of a user
establishing a D2D connection with neighbouring user, and
hu(t) is denoted as the channel gain of the user requesting
content to other delivery nodes.

Action: After receiving the status stu, select the content
sharing transmission node and replace the file. Therefore, the
action can be expressed as atu = {bnu,t, Itu}, where bnu,t is
the indication identifier indicating the node (e.g., including
UE’s neighbouring nodes and base station). Itu is the indicator
whether the file in cache list need to be replaced.
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Fig. 3. DDPG architecture for solving the proposed MDP problem.

Reward value of the system: Our goal is to maximize
revenue from D2D and content sharing while reducing user
request latency and maintaining the stability of the request and
energy queues in the system. Therefore, we set the reward as
the optimization problem P3, i.e., ru = Ωu(bnu,t, xu,f |Z(t)).

In general, obtaining the optimal action, including content
node selection decision (bnu,t)

∗ and cache replacement Itu,
involves exploring a vast number of possible decisions, which
can be as high as 2(N+Mu) options. This results in significant
computational complexity even when N is very small. As a
result, a reinforcement learning approach is employed to en-
able online shared node selection and cache decisions. Specif-
ically, we use the deep deterministic policy gradient (DDPG)
reinforcement learning algorithm to dynamically make node
selection and cache decisions, thus solving the formulated
MDP problem.

Fig. 3 illustrates the architecture for addressing the proposed
MDP problem in DDPG. The DDPG algorithm employs two
independent deep neural networks (DNNs), which follow the
actor-critic paradigm, including an online network and a target
network. In each selection period t, the state su is sent to the
actor network of the online network. To ensure comprehensive
exploration of the environment while maintaining a balance
between exploration and exploitation, a Gaussian noise vector
is incorporated into the action policy function during its output.
Following the execution of action au, the ensuing reward ru
and the subsequent state s′u(t) are observed. The observed
Transition state (su(t), au(t), ru(t), s

′
u(t)) is saved to the

experience pool to facilitate subsequent network learning.

The target network, which acts as a delayed replica of the
online network, progressively tracks the acquired knowledge
and updates the parameter configuration of the target network
model through a process of soft updates. Throughout the
training of the system, the agent randomly samples from the
experience replay pool. In an effort to ensure the proximity
of the Q-value output produced by the critic network to the
actual value, the Q-value estimated by the critic network is
employed within the target network. Additionally, the mean
square error loss function is utilized to guide the training of
the actor network. The model is trained Episode times, and
in each epoch, the target network implements a soft update
mechanism to modify network parameters. The detailed LoRL
Algorithm is shown in algorithm 1.

Algorithm 1 Combines Lyapunov optimization and reinforce-
ment learning (LoRL) for solving (P3).

input: Parameters V .
output: Control actions atu = {bnu,t, Itu}.
initialization: {hu}Hu=1, Yu(t)}Hu=1, {Qu(t)}Hu=1, Yu(0) =
0, Qu(0) = 0.
for UE-u ∈ N in Parallel: do

Training AutoEncoder model, and then obtain user
preferences Pu.

end for
for each epoch in episode do

for t = 0, 1, 2, 3, ..., T do
for UE-u ∈ N in Parallel: do

User u sends a request file f .
IF xu,f = 1:

continue.
Calculate the similarity Sv

u (12) between user u and
neighboring users.
Calculate the connection probability between users
Ru, Ru,v∑

u∈N Ru,v
→ Ru.

Observer the state stu = {Yu(t), Qu(t), Ru, hu(t)}.
Observer reward feedback ru(t) (21), and obtain
new observations s′u(t).
Construct transition (su(t), au(t), ru(t), s

′
u(t)) and

then store the transition into experience pool.
Update actor-critic model parameters

end for
end for

end for

C. Complexity Analysis

The computational complexity analysis of the proposed
LoRL scheme is as follows: The execution of the LoRL
algorithm consists of two parts, namely, joint user association
and cache decision, and policy update. Between these two
parts, a joint decision action generation is performed in each
time frame, while policy updates are less frequent. Therefore,
we focus on analyzing the complexity of policy decision
generation in each time frame.

Careful observation reveals that within each time slot, the
algorithm’s complexity includes the computation of similarity
for each user (12), the probability of connections between
users, and the updating of DDPG model parameters. Specif-
ically, the complexity of computing similarity and user con-
nection probability is O(2N), where N is the number of users.

Additionally, the time complexity of the DDPG algorithm,
which mainly consists of initialization, memory replay, and
four deep neural networks, is as follows. The state is initial-
ized at the beginning of each training episode, with a time
complexity of K. Additionally, both the actor network and
the critic network are designed as fully connected networks,
assuming the actor network has NA fully connected layers,
and the critic network is composed of NC fully connected
layers. Therefore, the time complexity of DDPG is
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2

NA−1∑
i=0

ua,iua,i+1 + 2

NC−1∑
j=0

uc,juc,j+1 + vaui +K =

O(

NA−1∑
i=0

ua,iua,i+1 +

NC−1∑
j=0

uc,juc,j+1) +O(K)

(23)

Based on the description above, the time complexity of
the proposed LoRL algorithm is O(

∑NA−1
i=0 ua,iua,i+1 +∑NC−1

j=0 uc,juc,j+1) +O(K) +O(2N).

VI. SIMULATION RESULTS

A. Parameter Setting

In our simulation study, we utilized the MovieLens 1M
dataset [36] to model the request behavior in the network.
This dataset contains user ratings for a total of 3952 movies.
Each record in the dataset includes a user ID, a movie ID,
a rating, and a timestamp. Since user ratings are typically
provided after viewing, we treated these ratings as request
records for our simulation. To calculate user preferences, we
divided the dataset into two parts. The period from January
1, 2000 to April 13, 2002 was used as a historical training
set to obtain user preferences. The remaining data served as
the test set to evaluate the performance of our algorithm. The
content database F consists of the 3952 movies contained in
the dataset. In order to reflect the degree of queue backlog
in the system network, we set the total number of requests
to be 10,000 under different numbers of users. We set the
default cache sizes of user nodes and base stations to 40M and
100M, respectively. These cache sizes determine the amount
of content that can be stored locally at each node.

TABLE II
MODEL SIMULATION PARAMETERS

Parameter Value
learning rate 0.01
action dim 400
critic dim 200
batch size 128

gamma 0.99
Exploration rate 0.1

Hidden layer 3
Memory Capacity 2000

Activation function ReLU

In our simulation, we modeled the user’s movement tra-
jectory using the Random Waypoint model [37], which is a
widely applied and proven effective approach in simulating
user mobility. The Random Waypoint model has also been
commonly used in other studies, particularly in research re-
lated to caching strategies [38] [39]. This model generates
random coordinate locations for the user at each time slot
within a specified region. To determine the range of D2D
connections, we assumed that users can establish connections
within a physical range limit of 100 units. Users can connect
to the base station within a range of 500 units. The path loss in
the network was modeled using the formula 36.8+36.7 log(d),
where d represents the distance between user cache nodes.
The small-scale fading was modeled using the unit variance of
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Fig. 4. Variation in request preference at different numbers of users.

Rayleigh fading. Other network parameters included a channel
bandwidth of 20 MHz and a background noise level of -95
dBm. In addition, all users run a DRL agent with a three-
layer neural network. All these agents use the Adam optimizer
with adaptive learning rates to learn their respective training
parameters, starting from a learning rate of 10−2. For specific
simulation parameter settings of DDPG, please refer to Table
II.

B. Content Request Preference Analysis

In our experiment, we simplified the dataset by extracting
the user IDs with the highest number of requests. We then se-
lected a specific number of users for simulation purposes. User
preference in this context refers to users’ focus on requesting
certain types of files. To illustrate how user preference changes
with different numbers of users, we provide a simple example.
In the example, we consider the numbers of users to be [20,
40, 60, 80, 100, 120, 140]. Fig. 4 shows the distribution of
requested content IDs at different numbers of users. From the
figure, we observe that the content popularity exhibits certain
preferences for different numbers of users. The requested
content IDs are clustered within specific ranges, i.e., [500-
1000], [1250-1500], [2000-2500], [3000-3250], [3725-3952].
This indicates that certain content types or categories are more
popular among users, and their preferences can be observed
based on the content IDs requested.

C. Baseline Schemes and Performance Metrics

To evaluate the performance of the proposed LoRL algo-
rithm under different parameters, we consider the following
baseline scheme:

1) LRU: Randomly select content sharing nodes within the
communicable range, and the earliest stored content will
be replaced with new content.

2) MLPLRU [40]: Randomly select content sharing nodes
within the communicable range, and an improved on-
line cache replacement strategy based on Pareto Least
Recently Used (PLRU) Algorithm and Least Recently
Used K (LRU-K) Algorithm.

3) LoRL-with no preference: LoRL-with no preference
refers to the variant of LoRL algorithm that disregards
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Fig. 5. Dynamics of the time-averaged sum of queue backlogs in LoRL for
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Fig. 6. Dynamics of the time-averaged network cost in LoRL for different
weights V during the observation period t = 1, ..., 100 slots.

user preferences and solely focuses on the connection
probability between users.

4) DAC: A delay-aware D2D caching (DAC) [41] algo-
rithm with the goal of request latency.

5) GHM: The greedy heuristic method (GHM) [10]
searches within a limited number of user/file pairs to
maximize the target D2D gain and delay value.

To evaluate these solutions, we use the following per-
formance metrics: (i)hit rate (satisfied by local cache, D2D
sharing, or BS); (ii) average delay; (iii) queue backlog; (iv)
network cost; (v) D2D offloading rate.

D. The impact of Weight V

Figures 5-7 verify the analysis results related to Lyapunov
optimization established in (17). Figures 5 and 6 show the
dynamics of the time-averaged network cost and sum of queue
backlogs during different values of weight V , respectively, in
LoRL during the period t = 1, ..., 100. It is observed that
LoRL converges to stable delivery cost and queue backlog
levels around time slot t = 30. We also see that when weight
V = 10, there is lower network cost and queue backlog.
Figure 7 illustrates the target value, which is the time average
of the sum of transmission cost and queue backlog, as a
function of the weight V in Lyapunov optimization. The graph
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Fig. 7. Time averages of the content transfer cost and the sum of queue
backlogs in LoRL as functions of weight V.
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Fig. 9. Time-average transmission delay varies with the number of users.

demonstrates a proportional relationship between the sum of
queue backlog and network cost. This can be attributed to
the fact that a higher queue backlog prompts the selection of
delivery nodes with lower transmission delays to minimize
retrieval costs, thereby resulting in an increase in delivery
costs.

E. The impact of User Numbers

Results in Figures 8-12 describe the performance of the
cache strategy in terms of cache hit ratio, time-averaged
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Fig. 10. Time-average sum of queue backlogs with varies with the number
of users.
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Fig. 11. Time-average network cost varies with the number of users.
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Fig. 12. The Device-to-Device (D2D) offloading rate varies with the number
of users.

latency, time-averaged delivery cost, and time-averaged queue
backlog under different numbers of users. The Figure 8 shows
that the higher the number of users, the higher the cache
hit rate.As depicted in Figures 9-11, it is evident that with
the expansion of the network user scale, the queue backlog,
transmission cost, and average request delay decrease accord-
ingly. This can be attributed to the increased opportunities for
D2D communication resulting from a larger number of users,
thereby enhancing the effectiveness of collaborative caching.
It is worth noting that it is observed from Figure 12 that as
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Fig. 13. The cache hit ratio varies with cache size.
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Fig. 14. Time-averaged transmission delay varies with cache size.
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Fig. 15. Time-averaged sum of queue backlogs varies with cache size.

the number of users increases, the D2D offloading rate has a
slow decreasing trend, which is mainly because our proposed
mechanism combines user preference node selection and cache
decision, local The cache decision is more biased towards local
requests, increasing the probability of local cache hits, thereby
reducing the proportion of D2D offloading. Furthermore, it
can be seen from these figures that although the proportion
of D2D offloading decreases, the proposed mechanism still
outperforms other strategies.
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Fig. 16. Time-averaged network cost varies with cache size.
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Fig. 17. The Device-to-Device (D2D) offloading rate varies with cache size.

F. The impact of Cache Size

In order to compare the performance of LoRL with other
caching strategies, we present the results in Figures 13-17
with respect to cache size. These figures display the hit rate,
request latency, time-averaged network cost, and the sum of
queue backlog and D2D offload ratio. It is evident that the
cache hit ratio improves with larger cache sizes. Conversely,
the combined metrics of queue backlogs, transmission delays,
and network costs decrease as the user cache size increases.
As can be seen from these figures, LRU and MLPLRU
are not very effective in minimizing content delivery delay,
transmission cost, and queue backlog. The reason is that LRU
and MLPLRU do not consider the popularity of file content,
and only update the cache according to local requests. Also,
these algorithms randomly select shared nodes from within
the exchange range. In addition, both the GHM algorithm
and the DAC algorithm are greedy node selection algorithms,
which can improve the content sharing rate by optimizing the
D2D node selection, but it does not consider the local cache
decision, so its local cache hit rate is low. We also observed
that the DAC and GHM algorithms are inefficient, leading
to performance degradation at the expense of queue backlog
and network transmission costs. The main reason is that when
the number of users is fixed, the cache nodes that users can
establish D2D links are limited, so GHM is compared to DAC
advantage is not particularly obvious. In particular, LoRL has

certain performance advantages compared to LoRL with no
preference, and can better select shared nodes with high D2D
gains, making the network have lower queue backlogs and
transmission costs.

VII. CONCLUSION

In this paper, we introduce a novel approach for selecting
shared nodes and making cache decisions in D2D-assisted
heterogeneous collaborative edge computing networks. Our
approach involves formulating a joint optimization problem
and utilizing a Lyapunov optimization algorithm to decouple
the problem. To enable intelligent user association and caching
decisions, we propose a content caching algorithm based on
deep deterministic policy gradient (DDPG) [35]. The algo-
rithm aims to minimize user request latency while ensuring
the stability of request and energy consumption queues in
the system. To evaluate the effectiveness of our proposed
algorithm, we conduct an extensive study and compare it
with five baseline schemes. The results demonstrate that our
algorithm surpasses the baseline schemes in terms of average
content download latency and system queue stability. In our
future work, we intend to delve deeper into the fine-grained
characteristics of users and requests. This will enable us to
make more informed decisions regarding user association and
caching, ultimately enhancing the overall performance of the
system.
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