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Abstract—Existing load-balancing methods used in data center 
networks involve some shortcomings such as excessively large 
decision delays during reactions to microbursts and large 
overheads involved in active probing. Programmable data planes 
have provided new opportunities for local decision-making on 
switches to address these issues. We observe that queue behavior 
(i.e., queue occupancy, queuing trend, and dequeue time interval) 
in switches can reflect the current or future congestion degree on 
a network. Furthermore, following data-driven experiments, we 
found an accurate fitting function of congestion degree to queue 
behavior. Thus, we propose an in-network load-balancing scheme 
based on a programmable switch, called queue-behavior-aware 
localized load balancing (QALL). In QALL, each switch 
independently selects egress ports probabilistically according to 
fine-grained-measured local queue behavior. The key concept of 
QALL is to take account the evolutionary process of 
reaching the current queue state into its decision basis for 
load balancing. Experimental results under actual DCN 
workloads (including web search and data mining workloads) 
demonstrate the effectiveness of QALL. In terms of flow 
completion time, decision delay, network shock, load sharing 
accuracy, and packet reordering, QALL outperformed recent per-
packet (DRILL), per-flowlet (LetFlow and CONGA), and per-flow 
(ECMP) load balancers, particularly under heavy load. For 
example, under asymmetrical topology with 90% load level, the 
flow completion time of QALL was lower than that of ECMP, 
LetFlow, CONGA, and DRILL by up to 54.7%, 46.5%, 38.9%, 
and 18.9%, respectively.  

 
Index Terms—Data center networks, Distributed, Load 

balancing, Programmable Data Plane, Queue behavior  

I. INTRODUCTION 
ATA center networks (DCNs) provide 

infrastructure for many online services, such as 
machine learning, on-demand video delivery, web 

search, cloud computing, and interactive online tools [16]. 
Specifically, the DCN topology plays a significant role in 

determining the level of failure resiliency, ease of incremental 
expansion, communication bandwidth and latency. Based on a 
CLOS architecture [16], existing DCN topologies often involve 
a large degree of path redundancy, which allows for increased 
fault tolerance. Properly distributing traffic loads across these 
paths reduces contention among flows while increasing overall 
resource utilization. Effective load balancing aims to avoid 
situations in which many links may fall idle while others 
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continue to experience congestion. 
Although most DCN topologies are symmetrical, in practice, 

DCNs turn out to be often asymmetrical because of frequent 
failures of network elements (e.g., switches, links, and ports); 
for example, up to 40 link failures per day [15, 16]. However, 
the performance of some load-balancing schemes depending on 
symmetrical characteristic of topology deteriorates 
significantly under asymmetrical topologies (e.g., equal-cost 
multi-path (ECMP) [3] and Presto [8]).  

Static load-balancing approaches such as ECMP [3] are not 
suitable in DCNs because of the highly dynamic and bursty 
nature of typical traffic. Alternative adaptive load-balancing 
approaches can dynamically select paths for traffic loads to 
minimize hotspots. Thus, the decision delay of adaptive load-
balancing approaches becomes critical owing to the frequent 
decision-making required. However, decision delays in load-
balancing methods based on controllers (e.g., Hedera [6], 
DeepRLB [28], Shafiee [19], and Oddlab[33]) or end hosts 
(e.g., HPCC[45], CLOVE [7], Presto [8], Hermes [20], and 
NDP [21]) are generally quite large. The basic concept behind 
these methods is to collect and react to global or nearly global 
congestion information. However, they typically have control 
loops that are several orders of magnitude slower. For example, 
in terms of controller-based methods, the interaction latency 
between switches and the controller may be orders of 
magnitude slower than the speed at which typical datacenter 
congestion events occur. They also react slowly to microbursts 
[4]. However, microbursts have been identified as the main 
culprit of packet loss in DCNs, which leads to retransmissions 
that impose significant latency and degrade application 
performance [4,46]. 

In summary, these methods move network functions out of 
the network fabric, striving to delegate load balancing to 
centralized controllers [6, 19, 28] or end hosts [7, 20, 21]. These 
entities serve as convenient locations to collect global or end-
to-end congestion information. 

From a different direction, some methods (e.g., CONGA [1] 
and HULA [2]) strive to delegate load balancing to the core of 
a network, where switches make decisions for load balancing. 
However, these methods require coordination among multiple 
switches, leading to a considerable delay in making decisions. 
For example, although CONGA adds customized hardware 
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mechanisms to leaf and spine switches, its control loop 
nonetheless typically requires several RTTs, by which time a 
typical congestion event is likely to have ended [4]. 

Furthermore, these methods (i.e., controller-based, end-host-
based, and multiple-switch coordination) not only increase 
delays in making decisions but also result in additional 
overhead. For example, Shafiee [19] collected link utilization 
data from switches at a controller. Hermes [20] periodically 
sends small probe packets between end-host pairs to monitor 
path conditions. HULA [2] regularly sends probe packets 
transmitted between switches to sense the global link 
utilization. Thus, designing load-balancing methods with short 
decision delays suitable for asymmetric topologies and 
operating in a distributed manner with low overhead is a 
considerable challenge. 

Recently, programmable data planes (PDPs) [23] such as 
programmable network interface cards (i.e., smartNICs) and 
programmable switches have attracted increasing attention. In 
this study, PDPs refers to programmable switches. Due to their 
programmability, PDPs have provided new opportunities to 
drive unprecedented innovation in network protocols and 
architectures. Switches located at the core of the network can 
directly and accurately observe the network behavior of all 
processed flows over short timescales. Furthermore, when the 
switch becomes programmable, it is possible to perform 
flexible load-balancing strategies directly inside PDPs (i.e., in-
network load balancing), as in, for example, HULA [2], DASH 
[14], and Contra [17]. Clearly, in-network load-balancing 
schemes are more effective at scale and more responsive to 
network dynamics. However, they all use active probing to 
collect network state. Of note, probing adds communication 
overhead that can lead to performance degradation. Although it 
does not depend on probing, DRILL [4] can suffer from 
network shock because it allows each programmable switch to 
select the “best” option among a set of randomly selected 
multiple possible egress ports for each packet based only on 
local queue occupancy.  

To address dynamic networks, traffic control schemes (e.g., 
load balancing and routing/flow scheduling) use a strategy to 
change the path (i.e., they actually also change the switches 
passed by a given traffic flow in the network) by which traffic 
is transmitted according to an optimal goal. Clearly, this is 
eventually reflected in changes in the queue behavior of the 
switches. In this article, we refer to queue occupancy, dequeue 
time interval, and queuing trend in the egress ports of switches 
as the queue behavior of switches. However, collecting fine-
grained statistics on queue behavior in real time is challenging. 
Fortunately, in contrast to traditional switches that infer queue 
behavior based on back-to-back methods, emerging 
programmable switches can measure their own queue behavior 
independently and in a fine-grained manner. 

In short, load-balancing strategies actually involve choosing 
ports to distribute traffic loads. Choosing a port determines the 
egress traffic of the given egress port, and then the egress traffic 
largely determines the congestion degree (or load) of a switch 
to which this egress port connects. We observed some 
interesting relations between egress queue behavior and egress 

traffic, including (i) egress traffic being positively correlated 
with egress queue occupancy and (ii) egress traffic being 
negatively correlated with egress dequeue time interval. 
Moreover, switches use a port to connect to other switches, and 
thus the queue behavior of an egress port actually reflects the 
congestion degree (or load) of the network connected to the 
port. That is, the queue behavior of switches can reflect the state 
of the corresponding network. PrintQueue [42] also observed 
that queuing is both a result of historical effects and the current 
state of the network.  

Therefore, we propose a distributed in-network load-
balancing method on programmable data planes, called queue-
behavior-aware localized load balancing (QALL). In QALL, 
each switch probabilistically selects an egress port according to 
fine-grained-measured local queue behavior to achieve per-
packet/per-flowlet load balancing without any coordination 
among switches or any controllers or probing. The main 
contributions of this study are summarized as follows. 

(a) We propose a distributed queue-behavior-aware load-
balancing method on PDPs. The key concept is that 
QALL creatively takes account the evolutionary process 
of reaching the current queue state into its decision basis 
for load balancing: how to arrive (i.e., queuing trend) 
and how long to arrive (i.e., dequeue time interval) the 
current queue state (i.e., queue occupancy). 
Furthermore, QALL includes a probabilistic forwarding 
strategy designed to evenly distribute traffic to each 
available port, rather than only selecting the best port as 
in other schemes. 

(b) We propose a data-driven load-balancing method. 
Following a data-driven approach, we found an accurate 
function to fit the congestion degree to queue behavior 
and applied it to improve the performance of QALL. 

(c) We used Mininet+BMv2 to test QALL on actual DCN 
traffic workloads. The experimental results demonstrate 
that QALL performed better than several existing 
schemes in terms of lower flow completion time (FCT), 
shorter decision delay, and smaller load-sharing 
accuracy. Moreover, QALL does not depend on the 
symmetrical characteristics of the network topology. 

The remainder of this article is organized as follows. In 
Section II, we review some relevant background and related 
studies. In Section III, we present some observations and 
describe the motivation of this work. In Section IV, we present 
system design of QALL along with a description of the problem 
it is designed to solve. In Section V, we present a data-driven 
version of QALL. In Section VI, we provide the experimental 
results. In Section VII, we discuss some practical issues and 
suggest several challenging directions for future research. We 
conclude in Section VIII with a summary of our findings. 

II. BACKGROUND AND RELATED WORK 
As shown in Fig. 1, load balancing can be performed per-

packet, per-flowlet, per-flowcell, and per-flow granularity. A 
“flow” is a packet stream with the same 5-tuples header. In one 
flow, a flowlet is a burst of packets that is separated in time 
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from other bursts by a sufficient gap — called the “flowlet 

timeout” (Tinter in Fig. 1); a “flowcell” is a group of packets with 
a fixed size (Csize in Fig. 1). Generally, despite suffering the 
packet reordering in a flow under network asymmetry, per-
packet balancing can obtain high throughput owing to its fine-
grained scheduling. Although per-flowlet, per-flowcell, and 
per-flow load balancing can avoid packet reordering, link 
utilization cannot be maximized due to the inflexibility and 
coarseness of these methods. In addition, they are all stateful 
schemes that must record a flow state (e.g., 5-tuples); that is, 
some memory is occupied. 

Furthermore, decision location of load balancing (in this 
article, referred as decision-maker) can be at the host (at the end 
of the network), at a switch (in the core of the network), or at a 
controller (at the top of the network). However, different 
decision locations have different capabilities and views of the 
network.  

Packet interval  TinterFlowlet 1 Flowlet 2

Flowcell 1

Flowcell size =Csize

Flow granularityLoad balancing  granularity

Flowcell 2
(c) Per-flowcell

(b) Per-flowlet

(a) Per-flow

Packet 1
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Flow-1

Packet 6 Packet N Time

Time

Time

 
Fig. 1. Load balancing granularity 

A. Load Balancing at Switch 
(1) Load Balancing at Programmable Switch 

In terms of per-flowlet load balancing, based on lazy 
evaluation, CONGA [1] employed a customized leaf switch 
which has a table to hold the link utilization seen along its 
outgoing paths. Such link utilization is collected by receiving 
switches and then piggybacked on traffic. However, its control 
loop typically requires a few RTTs, and required customized 
switches. To decrease the decision delay, HULA [2] 
periodically send probing packets to proactively disseminate 
link utilization information to all switches in network. However, 
such probing adds some communication overhead. 

In terms of per-packet, DRILL [4] determines the forwarding 
path of every packet of a flow independently by considering per 
port local queuing at the switches. In DRILL, each forwarding 
engine randomly chooses d out of N possible output ports, and 
finds the one with the current minimum queue occupancy 
between these d samples and m least loaded samples from 
previous time slots, and routes its packet to that port. To avoid 
packet reordering under per-packet granularity, QDAPS [13] 
selects paths for packets according to the queueing delay of 
output buffer, and lets the packet arriving earlier be forwarded 
before the later packets. Moreover, using the “power-of-n-
choices” paradigm, QDAPS alleviate the impact of herd 

behavior under multiple forwarding engines. However, the 
complexity of QDAPS is a challenge to switches, for example, 
QDAPS’s CPU utilization and memory utilization increase 33% 

and 64% than ECMP’s respectively.  
Contra [17] enforces performance-aware routing policies, 

where a compiler analyzes a desired policy in conjunction with 
the network topology, and decomposes them into switch-local 
Programming Protocol-independent Packet Processors (P4) 
programs. These programs generate probes to collect path 
metrics, and dynamically choose the best paths along which to 
forward traffic. 

However, one common limitation of these solutions 
(CONGA, HULA, Contra, DRILL, etc.) on programmable 
switch is that they only consider use a single “best” path at any 
given time, and this leads to the “best” path to be quickly 
congested. The benefits of using multiple paths have been 
demonstrated by many works on the controller (e.g., HALO 
[41]). W-ECMP [10], DASH [14], Closer [29], and CLB [27] 
aim to balance load dynamically across multiple paths in the 
data plane. 

In terms of per-flowlet, as a weighted-cost multipath 
mechanism (WCMP), W-ECMP [10] uses the path’s utilization 

as the probability of choosing a path other than the best path, 
thus it is not as sensitive to the frequency of state update 
compared with CONGA and HULA. However, W-ECMP take 
a long time to converge to new weights (i.e., large decision 
delay). For this reason, DASH [14] presents a hash-based data 
structure that quickly achieves adaptive traffic splitting in 
programmable data planes to balance traffic across multiple 
paths. Where, DASH uses the utilization of bottleneck link as 
its decision basis. Closer [29] leverages in-band network 
telemetry (INT) to obtain precise link state, and employs 
WCMP at the network edge to proactively map the flows to the 
appropriate paths and avoid the excessive congestion of a single 
link. CLB [27] uses WCMP for traffic-aware load balancing 
over many paths at a coarse-grained precision. 

To adapt to different levels of burst in DCN, IntFlow [30] 
integrates end-host based per-packet flow state monitoring with 
flowlet switching in programmable switches. IntFlow’s core 

idea is that proactively rerouting flows experiencing network 
congestion or failures, while performing cautious flowlet 
switching for small flows with high sending rate. 

Different from other works based on programmable switch, 
QALL uses probabilistic selection algorithm to distribute load 
across multiple paths. Besides, QALL’s key idea is that 
selecting egress port according to the queue occupancy in 
conjunction with dequeue time interval and queuing trend 
instead of a single network state metric (e.g., queue occupancy 
or link utilization or FCT).  
(2) Load Balancing at Traditional Switch 

In terms of per-flow, ECMP [3] is widely used in DCN and 
spreads traffic uniformly across multiple paths. However, 
because of congestion-oblivious, it is well-known that ECMP 
performs poorly when there is asymmetry either in the network 
topology or the flow sizes [43]. In remote direct memory access 
(RDMA) supported DCN, Dart [35] isolates the common case 
of receiver congestion, and further subdivides the remaining in-
network congestion into the simpler spatially-localized and the 
harder spatially-dispersed cases. And then quickly alleviating 
congestion with the idea of divide-and-specialize. Where Dart 
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uses the local congestion information as its decision basis. 
In terms of per-flowlet, LetFlow[5] is a simple congestion-

oblivious approach. LetFlow relies on the natural property of 
flowlets which allows them to shrink or expand (in size) 
according to available capacity over paths. However, due to the 
randomness of LetFlow scheduling, the optimal load balancing 
performance cannot be achieved. In summary, most per-flowlet 
load-balancing schemes depend on a proper static setting of the 
flowlet gap, which decides when new flowlets are detected. 
While a too small gap may result in reordering, a too large gap 
leads to missed load-balancing opportunities [31]. FlowDyn[31] 
and Flex[9] can dynamically adapt the flowlet gap. Under a 
switch-host collaborative paradigm, Flex [9] split the flow into 
flowlets at the host based on the adaptive timeout., and then tell 
the flowlet results to switches by marking the adjacent flowlets 
of the same flow. 

In terms of per-packet, some methods are proposed to 
mitigate packet reordering. For example, (i) RMC [12] based 
on network coding can effectively solve the reordering problem, 
but it also introduces too many redundant coding packets, 
which leads to too much extra traffic overhead, long queuing 
delay and even packet loss. (ii)To address this problem, OPER 
[26] uses opportunistic redundant packets which are replaceable 
by the data packets in the switches under heavy congestion. 

Lots of load balancing schemes, from ECMP [3] to 
LetFlow[5], to Presto [8], avoid packet reordering under 
asymmetric topology by balancing coarser units of traffic, but 
easily lead to under-utilization of multiple paths. AG [18] 
adaptively adjusts switching granularity according to the 
asymmetric degree of multiple paths, to alleviate packet 
reordering. 

B. Load Balancing at Controller 
Considering the control overhead and decision delay, most 

controller-based load balancing methods are per-flow 
granularity. By using a central controller to monitor the network, 
Hedera [6] detects long flows and reschedules them on a lightly 
loaded path, but it is not friendly to short flows. Shafiee[19] 
dynamically adjusts the weight of the link according to the link 
utilization, and assigns every arriving traffic to the minimum 
weight path . However, due to depending on frequently 
updating link weight, Shafiee’s performance is greatly affected 
by the speed of updating weight and calculating minimum 
weight path.  

DeepRLB [28] and DRL-PLink[36] deploy the deep 
deterministic policy gradient (DDPG) algorithm on software 
defined networking (SDN) controller to achieve load balancing. 
DRL-PLink[36] establishes some corresponding private-links 
for different types of flows to isolate them such that the 
competition among different types of flows can decrease 
accordingly. Where DDPG is used to adaptively and 
intelligently allocate bandwidth resources for these private-
links, by observing FCT.  

For SDN-enabled hybrid optical/electrical DCN, DDMP [22] 
dynamically adjusts traffic distribution according to the inverse 
ratio of the buffer occupancy. Where the SDN controller 
guarantees the capacity of the scheduling buffers and 

reconfiguring the switch fabric. 

C. Load Balancing at End-host 
More easily being deployed on end-hosts by a software 

update, the multipath TCP (MPTCP) leverages multiple sub-
flows for data transmission. However, in practice, using 
multiple sub-flows is efficient only under inter-rack. 
DCMPTCP [32] aims to improve the efficiency of MPTCP, for 
example, preventing MPTCP from establishing multiple sub-
flows for rack-local traffic; estimating flow size, with which 
inter-rack flows can leverage multipath in a smarter way. HPCC 
[45] uses INT to collect queue information in switches to 
achieve high precision congestion control in DCN. 

In terms of per-packet, NDP [21] is a DCN transport protocol 
which limits the aggregate transmission rate of all incast 
senders by maintaining a PULL queue at the receiver. In terms 
of per-flow, to an asymmetric DCN topology, FlowFurl[34] 
reroutes the flows by combining link failure and congestion 
information. 

In terms of per-packet/per-flow, Hermes [20] monitor path 
conditions at the end-hosts by sending probe packets between 
end-host pairs periodically, and reroute flows affected by 
failures or congestion caused by asymmetries. Specially, in 
Hermes [20], short flows and long flows use per-flow 
granularity and per-packet granularity, respectively.  

In terms of per-flowlet, Clove [7] employs Paris traceroute 
[11] to obtain all paths conditions traversing the network. 
Where, each source leaf node collects the path conditions 
information to the destination leaf by sending a probe packet, 
and this information is brought back to the source leaf node by 
ECN or custom packet headers. Clove relies on ECMP in 
physical switches.  

Besides, few works achieve per-flowcell granularity. For 
example, without needing sensing congestion, Presto [8] breaks 
flow into small near-uniform units of data (called flowcell), 
where, in end-host, flowcells are assigned over multiple paths 
very evenly by iterating over paths in a round-robin. However, 
Presto has the difficulty with asymmetric scenarios, and cannot 
interact well with unbalanced legacy traffic.  

III. SOME OBSERVATIONS AND MOTIVATIONS 
From this overview, we can identify some challenges and make 

some notable observations regarding existing methods.  

A. Challenges 
Challenge 1: Which network state serves as a better 

decision basis.  
In general, all approaches to load balancing require the state 

of the network as the basis for their decision-making, regardless 
of whether they are controller-based, end-host-based, or switch-
based, except for a few methods that do not need to perform 
sensing. Briefly, network states can be classified into two types: 
device states (e.g., the queue occupancy of switches, link 
utilization, and physical bandwidth of links) and traffic states 
(e.g., flow-level FCT, packet-level delay, jitter, and loss rate). 
These can provide different types of useful information for 
decision-making, and their associated cost of measurement 
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differs.  
However, most previous studies have used a single metric 

(e.g., queue occupancy, link utilization, or FCT) as their 
decision basis. In fact, these metrics reflect only the current 
state of the network. That is, these metrics do not fully reflect 
the degree of network congestion. Because queuing is a result 
of both historical effects and the current state of the network 
[42], we argue that the evolutionary process by which the 
current network state was reached (i.e., how the network 
reached its current state and how long this took) should be 
considered as the decision basis. However, to the best of our 
knowledge, no previous studies have considered this 
evolutionary process.  

Challenge 2: How to avoid network shock.  
Previous load-balancing schemes (e.g., CONGA, HULA, 

Contra, and DRILL) typically adopt a coarse-grained port 
selection strategy that tends to directly schedule all traffic along 
a single “best” path (the port with the smallest queue occupancy 
or the path with the lowest link utilization) at any given time. 
Such strategies may easily lead to the “best” path quickly 
becoming excessively congested, and may also result in 
frequent rerouting, which leads to the network state to fluctuate 
widely and change over frequently. For example, under per-
flowlet granularity, link utilizations vary over time and from 
one another by up to 2× [43]. In addition, frequent rerouting 
within a flow can mix ACKs belonging to different paths in 
congestion control protocols, which adversely affects the flow 
rate control [30]. This study refers to the frequent rerouting of 
traffic as network shock, which can be evaluated by the 
Variance of the queue occupancy. 

Challenge 3: How to decrease the decision delay to meet 
high bandwidth and microbursts requirements.  

In DCNs, to meet line-speed forwarding and ultra-low end-
to-end latency requirements (~10’s of µs), the processing time 
within a switch is required to be smaller and smaller when 
bandwidth become higher and higher (>10 Gbps). Moreover, 
microbursts (short-lived traffic spikes that last for less than a 
millisecond) quickly cause queues of switches to become fully 
utilized, leading to immediate packet loss and subsequent 
periods of unexpectedly high packet delay [24]. Measuring and 
managing microbursts is challenging because of their short 
lifespans, frequent occurrence at irregular intervals, and diverse 
and ever-changing root causes (e.g., applications and TCP 
artifacts such as ACK compression) [46]. For example, at 
Facebook, more than 70% of microbursts last for less than a few 
tens of microseconds, which is significantly shorter than the 
frequency of most deployed measurement frameworks [47]. 
The two main methods in current use to manage microbursts 
include absorbing the microbursts by adding sufficient buffer 
space at switches [48] and load balancing [4]. The former may 
incur high costs and fail under load and at scale. However, most 
existing load-balancing methods [1, 2, 6, 7, 8, 19, 20, 21] that 
are performed on large timescales react slowly to microbursts. 
A few methods have aimed to achieve microburst tolerance on 
switches at short timescales, such as DRILL [4] and Vertigo 
[46]. DRILL performs micro load balancing to distribute a load 
as evenly as possible on a microsecond timescale. Thus, we 

argue that switches (the network core) should take corrective 
action in response to microbursts in situ and in real-time before 
a situation worsens.  

Challenge 4: How to address constraints of 
programmable switches. 

To achieve packet processing with a high line-speed, 
programmable switches have many constraints on the 
algorithms that can be implemented [23]. Some of these 
constraints are highlighted below to clarify the design 
challenges and decisions involved in QALL.  

(i) Programmable switches can perform only limited 
operations (e.g., missing division and floating-point arithmetic 
operations [44]) and programming models (e.g., missing loops). 
In this study, we used shift and addition/subtraction operations 
to replace division equivalently. We also use a random function 
to avoid floating-point operations (more details are presented in 
Sections IV-C and IV-D, respectively). 

(ii) Programmable switches provide relatively limited 
computational and memory resources to support application-
specific tasks. For example, in a typical programmable switch 
(e.g., with an Intel Tofino), each stage can access only ~10 MB 
of stateful memory (e.g., registers) [24]. To save the memory, 
we use a hash operation to replace storing data. 

 (iii) In most commodity programmable switches, queue 
behaviors (i.e., the decision basis in QALL) are generally 
available in the egress pipeline. However, the load-balancing 
decision location must be within the ingress pipeline. The 
decision basis must be transmitted to the load-balancing 
decision location using a P4 clone operation [25]. Thus, a 
space-time mismatch obtains between the load-balancing 
decision location and its decision basis. That is, the network 
state reflected by the decision basis is slightly out of date 
compared to the time at which decisions are made. This 
naturally reduces the accuracy of decision-making processes. 
To address this space-time mismatch, we apply an updating 
period factor (Tb) to adjust the freshness of the decision basis as 
discussed in Section IV-E. 

B. Observations 
In essence, by constantly adjusting the transmission path for 

traffic, the load-balancing scheme aims to achieve a reasonable 
space-time distribution of traffic in the network. Because 
switches are forwarding nodes on the transmission path, 
variations in the traffic distribution in a network eventually lead 
to changes in the queue behavior of the switches. Thus, we aim 
to find the relationship between egress traffic and queue 
behavior. 

As shown in Fig. 2, queue occupancy (denoted by L) is 
defined as the proportion of the queue depth of the egress port 
to its total queue length when packets enter the queue of the 
egress port. The dequeue time interval (denoted by T) is defined 
as the time difference between two packets leaving the queue 
of the egress port, and the queuing trend is defined as whether 
the current queue occupancy is formed by an increase from 
small to large or by a reduction from large to small. For 
example, when the current queue occupancy is 50%, it may be 
reduced from 60% to 50% or increased from 40% to 50%. 
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Fig. 2. The queue occupancy and dequeue time interval 

First, we build a traffic observation dataset under actual 
DCN workloads. Where we continually observe the running 
process of the DCN (shown in Fig. 7) with typical setups. 
Specially, ECMP is adopted as the load-balancing scheme, and 
two types of widely used workloads (i.e., Data Ming and Web 
Search) whose traffic distributions are shown in Fig. 8 are 
loaded into servers h1-h32 as the background traffic. Half of 
these hosts were configured as senders, and the other half 
receivers. Because almost all traffic within a network passes 
through spine switches, collecting traffic data at spine switches 
suffices to determine the running process of the network. We 
collected 200,000 groups of data on egress traffic (kbps), queue 
occupancy (%), and dequeue time interval (us) of egress ports 
of S1 and S2, as shown in Fig. 7.  Second, data preprocessing 
was performed on the observation dataset to obtain normalized 
values such as maximum and minimum normalization and data 
cleansing. Fig. 3 shows their envelopes, and we note the 
following observations. 

Observation 1: The egress traffic of a given port was 
positively correlated with egress queue occupancy. The 
Pearson correlation coefficient reached up to 0.7824. 

Observation 2: The egress traffic of a given port was 
negatively correlated with egress dequeue time interval. The 
Pearson correlation coefficient reached up to -0.7308. 

Clearly, Observations 1– 21 demonstrate some inherent facts 
obtained in practice. For Observation 1, the queue occupancy 
of an egress port indicates the current queue state of the port 
when packets arrive, and the queue depth reflects the current 
status of the egress traffic of the port (i.e., the longer the queue 
depth of a port, the greater its egress traffic). Therefore, the 
smaller the queue occupancy, the lower the egress traffic. This 
observation is also consistent with the conclusions of queuing 
theory [49]. It should be noted that this observation is true only 
when there is queueing in the network. When the load of the 
entire network is extremely light such that all egress ports of the 
entire network have no queueing simultaneously (the queue 
occupancy of all egress ports is zero), this observation is not 
necessarily true. Of course, under this case, there is no need for 
load balancing scheme. 

By the same token, for Observation 2, the egress dequeue 
time interval indicates the time required to form the current 
queue state. When the queue occupancy is certain, a longer 
egress dequeue time interval actually implies that packets are 
allocated by a longer time interval to the link corresponding 
with this egress port; in other words, the link is lighter. 
Therefore, in most cases, the longer the egress dequeue time 

 
1  In the Observations 1–2, the egress traffic, egress queue occupancy, and 
egress dequeue time interval refer to the state of the same egress port. 

interval, the less the egress traffic. For example, during an 
observing time (referred to as R seconds), if M packets are 
dispatched to the corresponding link of an egress port, where 
the size of all packets is S bits and their transmission delay is t 
seconds, thus, the egress traffic of this egress port is expressed 
as follows, 

𝐸_𝑡𝑟𝑎𝑓𝑓𝑖𝑐 =
𝑀 × 𝑆

𝑅
=

𝑀 × 𝑆

∑ 𝑇𝑗 + 𝑡𝑀−1
𝑗=1

(bit/s) (1) 

where Tj is the dequeue time interval between the jth and 
(j+1)th packet. Obviously, from equation (1), when Tj is larger, 
the egress traffic is naturally less. When we let the observation 
time R be sufficiently short (e.g., there is only one packet during 
R), the egress traffic approaches 𝑆

𝑇𝑗
 (bit/s). Thus, the negative 

correlation between egress traffic and egress dequeue time 
interval is expected. Considering the observed correlation 
between egress traffic and dequeue time interval is a moderate 
instead of extremely high level (the Pearson correlation 
coefficient reached up to -0.7308), we cannot completely 
conclude that a longer dequeue time interval indicates a lighter 
load. We discuss some special cases further in Section VII-C. 

 
C. Motivations  

Inspired by these observations, we followed several 
motivations to address the abovementioned challenges.  

Motivation 1: Decision basis integrating with the current 
and future network states. 

In short, the load-balancing strategy is actually the choice of 
port, which determines the egress traffic of a given port (i.e., 
the corresponding link). Furthermore, the egress traffic of a port 
largely determines the congestion degree (or load) of a switch 
connected to the port. Clearly, the greater the egress traffic, the 
higher the congestion degree. Thus, Observations 1 and 2 show 
that the queue occupancy and egress dequeue time interval of a 
port can reflect the current congestion degree of the network 
connected to this port.  

 Furthermore, the current dequeue time interval actually 
reflects the number of historical packets injected into the 
corresponding link in the past; thus, it can also reflect the future 
congestion degree (more accurately, the congestion degree in 
this study mainly refers to the link load) of a given link. 

 
Fig. 3.  The relationship between the egress traffic, queue occupancy and 
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Therefore, when we take dequeue time interval as a decision 
basis of load balancing, it is actually based on an implicit 
congestion prediction. 

Thus, when we consider the queue occupancy and dequeue 
time interval together as the decision basis, we actually consider 
the current and future congestion degree as a whole, and 
actually achieve the cooperation between switches either 
without depending on controllers or without explicit 
information transmission between switches. 

Simultaneously, the queuing trend should be a part of the 
decision basis. If the current queue occupancy results from a 
growth, this indicates that the queue is increasing and the 
network congestion may be expected to become more severe; if 
the current queue occupancy results from a reduction, this 
indicates that the queue is decreasing and the network 
congestion may be expected to gradually ease. The load-
balancing strategies applied in each case should differ. 

In summary, compared with link utilization and FCT, queue 
occupancy, dequeue time interval, and queuing trend can more 
directly reflect current and future network congestion degrees 
from the bottom; moreover, the cost of measuring them in PDP 
is less. 

Therefore, to address Challenge 1, based on the inherent 
relationship between the network’s congestion degree and 
switches’ queue behavior, our proposed approach uses queue 
behavior as the decision basis for load balancing. To 
summarize, our decision basis for load balancing creatively 
considers the evolutionary process that occurred to reach the 
current queue state, including how to arrive (i.e., queuing trend) 
and how long it took to arrive (i.e., dequeue time interval) at the 
current queue state (i.e., queue occupancy). 

Motivation 2: Distributing traffic evenly instead of 
through the best path. 

In order to avoid network shock in Challenge 2 to achieve 
better load balancing, we designed a probabilistic forwarding 
strategy that distributes traffic evenly to each available port 
instead of selecting only the best port.   

Motivation 3: The first observer is the first decision-
maker. 

To decrease decision delays, decision-makers should be 
placed close to the network state that needs to be accessed, 
which may be described as data locality. The programmable 
switch located at the core of a network can directly and 
accurately observe the network behaviors of all flows that pass 
through the switch over short timescales. This programmability 
can support flexible load balancing strategies directly inside 
PDPs. Thus, to address Challenge 3, we employ programmable 
switches as the key decision-maker.  

IV. SYSTEM DESIGN OF QALL 

A. Problem Statement 
Considering a DCN with V switches and N hosts, we model 

the network as a directed graph G = (V, E). Any two hosts 
among N hosts are referred toas an end-to-end host pair. In 

 
2 Under the packet-triggered work scheme, strict periodicity is impossible. 

DCNs, communication for an end-to-end host pair contains a 
set of candidate paths where the K-shortest paths (KSP) [37] 
algorithm is used to calculate the candidate paths. By default, 
all queues in switches use first-in-first-out (FIFO). Therefore, 
its length increases when a new packet is inserted into a queue 
and decreases when dequeuing packets. 

Programmable switches adopt a packet-triggered work 
scheme; that is, the execution of a P4 program for the load-
balancing algorithm is triggered by a packet arrival event 
instead of by a strict period (periodically). This scheme 
involves some constraints on the P4 programming of the load-
balancing algorithms. 

B. Workflow of QALL 
Inspired by above-mentioned motivations, based on its queue 

behavior fine measured, the data plane of programmable 
switches probabilistically selects egress ports for traffic to 
achieve per-packet and per-flowlet load balancing. To 
summarize, the key idea of QALL is that the more idle a given 
port is (i.e., the lower the queue occupancy of the port and the 
greater its dequeue time interval), the greater the probability of 
its being selected, so the traffic is preferentially transferred to 
the idle port. 

As shown in Fig. 4, QALL includes state collection, state 
return, congestion index estimation, and probabilistic 
forwarding modules. The first two modules (responsible for 
accessing the load-balancing decision basis (i.e., queue 
behaviors)) are implemented on the egress pipeline of the PDP, 
whereas the latter two modules (the load-balancing decision 
location) are deployed on the ingress pipeline of the PDP. The 
state collection and state return modules “periodically”2 send 
the ingress pipeline queue behavior data of each egress port, 
which are used to compute the congestion index using the 
congestion index estimation module, and the probabilistic 
forwarding module uses this index to select an egress port.  

Data plane of programmable switch

Congestion 
index 

estimation

Probabilistic 
forwarding

State return

State 
collection

Egress pipelineIngress pipeline

Clone packet

Selecting ports

PacketPacket

  
Fig. 4.  Framework of QALL. 

QALL can achieve per-packet and per-flowlet load balancing. 
As shown in Algorithm 1, when packet j arrives at ingress port 
i, the following processing is triggered: 

(1) The ingress pipeline determines whether the packet j is 
a clone or a normal packet. The clone packet is generated by the 
P4 clone operation and implemented through recirculation 
feature that sends a packet (i.e., clone packet) back to the 
ingress pipeline from the egress pipeline. 

(2) For clone packets, after the queue behavior data of the 
corresponding egress port is updated, packet j is discarded 
(Lines 1–3). 

(3) For normal packets, the load-balancing algorithm (per-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8 
 

packet or per-flowlet) is executed. 
The algorithm finds all the available egress ports 

corresponding to the established candidate paths (denoted by 
[P]) according to the ingress port (Line 5). The congestion 
index estimation module computes the congestion index 
(denoted by C[P]) of each available egress port (Lines 6–9).  

In the case of per-packet processing, the probabilistic 
forwarding module uses the index C[P] to select an egress port 
for packet j (Lines 10, more details are in Algorithm 2). 

In the case of per-flowlet processing, whether packet j should 
be divided into a new flowlet or assigned to an existing flowlet 
is determined according to the time interval △T1 between two 
packets (Lines 11–14). If the time interval is larger than the 
flowlet threshold Tinter (Tinter can be set to a value of the end-to-
end delay level; in this study, Tinter =10ms), we create a new 
flowlet and select an egress port for packet j (Lines 15–18); 
otherwise, we follow an existing flowlet to forward packet j 
(Line 20). 

Regardless of whether per-packet or per-flowlet granularity 
is applied, the state collection and return module in the egress 
pipeline sends the ingress pipeline the queue behavior data of 
each egress port (Line 22; more details can be found in 
Algorithm 3). 

Algorithm 1: QALL 
Function QALL(packet, register): 
A packet arrives a ingress port // Packet-triggered work scheme 
/*In ingress pipeline processing*/ 
1.  If clone_packet 
2.    Queue_register.Write(Egress_port)  

// Updating the queue behavior data of corresponding egress port  
3.    Drop(clone_packet) // Discarding the clone packet. 
4.  Else 
5.    Finding all available egress ports [P] according to the ingress port 
6.    Congestion_module([P]): // Congestion index estimation module 
7.      Queue_info= Queue_register.Read([P])  

       // Obtaining the queue behavior data of [P] 
8.      C[P]=Compute(Queue_info)//Computing congestion index C[P] for [P].  
9.     Return  
 
/* Per-packet granularity */ 
10.    Egress_port= Probability(C[P]) 

//Probabilistic forwarding module, and Algorithm 2 shows more details. 
/* Per-flowlet granularity */ 
11.  Flowlet_index=Hash(packet’s five-tuples) //Generating a flowlet index 
12.  T1=standard_metadata.ingress_timestamp//Getting the entry 
timestamp of current packet 
13.  T2=Timestamp_flowlet_register.Read(Flowlet_index)//Getting the 
entry timestamp of previous packet 
14.  △T1=T1-T2  //Computing the time interval between two packets △T 
15.  If △T1>Tinter //Determining whether the time interval is larger than Tinter 
16.    Creating a new flowlet 
17.    Egress_port= Probability(C[P])//Algorithm 2 shows Probability() 
18.    Egress_register.Write(Flowlet_index, Egress_port)  

// Updating the forwarding port of current flowlet. 
19.  Else  //The packet belongs to an existing flowlet 
20.    Egress_port= Egress_register.Read(Flowlet_index)  

// Obtaining the forwarding port of current flowlet 
21.  Return 
 
/* In egress pipeline processing */ 
22.   collect_feedback(clone_packet, Queue_info) 

//State collection and return module: Algorithm 3 shows their more details. 

C. Congestion Index Estimation Module 
 The congestion degree estimated by the congestion index 

estimation module is the decision basis for forwarding packets. 

Hence, the accuracy of this module directly affects the 
performance of the load-balancing strategy. Our proposed 
approach uses the congestion index to evaluate the congestion 
degree of a network, where the higher the congestion index, the 
more severe the congestion degree. Thus, following Motivation 
1 and Observations 1–2, which showed a positively/negatively 
correlated relationship between egress traffic, queue occupancy, 
and dequeue time interval, the equation for estimating the 
congestion index can be expressed as  

𝐶𝑖 = 𝐿𝑖/𝑇𝑖 × 𝑉𝑖,  
 

(2) 
where Ci is the congestion index of egress port i, Li (0≤Li≤1) is 
the queue occupancy of egress port i, and Ti is dequeue time 
interval of egress port i (it is an integer in us in programmable 
switch). Evidently, Equation (2) is applicable to any topology 
or traffic pattern. That is, QALL performs well not only for 
symmetrical topologies, but also for asymmetrical topologies. 

L/T reflects the speed at which the queue depth changes. Thus, 
a port with a lower L/T should be selected preferentially. Vi is 
the queuing trend of egress port i. Given that the congestion 
degree decreases when the queuing trend decreases, ports with 
decreasing queuing trend should be selected preferentially. 
Thus, considering Equations (5) and (6), we should use the 
following rule to set the value of Vi (i.e., the weight of the 
congestion index): the value of Vi in cases of the queue 
occupancy increasing is larger than that in case of the queue 
occupancy decreasing. For example, in this study, Vi=2 when 
queue occupancy is increasing, and Vi=1 when the queue 
occupancy is decreasing. In other words, the weight in cases of 
the increasing is double that in case of the decreasing.  

Considering that the programmable switch does not support 
division operations, and to maintain the negative correlation 
between C and T, by introducing the normalization factor τ, we 
simplify equation (2) to perform multiplication, shift, and 
addition/subtraction operations as follows. 

𝐶𝑖 = 𝐿𝑖 × (1 − 𝑇𝑖/𝜏) × 𝑉𝑖 , (3) 
where τ is the time constant that is used to normalize dequeue 
time interval T to [0, 1]. We should apply the following rule to 
set the value of τ: τ should be set a value of end-to-end delay 
level to ensure that it is greater than T. As an example, τ is ~10 
ms in this study. 

Furthermore, considering that programmable switches do not 
support floating-point operations, we simplify the 
normalization in Equation (3) to a subtraction operation such 
that the operation results are guaranteed to be integers. Thus, 
the final equation for estimating congestion index can be 
expressed as   

𝐶𝑖 = 𝐿𝑖 × (𝜏 − 𝑇𝑖) × 𝑉𝑖. (4) 
Compared with other methods that depend only on the queue 

occupancy to estimate the congestion degree, Equation (4) can 
reflect the network congestion degree more accurately and 
perform load balancing more effectively. More importantly, the 
congestion index can be calculated directly from the local queue 
behavior. Specifically, we let Cmax be the maximum value of Ci, 
which indicates the most severe congestion degree. Therefore, 
Cmax is the value of Ci when Li=1, Ti=0, and Vi=2. 
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D. Probabilistic Forwarding Module 
The probabilistic forwarding module determines the 

probability of port selection according to the congestion index 
computed using Equation (4) to evenly schedule traffic to each 
available port. In this study, the probability of egress port i 
being selected for forward packets (denoted as Pi) is computed 
as follows, 

 𝑃𝑖 = 𝑊𝑖/(∑ 𝑊𝑖),  (5) 
where the traffic forwarding weight of egress port i is referred 
to as Wi, which decreases with an increase in congestion index 
Ci. Furthermore, Wi can be determined by  

𝑊𝑖 = 𝐶𝑚𝑎𝑥 − 𝐶𝑖, (6) 
Equation (5) depends on the division operation and Pi may 

be a floating-point value. However, programmable switches do 
not support floating point operations. Thus, our proposed 
approach uses a random function provided in the programmable 
switch to realize a uniform distribution, to achieve the 
probabilistic forwarding described in Equation (5). Specifically, 
we select the forwarded egress port with a selection grid manner. 
As shown in Fig. 5 and Algorithm 2, the traffic forwarding 
weight of egress port i is represented by Wi grids (Line 2), and 
a switch has ∑Wi grids, which is identified by 1, 2, 3…∑Wi 

(Line 3). The random function randomly generates a grid 
identifier (Grid_ID) among [1, ∑Wi] (Line 4), and the packet is 
forwarded from the egress port (Egress_port) to which the grid 
identifier belongs (Line 5). 

1 1 1 ... 1 1 1 1

   

Total weight of all ports:  Wi

W1 grids for egress port 1 Wi grids for egress port i
 

Fig. 5. Probabilistic selecting the egress port in a selecting grid manner.  
 

Algorithm 2: Probabilistic forwarding module in QALL 
Function Probability (congestion index for ports set [P]) 
1. C[P]= congestion index for ports set [P]  
2. W[P]=Weight(C[P])   

//Converting the congestion index into corresponding weight as shown equation (6). 
3. W_total=Sum(W[P]) 
4. Grid_ID =Random(W_total) 
5. Using Grid_ID to determine egress port: packet is forwarded from the 
egress port to which the Grid_ID belongs. 
6. Return 

E. State Collection and State Return Module 
The state collection and state return modules are responsible 

for the “regular” collection of the queue behavior of the egress 

port and send the data to the ingress pipeline. In fact, the 
frequency with which these behavior data are collected and sent 
determines the freshness of the decision basis for load balancing. 
However, excessively frequent state collection and sending 
result in additional overhead on the switch. Thus, we set an 
adjustable updating period factor (Tb) to achieve a tradeoff 
between performance and overhead. In this study, Tb =1ms. 
Further details regarding the overhead are provided in Section 
VI-F. 

As shown in Algorithm 3, following the decision of the 
probabilistic forwarding module, a packet is scheduled to an 
egress port (Egress_port), and this event triggers the system to 

compute the time interval between this event and the last update 
event (△T2, Lines 1–3). If △T2 is less than Tb, the state 
collection module continues to collect the Egress_port’s queue 
behavior and saves the data in corresponding registers of the 
switch (Lines 4–5). 

If △T2 exceeds Tb, the state return module reads 
Egress_port’s queue behavior data stored in the register and 
sends a clone packet that piggybacks with this data to the 
ingress pipeline of the switch (Lines 6–7). Finally, the cloning 
time is recorded by a register (Line 8). When this clone packet 
arrives at the ingress pipeline, update and discard operations are 
performed according to lines 1–3 in Algorithm 1. As shown in 
Fig. 6, the clone packet comprises 10 bytes, where Egress port 
index refers to the egress port to which the piggybacked queue 
behavior data corresponds.  

Queue occupancy
(bit<16>)

Dequeue time interval
(bit<48>)

Queuing trend
(bit<8>)

Egress port index
(bit<8>)  

Fig. 6. The format of clone packet in QALL 
 

Algorithm 3: State collection and return module in QALL 
Function collect_feedback(packet,register): 
A packet arrives egress port Egress_port // Packet-triggered work scheme 
1.T1=standard_metadata.egress_timestamp //Obtaining the arriving time of 
the packet. 
2.T2=Timestamp_port_register.Read(Egress_port) //Obtaining the 
previous cloning time corresponding with Egress_port. 
3.△T2=T1-T2  //Computing the time interval. 
4. If △T2≤Tb  // The updating time has not come. 
5. Continue collecting Egress_port’s queue behavior (Queue_info), which 
is saved in switch’s registers. 
6. Else //The updating time has come 
7.   Clone (Queue_info) 
8.   Timestamp_port_register.Write(Egress_port) //The cloning time 
corresponding with Egress_port is recorded 

V. DATA-DRIVEN QALL 
The proposed load-balancing strategy allocates traffic by 

estimating the congestion degree of each egress port. Therefore, 
the accuracy of estimating the congestion index is crucial to 
determine the effectiveness of the load-balancing strategy. We 
designed QALL based on a qualitative analysis of the 
correlation between egress traffic, queue occupancy, and 
dequeue time interval. Subsequent experimental results 
confirmed that QALL performed well. Furthermore, based on 
the data-driven concept, this section aims to quantitatively fit 
the relationship between these variables through a regression 
analysis, so as to estimate the congestion index more accurately 
and further improve QALL’s performance. 

A. Data-Driven Congestion Index Estimation 
To achieve above-mentioned fit, we used 150000 groups and 

50000 groups of the observation dataset as a training and 
testing sets, respectively. 
(1) Data-driven methods 

Many data-driven methods, such as neural networks [38] and 
least-squares methods [39], can be used to describe the 
relationships between variables. However, the outputs of neural 
network models trained using large volumes of data are 
generally not interpretable. The greatest advantage of the least- 
squares method is that we can obtain an explicit fitting function 
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that explains the relationships between these variables. Based 
on this explicit function, a programmable switch can be used to 
design a congestion index estimation module and realize a load-
balancing strategy. Therefore, we chose least-squares 
polynomial linear regression and least-squares polynomial 
nonlinear regression to fit the relationship between egress 
traffic, queue occupancy, and dequeue time interval in this 
study. 

The basic principle of least-squares for fitting data is to use a 
polynomial function to approximate discrete sequences (X, Y). 
We assume that Yi is the ith sample of the fitted object and 𝑋𝑘𝑖 
is the kth feature of the ith sample in X. This approach is used to 
obtain the polynomial function 𝑓(𝑋𝑖) = 𝑎0 + 𝑎1𝑋1𝑖 +
𝑎2𝑋2𝑖+. . . +𝑎𝑘𝑋𝑘𝑖  such that the sum of the squares of the 
differences between 𝑓(𝑋𝑖)  and Yi is minimized. That is, 
Equation (7) is minimized. 

𝐸 = ∑(𝑓(𝑋𝑖) − 𝑌𝑖)
2

𝑛

𝑖=1

 

    = ∑(𝑎0 + 𝑎1𝑋1𝑖 + 𝑎2𝑋2𝑖+. . . +𝑎𝑘𝑋𝑘𝑖 − 𝑌𝑖)
2

𝑛

𝑖=1

. 

(7) 

In terms of fitting high-order polynomial regression, this 
approach is a non-linear regression model. In our proposed 
method, the higher-order independent variable in the 
polynomial is converted into a separate feature. For example, 
for feature X1, if the sample data are [0, 1, 3], then for the 
quadratic and cubic terms of X1, it is regarded as an independent 
feature, that is, the sample [0, 1, 9] and [0, 1, 27], respectively. 
In this way, these three features are input as independent 
features so that the nonlinear polynomial regression model is 
converted into a multivariate linear regression model, and the 
fitting equation is obtained by solving. 

In this study, the egress traffic is taken as Y, the queue 
occupancy L and dequeue time interval T are taken as X, and 
then the explicit function Y=f(X) is fitted as the estimated 
congestion index. The congestion index can be calculated 
directly from the local queue behavior. 
(2) Fitting results 

Considering that the queuing trend is an attribute contained 
in the queue occupancy itself, to reduce the complexity of the 
fitting process, we did not add a queuing trend to fit the 
congestion index. Therefore, using the training set of the 
observation dataset, L and T were fitted as egress traffic based 
on least-squares polynomial linear regression, polynomial 
quadratic regression, and polynomial cubic regression which 
are referred to as C-linear, C-poly2, and C-poly3, respectively. 

The fitting equation for bivariate polynomial linear 
regression is shown in Equation (8) below. 

C-linear=0.167+0.261×L-0.468×T. (8) 
The fitting equation for the bivariate quadratic polynomial 

regression is shown in Equation (9). 
C-poly2=0.175+0.797×L-0.896×T-

1.068×L2+1.422×L×T+0.845×T2. 
(9) 

The fitting equation for the bivariate cubic polynomial 
regression is shown in equation (10). 

C-poly3=0.186+0.892×L-1.446×T-

2.514L2+18.873×L×T+3.472×T2+1.654×L3-

22.944×L2×T-58.49×L×T2-2.254×T3. 

(10) 

It may be observed that equation (8)–(10) based on data-
driven approaches and equation (4) based on theoretical 
derivation all show the correlation between the egress traffic, 
queue occupancy, and dequeue time interval. In particular, 
Equations (8)–(10) further quantitatively determine the weight 
of each variable in the equation to estimate the congestion index; 
thus, they can estimate the degree of congestion more 
accurately. 

Simultaneously, we observed how the power of the fitting 
function affected the fitting accuracy. Table I shows the 
Goodness of Fit (R2) and Mean Relative Error (MRE) for the 
test set of observation dataset, which are widely used to 
evaluate fitting. 

TABLE I FITTING ACCURACY 
Power of fitting function R2 MRE 

Primary power 0.5772 0.3687 
Quadratic 0.6277 0.2755 

Cubic 0.6738 0.2739 
Fifth power 0.7312 0.2696 

Octave 0.7358 0.2638 
Tenth power 0.7452 0.2114 

From Table I, it may be observed that R2 and MRE improved 
to different degrees when the power of the fitting function was 
greater, indicating an improved fitting accuracy. However, the 
fitting accuracy did not improve significantly after cubic fitting, 
and the required computing resources increased exponentially 
with increasing power. Considering the limited computing 
resources of programmable switches, if a large amount of 
computing resources are consumed to compute the congestion 
index, the performance of forwarding normal packets decreases 
accordingly. 

Therefore, we used primary power, quadratic, and cubic 
fitting to estimate the congestion index. Considering that 
programmable switches do not support floating-point 
operations, we multiplied the right side of Equations (8)–(10) 
by a scaling factor (100) and then truncated and rounded the 
data, converting the floating-point values to integers. Thus, the 
final equation used to estimate the congestion index is as 
follows. 
C-linear=16+26×L-46×T, (11) 
C-poly2=17+79×L-89×T-106×L×L+142×L×T+84×T×T, (12) 
C-poly3=18+89×L-144×T-251×L×L+188×L×T+347×T×T, 
+165×L×L×L-2294×L×L×T-5849×L×T×T-225×T×T×T. 

(13) 

B.  Data-Driven Load Balancing Scheme 
To further improve the performance of QALL, Equation (4) 

can be replaced by Equations (11), (12), and (13) respectively, 
while the state collection, state return, and probabilistic 
forwarding modules remain unchanged. As an example, we 
aimed to optimize the per-packet granularity QALL-Pkt. These 
schemes that use C-linear, C-poly2, and C-poly3 for QALL-Pkt 
are referred to as QALL-linear, QALL-poly2, and QALL-poly3, 
respectively. Obviously, we can also optimize the per-flowlet 
granularity of QALL-Flowlet with the same method. 
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VI. EXPERIMENT EVALUATION 

A. System Development 
Following the experimental setup adopted in QDAPS [13], 

Contra [17], and CLB [27], etc., we evaluated the performance 
of QALL on a large-scale DCN constructed with Mininet+ 
BMv2, where Mininet was used to create a leaf-spine topology 
(Fig. 7) and BMv2 was installed as the software programmable 
switch. We implemented QALL using programming protocol-
independent packet processors (P4). Each switch port included 
only a single FIFO queue. 

As shown in Fig. 7, following CONGA [1] and Clove [7], we 
used a two-tier Clos topology with two spine switches (S1 and 
S2) connecting two leaf switches (L1 and L2) under a set of 
actual DCN traffic workloads to test the proposed QALL 
method. Routing was performed such that all traffic received by 
a spine switch from one of the leaf switches was forwarded 
towards the other leaf switch. Each leaf switch was connected 
to either spine by two 400 Mbps links. This yielded a total of 
1600 Mbps for the bisection bandwidth. Each leaf was 
connected to 16 servers with 100 Mbps links. This ensures that 
the network avoids oversubscribing, and the 16 servers on one 
leaf can saturate the 1600Mbps bandwidth together. 

h1

...

h8 h9 h16

...

h17

...

h25 h26 h32

...

X

S1 S24x400Mbps

16x100Mbps

3x400Mbps

16x100MbpsL1 L2

 
Fig.7 Topology used in evaluation 

B. Actual DCN Traffic Workloads 
Following the majority of studies on this subject [1, 2, 4, 5], 

we simulated actual DCN traffic using two types of widely used 
workloads, including web-search (WS) and data-mining (DM) 
workloads. Fig. 8 shows the cumulative distribution function 
(CDF) of the flow sizes from the WS and DM workloads. In 
these workloads, most of the flows were mice flows with a size 
of less than 100 KB, whereas a smaller number of flows were 
elephant flows larger than 10MB. For example, in the WS 
workload, more than 60% of the flows were mice flows, and 25% 
were elephant flows. It may be observed in the DM workload 
that 80% of the flows were mice flows and 10% were elephant 
flows.  

The flows arrive according to the Poisson process with flow 
arrival rates λ (flows/s), and the source and destination of each 

flow are selected uniformly at random. To emulate various 
degrees of load, we scaled the flow interarrival times. That is, 
we used different values of  λ to simulate different traffic load 

levels 𝜌, where 𝜌 =
λ×𝐸(𝐹)

𝐿𝑖𝑛𝑘 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 and E(F) is the average flow 

size, and Link bandwidth is the bandwidth of the link. In this 

study, we varied λ and E(F) dynamically to let 𝜌 be 10%-90%, 
and the default value of 𝜌 was 70%.  

 
Fig. 8. Traffic distributions of DM and WS workload. 

C. Performance Evaluation Methodology 
The QALL under per-packet granularity is referred to as 

QALL-Pkt, and QALL under per-flowlet granularity is referred 
to as QALL-Flowlet. Because QALL is a per-packet/per-flow 
granularity load-balancing method located at switches, we 
compared QALL with other load-balancing schemes located at 
switches, including a typical per-packet scheme (DRILL), two 
typical per-flowlet schemes (CONGA and LetFlow), and a 
typical per-flow scheme (ECMP). We used decision delay, flow 
completion time (FCT), network shock (evaluated by the 
Variance of queue occupancy), load sharing accuracy, packet 
reordering (evaluated by the number of TCP duplicate ACKs), 
and system overhead (evaluated by the resource and control 
loop overhead) to test their performance at scale. 

The load sharing accuracy varies over time, and the load 

sharing accuracy at ith time slot is defined as 𝑃𝑖 =
𝑈𝑖

𝑀𝑎𝑥−𝑈𝑖
𝑀𝑖𝑛

𝑈𝑖
𝑀𝑖𝑛 =

𝑈𝑖
𝑀𝑎𝑥

𝑈𝑖
𝑀𝑖𝑛 − 1,where 𝑈𝑖

𝑀𝑎𝑥=Max{Ui1, Ui2,… Uij,…}, 𝑈𝑖
𝑀𝑖𝑛=Min{Ui1, 

Ui2,… Uij,…}, and Uij is the link utilization of the jth link at the 
ith time slot. In other words, 𝑈𝑖

𝑀𝑎𝑥  and 𝑈𝑖
𝑀𝑖𝑛  are the link 

utilization of the busiest and idlest links at the ith time slot, 
respectively. The definition actually reflects the difference 
between the lightly loaded and heavily loaded links; evidently, 
the closer the load-sharing accuracy is to 0, the better the load 
balance. Thus, our results suggest that the load sharing 
accuracy can quantify the level of load balancing in a DCN.  
Network operators prefer lower load sharing accuracy, which 
implies maximizing link utilization without packet loss and 
reducing investment costs.  

In short, decision delay is a metric for evaluating the ability 
of the load-balancing scheme to cope with microbursts, FCT is 
a metric for evaluating the quality of experience for users, load 
sharing accuracy is a metric for evaluating the resource 
utilization efficiency of network operators, and system 
overhead is a metric for evaluating QALL’s scalability.  

D. Experimental Results 
(1) Decision delay 

In this study, decision delay refers to the time required to 
update the decision basis. Because the traffic load can change 
on a very small timescale, a long decision delay leads to a 
corresponding deviation from the expected load distribution for 
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a longer duration. The decision delays for QALL, DRILL, 
CONGA, HULA, LetFlow, and ECMP are presented in Table 
II. 

In CONGA, the decision-maker is the source leaf switch, 
where the destination leaf switches use a piggybacking network 
state manner to update its decision basis. Therefore, the 
decision delay depends on the normal traffic from the 
destination host to the source host. If the destination 
temporarily does not send packets to the source host, the 
decision delay increases significantly. 

In HULA, each switch is a decision-maker, and probes are 
used to proactively disseminate link utilization information to 
all switches in the network. Without waiting for piggyback 
from the destination leaf switch, HULA’s decision delay 

decreased compared with that of CONGA. HULA’s decision 

delay depends on the time required for the probe packets to 
reach each switch from the leaf switch and is greatly affected 
by the network state.   

In QALL and DRILL, the decision basis is updated directly 
within the local switch. Their decision delay comprises only the 
cloning time from the egress pipeline to the ingress pipeline. 
Thus, their decision delay was less than those of CONGA and 
HULA.  

Compared with CONGA and HULA, QALL's decision delay 
was at least 96.8% and 74.3%–92.8% less, respectively. In 
particular, the decision delay of QALL was slightly shorter than 
that of DRILL, primarily because DRILL needs to read the 
congestion state from the registers multiple times and compare 
the ports corresponding to the minimum value. Compared to 
QALL, these operations require more processing delays. 

LetFlow and ECMP do not need to sense the network state, 
instead directly forward traffic through a prepared fixed flow 
table. Thus, the decision delay is close to zero. However, such 
hardwired mapping without sensing is definitely performed at 
the expense of performance. 

TABLE II DECISION DELAY OF DIFFERENT SCHEMES 
Schemes Decision delay 

QALL 0.615ms 
CONGA >=19.8ms 
HULA 2.4ms-8.6ms 
DRILL 0.621ms 

LetFlow/ECMP - 
 

(2) Average FCT under Symmetrical Topology  
Fig. 9 and Fig. 10 show the average FCT of QALL, DRILL, 

CONGA, LetFlow, and ECMP under different load levels. 
We found that (i) the smaller the load-balancing granularity, 

the smaller the FCT, where QALL-Pkt <DRILL< QALL-
Flowlet <CONGA <LetFlow <ECMP. In fact, this result is 
relatively straightforward. A smaller load-balancing granularity 
was found to result in a better chance of evenly distributing 
traffic to each available path. (ii) Under the same load-
balancing granularity, congestion-aware schemes such as 
CONGA and QALL-Flowlet can perform better than non-
congestion-aware load-balancing schemes (e.g., LetFlow). This 
is the case because congestion-aware schemes can schedule 
traffic according to the network state and have a better chance 

of allocating traffic to paths with lighter loads, rather than 
simply distributing traffic randomly to paths. 

Fig. 9 shows the average FCT for data-mining, where QALL-
Pkt performed best, as expected. The FCT of QALL-Pkt was 
lower by up to 51.7%, 43.1%, and 41.4% compared with those 
of ECMP, LetFlow, and CONGA, respectively. In terms of per-
flowlet, the FCT of QALL-Flowlet was lower by up to 30.3% 
and 26.9% compared with that of LetFlow and CONGA, 
respectively. The main reason that QALL-Flowlet 
outperformed CONGA is that, depending on the manner of 
piggybacking, CONGA is a passive congestion-aware method 
and does not update the congestion state in time, whereas 
QALL is based on active clone packets for congestion-aware 
traffic management, which can update the congestion state in a 
more timely manner. 

In terms of per-packet, the FCT of QALL-Pkt was lower by 
up to 26.4% compared with that of DRILL. The main reason for 
this result is that (i) equation (4) is a better method for 
estimating congestion, which creatively takes into account the 
process of how the current queue state was reached. (ii) 
Thanking for equation (5)–(6), a better method for evenly 
distributing the traffic to each available port, instead of 
selecting only the best port, as in DRILL. 

Fig. 10 shows the average FCT for web-search, which 
exhibited more elephant flows than data mining. As expected, 
QALL-Pkt yields the best results. The FCT of QALL-Pkt was 
lower by up to 51.4%, 42.9%, and 35.8% compared with ECMP, 
LetFlow, and CONGA, respectively. In terms of per-flowlet, 
the FCT of QALL-Flowlet was reduced by up to 35.8% and 
25.4% compared with LetFlow and CONGA, respectively. In 
terms of per-packet, the FCT of QALL-Pkt was reduced by up 
to 21.5% compared with that of DRILL. 

Finally, from Fig. 9 and Fig. 10, under both data mining and 
web search, it may be observed that the advantages of per-
packet QALL-Pkt compared with the other schemes increased 
with increasing load. That is, performance under per-packet 
granularity can be ensured in the case of a heavy load, which 
mainly benefits from the fine-grained load-balancing strategy, 
and traffic can still be evenly distributed to each available port. 

 
 

Fig. 9. Average FCT for data-mining under symmetrical topology. 
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(3) Average FCT under Asymmetrical Topology  

To simulate asymmetry in the baseline symmetric topology, 
we disabled one of the 400Mbps links connecting the spine S2 
with leaf switch L2. The average FCT under the asymmetric 
topology is shown in Fig. 11 and Fig. 12. We can see that the 
FCT of all schemes increased rapidly with the increase in load 
after the load level was greater than 50% and is larger than that 
of the symmetrical topology under the same load level. 

Fig. 11 shows the average FCT for data-mining, where 
QALL-Pkt performed the best, as expected. The FCT of QALL-
Pkt was lower by at most 61.4%, 57.3%, and 49.7% compared 
with those of ECMP, LetFlow, and CONGA, respectively. In 
terms of per-flowlet, the FCT of QALL-Flowlet was lower by 
at most 43.8% and 24.7% compared with that of LetFlow and 
CONGA, respectively. In terms of per-packet, the FCT of 
QALL-Pkt was lower by at most 23% compared with that of 
DRILL. 

Fig. 12 shows the average FCT for web-search which has 
more elephant flows than data-mining. As expected, QALL-Pkt 
yields the best results. The FCT of QALL-Pkt was reduced by 
at most 53.1%, 49.2%, and 42.1% compared with that of ECMP, 
LetFlow, and CONGA, respectively. In terms of per-flowlet, 
the FCT of QALL-Flowlet was lower by at most 25.9% and 
11.5% compared with those of LetFlow and CONGA, 
respectively. In terms of per-packet, the FCT of QALL-Pkt was 
up to 15.4% lower than that of DRILL. 

In factually, a symmetric topology naturally has a certain 
load balancing ability; for example, ECMP depends on this 
feature to achieve load balancing. In an asymmetric topology, 
the available bandwidth is reduced, which tests the capabilities 
of the load balancing strategy further. However, based on more 
accurately estimating congestion, more evenly distributing 
traffic, and locally making decisions, QALL can still achieve 
better load balancing performance under an asymmetric 
topology with a heavy traffic load. Thus, for most load levels, 
the advantage of QALL compared to other schemes under an 
asymmetric topology was larger than that under a symmetric 
topology, especially compared to ECMP. 

 

 
(4) 99th percentile FCT under Asymmetrical Topology 

Different from average FCT, from another view, we used the 
99th percentile FCT to evaluate the tail latency of load 
balancing. As an example, Fig. 13 and Fig. 14 show the 99th 
percentile FCT under asymmetrical topology where QALL-Pkt 
was the best. In fact, there was also a similar result under a 
symmetrical topology. 

Fig. 13 shows the 99th percentile FCT for data-mining. The 
99th percentile FCT of QALL-Pkt was lower by at most 52.9%, 
43.7%, and 35.7% compared with those of ECMP, LetFlow, 
and CONGA, respectively. In terms of per-flowlet, the 99th 
percentile FCT of QALL-Flowlet was reduced by at most 25.9% 
and 15.4% compared with that of LetFlow and CONGA, 
respectively. In terms of per-packet, the 99th percentile FCT of 
QALL-Pkt was reduced by at most 9.7% compared with that of 
DRILL. 

Fig. 14 shows the 99th percentile FCT for the web-search 
workload. The 99th percentile FCT of QALL-Pkt was lower by 
up to 65.4%, 54.4%, and 44.9% compared with those of ECMP, 
LetFlow, and CONGA, respectively. In terms of per-flowlet, 
the 99th percentile FCT of QALL-Flowlet was lower by at most 
32.3% and 22.7% compared with those of LetFlow and 
CONGA, respectively. In terms of per-packet, the 99th 
percentile FCT of QALL-Pkt was lower by up to 20.1% 
compared with that of DRILL. 

In summary, we can also see that the advantage of QALL 
compared to other schemes under the web-search was greater 
than for data-mining workloads. However, web-search have 
more elephant flows than data-mining workloads. In other 
words, in terms of the 99th percentile FCT, QALL can better 
help elephant flows than mice flows, because the tail latency is 
more important for elephant flows than for mice flows. At the 

 
Fig. 10. Average FCT for web-search under symmetrical topology.  

Fig. 11. Average FCT for data-mining under asymmetrical topology. 

 
Fig. 12. Average FCT for web-search under asymmetrical topology. 
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same time, in terms of the 99th percentile FCT, the fine-grained 
schemes were better than the coarse-grained schemes, and 
QALL-Pkt performed better than DRILL because DRILL 
suffered from network shock caused by its coarse-grained port 
selection strategy.  

 

 
(5) Network Shock under Symmetrical Topology 

Many load-balancing schemes (e.g., CONGA, HULA, and 
DRILL) usually adopt a coarse-grained port selection strategy. 
Such a strategy easily results in frequent changeover of paths 
(i.e., network shock). Such network shock will eventually be 
manifested as a shock in queue occupancy. In this section, we 
use the Variance of queue occupancy to evaluate the network 
shock. As an example, for the relatively high load level (i.e., 𝜌 
=70%) under symmetrical topology, the Variance of queue 
occupancy is shown in Table IV. In fact, we also obtained a 
similar result under an asymmetrical topology. 

In essence, the load balancing scheme aims to adjust and 
finally achieve a reasonable space-time distribution of traffic in 
the network. The change of traffic distribution in the network 
eventually leads to a change in the queue behavior of the 
switches. In other words, an unbalanced traffic distribution 
leads to a large Variance in queue occupancy and affects the 
FCT. Thus, from Table III, we can see that the pros and cons of 
Variance under various schemes are basically the same as the 
pros and cons of FCT as discussed above. The Variance of 
QALL-Pkt was 1.5 × and 2.4 × lower than those of LetFlow and 
ECMP, respectively. These results further verify Motivation 1, 
in which QALL uses the relationship between the congestion 
degree, queue occupancy, and dequeue time interval as part of 
its decision basis. 

More importantly, well-balanced and non-shocked queue 
occupancies can allow the network delay across all paths 
between every source and destination pair to be similar, thereby 
reducing packet reordering. 

TABLE III THE VARIANCE OF QUEUE OCCUPANCY 
Schemes The variance of queue occupancy 
QALL-Pkt 0.0667 

DRILL 0.0712 
QALL-Flowlet 0.0755 

CONGA 0.0922 
LetFlow 0.1028 
ECMP 0.1593 

 
(6) Load Sharing Accuracy  

Network operators desire lower load sharing accuracy 
(generally less than 5%). Under the relatively high load level 
(i.e., 𝜌 =70%), the load sharing accuracy is shown in Fig. 15, 
where every 10s is one time slot.  

The load sharing accuracy of QALL can always be 
maintained within 5%, where the average load sharing 
accuracy of QALL-Pkt and that of QALL-Flowlet was 1.414% 
and 2.8%, respectively. The average load sharing accuracy of 
DRILL, CONGA, Flowlet, ECMP were 1.75%, 3.8%, 4.27%, 
and 5.76%, respectively, and the load sharing accuracy of 
ECMP was always higher than 5%. Obviously, these results 
were caused by the decision delay. As shown in Table II, the 
decision delay of QALL was the shortest, indicating that QALL 
was able to perceive the network state in real time and adapt to 
changing traffic patterns more flexibly. Clearly, the help of 
sensing with a shorter decision delay inevitably leads to a 
smaller load sharing accuracy and finally to a smaller FCT and 
Variance in queue occupancy. Thus, as expected, the 
advantages and disadvantages of load sharing accuracy under 
various schemes are basically the same as those of the FCT and 
Variance as mentioned above. These results further verify 
Motivation 3, in which QALL had better data locality. In short, 
these results confirm that QALL mitigated traffic imbalance, 
which was reflected by performance improvements as 
mentioned (i.e., lower FCT). 

 
(7) Average FCT of Data-driven QALL 

Fig. 16 and Fig. 17 show the average FCT of QALL-Pkt, 
QALL-Linear, QALL-Poly2, and QALL-Poly3 under a 
symmetrical topology. We also obtained similar results under 
an asymmetrical topology. 

 
Fig. 13. 99th percentile FCT for data-mining under asymmetrical 

topology. 

 
Fig. 14. 99th percentile FCT for web-search under asymmetrical 

topology. 

  
Fig. 15. Load Sharing Accuracy. 

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5

1 51 101 151 201 251 301 351 401 451

Lo
ad

 S
ha

rin
g 

A
cc

ur
ac

y(
%

)

Time slot

QALL-flowlet ECMP LetFlow
CONGA DRILL QALL-Pkt

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3345862

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



15 
 

Compared with QALL-Pkt, QALL-Poly2 and QALL-Poly3 
improved the average FCT; however, QALL-Linear did not 
improve. For example, under data-mining and web-search with 
a load level of 80%, compared with QALL-Pkt, QALL-Poly2 
was reduced by at most 5.4% and 4.7%, respectively. Under 
data-mining and web-search with a load level of 80%, 
compared with QALL-Pkt, QALL-Poly3 was reduced by up to 
7.8% and 4.9%, respectively. Finally, Fig. 16 and Fig. 17 show 
that the advantages of QALL-Poly2 and QALL-Poly3 
compared with QALL-Pkt increase with increasing levels of 
traffic load level for both data-mining and web-search. 

Obviously, the reason behind these results is the quantitative 
fitting of the relationship between egress traffic, queue 
occupancy, and the dequeue time interval. The Vi and τ of 
QALL-Pkt are empirically determined according to some 
reasonable rules. However, the Vi and τ of QALL-Linear, 
QALL-Poly2, and QALL-Poly3 have been more accurately 
determined by data-driven method. Table I shows that the 
fitting accuracy improved when the power of the fitting 
function increased. Correspondingly, in terms of average FCT, 
the following trend was clearly evident: QALL-Poly3<QALL-
Poly2<QALL-Pkt ≈QALL-Linear. In short, the higher the 
fitting accuracy, the lower the FCT. In particular, the fitting 
accuracy of the primary power for QALL-Linear was too low 
to help improve the FCT.

 

 
E. Packet Reordering 

Packet reordering may trigger a duplicate ACK mechanism 
and could thus degrade TCP performance. Because TCP detects 
packet loss [4] and then reduces its transmission rate when 
duplicate ACKs exceed the retransmission threshold. Many 
load-balancing schemes such as ECMP [3], CONGA [1], and 
Presto [8] avoid packet reordering by balancing coarser units of 
traffic, but at the expense of performance.  

It is well known that queuing delay is the main source of 
network delay in DCNs [4]. In QALL, the well-balanced load 
(Fig. 15) and extremely low variance of queue occupancy 
(Table III) imply that packets experience almost identical 
queuing delays regardless of the paths they take (i.e., packets 
nearly always arrive in order despite traversing different paths). 
Our experimental results confirm this hypothesis. Therefore, 
packet reordering is minimal in QALL-Pkt. Fig.18 shows the 
amount of reordering measured in terms of the number of TCP 
duplicate ACKs under a load level of 70%. We compared 
QALL-Pkt to DRILL and per-packet Random (a typical no 
load-awareness scheme), which forwards each packet along an 
independent random shortest path.  

Per-packet load balancing makes fine-grained forwarding 
decisions for each packet independent of other packets of the 
same flow. This is expected to cause excessive packet 
reordering. However, QALL-Pkt and DRILL can also cause 
minimal packet reordering if the delays along multiple paths 
differ by less than the time between packets in a flow [4]. Fig.18 
confirms that the degree of reordering under QALL-Pkt and 
DRILL rarely reached the TCP retransmission threshold, even 
under heavy load. For QALL-Pkt and DRILL, only 0.35% and 
0.41% of the flows have one or more duplicate ACKs, 
respectively.  

Furthermore, in terms of QALL-Pkt, only 0.018% of the 
flows exceeded the typical TCP retransmission threshold of 3. 
This was lower by 10.1% and 98.8% compared to DRILL and 
per-packet Random, respectively. This observation confirms 
that TCP performance is not significantly impacted and also 
further explains why QALL’s FCT is low despite reordering. 

In addition, when certain specialized applications are 
required to eliminate all packet reordering, recent techniques 
for building reordering-resilient network stacks can address 
occasional reordering. For example, similar to prior works [4, 
8], we can optionally deploy a buffer in the host generic receive 
offload (GRO) layer to restore the correct ordering.  

 
F. System Overhead 

This section presents the system overhead added by load 
balancing schemes to switches, including the resource and 
control loop overheads.  
(1) The resource overhead 

Table IV presents the additional CPU and memory 
utilizations added by the load balancing schemes to the switches 
under a load level of 70 %. We can observe that QALL 

 
Fig. 16. Average FCT of data-driven QALL for data-mining under 

symmetrical topology. 

 
Fig. 17. Average FCT of data-driven QALL for web-search under 

symmetrical topology. 
 

Fig. 18. Number of TCP duplicate ACKs under 70% load level. 
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consumes the least resources (whether CPU or memory) 
compared to DRILL, ECMP, CONGA, and LetFlow. This 
small resource overhead does not affect the line-speed 
forwarding of switches. On the one hand, the reason behind 
these results is the extremely low complexity of QALL, because 
each switch in QALL independently makes decision for load 
balancing according to the fine-grained-measured local queue 
behavior, not requiring cooperating with other switches (as 
shown in CONGA), or comparing with the previous load state 
(as shown in DRILL). The time complexity and space 
complexity of QALL is O (1) and O (P) respectively, where P 
is the number of egress ports. However, the P is a very small 
value which is less than 4 in the widely used leaf-spine or Fat-
tree topology. On the other hand, in order to further improve the 
computing and storing efficiency, we use a hash operation to 
replace directly storing the flowlet index based on packet’s five-
tuples, as shown in Line 11 of Algorithm 1. 

TABLE IV RESOURCE OVERHEAD OF LOAD-BALANCING SCHEMES 
Schemes CPU utilization Memory utilization 
QALL-Pkt 6.51% 2.27% 

QALL-Flowlet 7.42% 2.88% 
DRILL 7.84% 3.74% 
ECMP 7.98% 4.41% 

CONGA 8.89% 3.59% 
LetFlow 7.56% 4.35% 

(2) The control loop overhead 
For every Tb (i.e., the updating period factor), QALL sends a 

clone packet back to the ingress pipeline from the egress 
pipeline (i.e., the control loop). As shown in Fig. 6, a clone 
packet requires 10 bytes; thus, the actual control loop overhead 
was 10 

𝑇𝑏
 (bytes/s). In this study, Tb was set to 1ms by default. We 

observed the effect of a faster or slower control loop (i.e., a 
smaller or larger Tb) on the control loop overhead introduced by 
the clone packets and the accuracy of the decision. Obviously, 
the faster the control loop (i.e., the lower the Tb), the fresher 
(more accurate) the decision-making basis becomes, and the 
greater the control loop overhead. A faster control loop implies 
that QALL can better deal with cases of queue quickly building 
up, such as microbursts. 

As shown by Fig. 19, when the Tb is decreased from 1ms to 
0.01ms, the control loop overhead is increased from 0.01MB/s 
to 1MB/s, however the average FCT is decreased by up to 17%. 
In other words, the most control loop overhead (i.e., 1MB/s) is 
also little very much to the switches. The experimental results 
also confirmed that QALL can deal with microbursts better at 
the cost of a small overhead when Tb decreases. On the other 
hand, we can also see that, the overhead decreases to 100B/s 
when the Tb is decreased to 100ms, however QALL can yet 
reduce FCT compared to ECMP, CONGA, LetFlow, and 
DRILL. 

 

VII. PRACTICAL ISSUES AND FUTURE WORK 
In this section, we analyze some relevant practical issues to 

suggest some avenues for future research.  

A. Improving Generalization of data-driven QALL 
As discussed in Section V, data-driven QALL uses a fitting 

function of egress traffic, queue occupancy, and dequeue time 
interval to aid in making load-balancing decisions. The 
experimental results show that the data-driven QALL method 
performs better than the original QALL method. Specifically, 
the greater the power of the fitting function, the better the load-
balancing performance. 

Such fitting is also a machine learning-based method, but its 
generalization is relatively poor. Because the fitted function is 
actually a tailored load-balancing strategy for a specific traffic 
pattern (i.e., if the traffic pattern changes, the fitting function 
becomes unsuitable and the performance of load balancing 
worsens), further improvement in the generalization of data-
driven QALL should be investigated in future research. The 
following ideas should be considered to facilitate these 
investigations. 

(1) Employing reinforcement learning techniques on 
programmable switches to learn the queue behavior. 
Reinforcement learning techniques have the self-learning 
ability to adapt to dynamically changing traffic patterns.  

(2) In DCNs, there are four typical applications including 
data-mining, web-search, cache, and Hadoop. Thus, based on 
the combination of the four main applications, there are at most 
𝐶4

1 + 𝐶4
2 + 𝐶4

3 + 𝐶4
4 = 15 patterns. For these 15 patterns, we 

can use least squares or other fitting methods to fit 15 sets of 
fitting functions, similar to Equations (11)–(13), which are one 
of these 15 patterns, and then store them in each switch. When 
a certain pattern appears in the DCN, the switches select the 
equation corresponding to the pattern and use Equations (5) and 
(6) to perform load balancing. 

B. Improving Performance  
The space-time mismatch between the load-balancing 

decision location and its decision basis should be expected to 
decrease the performance of QALL. In particular, the time 
required by clone packets is the main factor in decision delay. 
However, currently, a few commodity programmable switches 
can access queue behavior in the ingress pipeline (e.g., Tofino 
2 [40]). That is, removing the clone operation can reduce the 

 
Fig. 19. Average FCT of QALL effected by the updating period factor 

under symmetrical topology. 
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decision delay, and the decision basis can more accurately 
reflect the state of the network. Based on the real-time network 
states, we believe that the performance of QALL should be 
further improved in future studies. 

C. Discussions for Observations 
Considering that the observed correlation between dequeue 

time interval and egress traffic rate is moderate rather than 
extremely high, the conclusion that a longer packet dequeue 
time interval is indicative of a lighter load is not completely 
fixed. There are a few special cases. One example is when 
queue occupancy is high and dequeue time interval is long, 
which may be an indication of the outgoing link potentially 
being congested. Another example is when we further consider 
the size of packets: a smaller number of large packets within the 
same time window as a higher number of small packets have an 
equal or greater likelihood of causing congestion. It should be 
noted that Equations (2)–(4) only indicate the 
positively/negatively correlated relationship between C and L 
as well as T, and this correlation is also rough and approximate. 
Therefore, when L is high and T is long simultaneously in 
Equations (2)–(4), C may be small or large (corresponding to 
light or congested conditions), which is determined by the 
relative value of L and T. In other words, Equations (2)–(4) 
implicitly include the above-mentioned special cases. 

In addition, the observations in this study are based on 
experiments in BMv2 software switches, and whether these 
observations in hardware switch deployment hold true remains 
an open issue. In the future, we will observe the queue behavior 
during hardware switch deployment. 

VIII. CONCLUSION  
We observed that queue behavior on a switch can reflect the 

current and future congestion degrees in a network. Therefore, 
we have proposed an in-network load-balancing scheme called 
QALL. In QALL, each switch independently selects the egress 
port probabilistically, according to the fine-grained-measured 
local queue behavior. The key concept is that QALL creatively 
takes account the evolutionary process of reaching the current 
queue state into its decision basis for load balancing. Based on 
an accurate fitting of the queue behavior, we have also proposed 
a data-driven QALL to improve the load-balancing 
performance further. The experimental results under actual 
DCN workloads show that QALL performed better than several 
existing schemes in terms of lower FCT, shorter decision delay, 
and smaller load sharing accuracy. In addition, QALL does not 
depend on the symmetrical characteristics of the network 
topology.  

In future works, the following factors can be considered. 
First, the experimental results show that data-driven QALL can 
perform slightly better. One possible reason for this is that there 
are insufficient training data to fit a more accurate function. In 
fact, from R2 and MRE values in Table I, we can see that the 
fitting function has room for improvement. Because a higher 
fitting accuracy can result in a lower FCT, we need to find a 
simpler fitting function with greater accuracy to improve QALL. 

Second, we can further explore data-driven QALL with better 
generalizations for different types of traffic patterns. 
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APPENDIX OBSERVING ELEPHANT FLOWS/MICE FLOWS 
ALONE 

Considering only elephant flows and mice flows alone, 
QALL exhibited excellent performance for data-mining and 
web-search traffic, under either symmetrical topology or 
asymmetrical topology.  

A. Average FCT under Symmetrical Topology 
The average FCT under data-mining is shown in Fig. 20 and 

Fig. 21. For data-mining mice flows, the FCT of QALL-Pkt was 
lower than that of ECMP, LetFlow, and CONGA by up to 
45.7%, 38.2%, and 33.8%, respectively. In terms of per-packet, 
the FCT of QALL-Pkt was lower by up to 24.5% compared with 
that of DRILL. In terms of per-flowlet, the FCT of QALL-
Flowlet was reduced by at most 20.4% and 10.7% compared 
with that of LetFlow and CONGA, respectively. For data-
mining elephant flows, the FCT of QALL-Pkt was reduced by 
58%, 49.9%, 43.8%, and 19.2% compared with that of ECMP, 
LetFlow, CONGA, and DRILL, respectively. In terms of per-
flowlet, the FCT of the QALL-Flowlet was reduced by at most 
16.9% and 11% compared with that of LetFlow and CONGA, 
respectively. 

The average FCT for web search is shown in Figs. 22 and 23. 
For web search mice flows, the FCT of QALL-Pkt was lower 
by up to 42.45%, 23.3%, and 23.2% compared with that of 
ECMP, LetFlow, and CONGA, respectively. In terms of 
per-packet, the FCT of QALL-Pkt was lower by up to 18.8% 
compared with that of DRILL. In terms of per-flowlet, the FCT 
of QALL-Flowlet was lower by up to 25.4% and 16.1% 
compared with that of LetFlow and CONGA, respectively. For 
web search elephant flows, the FCT of QALL-Pkt was reduced 
by up to 53.39%, 48.7%, 42.2%, and 8.5% compared with that 
of ECMP, LetFlow, CONGA, and DRILL, respectively. In 
terms of per-flowlet, the FCT of QALL-Flowlet was reduced 
by at most 20.7% and 5.8% compared with that of LetFlow and 
CONGA, respectively. 

  
Fig. 20. Average FCT for mice 

flows of data-mining under 

symmetrical topology. 

Fig. 21.  Average FCT for elephant 

flows of data-mining under 

symmetrical topology. 

  
Fig. 22. Average FCT for mice 

flows of web-search under 

symmetrical topology. 

Fig. 23. Average FCT for elephant 

flows of web-search under 

symmetrical topology. 

B. Average FCT under Asymmetrical Topology 
The average FCT under Data Mining is shown in Fig. 24 and 

Fig. 25. The average FCT under web-search is shown in Fig. 26 
and Fig. 27. 

  
Fig. 24. Average FCT for mice flows 

of data-mining under asymmetrical 

topology. 

Fig. 25. Average FCT for elephant 

flows of data-mining under 

asymmetrical topology. 

  
Fig. 26. Average FCT for mice 

flows of web-search under 

asymmetrical topology. 

Fig. 27. Average FCT for elephant 

flows of web-search under 

asymmetrical topology. 
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