
1

Wai-xi Liu*, Member, IEEE, Jun Cai, Sen Ling, Jian-Yu Zhang, Qingchun Chen

Abstract—Existing load-balancing methods used in data center
networks involve some shortcomings such as excessively large
decision delays during reactions to microbursts and large
overheads involved in active probing. Programmable data planes
have provided new opportunities for local decision-making on
switches to address these issues. We observe that queue behavior
(i.e., queue occupancy, queuing trend, and dequeue time interval)
in switches can reflect the current or future congestion degree on
a network. Furthermore, following data-driven experiments, we
found an accurate fitting function of congestion degree to queue
behavior. Thus, we propose an in-network load-balancing scheme
based on a programmable switch, called queue-behavior-aware
localized load balancing (QALL). In QALL, each switch
independently selects egress ports probabilistically according to
fine-grained-measured local queue behavior. The key concept of
QALL is to take account the evolutionary process of
reaching the current queue state into its decision basis for
load balancing. Experimental results under actual DCN
workloads (including web search and data mining workloads)
demonstrate the effectiveness of QALL. In terms of flow
completion time, decision delay, network shock, load sharing
accuracy, and packet reordering, QALL outperformed recent per-
packet (DRILL), per-flowlet (LetFlow and CONGA), and per-flow
(ECMP) load balancers, particularly under heavy load. For
example, under asymmetrical topology with 90% load level, the
flow completion time of QALL was lower than that of ECMP,
LetFlow, CONGA, and DRILL by up to 54.7%, 46.5%, 38.9%,
and 18.9%, respectively.

Index Terms—Data center networks, Distributed, Load

balancing, Programmable Data Plane, Queue behavior

I. INTRODUCTION
ATA center networks (DCNs) provide

infrastructure for many online services, such as
machine learning, on-demand video delivery, web

search, cloud computing, and interactive online tools [16].
Specifically, the DCN topology plays a significant role in

determining the level of failure resiliency, ease of incremental
expansion, communication bandwidth and latency. Based on a
CLOS architecture [16], existing DCN topologies often involve
a large degree of path redundancy, which allows for increased
fault tolerance. Properly distributing traffic loads across these
paths reduces contention among flows while increasing overall
resource utilization. Effective load balancing aims to avoid
situations in which many links may fall idle while others

Corresponding author: *Wai-xi Liu is with department of electronic and
communication engineering, Guangzhou University, Guangzhou, P. R. China.
Co-corresponding author: Jun Cai is with Guangdong Polytechnic Normal
University, Guangzhou, P. R. China.
Sen Ling, Jian-Yu Zhang, and Qing Chun Chen is with Guangzhou University,
Guangzhou, P. R. China.

continue to experience congestion.
Although most DCN topologies are symmetrical, in practice,

DCNs turn out to be often asymmetrical because of frequent
failures of network elements (e.g., switches, links, and ports);
for example, up to 40 link failures per day [15, 16]. However,
the performance of some load-balancing schemes depending on
symmetrical characteristic of topology deteriorates
significantly under asymmetrical topologies (e.g., equal-cost
multi-path (ECMP) [3] and Presto [8]).

Static load-balancing approaches such as ECMP [3] are not
suitable in DCNs because of the highly dynamic and bursty
nature of typical traffic. Alternative adaptive load-balancing
approaches can dynamically select paths for traffic loads to
minimize hotspots. Thus, the decision delay of adaptive load-
balancing approaches becomes critical owing to the frequent
decision-making required. However, decision delays in load-
balancing methods based on controllers (e.g., Hedera [6],
DeepRLB [28], Shafiee [19], and Oddlab[33]) or end hosts
(e.g., HPCC[45], CLOVE [7], Presto [8], Hermes [20], and
NDP [21]) are generally quite large. The basic concept behind
these methods is to collect and react to global or nearly global
congestion information. However, they typically have control
loops that are several orders of magnitude slower. For example,
in terms of controller-based methods, the interaction latency
between switches and the controller may be orders of
magnitude slower than the speed at which typical datacenter
congestion events occur. They also react slowly to microbursts
[4]. However, microbursts have been identified as the main
culprit of packet loss in DCNs, which leads to retransmissions
that impose significant latency and degrade application
performance [4,46].

In summary, these methods move network functions out of
the network fabric, striving to delegate load balancing to
centralized controllers [6, 19, 28] or end hosts [7, 20, 21]. These
entities serve as convenient locations to collect global or end-
to-end congestion information.

From a different direction, some methods (e.g., CONGA [1]
and HULA [2]) strive to delegate load balancing to the core of
a network, where switches make decisions for load balancing.
However, these methods require coordination among multiple
switches, leading to a considerable delay in making decisions.
For example, although CONGA adds customized hardware

QALL: Distributed Queue-Behavior-Aware Load

Balancing Using Programmable Data Planes

D

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

mechanisms to leaf and spine switches, its control loop
nonetheless typically requires several RTTs, by which time a
typical congestion event is likely to have ended [4].

Furthermore, these methods (i.e., controller-based, end-host-
based, and multiple-switch coordination) not only increase
delays in making decisions but also result in additional
overhead. For example, Shafiee [19] collected link utilization
data from switches at a controller. Hermes [20] periodically
sends small probe packets between end-host pairs to monitor
path conditions. HULA [2] regularly sends probe packets
transmitted between switches to sense the global link
utilization. Thus, designing load-balancing methods with short
decision delays suitable for asymmetric topologies and
operating in a distributed manner with low overhead is a
considerable challenge.

Recently, programmable data planes (PDPs) [23] such as
programmable network interface cards (i.e., smartNICs) and
programmable switches have attracted increasing attention. In
this study, PDPs refers to programmable switches. Due to their
programmability, PDPs have provided new opportunities to
drive unprecedented innovation in network protocols and
architectures. Switches located at the core of the network can
directly and accurately observe the network behavior of all
processed flows over short timescales. Furthermore, when the
switch becomes programmable, it is possible to perform
flexible load-balancing strategies directly inside PDPs (i.e., in-
network load balancing), as in, for example, HULA [2], DASH
[14], and Contra [17]. Clearly, in-network load-balancing
schemes are more effective at scale and more responsive to
network dynamics. However, they all use active probing to
collect network state. Of note, probing adds communication
overhead that can lead to performance degradation. Although it
does not depend on probing, DRILL [4] can suffer from
network shock because it allows each programmable switch to
select the “best” option among a set of randomly selected
multiple possible egress ports for each packet based only on
local queue occupancy.

To address dynamic networks, traffic control schemes (e.g.,
load balancing and routing/flow scheduling) use a strategy to
change the path (i.e., they actually also change the switches
passed by a given traffic flow in the network) by which traffic
is transmitted according to an optimal goal. Clearly, this is
eventually reflected in changes in the queue behavior of the
switches. In this article, we refer to queue occupancy, dequeue
time interval, and queuing trend in the egress ports of switches
as the queue behavior of switches. However, collecting fine-
grained statistics on queue behavior in real time is challenging.
Fortunately, in contrast to traditional switches that infer queue
behavior based on back-to-back methods, emerging
programmable switches can measure their own queue behavior
independently and in a fine-grained manner.

In short, load-balancing strategies actually involve choosing
ports to distribute traffic loads. Choosing a port determines the
egress traffic of the given egress port, and then the egress traffic
largely determines the congestion degree (or load) of a switch
to which this egress port connects. We observed some
interesting relations between egress queue behavior and egress

traffic, including (i) egress traffic being positively correlated
with egress queue occupancy and (ii) egress traffic being
negatively correlated with egress dequeue time interval.
Moreover, switches use a port to connect to other switches, and
thus the queue behavior of an egress port actually reflects the
congestion degree (or load) of the network connected to the
port. That is, the queue behavior of switches can reflect the state
of the corresponding network. PrintQueue [42] also observed
that queuing is both a result of historical effects and the current
state of the network.

Therefore, we propose a distributed in-network load-
balancing method on programmable data planes, called queue-
behavior-aware localized load balancing (QALL). In QALL,
each switch probabilistically selects an egress port according to
fine-grained-measured local queue behavior to achieve per-
packet/per-flowlet load balancing without any coordination
among switches or any controllers or probing. The main
contributions of this study are summarized as follows.

(a) We propose a distributed queue-behavior-aware load-
balancing method on PDPs. The key concept is that
QALL creatively takes account the evolutionary process
of reaching the current queue state into its decision basis
for load balancing: how to arrive (i.e., queuing trend)
and how long to arrive (i.e., dequeue time interval) the
current queue state (i.e., queue occupancy).
Furthermore, QALL includes a probabilistic forwarding
strategy designed to evenly distribute traffic to each
available port, rather than only selecting the best port as
in other schemes.

(b) We propose a data-driven load-balancing method.
Following a data-driven approach, we found an accurate
function to fit the congestion degree to queue behavior
and applied it to improve the performance of QALL.

(c) We used Mininet+BMv2 to test QALL on actual DCN
traffic workloads. The experimental results demonstrate
that QALL performed better than several existing
schemes in terms of lower flow completion time (FCT),
shorter decision delay, and smaller load-sharing
accuracy. Moreover, QALL does not depend on the
symmetrical characteristics of the network topology.

The remainder of this article is organized as follows. In
Section II, we review some relevant background and related
studies. In Section III, we present some observations and
describe the motivation of this work. In Section IV, we present
system design of QALL along with a description of the problem
it is designed to solve. In Section V, we present a data-driven
version of QALL. In Section VI, we provide the experimental
results. In Section VII, we discuss some practical issues and
suggest several challenging directions for future research. We
conclude in Section VIII with a summary of our findings.

II. BACKGROUND AND RELATED WORK
As shown in Fig. 1, load balancing can be performed per-

packet, per-flowlet, per-flowcell, and per-flow granularity. A
“flow” is a packet stream with the same 5-tuples header. In one
flow, a flowlet is a burst of packets that is separated in time

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

from other bursts by a sufficient gap — called the “flowlet

timeout” (Tinter in Fig. 1); a “flowcell” is a group of packets with
a fixed size (Csize in Fig. 1). Generally, despite suffering the
packet reordering in a flow under network asymmetry, per-
packet balancing can obtain high throughput owing to its fine-
grained scheduling. Although per-flowlet, per-flowcell, and
per-flow load balancing can avoid packet reordering, link
utilization cannot be maximized due to the inflexibility and
coarseness of these methods. In addition, they are all stateful
schemes that must record a flow state (e.g., 5-tuples); that is,
some memory is occupied.

Furthermore, decision location of load balancing (in this
article, referred as decision-maker) can be at the host (at the end
of the network), at a switch (in the core of the network), or at a
controller (at the top of the network). However, different
decision locations have different capabilities and views of the
network.

Packet interval TinterFlowlet 1 Flowlet 2

Flowcell 1

Flowcell size =Csize

Flow granularityLoad balancing granularity

Flowcell 2
(c) Per-flowcell

(b) Per-flowlet

(a) Per-flow

Packet 1

Flowcell size =Csize

Flow-1

Packet 6 Packet N Time

Time

Time

Fig. 1. Load balancing granularity

A. Load Balancing at Switch
(1) Load Balancing at Programmable Switch

In terms of per-flowlet load balancing, based on lazy
evaluation, CONGA [1] employed a customized leaf switch
which has a table to hold the link utilization seen along its
outgoing paths. Such link utilization is collected by receiving
switches and then piggybacked on traffic. However, its control
loop typically requires a few RTTs, and required customized
switches. To decrease the decision delay, HULA [2]
periodically send probing packets to proactively disseminate
link utilization information to all switches in network. However,
such probing adds some communication overhead.

In terms of per-packet, DRILL [4] determines the forwarding
path of every packet of a flow independently by considering per
port local queuing at the switches. In DRILL, each forwarding
engine randomly chooses d out of N possible output ports, and
finds the one with the current minimum queue occupancy
between these d samples and m least loaded samples from
previous time slots, and routes its packet to that port. To avoid
packet reordering under per-packet granularity, QDAPS [13]
selects paths for packets according to the queueing delay of
output buffer, and lets the packet arriving earlier be forwarded
before the later packets. Moreover, using the “power-of-n-
choices” paradigm, QDAPS alleviate the impact of herd

behavior under multiple forwarding engines. However, the
complexity of QDAPS is a challenge to switches, for example,
QDAPS’s CPU utilization and memory utilization increase 33%

and 64% than ECMP’s respectively.
Contra [17] enforces performance-aware routing policies,

where a compiler analyzes a desired policy in conjunction with
the network topology, and decomposes them into switch-local
Programming Protocol-independent Packet Processors (P4)
programs. These programs generate probes to collect path
metrics, and dynamically choose the best paths along which to
forward traffic.

However, one common limitation of these solutions
(CONGA, HULA, Contra, DRILL, etc.) on programmable
switch is that they only consider use a single “best” path at any
given time, and this leads to the “best” path to be quickly
congested. The benefits of using multiple paths have been
demonstrated by many works on the controller (e.g., HALO
[41]). W-ECMP [10], DASH [14], Closer [29], and CLB [27]
aim to balance load dynamically across multiple paths in the
data plane.

In terms of per-flowlet, as a weighted-cost multipath
mechanism (WCMP), W-ECMP [10] uses the path’s utilization

as the probability of choosing a path other than the best path,
thus it is not as sensitive to the frequency of state update
compared with CONGA and HULA. However, W-ECMP take
a long time to converge to new weights (i.e., large decision
delay). For this reason, DASH [14] presents a hash-based data
structure that quickly achieves adaptive traffic splitting in
programmable data planes to balance traffic across multiple
paths. Where, DASH uses the utilization of bottleneck link as
its decision basis. Closer [29] leverages in-band network
telemetry (INT) to obtain precise link state, and employs
WCMP at the network edge to proactively map the flows to the
appropriate paths and avoid the excessive congestion of a single
link. CLB [27] uses WCMP for traffic-aware load balancing
over many paths at a coarse-grained precision.

To adapt to different levels of burst in DCN, IntFlow [30]
integrates end-host based per-packet flow state monitoring with
flowlet switching in programmable switches. IntFlow’s core

idea is that proactively rerouting flows experiencing network
congestion or failures, while performing cautious flowlet
switching for small flows with high sending rate.

Different from other works based on programmable switch,
QALL uses probabilistic selection algorithm to distribute load
across multiple paths. Besides, QALL’s key idea is that
selecting egress port according to the queue occupancy in
conjunction with dequeue time interval and queuing trend
instead of a single network state metric (e.g., queue occupancy
or link utilization or FCT).
(2) Load Balancing at Traditional Switch

In terms of per-flow, ECMP [3] is widely used in DCN and
spreads traffic uniformly across multiple paths. However,
because of congestion-oblivious, it is well-known that ECMP
performs poorly when there is asymmetry either in the network
topology or the flow sizes [43]. In remote direct memory access
(RDMA) supported DCN, Dart [35] isolates the common case
of receiver congestion, and further subdivides the remaining in-
network congestion into the simpler spatially-localized and the
harder spatially-dispersed cases. And then quickly alleviating
congestion with the idea of divide-and-specialize. Where Dart

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

uses the local congestion information as its decision basis.
In terms of per-flowlet, LetFlow[5] is a simple congestion-

oblivious approach. LetFlow relies on the natural property of
flowlets which allows them to shrink or expand (in size)
according to available capacity over paths. However, due to the
randomness of LetFlow scheduling, the optimal load balancing
performance cannot be achieved. In summary, most per-flowlet
load-balancing schemes depend on a proper static setting of the
flowlet gap, which decides when new flowlets are detected.
While a too small gap may result in reordering, a too large gap
leads to missed load-balancing opportunities [31]. FlowDyn[31]
and Flex[9] can dynamically adapt the flowlet gap. Under a
switch-host collaborative paradigm, Flex [9] split the flow into
flowlets at the host based on the adaptive timeout., and then tell
the flowlet results to switches by marking the adjacent flowlets
of the same flow.

In terms of per-packet, some methods are proposed to
mitigate packet reordering. For example, (i) RMC [12] based
on network coding can effectively solve the reordering problem,
but it also introduces too many redundant coding packets,
which leads to too much extra traffic overhead, long queuing
delay and even packet loss. (ii)To address this problem, OPER
[26] uses opportunistic redundant packets which are replaceable
by the data packets in the switches under heavy congestion.

Lots of load balancing schemes, from ECMP [3] to
LetFlow[5], to Presto [8], avoid packet reordering under
asymmetric topology by balancing coarser units of traffic, but
easily lead to under-utilization of multiple paths. AG [18]
adaptively adjusts switching granularity according to the
asymmetric degree of multiple paths, to alleviate packet
reordering.

B. Load Balancing at Controller
Considering the control overhead and decision delay, most

controller-based load balancing methods are per-flow
granularity. By using a central controller to monitor the network,
Hedera [6] detects long flows and reschedules them on a lightly
loaded path, but it is not friendly to short flows. Shafiee[19]
dynamically adjusts the weight of the link according to the link
utilization, and assigns every arriving traffic to the minimum
weight path . However, due to depending on frequently
updating link weight, Shafiee’s performance is greatly affected
by the speed of updating weight and calculating minimum
weight path.

DeepRLB [28] and DRL-PLink[36] deploy the deep
deterministic policy gradient (DDPG) algorithm on software
defined networking (SDN) controller to achieve load balancing.
DRL-PLink[36] establishes some corresponding private-links
for different types of flows to isolate them such that the
competition among different types of flows can decrease
accordingly. Where DDPG is used to adaptively and
intelligently allocate bandwidth resources for these private-
links, by observing FCT.

For SDN-enabled hybrid optical/electrical DCN, DDMP [22]
dynamically adjusts traffic distribution according to the inverse
ratio of the buffer occupancy. Where the SDN controller
guarantees the capacity of the scheduling buffers and

reconfiguring the switch fabric.

C. Load Balancing at End-host
More easily being deployed on end-hosts by a software

update, the multipath TCP (MPTCP) leverages multiple sub-
flows for data transmission. However, in practice, using
multiple sub-flows is efficient only under inter-rack.
DCMPTCP [32] aims to improve the efficiency of MPTCP, for
example, preventing MPTCP from establishing multiple sub-
flows for rack-local traffic; estimating flow size, with which
inter-rack flows can leverage multipath in a smarter way. HPCC
[45] uses INT to collect queue information in switches to
achieve high precision congestion control in DCN.

In terms of per-packet, NDP [21] is a DCN transport protocol
which limits the aggregate transmission rate of all incast
senders by maintaining a PULL queue at the receiver. In terms
of per-flow, to an asymmetric DCN topology, FlowFurl[34]
reroutes the flows by combining link failure and congestion
information.

In terms of per-packet/per-flow, Hermes [20] monitor path
conditions at the end-hosts by sending probe packets between
end-host pairs periodically, and reroute flows affected by
failures or congestion caused by asymmetries. Specially, in
Hermes [20], short flows and long flows use per-flow
granularity and per-packet granularity, respectively.

In terms of per-flowlet, Clove [7] employs Paris traceroute
[11] to obtain all paths conditions traversing the network.
Where, each source leaf node collects the path conditions
information to the destination leaf by sending a probe packet,
and this information is brought back to the source leaf node by
ECN or custom packet headers. Clove relies on ECMP in
physical switches.

Besides, few works achieve per-flowcell granularity. For
example, without needing sensing congestion, Presto [8] breaks
flow into small near-uniform units of data (called flowcell),
where, in end-host, flowcells are assigned over multiple paths
very evenly by iterating over paths in a round-robin. However,
Presto has the difficulty with asymmetric scenarios, and cannot
interact well with unbalanced legacy traffic.

III. SOME OBSERVATIONS AND MOTIVATIONS
From this overview, we can identify some challenges and make

some notable observations regarding existing methods.

A. Challenges
Challenge 1: Which network state serves as a better

decision basis.
In general, all approaches to load balancing require the state

of the network as the basis for their decision-making, regardless
of whether they are controller-based, end-host-based, or switch-
based, except for a few methods that do not need to perform
sensing. Briefly, network states can be classified into two types:
device states (e.g., the queue occupancy of switches, link
utilization, and physical bandwidth of links) and traffic states
(e.g., flow-level FCT, packet-level delay, jitter, and loss rate).
These can provide different types of useful information for
decision-making, and their associated cost of measurement

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

differs.
However, most previous studies have used a single metric

(e.g., queue occupancy, link utilization, or FCT) as their
decision basis. In fact, these metrics reflect only the current
state of the network. That is, these metrics do not fully reflect
the degree of network congestion. Because queuing is a result
of both historical effects and the current state of the network
[42], we argue that the evolutionary process by which the
current network state was reached (i.e., how the network
reached its current state and how long this took) should be
considered as the decision basis. However, to the best of our
knowledge, no previous studies have considered this
evolutionary process.

Challenge 2: How to avoid network shock.
Previous load-balancing schemes (e.g., CONGA, HULA,

Contra, and DRILL) typically adopt a coarse-grained port
selection strategy that tends to directly schedule all traffic along
a single “best” path (the port with the smallest queue occupancy
or the path with the lowest link utilization) at any given time.
Such strategies may easily lead to the “best” path quickly
becoming excessively congested, and may also result in
frequent rerouting, which leads to the network state to fluctuate
widely and change over frequently. For example, under per-
flowlet granularity, link utilizations vary over time and from
one another by up to 2× [43]. In addition, frequent rerouting
within a flow can mix ACKs belonging to different paths in
congestion control protocols, which adversely affects the flow
rate control [30]. This study refers to the frequent rerouting of
traffic as network shock, which can be evaluated by the
Variance of the queue occupancy.

Challenge 3: How to decrease the decision delay to meet
high bandwidth and microbursts requirements.

In DCNs, to meet line-speed forwarding and ultra-low end-
to-end latency requirements (~10’s of µs), the processing time
within a switch is required to be smaller and smaller when
bandwidth become higher and higher (>10 Gbps). Moreover,
microbursts (short-lived traffic spikes that last for less than a
millisecond) quickly cause queues of switches to become fully
utilized, leading to immediate packet loss and subsequent
periods of unexpectedly high packet delay [24]. Measuring and
managing microbursts is challenging because of their short
lifespans, frequent occurrence at irregular intervals, and diverse
and ever-changing root causes (e.g., applications and TCP
artifacts such as ACK compression) [46]. For example, at
Facebook, more than 70% of microbursts last for less than a few
tens of microseconds, which is significantly shorter than the
frequency of most deployed measurement frameworks [47].
The two main methods in current use to manage microbursts
include absorbing the microbursts by adding sufficient buffer
space at switches [48] and load balancing [4]. The former may
incur high costs and fail under load and at scale. However, most
existing load-balancing methods [1, 2, 6, 7, 8, 19, 20, 21] that
are performed on large timescales react slowly to microbursts.
A few methods have aimed to achieve microburst tolerance on
switches at short timescales, such as DRILL [4] and Vertigo
[46]. DRILL performs micro load balancing to distribute a load
as evenly as possible on a microsecond timescale. Thus, we

argue that switches (the network core) should take corrective
action in response to microbursts in situ and in real-time before
a situation worsens.

Challenge 4: How to address constraints of
programmable switches.

To achieve packet processing with a high line-speed,
programmable switches have many constraints on the
algorithms that can be implemented [23]. Some of these
constraints are highlighted below to clarify the design
challenges and decisions involved in QALL.

(i) Programmable switches can perform only limited
operations (e.g., missing division and floating-point arithmetic
operations [44]) and programming models (e.g., missing loops).
In this study, we used shift and addition/subtraction operations
to replace division equivalently. We also use a random function
to avoid floating-point operations (more details are presented in
Sections IV-C and IV-D, respectively).

(ii) Programmable switches provide relatively limited
computational and memory resources to support application-
specific tasks. For example, in a typical programmable switch
(e.g., with an Intel Tofino), each stage can access only ~10 MB
of stateful memory (e.g., registers) [24]. To save the memory,
we use a hash operation to replace storing data.

 (iii) In most commodity programmable switches, queue
behaviors (i.e., the decision basis in QALL) are generally
available in the egress pipeline. However, the load-balancing
decision location must be within the ingress pipeline. The
decision basis must be transmitted to the load-balancing
decision location using a P4 clone operation [25]. Thus, a
space-time mismatch obtains between the load-balancing
decision location and its decision basis. That is, the network
state reflected by the decision basis is slightly out of date
compared to the time at which decisions are made. This
naturally reduces the accuracy of decision-making processes.
To address this space-time mismatch, we apply an updating
period factor (Tb) to adjust the freshness of the decision basis as
discussed in Section IV-E.

B. Observations
In essence, by constantly adjusting the transmission path for

traffic, the load-balancing scheme aims to achieve a reasonable
space-time distribution of traffic in the network. Because
switches are forwarding nodes on the transmission path,
variations in the traffic distribution in a network eventually lead
to changes in the queue behavior of the switches. Thus, we aim
to find the relationship between egress traffic and queue
behavior.

As shown in Fig. 2, queue occupancy (denoted by L) is
defined as the proportion of the queue depth of the egress port
to its total queue length when packets enter the queue of the
egress port. The dequeue time interval (denoted by T) is defined
as the time difference between two packets leaving the queue
of the egress port, and the queuing trend is defined as whether
the current queue occupancy is formed by an increase from
small to large or by a reduction from large to small. For
example, when the current queue occupancy is 50%, it may be
reduced from 60% to 50% or increased from 40% to 50%.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

...

Total queue length

The queue depth when packets enter the queue

...
Dequeue time interval

t1 t2

Enter the
queue

Dequeue

Packet

Enter the
queue

Packet

Fig. 2. The queue occupancy and dequeue time interval

First, we build a traffic observation dataset under actual
DCN workloads. Where we continually observe the running
process of the DCN (shown in Fig. 7) with typical setups.
Specially, ECMP is adopted as the load-balancing scheme, and
two types of widely used workloads (i.e., Data Ming and Web
Search) whose traffic distributions are shown in Fig. 8 are
loaded into servers h1-h32 as the background traffic. Half of
these hosts were configured as senders, and the other half
receivers. Because almost all traffic within a network passes
through spine switches, collecting traffic data at spine switches
suffices to determine the running process of the network. We
collected 200,000 groups of data on egress traffic (kbps), queue
occupancy (%), and dequeue time interval (us) of egress ports
of S1 and S2, as shown in Fig. 7. Second, data preprocessing
was performed on the observation dataset to obtain normalized
values such as maximum and minimum normalization and data
cleansing. Fig. 3 shows their envelopes, and we note the
following observations.

Observation 1: The egress traffic of a given port was
positively correlated with egress queue occupancy. The
Pearson correlation coefficient reached up to 0.7824.

Observation 2: The egress traffic of a given port was
negatively correlated with egress dequeue time interval. The
Pearson correlation coefficient reached up to -0.7308.

Clearly, Observations 1– 21 demonstrate some inherent facts
obtained in practice. For Observation 1, the queue occupancy
of an egress port indicates the current queue state of the port
when packets arrive, and the queue depth reflects the current
status of the egress traffic of the port (i.e., the longer the queue
depth of a port, the greater its egress traffic). Therefore, the
smaller the queue occupancy, the lower the egress traffic. This
observation is also consistent with the conclusions of queuing
theory [49]. It should be noted that this observation is true only
when there is queueing in the network. When the load of the
entire network is extremely light such that all egress ports of the
entire network have no queueing simultaneously (the queue
occupancy of all egress ports is zero), this observation is not
necessarily true. Of course, under this case, there is no need for
load balancing scheme.

By the same token, for Observation 2, the egress dequeue
time interval indicates the time required to form the current
queue state. When the queue occupancy is certain, a longer
egress dequeue time interval actually implies that packets are
allocated by a longer time interval to the link corresponding
with this egress port; in other words, the link is lighter.
Therefore, in most cases, the longer the egress dequeue time

1 In the Observations 1–2, the egress traffic, egress queue occupancy, and
egress dequeue time interval refer to the state of the same egress port.

interval, the less the egress traffic. For example, during an
observing time (referred to as R seconds), if M packets are
dispatched to the corresponding link of an egress port, where
the size of all packets is S bits and their transmission delay is t
seconds, thus, the egress traffic of this egress port is expressed
as follows,

𝐸_𝑡𝑟𝑎𝑓𝑓𝑖𝑐 =
𝑀 × 𝑆

𝑅
=

𝑀 × 𝑆

∑ 𝑇𝑗 + 𝑡𝑀−1
𝑗=1

(bit/s) (1)

where Tj is the dequeue time interval between the jth and
(j+1)th packet. Obviously, from equation (1), when Tj is larger,
the egress traffic is naturally less. When we let the observation
time R be sufficiently short (e.g., there is only one packet during
R), the egress traffic approaches 𝑆

𝑇𝑗
 (bit/s). Thus, the negative

correlation between egress traffic and egress dequeue time
interval is expected. Considering the observed correlation
between egress traffic and dequeue time interval is a moderate
instead of extremely high level (the Pearson correlation
coefficient reached up to -0.7308), we cannot completely
conclude that a longer dequeue time interval indicates a lighter
load. We discuss some special cases further in Section VII-C.

C. Motivations

Inspired by these observations, we followed several
motivations to address the abovementioned challenges.

Motivation 1: Decision basis integrating with the current
and future network states.

In short, the load-balancing strategy is actually the choice of
port, which determines the egress traffic of a given port (i.e.,
the corresponding link). Furthermore, the egress traffic of a port
largely determines the congestion degree (or load) of a switch
connected to the port. Clearly, the greater the egress traffic, the
higher the congestion degree. Thus, Observations 1 and 2 show
that the queue occupancy and egress dequeue time interval of a
port can reflect the current congestion degree of the network
connected to this port.

 Furthermore, the current dequeue time interval actually
reflects the number of historical packets injected into the
corresponding link in the past; thus, it can also reflect the future
congestion degree (more accurately, the congestion degree in
this study mainly refers to the link load) of a given link.

Fig. 3. The relationship between the egress traffic, queue occupancy and

dequeue time interval of ports

0

0.2

0.4

0.6

0.8

1
N

or
m

al
iz

ed
 v

al
ue

Observation Time

Egress traffic
Queue occupancy
Dequeue time interval

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

Therefore, when we take dequeue time interval as a decision
basis of load balancing, it is actually based on an implicit
congestion prediction.

Thus, when we consider the queue occupancy and dequeue
time interval together as the decision basis, we actually consider
the current and future congestion degree as a whole, and
actually achieve the cooperation between switches either
without depending on controllers or without explicit
information transmission between switches.

Simultaneously, the queuing trend should be a part of the
decision basis. If the current queue occupancy results from a
growth, this indicates that the queue is increasing and the
network congestion may be expected to become more severe; if
the current queue occupancy results from a reduction, this
indicates that the queue is decreasing and the network
congestion may be expected to gradually ease. The load-
balancing strategies applied in each case should differ.

In summary, compared with link utilization and FCT, queue
occupancy, dequeue time interval, and queuing trend can more
directly reflect current and future network congestion degrees
from the bottom; moreover, the cost of measuring them in PDP
is less.

Therefore, to address Challenge 1, based on the inherent
relationship between the network’s congestion degree and
switches’ queue behavior, our proposed approach uses queue
behavior as the decision basis for load balancing. To
summarize, our decision basis for load balancing creatively
considers the evolutionary process that occurred to reach the
current queue state, including how to arrive (i.e., queuing trend)
and how long it took to arrive (i.e., dequeue time interval) at the
current queue state (i.e., queue occupancy).

Motivation 2: Distributing traffic evenly instead of
through the best path.

In order to avoid network shock in Challenge 2 to achieve
better load balancing, we designed a probabilistic forwarding
strategy that distributes traffic evenly to each available port
instead of selecting only the best port.

Motivation 3: The first observer is the first decision-
maker.

To decrease decision delays, decision-makers should be
placed close to the network state that needs to be accessed,
which may be described as data locality. The programmable
switch located at the core of a network can directly and
accurately observe the network behaviors of all flows that pass
through the switch over short timescales. This programmability
can support flexible load balancing strategies directly inside
PDPs. Thus, to address Challenge 3, we employ programmable
switches as the key decision-maker.

IV. SYSTEM DESIGN OF QALL

A. Problem Statement
Considering a DCN with V switches and N hosts, we model

the network as a directed graph G = (V, E). Any two hosts
among N hosts are referred toas an end-to-end host pair. In

2 Under the packet-triggered work scheme, strict periodicity is impossible.

DCNs, communication for an end-to-end host pair contains a
set of candidate paths where the K-shortest paths (KSP) [37]
algorithm is used to calculate the candidate paths. By default,
all queues in switches use first-in-first-out (FIFO). Therefore,
its length increases when a new packet is inserted into a queue
and decreases when dequeuing packets.

Programmable switches adopt a packet-triggered work
scheme; that is, the execution of a P4 program for the load-
balancing algorithm is triggered by a packet arrival event
instead of by a strict period (periodically). This scheme
involves some constraints on the P4 programming of the load-
balancing algorithms.

B. Workflow of QALL
Inspired by above-mentioned motivations, based on its queue

behavior fine measured, the data plane of programmable
switches probabilistically selects egress ports for traffic to
achieve per-packet and per-flowlet load balancing. To
summarize, the key idea of QALL is that the more idle a given
port is (i.e., the lower the queue occupancy of the port and the
greater its dequeue time interval), the greater the probability of
its being selected, so the traffic is preferentially transferred to
the idle port.

As shown in Fig. 4, QALL includes state collection, state
return, congestion index estimation, and probabilistic
forwarding modules. The first two modules (responsible for
accessing the load-balancing decision basis (i.e., queue
behaviors)) are implemented on the egress pipeline of the PDP,
whereas the latter two modules (the load-balancing decision
location) are deployed on the ingress pipeline of the PDP. The
state collection and state return modules “periodically”2 send
the ingress pipeline queue behavior data of each egress port,
which are used to compute the congestion index using the
congestion index estimation module, and the probabilistic
forwarding module uses this index to select an egress port.

Data plane of programmable switch

Congestion
index

estimation

Probabilistic
forwarding

State return

State
collection

Egress pipelineIngress pipeline

Clone packet

Selecting ports

PacketPacket

Fig. 4. Framework of QALL.

QALL can achieve per-packet and per-flowlet load balancing.
As shown in Algorithm 1, when packet j arrives at ingress port
i, the following processing is triggered:

(1) The ingress pipeline determines whether the packet j is
a clone or a normal packet. The clone packet is generated by the
P4 clone operation and implemented through recirculation
feature that sends a packet (i.e., clone packet) back to the
ingress pipeline from the egress pipeline.

(2) For clone packets, after the queue behavior data of the
corresponding egress port is updated, packet j is discarded
(Lines 1–3).

(3) For normal packets, the load-balancing algorithm (per-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

packet or per-flowlet) is executed.
The algorithm finds all the available egress ports

corresponding to the established candidate paths (denoted by
[P]) according to the ingress port (Line 5). The congestion
index estimation module computes the congestion index
(denoted by C[P]) of each available egress port (Lines 6–9).

In the case of per-packet processing, the probabilistic
forwarding module uses the index C[P] to select an egress port
for packet j (Lines 10, more details are in Algorithm 2).

In the case of per-flowlet processing, whether packet j should
be divided into a new flowlet or assigned to an existing flowlet
is determined according to the time interval △T1 between two
packets (Lines 11–14). If the time interval is larger than the
flowlet threshold Tinter (Tinter can be set to a value of the end-to-
end delay level; in this study, Tinter =10ms), we create a new
flowlet and select an egress port for packet j (Lines 15–18);
otherwise, we follow an existing flowlet to forward packet j
(Line 20).

Regardless of whether per-packet or per-flowlet granularity
is applied, the state collection and return module in the egress
pipeline sends the ingress pipeline the queue behavior data of
each egress port (Line 22; more details can be found in
Algorithm 3).

Algorithm 1: QALL
Function QALL(packet, register):
A packet arrives a ingress port // Packet-triggered work scheme
/*In ingress pipeline processing*/
1. If clone_packet
2. Queue_register.Write(Egress_port)

// Updating the queue behavior data of corresponding egress port
3. Drop(clone_packet) // Discarding the clone packet.
4. Else
5. Finding all available egress ports [P] according to the ingress port
6. Congestion_module([P]): // Congestion index estimation module
7. Queue_info= Queue_register.Read([P])

 // Obtaining the queue behavior data of [P]
8. C[P]=Compute(Queue_info)//Computing congestion index C[P] for [P].
9. Return

/* Per-packet granularity */
10. Egress_port= Probability(C[P])

//Probabilistic forwarding module, and Algorithm 2 shows more details.
/* Per-flowlet granularity */
11. Flowlet_index=Hash(packet’s five-tuples) //Generating a flowlet index
12. T1=standard_metadata.ingress_timestamp//Getting the entry
timestamp of current packet
13. T2=Timestamp_flowlet_register.Read(Flowlet_index)//Getting the
entry timestamp of previous packet
14. △T1=T1-T2 //Computing the time interval between two packets △T
15. If △T1>Tinter //Determining whether the time interval is larger than Tinter
16. Creating a new flowlet
17. Egress_port= Probability(C[P])//Algorithm 2 shows Probability()
18. Egress_register.Write(Flowlet_index, Egress_port)

// Updating the forwarding port of current flowlet.
19. Else //The packet belongs to an existing flowlet
20. Egress_port= Egress_register.Read(Flowlet_index)

// Obtaining the forwarding port of current flowlet
21. Return

/* In egress pipeline processing */
22. collect_feedback(clone_packet, Queue_info)

//State collection and return module: Algorithm 3 shows their more details.

C. Congestion Index Estimation Module
 The congestion degree estimated by the congestion index

estimation module is the decision basis for forwarding packets.

Hence, the accuracy of this module directly affects the
performance of the load-balancing strategy. Our proposed
approach uses the congestion index to evaluate the congestion
degree of a network, where the higher the congestion index, the
more severe the congestion degree. Thus, following Motivation
1 and Observations 1–2, which showed a positively/negatively
correlated relationship between egress traffic, queue occupancy,
and dequeue time interval, the equation for estimating the
congestion index can be expressed as

𝐶𝑖 = 𝐿𝑖/𝑇𝑖 × 𝑉𝑖,

(2)
where Ci is the congestion index of egress port i, Li (0≤Li≤1) is
the queue occupancy of egress port i, and Ti is dequeue time
interval of egress port i (it is an integer in us in programmable
switch). Evidently, Equation (2) is applicable to any topology
or traffic pattern. That is, QALL performs well not only for
symmetrical topologies, but also for asymmetrical topologies.

L/T reflects the speed at which the queue depth changes. Thus,
a port with a lower L/T should be selected preferentially. Vi is
the queuing trend of egress port i. Given that the congestion
degree decreases when the queuing trend decreases, ports with
decreasing queuing trend should be selected preferentially.
Thus, considering Equations (5) and (6), we should use the
following rule to set the value of Vi (i.e., the weight of the
congestion index): the value of Vi in cases of the queue
occupancy increasing is larger than that in case of the queue
occupancy decreasing. For example, in this study, Vi=2 when
queue occupancy is increasing, and Vi=1 when the queue
occupancy is decreasing. In other words, the weight in cases of
the increasing is double that in case of the decreasing.

Considering that the programmable switch does not support
division operations, and to maintain the negative correlation
between C and T, by introducing the normalization factor τ, we
simplify equation (2) to perform multiplication, shift, and
addition/subtraction operations as follows.

𝐶𝑖 = 𝐿𝑖 × (1 − 𝑇𝑖/𝜏) × 𝑉𝑖 , (3)
where τ is the time constant that is used to normalize dequeue
time interval T to [0, 1]. We should apply the following rule to
set the value of τ: τ should be set a value of end-to-end delay
level to ensure that it is greater than T. As an example, τ is ~10
ms in this study.

Furthermore, considering that programmable switches do not
support floating-point operations, we simplify the
normalization in Equation (3) to a subtraction operation such
that the operation results are guaranteed to be integers. Thus,
the final equation for estimating congestion index can be
expressed as

𝐶𝑖 = 𝐿𝑖 × (𝜏 − 𝑇𝑖) × 𝑉𝑖. (4)
Compared with other methods that depend only on the queue

occupancy to estimate the congestion degree, Equation (4) can
reflect the network congestion degree more accurately and
perform load balancing more effectively. More importantly, the
congestion index can be calculated directly from the local queue
behavior. Specifically, we let Cmax be the maximum value of Ci,
which indicates the most severe congestion degree. Therefore,
Cmax is the value of Ci when Li=1, Ti=0, and Vi=2.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

D. Probabilistic Forwarding Module
The probabilistic forwarding module determines the

probability of port selection according to the congestion index
computed using Equation (4) to evenly schedule traffic to each
available port. In this study, the probability of egress port i
being selected for forward packets (denoted as Pi) is computed
as follows,

 𝑃𝑖 = 𝑊𝑖/(∑ 𝑊𝑖), (5)
where the traffic forwarding weight of egress port i is referred
to as Wi, which decreases with an increase in congestion index
Ci. Furthermore, Wi can be determined by

𝑊𝑖 = 𝐶𝑚𝑎𝑥 − 𝐶𝑖, (6)
Equation (5) depends on the division operation and Pi may

be a floating-point value. However, programmable switches do
not support floating point operations. Thus, our proposed
approach uses a random function provided in the programmable
switch to realize a uniform distribution, to achieve the
probabilistic forwarding described in Equation (5). Specifically,
we select the forwarded egress port with a selection grid manner.
As shown in Fig. 5 and Algorithm 2, the traffic forwarding
weight of egress port i is represented by Wi grids (Line 2), and
a switch has ∑Wi grids, which is identified by 1, 2, 3…∑Wi

(Line 3). The random function randomly generates a grid
identifier (Grid_ID) among [1, ∑Wi] (Line 4), and the packet is
forwarded from the egress port (Egress_port) to which the grid
identifier belongs (Line 5).

1 1 1 ... 1 1 1 1

Total weight of all ports: Wi

W1 grids for egress port 1 Wi grids for egress port i

Fig. 5. Probabilistic selecting the egress port in a selecting grid manner.

Algorithm 2: Probabilistic forwarding module in QALL
Function Probability (congestion index for ports set [P])
1. C[P]= congestion index for ports set [P]
2. W[P]=Weight(C[P])

//Converting the congestion index into corresponding weight as shown equation (6).
3. W_total=Sum(W[P])
4. Grid_ID =Random(W_total)
5. Using Grid_ID to determine egress port: packet is forwarded from the
egress port to which the Grid_ID belongs.
6. Return

E. State Collection and State Return Module
The state collection and state return modules are responsible

for the “regular” collection of the queue behavior of the egress

port and send the data to the ingress pipeline. In fact, the
frequency with which these behavior data are collected and sent
determines the freshness of the decision basis for load balancing.
However, excessively frequent state collection and sending
result in additional overhead on the switch. Thus, we set an
adjustable updating period factor (Tb) to achieve a tradeoff
between performance and overhead. In this study, Tb =1ms.
Further details regarding the overhead are provided in Section
VI-F.

As shown in Algorithm 3, following the decision of the
probabilistic forwarding module, a packet is scheduled to an
egress port (Egress_port), and this event triggers the system to

compute the time interval between this event and the last update
event (△T2, Lines 1–3). If △T2 is less than Tb, the state
collection module continues to collect the Egress_port’s queue
behavior and saves the data in corresponding registers of the
switch (Lines 4–5).

If △T2 exceeds Tb, the state return module reads
Egress_port’s queue behavior data stored in the register and
sends a clone packet that piggybacks with this data to the
ingress pipeline of the switch (Lines 6–7). Finally, the cloning
time is recorded by a register (Line 8). When this clone packet
arrives at the ingress pipeline, update and discard operations are
performed according to lines 1–3 in Algorithm 1. As shown in
Fig. 6, the clone packet comprises 10 bytes, where Egress port
index refers to the egress port to which the piggybacked queue
behavior data corresponds.

Queue occupancy
(bit<16>)

Dequeue time interval
(bit<48>)

Queuing trend
(bit<8>)

Egress port index
(bit<8>)

Fig. 6. The format of clone packet in QALL

Algorithm 3: State collection and return module in QALL
Function collect_feedback(packet,register):
A packet arrives egress port Egress_port // Packet-triggered work scheme
1.T1=standard_metadata.egress_timestamp //Obtaining the arriving time of
the packet.
2.T2=Timestamp_port_register.Read(Egress_port) //Obtaining the
previous cloning time corresponding with Egress_port.
3.△T2=T1-T2 //Computing the time interval.
4. If △T2≤Tb // The updating time has not come.
5. Continue collecting Egress_port’s queue behavior (Queue_info), which
is saved in switch’s registers.
6. Else //The updating time has come
7. Clone (Queue_info)
8. Timestamp_port_register.Write(Egress_port) //The cloning time
corresponding with Egress_port is recorded

V. DATA-DRIVEN QALL
The proposed load-balancing strategy allocates traffic by

estimating the congestion degree of each egress port. Therefore,
the accuracy of estimating the congestion index is crucial to
determine the effectiveness of the load-balancing strategy. We
designed QALL based on a qualitative analysis of the
correlation between egress traffic, queue occupancy, and
dequeue time interval. Subsequent experimental results
confirmed that QALL performed well. Furthermore, based on
the data-driven concept, this section aims to quantitatively fit
the relationship between these variables through a regression
analysis, so as to estimate the congestion index more accurately
and further improve QALL’s performance.

A. Data-Driven Congestion Index Estimation
To achieve above-mentioned fit, we used 150000 groups and

50000 groups of the observation dataset as a training and
testing sets, respectively.
(1) Data-driven methods

Many data-driven methods, such as neural networks [38] and
least-squares methods [39], can be used to describe the
relationships between variables. However, the outputs of neural
network models trained using large volumes of data are
generally not interpretable. The greatest advantage of the least-
squares method is that we can obtain an explicit fitting function

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

that explains the relationships between these variables. Based
on this explicit function, a programmable switch can be used to
design a congestion index estimation module and realize a load-
balancing strategy. Therefore, we chose least-squares
polynomial linear regression and least-squares polynomial
nonlinear regression to fit the relationship between egress
traffic, queue occupancy, and dequeue time interval in this
study.

The basic principle of least-squares for fitting data is to use a
polynomial function to approximate discrete sequences (X, Y).
We assume that Yi is the ith sample of the fitted object and 𝑋𝑘𝑖
is the kth feature of the ith sample in X. This approach is used to
obtain the polynomial function 𝑓(𝑋𝑖) = 𝑎0 + 𝑎1𝑋1𝑖 +
𝑎2𝑋2𝑖+. . . +𝑎𝑘𝑋𝑘𝑖 such that the sum of the squares of the
differences between 𝑓(𝑋𝑖) and Yi is minimized. That is,
Equation (7) is minimized.

𝐸 = ∑(𝑓(𝑋𝑖) − 𝑌𝑖)
2

𝑛

𝑖=1

 = ∑(𝑎0 + 𝑎1𝑋1𝑖 + 𝑎2𝑋2𝑖+. . . +𝑎𝑘𝑋𝑘𝑖 − 𝑌𝑖)
2

𝑛

𝑖=1

.

(7)

In terms of fitting high-order polynomial regression, this
approach is a non-linear regression model. In our proposed
method, the higher-order independent variable in the
polynomial is converted into a separate feature. For example,
for feature X1, if the sample data are [0, 1, 3], then for the
quadratic and cubic terms of X1, it is regarded as an independent
feature, that is, the sample [0, 1, 9] and [0, 1, 27], respectively.
In this way, these three features are input as independent
features so that the nonlinear polynomial regression model is
converted into a multivariate linear regression model, and the
fitting equation is obtained by solving.

In this study, the egress traffic is taken as Y, the queue
occupancy L and dequeue time interval T are taken as X, and
then the explicit function Y=f(X) is fitted as the estimated
congestion index. The congestion index can be calculated
directly from the local queue behavior.
(2) Fitting results

Considering that the queuing trend is an attribute contained
in the queue occupancy itself, to reduce the complexity of the
fitting process, we did not add a queuing trend to fit the
congestion index. Therefore, using the training set of the
observation dataset, L and T were fitted as egress traffic based
on least-squares polynomial linear regression, polynomial
quadratic regression, and polynomial cubic regression which
are referred to as C-linear, C-poly2, and C-poly3, respectively.

The fitting equation for bivariate polynomial linear
regression is shown in Equation (8) below.

C-linear=0.167+0.261×L-0.468×T. (8)
The fitting equation for the bivariate quadratic polynomial

regression is shown in Equation (9).
C-poly2=0.175+0.797×L-0.896×T-

1.068×L2+1.422×L×T+0.845×T2.
(9)

The fitting equation for the bivariate cubic polynomial
regression is shown in equation (10).

C-poly3=0.186+0.892×L-1.446×T-

2.514L2+18.873×L×T+3.472×T2+1.654×L3-

22.944×L2×T-58.49×L×T2-2.254×T3.

(10)

It may be observed that equation (8)–(10) based on data-
driven approaches and equation (4) based on theoretical
derivation all show the correlation between the egress traffic,
queue occupancy, and dequeue time interval. In particular,
Equations (8)–(10) further quantitatively determine the weight
of each variable in the equation to estimate the congestion index;
thus, they can estimate the degree of congestion more
accurately.

Simultaneously, we observed how the power of the fitting
function affected the fitting accuracy. Table I shows the
Goodness of Fit (R2) and Mean Relative Error (MRE) for the
test set of observation dataset, which are widely used to
evaluate fitting.

TABLE I FITTING ACCURACY
Power of fitting function R2 MRE

Primary power 0.5772 0.3687
Quadratic 0.6277 0.2755

Cubic 0.6738 0.2739
Fifth power 0.7312 0.2696

Octave 0.7358 0.2638
Tenth power 0.7452 0.2114

From Table I, it may be observed that R2 and MRE improved
to different degrees when the power of the fitting function was
greater, indicating an improved fitting accuracy. However, the
fitting accuracy did not improve significantly after cubic fitting,
and the required computing resources increased exponentially
with increasing power. Considering the limited computing
resources of programmable switches, if a large amount of
computing resources are consumed to compute the congestion
index, the performance of forwarding normal packets decreases
accordingly.

Therefore, we used primary power, quadratic, and cubic
fitting to estimate the congestion index. Considering that
programmable switches do not support floating-point
operations, we multiplied the right side of Equations (8)–(10)
by a scaling factor (100) and then truncated and rounded the
data, converting the floating-point values to integers. Thus, the
final equation used to estimate the congestion index is as
follows.
C-linear=16+26×L-46×T, (11)
C-poly2=17+79×L-89×T-106×L×L+142×L×T+84×T×T, (12)
C-poly3=18+89×L-144×T-251×L×L+188×L×T+347×T×T,
+165×L×L×L-2294×L×L×T-5849×L×T×T-225×T×T×T.

(13)

B. Data-Driven Load Balancing Scheme
To further improve the performance of QALL, Equation (4)

can be replaced by Equations (11), (12), and (13) respectively,
while the state collection, state return, and probabilistic
forwarding modules remain unchanged. As an example, we
aimed to optimize the per-packet granularity QALL-Pkt. These
schemes that use C-linear, C-poly2, and C-poly3 for QALL-Pkt
are referred to as QALL-linear, QALL-poly2, and QALL-poly3,
respectively. Obviously, we can also optimize the per-flowlet
granularity of QALL-Flowlet with the same method.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

VI. EXPERIMENT EVALUATION

A. System Development
Following the experimental setup adopted in QDAPS [13],

Contra [17], and CLB [27], etc., we evaluated the performance
of QALL on a large-scale DCN constructed with Mininet+
BMv2, where Mininet was used to create a leaf-spine topology
(Fig. 7) and BMv2 was installed as the software programmable
switch. We implemented QALL using programming protocol-
independent packet processors (P4). Each switch port included
only a single FIFO queue.

As shown in Fig. 7, following CONGA [1] and Clove [7], we
used a two-tier Clos topology with two spine switches (S1 and
S2) connecting two leaf switches (L1 and L2) under a set of
actual DCN traffic workloads to test the proposed QALL
method. Routing was performed such that all traffic received by
a spine switch from one of the leaf switches was forwarded
towards the other leaf switch. Each leaf switch was connected
to either spine by two 400 Mbps links. This yielded a total of
1600 Mbps for the bisection bandwidth. Each leaf was
connected to 16 servers with 100 Mbps links. This ensures that
the network avoids oversubscribing, and the 16 servers on one
leaf can saturate the 1600Mbps bandwidth together.

h1

...

h8 h9 h16

...

h17

...

h25 h26 h32

...

X

S1 S24x400Mbps

16x100Mbps

3x400Mbps

16x100MbpsL1 L2

Fig.7 Topology used in evaluation

B. Actual DCN Traffic Workloads
Following the majority of studies on this subject [1, 2, 4, 5],

we simulated actual DCN traffic using two types of widely used
workloads, including web-search (WS) and data-mining (DM)
workloads. Fig. 8 shows the cumulative distribution function
(CDF) of the flow sizes from the WS and DM workloads. In
these workloads, most of the flows were mice flows with a size
of less than 100 KB, whereas a smaller number of flows were
elephant flows larger than 10MB. For example, in the WS
workload, more than 60% of the flows were mice flows, and 25%
were elephant flows. It may be observed in the DM workload
that 80% of the flows were mice flows and 10% were elephant
flows.

The flows arrive according to the Poisson process with flow
arrival rates λ (flows/s), and the source and destination of each

flow are selected uniformly at random. To emulate various
degrees of load, we scaled the flow interarrival times. That is,
we used different values of λ to simulate different traffic load

levels 𝜌, where 𝜌 =
λ×𝐸(𝐹)

𝐿𝑖𝑛𝑘 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 and E(F) is the average flow

size, and Link bandwidth is the bandwidth of the link. In this

study, we varied λ and E(F) dynamically to let 𝜌 be 10%-90%,
and the default value of 𝜌 was 70%.

Fig. 8. Traffic distributions of DM and WS workload.

C. Performance Evaluation Methodology
The QALL under per-packet granularity is referred to as

QALL-Pkt, and QALL under per-flowlet granularity is referred
to as QALL-Flowlet. Because QALL is a per-packet/per-flow
granularity load-balancing method located at switches, we
compared QALL with other load-balancing schemes located at
switches, including a typical per-packet scheme (DRILL), two
typical per-flowlet schemes (CONGA and LetFlow), and a
typical per-flow scheme (ECMP). We used decision delay, flow
completion time (FCT), network shock (evaluated by the
Variance of queue occupancy), load sharing accuracy, packet
reordering (evaluated by the number of TCP duplicate ACKs),
and system overhead (evaluated by the resource and control
loop overhead) to test their performance at scale.

The load sharing accuracy varies over time, and the load

sharing accuracy at ith time slot is defined as 𝑃𝑖 =
𝑈𝑖

𝑀𝑎𝑥−𝑈𝑖
𝑀𝑖𝑛

𝑈𝑖
𝑀𝑖𝑛 =

𝑈𝑖
𝑀𝑎𝑥

𝑈𝑖
𝑀𝑖𝑛 − 1,where 𝑈𝑖

𝑀𝑎𝑥=Max{Ui1, Ui2,… Uij,…}, 𝑈𝑖
𝑀𝑖𝑛=Min{Ui1,

Ui2,… Uij,…}, and Uij is the link utilization of the jth link at the
ith time slot. In other words, 𝑈𝑖

𝑀𝑎𝑥 and 𝑈𝑖
𝑀𝑖𝑛 are the link

utilization of the busiest and idlest links at the ith time slot,
respectively. The definition actually reflects the difference
between the lightly loaded and heavily loaded links; evidently,
the closer the load-sharing accuracy is to 0, the better the load
balance. Thus, our results suggest that the load sharing
accuracy can quantify the level of load balancing in a DCN.
Network operators prefer lower load sharing accuracy, which
implies maximizing link utilization without packet loss and
reducing investment costs.

In short, decision delay is a metric for evaluating the ability
of the load-balancing scheme to cope with microbursts, FCT is
a metric for evaluating the quality of experience for users, load
sharing accuracy is a metric for evaluating the resource
utilization efficiency of network operators, and system
overhead is a metric for evaluating QALL’s scalability.

D. Experimental Results
(1) Decision delay

In this study, decision delay refers to the time required to
update the decision basis. Because the traffic load can change
on a very small timescale, a long decision delay leads to a
corresponding deviation from the expected load distribution for

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

a longer duration. The decision delays for QALL, DRILL,
CONGA, HULA, LetFlow, and ECMP are presented in Table
II.

In CONGA, the decision-maker is the source leaf switch,
where the destination leaf switches use a piggybacking network
state manner to update its decision basis. Therefore, the
decision delay depends on the normal traffic from the
destination host to the source host. If the destination
temporarily does not send packets to the source host, the
decision delay increases significantly.

In HULA, each switch is a decision-maker, and probes are
used to proactively disseminate link utilization information to
all switches in the network. Without waiting for piggyback
from the destination leaf switch, HULA’s decision delay

decreased compared with that of CONGA. HULA’s decision

delay depends on the time required for the probe packets to
reach each switch from the leaf switch and is greatly affected
by the network state.

In QALL and DRILL, the decision basis is updated directly
within the local switch. Their decision delay comprises only the
cloning time from the egress pipeline to the ingress pipeline.
Thus, their decision delay was less than those of CONGA and
HULA.

Compared with CONGA and HULA, QALL's decision delay
was at least 96.8% and 74.3%–92.8% less, respectively. In
particular, the decision delay of QALL was slightly shorter than
that of DRILL, primarily because DRILL needs to read the
congestion state from the registers multiple times and compare
the ports corresponding to the minimum value. Compared to
QALL, these operations require more processing delays.

LetFlow and ECMP do not need to sense the network state,
instead directly forward traffic through a prepared fixed flow
table. Thus, the decision delay is close to zero. However, such
hardwired mapping without sensing is definitely performed at
the expense of performance.

TABLE II DECISION DELAY OF DIFFERENT SCHEMES
Schemes Decision delay

QALL 0.615ms
CONGA >=19.8ms
HULA 2.4ms-8.6ms
DRILL 0.621ms

LetFlow/ECMP -

(2) Average FCT under Symmetrical Topology
Fig. 9 and Fig. 10 show the average FCT of QALL, DRILL,

CONGA, LetFlow, and ECMP under different load levels.
We found that (i) the smaller the load-balancing granularity,

the smaller the FCT, where QALL-Pkt <DRILL< QALL-
Flowlet <CONGA <LetFlow <ECMP. In fact, this result is
relatively straightforward. A smaller load-balancing granularity
was found to result in a better chance of evenly distributing
traffic to each available path. (ii) Under the same load-
balancing granularity, congestion-aware schemes such as
CONGA and QALL-Flowlet can perform better than non-
congestion-aware load-balancing schemes (e.g., LetFlow). This
is the case because congestion-aware schemes can schedule
traffic according to the network state and have a better chance

of allocating traffic to paths with lighter loads, rather than
simply distributing traffic randomly to paths.

Fig. 9 shows the average FCT for data-mining, where QALL-
Pkt performed best, as expected. The FCT of QALL-Pkt was
lower by up to 51.7%, 43.1%, and 41.4% compared with those
of ECMP, LetFlow, and CONGA, respectively. In terms of per-
flowlet, the FCT of QALL-Flowlet was lower by up to 30.3%
and 26.9% compared with that of LetFlow and CONGA,
respectively. The main reason that QALL-Flowlet
outperformed CONGA is that, depending on the manner of
piggybacking, CONGA is a passive congestion-aware method
and does not update the congestion state in time, whereas
QALL is based on active clone packets for congestion-aware
traffic management, which can update the congestion state in a
more timely manner.

In terms of per-packet, the FCT of QALL-Pkt was lower by
up to 26.4% compared with that of DRILL. The main reason for
this result is that (i) equation (4) is a better method for
estimating congestion, which creatively takes into account the
process of how the current queue state was reached. (ii)
Thanking for equation (5)–(6), a better method for evenly
distributing the traffic to each available port, instead of
selecting only the best port, as in DRILL.

Fig. 10 shows the average FCT for web-search, which
exhibited more elephant flows than data mining. As expected,
QALL-Pkt yields the best results. The FCT of QALL-Pkt was
lower by up to 51.4%, 42.9%, and 35.8% compared with ECMP,
LetFlow, and CONGA, respectively. In terms of per-flowlet,
the FCT of QALL-Flowlet was reduced by up to 35.8% and
25.4% compared with LetFlow and CONGA, respectively. In
terms of per-packet, the FCT of QALL-Pkt was reduced by up
to 21.5% compared with that of DRILL.

Finally, from Fig. 9 and Fig. 10, under both data mining and
web search, it may be observed that the advantages of per-
packet QALL-Pkt compared with the other schemes increased
with increasing load. That is, performance under per-packet
granularity can be ensured in the case of a heavy load, which
mainly benefits from the fine-grained load-balancing strategy,
and traffic can still be evenly distributed to each available port.

Fig. 9. Average FCT for data-mining under symmetrical topology.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

(3) Average FCT under Asymmetrical Topology

To simulate asymmetry in the baseline symmetric topology,
we disabled one of the 400Mbps links connecting the spine S2
with leaf switch L2. The average FCT under the asymmetric
topology is shown in Fig. 11 and Fig. 12. We can see that the
FCT of all schemes increased rapidly with the increase in load
after the load level was greater than 50% and is larger than that
of the symmetrical topology under the same load level.

Fig. 11 shows the average FCT for data-mining, where
QALL-Pkt performed the best, as expected. The FCT of QALL-
Pkt was lower by at most 61.4%, 57.3%, and 49.7% compared
with those of ECMP, LetFlow, and CONGA, respectively. In
terms of per-flowlet, the FCT of QALL-Flowlet was lower by
at most 43.8% and 24.7% compared with that of LetFlow and
CONGA, respectively. In terms of per-packet, the FCT of
QALL-Pkt was lower by at most 23% compared with that of
DRILL.

Fig. 12 shows the average FCT for web-search which has
more elephant flows than data-mining. As expected, QALL-Pkt
yields the best results. The FCT of QALL-Pkt was reduced by
at most 53.1%, 49.2%, and 42.1% compared with that of ECMP,
LetFlow, and CONGA, respectively. In terms of per-flowlet,
the FCT of QALL-Flowlet was lower by at most 25.9% and
11.5% compared with those of LetFlow and CONGA,
respectively. In terms of per-packet, the FCT of QALL-Pkt was
up to 15.4% lower than that of DRILL.

In factually, a symmetric topology naturally has a certain
load balancing ability; for example, ECMP depends on this
feature to achieve load balancing. In an asymmetric topology,
the available bandwidth is reduced, which tests the capabilities
of the load balancing strategy further. However, based on more
accurately estimating congestion, more evenly distributing
traffic, and locally making decisions, QALL can still achieve
better load balancing performance under an asymmetric
topology with a heavy traffic load. Thus, for most load levels,
the advantage of QALL compared to other schemes under an
asymmetric topology was larger than that under a symmetric
topology, especially compared to ECMP.

(4) 99th percentile FCT under Asymmetrical Topology

Different from average FCT, from another view, we used the
99th percentile FCT to evaluate the tail latency of load
balancing. As an example, Fig. 13 and Fig. 14 show the 99th
percentile FCT under asymmetrical topology where QALL-Pkt
was the best. In fact, there was also a similar result under a
symmetrical topology.

Fig. 13 shows the 99th percentile FCT for data-mining. The
99th percentile FCT of QALL-Pkt was lower by at most 52.9%,
43.7%, and 35.7% compared with those of ECMP, LetFlow,
and CONGA, respectively. In terms of per-flowlet, the 99th
percentile FCT of QALL-Flowlet was reduced by at most 25.9%
and 15.4% compared with that of LetFlow and CONGA,
respectively. In terms of per-packet, the 99th percentile FCT of
QALL-Pkt was reduced by at most 9.7% compared with that of
DRILL.

Fig. 14 shows the 99th percentile FCT for the web-search
workload. The 99th percentile FCT of QALL-Pkt was lower by
up to 65.4%, 54.4%, and 44.9% compared with those of ECMP,
LetFlow, and CONGA, respectively. In terms of per-flowlet,
the 99th percentile FCT of QALL-Flowlet was lower by at most
32.3% and 22.7% compared with those of LetFlow and
CONGA, respectively. In terms of per-packet, the 99th
percentile FCT of QALL-Pkt was lower by up to 20.1%
compared with that of DRILL.

In summary, we can also see that the advantage of QALL
compared to other schemes under the web-search was greater
than for data-mining workloads. However, web-search have
more elephant flows than data-mining workloads. In other
words, in terms of the 99th percentile FCT, QALL can better
help elephant flows than mice flows, because the tail latency is
more important for elephant flows than for mice flows. At the

Fig. 10. Average FCT for web-search under symmetrical topology.

Fig. 11. Average FCT for data-mining under asymmetrical topology.

Fig. 12. Average FCT for web-search under asymmetrical topology.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

same time, in terms of the 99th percentile FCT, the fine-grained
schemes were better than the coarse-grained schemes, and
QALL-Pkt performed better than DRILL because DRILL
suffered from network shock caused by its coarse-grained port
selection strategy.

(5) Network Shock under Symmetrical Topology

Many load-balancing schemes (e.g., CONGA, HULA, and
DRILL) usually adopt a coarse-grained port selection strategy.
Such a strategy easily results in frequent changeover of paths
(i.e., network shock). Such network shock will eventually be
manifested as a shock in queue occupancy. In this section, we
use the Variance of queue occupancy to evaluate the network
shock. As an example, for the relatively high load level (i.e., 𝜌
=70%) under symmetrical topology, the Variance of queue
occupancy is shown in Table IV. In fact, we also obtained a
similar result under an asymmetrical topology.

In essence, the load balancing scheme aims to adjust and
finally achieve a reasonable space-time distribution of traffic in
the network. The change of traffic distribution in the network
eventually leads to a change in the queue behavior of the
switches. In other words, an unbalanced traffic distribution
leads to a large Variance in queue occupancy and affects the
FCT. Thus, from Table III, we can see that the pros and cons of
Variance under various schemes are basically the same as the
pros and cons of FCT as discussed above. The Variance of
QALL-Pkt was 1.5 × and 2.4 × lower than those of LetFlow and
ECMP, respectively. These results further verify Motivation 1,
in which QALL uses the relationship between the congestion
degree, queue occupancy, and dequeue time interval as part of
its decision basis.

More importantly, well-balanced and non-shocked queue
occupancies can allow the network delay across all paths
between every source and destination pair to be similar, thereby
reducing packet reordering.

TABLE III THE VARIANCE OF QUEUE OCCUPANCY
Schemes The variance of queue occupancy
QALL-Pkt 0.0667

DRILL 0.0712
QALL-Flowlet 0.0755

CONGA 0.0922
LetFlow 0.1028
ECMP 0.1593

(6) Load Sharing Accuracy

Network operators desire lower load sharing accuracy
(generally less than 5%). Under the relatively high load level
(i.e., 𝜌 =70%), the load sharing accuracy is shown in Fig. 15,
where every 10s is one time slot.

The load sharing accuracy of QALL can always be
maintained within 5%, where the average load sharing
accuracy of QALL-Pkt and that of QALL-Flowlet was 1.414%
and 2.8%, respectively. The average load sharing accuracy of
DRILL, CONGA, Flowlet, ECMP were 1.75%, 3.8%, 4.27%,
and 5.76%, respectively, and the load sharing accuracy of
ECMP was always higher than 5%. Obviously, these results
were caused by the decision delay. As shown in Table II, the
decision delay of QALL was the shortest, indicating that QALL
was able to perceive the network state in real time and adapt to
changing traffic patterns more flexibly. Clearly, the help of
sensing with a shorter decision delay inevitably leads to a
smaller load sharing accuracy and finally to a smaller FCT and
Variance in queue occupancy. Thus, as expected, the
advantages and disadvantages of load sharing accuracy under
various schemes are basically the same as those of the FCT and
Variance as mentioned above. These results further verify
Motivation 3, in which QALL had better data locality. In short,
these results confirm that QALL mitigated traffic imbalance,
which was reflected by performance improvements as
mentioned (i.e., lower FCT).

(7) Average FCT of Data-driven QALL

Fig. 16 and Fig. 17 show the average FCT of QALL-Pkt,
QALL-Linear, QALL-Poly2, and QALL-Poly3 under a
symmetrical topology. We also obtained similar results under
an asymmetrical topology.

Fig. 13. 99th percentile FCT for data-mining under asymmetrical

topology.

Fig. 14. 99th percentile FCT for web-search under asymmetrical

topology.

Fig. 15. Load Sharing Accuracy.

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5

1 51 101 151 201 251 301 351 401 451

Lo
ad

 S
ha

rin
g

A
cc

ur
ac

y(
%

)

Time slot

QALL-flowlet ECMP LetFlow
CONGA DRILL QALL-Pkt

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

Compared with QALL-Pkt, QALL-Poly2 and QALL-Poly3
improved the average FCT; however, QALL-Linear did not
improve. For example, under data-mining and web-search with
a load level of 80%, compared with QALL-Pkt, QALL-Poly2
was reduced by at most 5.4% and 4.7%, respectively. Under
data-mining and web-search with a load level of 80%,
compared with QALL-Pkt, QALL-Poly3 was reduced by up to
7.8% and 4.9%, respectively. Finally, Fig. 16 and Fig. 17 show
that the advantages of QALL-Poly2 and QALL-Poly3
compared with QALL-Pkt increase with increasing levels of
traffic load level for both data-mining and web-search.

Obviously, the reason behind these results is the quantitative
fitting of the relationship between egress traffic, queue
occupancy, and the dequeue time interval. The Vi and τ of
QALL-Pkt are empirically determined according to some
reasonable rules. However, the Vi and τ of QALL-Linear,
QALL-Poly2, and QALL-Poly3 have been more accurately
determined by data-driven method. Table I shows that the
fitting accuracy improved when the power of the fitting
function increased. Correspondingly, in terms of average FCT,
the following trend was clearly evident: QALL-Poly3<QALL-
Poly2<QALL-Pkt ≈QALL-Linear. In short, the higher the
fitting accuracy, the lower the FCT. In particular, the fitting
accuracy of the primary power for QALL-Linear was too low
to help improve the FCT.

E. Packet Reordering

Packet reordering may trigger a duplicate ACK mechanism
and could thus degrade TCP performance. Because TCP detects
packet loss [4] and then reduces its transmission rate when
duplicate ACKs exceed the retransmission threshold. Many
load-balancing schemes such as ECMP [3], CONGA [1], and
Presto [8] avoid packet reordering by balancing coarser units of
traffic, but at the expense of performance.

It is well known that queuing delay is the main source of
network delay in DCNs [4]. In QALL, the well-balanced load
(Fig. 15) and extremely low variance of queue occupancy
(Table III) imply that packets experience almost identical
queuing delays regardless of the paths they take (i.e., packets
nearly always arrive in order despite traversing different paths).
Our experimental results confirm this hypothesis. Therefore,
packet reordering is minimal in QALL-Pkt. Fig.18 shows the
amount of reordering measured in terms of the number of TCP
duplicate ACKs under a load level of 70%. We compared
QALL-Pkt to DRILL and per-packet Random (a typical no
load-awareness scheme), which forwards each packet along an
independent random shortest path.

Per-packet load balancing makes fine-grained forwarding
decisions for each packet independent of other packets of the
same flow. This is expected to cause excessive packet
reordering. However, QALL-Pkt and DRILL can also cause
minimal packet reordering if the delays along multiple paths
differ by less than the time between packets in a flow [4]. Fig.18
confirms that the degree of reordering under QALL-Pkt and
DRILL rarely reached the TCP retransmission threshold, even
under heavy load. For QALL-Pkt and DRILL, only 0.35% and
0.41% of the flows have one or more duplicate ACKs,
respectively.

Furthermore, in terms of QALL-Pkt, only 0.018% of the
flows exceeded the typical TCP retransmission threshold of 3.
This was lower by 10.1% and 98.8% compared to DRILL and
per-packet Random, respectively. This observation confirms
that TCP performance is not significantly impacted and also
further explains why QALL’s FCT is low despite reordering.

In addition, when certain specialized applications are
required to eliminate all packet reordering, recent techniques
for building reordering-resilient network stacks can address
occasional reordering. For example, similar to prior works [4,
8], we can optionally deploy a buffer in the host generic receive
offload (GRO) layer to restore the correct ordering.

F. System Overhead

This section presents the system overhead added by load
balancing schemes to switches, including the resource and
control loop overheads.
(1) The resource overhead

Table IV presents the additional CPU and memory
utilizations added by the load balancing schemes to the switches
under a load level of 70 %. We can observe that QALL

Fig. 16. Average FCT of data-driven QALL for data-mining under

symmetrical topology.

Fig. 17. Average FCT of data-driven QALL for web-search under

symmetrical topology.

Fig. 18. Number of TCP duplicate ACKs under 70% load level.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

16

consumes the least resources (whether CPU or memory)
compared to DRILL, ECMP, CONGA, and LetFlow. This
small resource overhead does not affect the line-speed
forwarding of switches. On the one hand, the reason behind
these results is the extremely low complexity of QALL, because
each switch in QALL independently makes decision for load
balancing according to the fine-grained-measured local queue
behavior, not requiring cooperating with other switches (as
shown in CONGA), or comparing with the previous load state
(as shown in DRILL). The time complexity and space
complexity of QALL is O (1) and O (P) respectively, where P
is the number of egress ports. However, the P is a very small
value which is less than 4 in the widely used leaf-spine or Fat-
tree topology. On the other hand, in order to further improve the
computing and storing efficiency, we use a hash operation to
replace directly storing the flowlet index based on packet’s five-
tuples, as shown in Line 11 of Algorithm 1.

TABLE IV RESOURCE OVERHEAD OF LOAD-BALANCING SCHEMES
Schemes CPU utilization Memory utilization
QALL-Pkt 6.51% 2.27%

QALL-Flowlet 7.42% 2.88%
DRILL 7.84% 3.74%
ECMP 7.98% 4.41%

CONGA 8.89% 3.59%
LetFlow 7.56% 4.35%

(2) The control loop overhead
For every Tb (i.e., the updating period factor), QALL sends a

clone packet back to the ingress pipeline from the egress
pipeline (i.e., the control loop). As shown in Fig. 6, a clone
packet requires 10 bytes; thus, the actual control loop overhead
was 10

𝑇𝑏
 (bytes/s). In this study, Tb was set to 1ms by default. We

observed the effect of a faster or slower control loop (i.e., a
smaller or larger Tb) on the control loop overhead introduced by
the clone packets and the accuracy of the decision. Obviously,
the faster the control loop (i.e., the lower the Tb), the fresher
(more accurate) the decision-making basis becomes, and the
greater the control loop overhead. A faster control loop implies
that QALL can better deal with cases of queue quickly building
up, such as microbursts.

As shown by Fig. 19, when the Tb is decreased from 1ms to
0.01ms, the control loop overhead is increased from 0.01MB/s
to 1MB/s, however the average FCT is decreased by up to 17%.
In other words, the most control loop overhead (i.e., 1MB/s) is
also little very much to the switches. The experimental results
also confirmed that QALL can deal with microbursts better at
the cost of a small overhead when Tb decreases. On the other
hand, we can also see that, the overhead decreases to 100B/s
when the Tb is decreased to 100ms, however QALL can yet
reduce FCT compared to ECMP, CONGA, LetFlow, and
DRILL.

VII. PRACTICAL ISSUES AND FUTURE WORK
In this section, we analyze some relevant practical issues to

suggest some avenues for future research.

A. Improving Generalization of data-driven QALL
As discussed in Section V, data-driven QALL uses a fitting

function of egress traffic, queue occupancy, and dequeue time
interval to aid in making load-balancing decisions. The
experimental results show that the data-driven QALL method
performs better than the original QALL method. Specifically,
the greater the power of the fitting function, the better the load-
balancing performance.

Such fitting is also a machine learning-based method, but its
generalization is relatively poor. Because the fitted function is
actually a tailored load-balancing strategy for a specific traffic
pattern (i.e., if the traffic pattern changes, the fitting function
becomes unsuitable and the performance of load balancing
worsens), further improvement in the generalization of data-
driven QALL should be investigated in future research. The
following ideas should be considered to facilitate these
investigations.

(1) Employing reinforcement learning techniques on
programmable switches to learn the queue behavior.
Reinforcement learning techniques have the self-learning
ability to adapt to dynamically changing traffic patterns.

(2) In DCNs, there are four typical applications including
data-mining, web-search, cache, and Hadoop. Thus, based on
the combination of the four main applications, there are at most
𝐶4

1 + 𝐶4
2 + 𝐶4

3 + 𝐶4
4 = 15 patterns. For these 15 patterns, we

can use least squares or other fitting methods to fit 15 sets of
fitting functions, similar to Equations (11)–(13), which are one
of these 15 patterns, and then store them in each switch. When
a certain pattern appears in the DCN, the switches select the
equation corresponding to the pattern and use Equations (5) and
(6) to perform load balancing.

B. Improving Performance
The space-time mismatch between the load-balancing

decision location and its decision basis should be expected to
decrease the performance of QALL. In particular, the time
required by clone packets is the main factor in decision delay.
However, currently, a few commodity programmable switches
can access queue behavior in the ingress pipeline (e.g., Tofino
2 [40]). That is, removing the clone operation can reduce the

Fig. 19. Average FCT of QALL effected by the updating period factor

under symmetrical topology.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

17

decision delay, and the decision basis can more accurately
reflect the state of the network. Based on the real-time network
states, we believe that the performance of QALL should be
further improved in future studies.

C. Discussions for Observations
Considering that the observed correlation between dequeue

time interval and egress traffic rate is moderate rather than
extremely high, the conclusion that a longer packet dequeue
time interval is indicative of a lighter load is not completely
fixed. There are a few special cases. One example is when
queue occupancy is high and dequeue time interval is long,
which may be an indication of the outgoing link potentially
being congested. Another example is when we further consider
the size of packets: a smaller number of large packets within the
same time window as a higher number of small packets have an
equal or greater likelihood of causing congestion. It should be
noted that Equations (2)–(4) only indicate the
positively/negatively correlated relationship between C and L
as well as T, and this correlation is also rough and approximate.
Therefore, when L is high and T is long simultaneously in
Equations (2)–(4), C may be small or large (corresponding to
light or congested conditions), which is determined by the
relative value of L and T. In other words, Equations (2)–(4)
implicitly include the above-mentioned special cases.

In addition, the observations in this study are based on
experiments in BMv2 software switches, and whether these
observations in hardware switch deployment hold true remains
an open issue. In the future, we will observe the queue behavior
during hardware switch deployment.

VIII. CONCLUSION
We observed that queue behavior on a switch can reflect the

current and future congestion degrees in a network. Therefore,
we have proposed an in-network load-balancing scheme called
QALL. In QALL, each switch independently selects the egress
port probabilistically, according to the fine-grained-measured
local queue behavior. The key concept is that QALL creatively
takes account the evolutionary process of reaching the current
queue state into its decision basis for load balancing. Based on
an accurate fitting of the queue behavior, we have also proposed
a data-driven QALL to improve the load-balancing
performance further. The experimental results under actual
DCN workloads show that QALL performed better than several
existing schemes in terms of lower FCT, shorter decision delay,
and smaller load sharing accuracy. In addition, QALL does not
depend on the symmetrical characteristics of the network
topology.

In future works, the following factors can be considered.
First, the experimental results show that data-driven QALL can
perform slightly better. One possible reason for this is that there
are insufficient training data to fit a more accurate function. In
fact, from R2 and MRE values in Table I, we can see that the
fitting function has room for improvement. Because a higher
fitting accuracy can result in a lower FCT, we need to find a
simpler fitting function with greater accuracy to improve QALL.

Second, we can further explore data-driven QALL with better
generalizations for different types of traffic patterns.

ACKNOWLEDGMENT
This work was supported by the National Natural Science

Foundation of China (62272113, 61972104), Guangzhou Key
Laboratory of Software-Defined Low Latency Network
(202102100006), Guangzhou Basic Research Program
(2024A03J0398), Key Disciplines of Guangzhou Education
Bureau (202255467), Key Laboratory of On-Chip
Communication and Sensor Chip of Guangdong Higher
Education Institutes(2023KSYS002), China.

REFERENCES
[1] Alizadeh M, Edsall T, Dharmapurikar S, et al. CONGA: Distributed

congestion-aware load balancing for datacenters[C]//Proceedings of the
2014 ACM conference on SIGCOMM. 2014: 503-514.

[2] Katta N, Hira M, Kim C, et al. Hula: Scalable load balancing using
programmable data planes[C]//Proceedings of the Symposium on SDN
Research. 2016: 1-12.

[3] Hopps C. Analysis of an equal-cost multi-path algorithm[R]. RFC 2992,
Internet Engineering Task Force, 2000.

[4] Ghorbani S, Yang Z, Godfrey P B, et al. Drill: Micro load balancing for
low-latency data center networks[C]//Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. 2017: 225-238.

[5] Vanini E, Pan R, Alizadeh M, et al. Let it flow: Resilient asymmetric load
balancing with flowlet switching[C]//14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). 2017: 407-
420.

[6] Al-Fares M, Radhakrishnan S, Raghavan B, et al. Hedera: dynamic flow
scheduling for data center networks[C]//NSDI. 2010, 10(8): 89-92.

[7] Katta N, Ghag A, Hira M, et al. Clove: Congestion-aware load balancing
at the virtual edge[C]//Proceedings of the 13th International Conference
on emerging Networking EXperiments and Technologies. 2017: 323-335.

[8] He K, Rozner E, Agarwal K, et al. Presto: Edge-based load balancing for
fast datacenter networks[J]. ACM SIGCOMM Computer Communication
Review, 2015, 45(4): 465-478.

[9] Diao X, Gu H, Yu X, et al. Flex: A flowlet-level load balancing based on
load-adaptive timeout in DCN[J]. Future Generation Computer Systems,
2022.

[10] Ye J L, Chen C, Chu Y H. A weighted ECMP load balancing scheme for
data centers using P4 switches[C]//2018 IEEE 7th International
Conference on Cloud Networking (CloudNet). IEEE, 2018: 1-4.

[11] Augustin B, Friedman T, Teixeira R. Multipath tracing with Paris
traceroute[C]//E2EMON 2007-5th IEEE/IFIP Workshop on End-to-End
Monitoring Techniques and Services. IEEE, 2007: 1-8.

[12] S. Zou, J. Huang, J. Wang and T. He, "RMC: Reordering Marking and
Coding for Fine-Grained Load Balancing in Data Centers," in IEEE
Transactions on Communications, vol. 69, no. 12, pp. 8363-8374, Dec.
2021, doi: 10.1109/TCOMM.2021.3118467.

[13] J. Huang, W. Lyu, W. Li, J. Wang and T. He, "Mitigating Packet
Reordering for Random Packet Spraying in Data Center Networks," in
IEEE/ACM Transactions on Networking, vol. 29, no. 3, pp. 1183-1196,
June 2021, doi: 10.1109/TNET.2021.3056601.

[14] Hsu K F, Tammana P, Beckett R, et al. Adaptive weighted traffic splitting
in programmable data planes[C]//Proceedings of the Symposium on SDN
Research. 2020: 103-109.

[15] Shelly N, Tschaen B, Förster K T, et al. Destroying networks for fun (and
profit)[C]//Proceedings of the 14th ACM Workshop on Hot Topics in
Networks. 2015: 1-7.

[16] Noormohammadpour M, Raghavendra C S. Datacenter traffic control:
Understanding techniques and tradeoffs[J]. IEEE Communications
Surveys & Tutorials, 2017, 20(2): 1492-1525.

[17] Hsu K F, Beckett R, Chen A, et al. Contra: A programmable system for
performance-aware routing[C]//17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). 2020: 701-721.

[18] Liu J, Huang J, Li W, et al. AG: Adaptive switching granularity for load
balancing with asymmetric topology in data center network[C]//2019
IEEE 27th International Conference on Network Protocols (ICNP). IEEE,
2019: 1-11.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

18

[19] Shafiee M, Ghaderi J. A simple congestion-aware algorithm for load

balancing in datacenter networks[J]. IEEE/ACM Transactions on
Networking, 2017, 25(6): 3670-3682.

[20] Zhang H, Zhang J, Bai W, et al. Resilient datacenter load balancing in the
wild[C]//Proceedings of the Conference of the ACM Special Interest
Group on Data Communication(SIGCOMM). 2017: 253-266.

[21] Handley M, Raiciu C, Agache A, et al. Re-architecting datacenter
networks and stacks for low latency and high
performance[C]//Proceedings of the Conference of the ACM Special
Interest Group on Data Communication(SIGCOMM). 2017: 29-42.

[22] F. Wang et al., "Dynamic Distributed Multi-Path Aided Load Balancing
for Optical Data Center Networks," in IEEE Transactions on Network and
Service Management, vol. 19, no. 2, pp. 991-1005, June 2022, doi:
10.1109/TNSM.2021.3125307.

[23] Wai-xi Liu, C. Liang, Y. Cui, J. Cai and J. -m. Luo, "Programmable Data
Plane Intelligence: Advances, Opportunities, and Challenges," in IEEE
Network, 10.1109/MNET.124.2200113, 2022,12.

[24] Chen X, Feibish S L, Koral Y, et al. Catching the microburst culprits with
snappy[C]//Proceedings of the Afternoon Workshop on Self-Driving
Networks. 2018: 22-28.

[25] The P4 Language Consortium. 2018. P416 Language Specications. (2018).
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

[26] Liu S, Huang JW, Jiang WC, Wang JX, He T. Reducing flow completion
time with replaceable redundant packets in data center networks. In: Proc.
of the IEEE Int’l Conf. on Distributed Computing Systems (ICDCS).

Piscataway: IEEE, 2019. 46−56.
[27] D. D. Robin and J. I. Khan, "CLB: Coarse-Grained Precision Traffic-

Aware Weighted Cost Multipath Load Balancing on PISA," in IEEE
Transactions on Network and Service Management, vol. 19, no. 2, pp.
784-803, June 2022, doi: 10.1109/TNSM.2022.3142106.

[28] Rikhtegar N, Bushehrian O, Keshtgari M. DeepRLB: A deep
reinforcement learning‐based load balancing in data center networks[J].
International Journal of Communication Systems, 2021, 34(15): e4912.

[29] Cui Z, Cui P, Hu Y, et al. Closer: Scalable load balancing mechanism for
cloud datacenters[J]. China Communications, 2021, 18(4): 198-212.

[30] Q. Shi, F. Wang and D. Feng, "IntFlow: Integrating Per-Packet and Per-
Flowlet Switching Strategy for Load Balancing in Datacenter Networks,"
in IEEE Transactions on Network and Service Management, vol. 17, no.
3, pp. 1377-1388, Sept. 2020, doi: 10.1109/TNSM.2020.2990868.

[31] Benet C H, Kassler A J. Flowdyn: Towards a dynamic flowlet gap
detection using programmable data planes[C]//2019 IEEE 8th
International Conference on Cloud Networking (CloudNet). IEEE, 2019:
1-7.

[32] E. Dong, X. Fu, M. Xu and Y. Yang, "Low-Cost Datacenter Load
Balancing With Multipath Transport and Top-of-Rack Switches," in IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 10, pp.
2232-2247, 1 Oct. 2020, doi: 10.1109/TPDS.2020.2989441.

[33] Alawadi A H, Molnár S. Oddlab: fault-tolerant aware load-balancing
framework for data center networks[J]. Annals of Telecommunications,
2021: 1-22.

[34] Sharma K, Yadav R N. An adaptive, fault tolerant, flow-level routing
scheme for data center networks[J]. Computer Networks, 2020, 175:
107235.

[35] Xue JC, Chaudhry MU, Vamanan B, Vijaykumar TN, Thottethodi M.
Dart: Divide and specialize for fast response to congestion in RDMA-
based datacenter networks. IEEE/ACM Trans. on Networking,
2020,28(1):322−335.

[36] W. -X. Liu, J. Lu, J. Cai, Y. Zhu, S. Ling and Q. Chen, "DRL-PLink: Deep
Reinforcement Learning With Private Link Approach for Mix-Flow
Scheduling in Software-Defined Data-Center Networks," in IEEE
Transactions on Network and Service Management, vol. 19, no. 2, pp.
1049-1064, June 2022, doi: 10.1109/TNSM.2021.3128267.

[37] J. Y. Yen "Finding the K Shortest Loopless Paths in a Network,"
Management ence, 1971, vol. 17, no. 11, pp. 712-716.

[38] Y. Zhang, P. Tiňo, A. Leonardis and K. Tang, "A Survey on Neural

Network Interpretability," in IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 5, no. 5, pp. 726-742, Oct. 2021, doi:
10.1109/TETCI.2021.3100641.

[39] Björck Å. Least squares methods[J]. Handbook of numerical analysis,
1990, 1: 465-652.

[40] Yu Z, Hu C, Wu J, et al. Programmable packet scheduling with a single
queue[C]//Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
2021: 179-193.

[41] Michael N, Tang A. Halo: Hop-by-hop adaptive link-state optimal
routing[J]. IEEE/ACM Transactions on Networking, 2014, 23(6): 1862-
1875.

[42] Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu. PrintQueue:
performance diagnosis via queue measurement in the data plane. In
Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM '22).
Association for Computing Machinery, New York, NY, USA, 516–529.

[43] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, et al. PLB:
congestion signals are simple and effective for network load balancing. In
Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM '22). Association for Computing Machinery, New York, NY,
USA, 207-218.

[44] Yuan Y, Alama O, Fei J, et al. Unlocking the Power of Inline Floating-
Point Operations on Programmable Switches[C]//19th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’22). 2022: 683-700. NSDI’22

[45] Li Y, Miao R, Liu H H, et al. HPCC: High precision congestion control.
In Proceedings of the ACM Special Interest Group on Data
Communication(SIGCOMM '19). 2019: 44-58.

[46] Sepehr Abdous, Erfan Sharafzadeh, and Soudeh Ghorbani. Burst-tolerant
datacenter networks with Vertigo. In Proceedings of the 17th International
Conference on emerging Networking EXperiments and Technologies
(CoNEXT '2021). New York, USA, 2021:1–15.

[47] Zhang Q, Liu V, Zeng H, et al. High-resolution measurement of data
center microbursts[C]//Proceedings of the 2017 Internet Measurement
Conference. 2017: 78-85.

[48] G. Kim and W. Lee, "LossPass: Absorbing Microbursts by Packet
Eviction for Data Center Networks," in IEEE Transactions on Cloud
Computing, vol. 10, no. 4, pp. 2717-2728, 1 Oct.-Dec. 2022, doi:
10.1109/TCC.2021.3054664.

[49] T. Hellemans and B. Van Houdt, "Improved Load Balancing in Large
Scale Systems Using Attained Service Time Reporting," in IEEE/ACM
Transactions on Networking, vol. 30, no. 1, pp. 341-353, Feb. 2022, doi:
10.1109/TNET.2021.3110186.

Wai-xi Liu (M’2012) received a Ph.D. from Sun Yat-Sen
University, China, in 2013. He is currently an associate
professor in the Department of Electronic and
Communication Engineering, Guangzhou University, China.
His research interests focus on future networks, SDN and
programmable data plane. He has published over 25
research papers.

Jun Cai received the B.S. degree from Hunan Normal
University, China, the M.S. degree from Jinan University,
China, and the Ph.D. degree from Sun Yat-sen University,
China, in 2003, 2006, and 2012, respectively. He is currently
a Professor with the School of Cyber Security, Guangdong
Polytechnic Normal University, China. He is interested in
the research of complex networks, anomaly detection, SDN.

Sen Ling is currently pursuing the master degree in
Electronic and Communication Engineering in Guangzhou
University. His current research interests are in the area of
software defined networking (SDN) and data center network
traffic measuring.

Jian-Yu Zhang is currently pursuing the master degree in
Electronic and Communication Engineering in Guangzhou
University. His current research interests are in the area of
programmable data plane.

Qing-chun Chen (M’06–SM’14) received the B.Sc. and

M.Sc. degrees (Hons.) from Chongqing University, China,
in 1994 and 1997, respectively, and the Ph.D. degree from
Southwest Jiaotong University, China, in 2004. He is
currently a professor in Guangzhou University, since 2018.
He has published over 100 research papers. His research
interest includes wireless communication.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1109/MNET.124.2200113
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://ieeexplore.ieee.org/document/9615363/

19

APPENDIX OBSERVING ELEPHANT FLOWS/MICE FLOWS
ALONE

Considering only elephant flows and mice flows alone,
QALL exhibited excellent performance for data-mining and
web-search traffic, under either symmetrical topology or
asymmetrical topology.

A. Average FCT under Symmetrical Topology
The average FCT under data-mining is shown in Fig. 20 and

Fig. 21. For data-mining mice flows, the FCT of QALL-Pkt was
lower than that of ECMP, LetFlow, and CONGA by up to
45.7%, 38.2%, and 33.8%, respectively. In terms of per-packet,
the FCT of QALL-Pkt was lower by up to 24.5% compared with
that of DRILL. In terms of per-flowlet, the FCT of QALL-
Flowlet was reduced by at most 20.4% and 10.7% compared
with that of LetFlow and CONGA, respectively. For data-
mining elephant flows, the FCT of QALL-Pkt was reduced by
58%, 49.9%, 43.8%, and 19.2% compared with that of ECMP,
LetFlow, CONGA, and DRILL, respectively. In terms of per-
flowlet, the FCT of the QALL-Flowlet was reduced by at most
16.9% and 11% compared with that of LetFlow and CONGA,
respectively.

The average FCT for web search is shown in Figs. 22 and 23.
For web search mice flows, the FCT of QALL-Pkt was lower
by up to 42.45%, 23.3%, and 23.2% compared with that of
ECMP, LetFlow, and CONGA, respectively. In terms of
per-packet, the FCT of QALL-Pkt was lower by up to 18.8%
compared with that of DRILL. In terms of per-flowlet, the FCT
of QALL-Flowlet was lower by up to 25.4% and 16.1%
compared with that of LetFlow and CONGA, respectively. For
web search elephant flows, the FCT of QALL-Pkt was reduced
by up to 53.39%, 48.7%, 42.2%, and 8.5% compared with that
of ECMP, LetFlow, CONGA, and DRILL, respectively. In
terms of per-flowlet, the FCT of QALL-Flowlet was reduced
by at most 20.7% and 5.8% compared with that of LetFlow and
CONGA, respectively.

Fig. 20. Average FCT for mice

flows of data-mining under

symmetrical topology.

Fig. 21. Average FCT for elephant

flows of data-mining under

symmetrical topology.

Fig. 22. Average FCT for mice

flows of web-search under

symmetrical topology.

Fig. 23. Average FCT for elephant

flows of web-search under

symmetrical topology.

B. Average FCT under Asymmetrical Topology
The average FCT under Data Mining is shown in Fig. 24 and

Fig. 25. The average FCT under web-search is shown in Fig. 26
and Fig. 27.

Fig. 24. Average FCT for mice flows

of data-mining under asymmetrical

topology.

Fig. 25. Average FCT for elephant

flows of data-mining under

asymmetrical topology.

Fig. 26. Average FCT for mice

flows of web-search under

asymmetrical topology.

Fig. 27. Average FCT for elephant

flows of web-search under

asymmetrical topology.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	I. INTRODUCTION
	II. Background and Related Work
	A. Load Balancing at Switch
	(1) Load Balancing at Programmable Switch
	(2) Load Balancing at Traditional Switch

	B. Load Balancing at Controller
	C. Load Balancing at End-host

	III. Some Observations and Motivations
	A. Challenges
	B. Observations
	C. Motivations

	IV. System Design of QALL
	A. Problem Statement
	B. Workflow of QALL
	C. Congestion Index Estimation Module
	D. Probabilistic Forwarding Module
	E. State Collection and State Return Module

	V. Data-Driven QALL
	A. Data-Driven Congestion Index Estimation
	(1) Data-driven methods
	(2) Fitting results

	B. Data-Driven Load Balancing Scheme

	VI. Experiment Evaluation
	A. System Development
	B. Actual DCN Traffic Workloads
	C. Performance Evaluation Methodology
	D. Experimental Results
	(1) Decision delay
	(2) Average FCT under Symmetrical Topology
	(3) Average FCT under Asymmetrical Topology
	(4) 99th percentile FCT under Asymmetrical Topology
	(5) Network Shock under Symmetrical Topology
	(6) Load Sharing Accuracy
	(7) Average FCT of Data-driven QALL

	E. Packet Reordering
	F. System Overhead
	(1) The resource overhead
	(2) The control loop overhead

	VII. Practical Issues and Future Work
	A. Improving Generalization of data-driven QALL
	B. Improving Performance
	C. Discussions for Observations

	VIII. Conclusion
	Acknowledgment
	References
	Appendix Observing Elephant Flows/Mice Flows Alone
	A. Average FCT under Symmetrical Topology
	B. Average FCT under Asymmetrical Topology

