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Abstract—Nowadays, the functional integration of Unmanned
Aerial Vehicles (UAVs) as flying computing nodes with terrestrial
networks is rapidly emerging as a promising and viable solu-
tion to enhance performance or lower drawbacks arising from
unpredictable traffic load congestion occurrences. In particular,
this paper considers a UAV-Aided Multiple Access Edge Com-
puting system, in which heterogeneous traffic flows with different
quality of service constraints, have to be offloaded on processing
nodes consisting of terrestrial and flying edge computing nodes.
Towards this goal, the paper proposes a matching algorithm
to perform an efficient offloading strategy. In particular, the
proposed matching algorithm provides decisions on the basis
of per-flow end-to-end delay bounds formulated by resorting
to the combined application of stochastic network calculus and
martingale envelopes theory. Furthermore, matching stability
has been theoretically discussed. Numerical results highlight the
validity of the proposed stochastic framework in terms of both
reliability, i.e., the probability with which the per-flow end-to-end
delay is lower than the corresponding deadline, and its ability
to fit the actual network behavior. For comparison purposes, the
Boole bound is formulated, and a greedy algorithm is developed
to compare the matching strategy designed.

Index Terms—offloading, matching theory, unmanned aerial
vehicle.

I. INTRODUCTION

A. General Considerations

With the advent of the sixth-generation wireless (6G)
networks, numerous high-flying challenges have emerged in
order to provide reliable, effective, and efficient solutions
to handle the expected large volume of heterogeneous tasks
computation requests related to novel applications with dif-
ferent quality of service (QoS) constraints and high network
responsiveness guarantee, i.e., low delay. In particular, these
requirements enable the application of novel technologies in
many challenging scenarios, such as smart cities, self-guided
vehicles, infrastructure monitoring, and smart grids, to name
a few. The huge amount of connectivity, here needed, can
be provided by resorting to the upcoming 6G networks by
exploiting THz bands [1]. In this way, improvements over
network performance can be gained, in perspective, in terms of
network responsiveness and end-to-end delay, reliability, cov-
erage, and both spectrum and energy efficiency. Nevertheless,
6G networks are expected to face a vast amount of data traffic
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and disruptive intensive applications, for which the exclusive
usage of terrestrial networks to support Multiple Access Edge
computing (MEC) capabilities appears inadequate to properly
satisfy the far-reaching traffic demand and the service quality
posed by the emerging applications. Therefore, it is through a
synergism, carefully orchestrated between terrestrial and non-
terrestrial segments of the same network to manage heteroge-
neous traffic flows, that services delay can be mitigated in a
flexible, efficient, and even economic mode [2].

B. Motivations

Nowadays, for terrestrial networks, the emerging MEC
paradigm exhibits important advantages due to a distributed
computing architecture [3], in which edge nodes (ENs) having
computation, storing, and data transmission capabilities are
deployed close to the end users [3], at network edges (e.g.,
in the proximity of 6G small base stations (SBSs)). Due to
its distributed nature, MEC aims to reduce the congestion
levels and processing times offered by a cloud-based com-
puting architecture. Therefore, MEC represents an effective
paradigm to host the computation of task flows stemming
from devices needing tasks offloading. In this picture, the
functional integration of a UAV, able to host on-board com-
putation, although with reduced capacity in comparison with
the terrestrial ENs (T-ENs), allows significant performance im-
provements. In particular, in such a UAV-Aided MEC system,
it is possible to face computation request jams at the ENs, to
manage heterogeneous traffic flows, meeting the corresponding
variegated QoS constraints [4]–[6]. Meanwhile, the design
and analysis of proper offloading policies represent a key
point in the UAV-Aided MEC system under consideration.
To this regard, the time elapsed between the instant in which
the device computation request is submitted for processing
to the instant of computation request completion, usually
referred to as end-to-end (e2e) task flow delay, represents a
key metric in a QoS point of view, in particular in the case
of heterogeneous traffic flows. The analysis of e2e delay in
UAV-Aided MEC networks has been largely considered since
it is recognized as an important methodology to stochastically
forecast the network performance [7]. However, the validity
of the e2e delay stochastic analysis deeply depends on the
class of processes assumed to model arrivals and services. For
example, Markovian analysis has been extensively applied,
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but, sometimes, it is based on too strong and restrictive
assumptions to define Markovian approximations of the actual
stochastic processes that negatively impact the accuracy of
the performed analysis. On the other end, by resorting to
a queueing system model with a general characterization
for both the arrivals and service processes, i.e., a G/G/1
system model, generally gives rise to a hard computational
analysis to be performed in a closed form and, usually limited
to the First In First Out (FIFO) queuing policy case [8].
Therefore, most of the previous works on this subject mainly
apply the mean e2e delay value analysis, recognized as a
simple and widely used approach to study the stochastic
processes behavior. Nowadays, the emerging next-generation
applications have given rise to traffic flows with quite different
statistical characterizations and service requirements that, in
turn, have made the mean value queuing analysis no longer
applicable. In particular, traditional methods have the well-
known key limitation of hiding all of the possible outcomes
of randomness, especially considering the true behavior of
the system observed regarding specific QoS requirements
fulfillment by denying its use for applications with stringent
e2e flow computation delay constraints, i.e, Virtual Reality
(VR) or even Ultimate VR and run-time monitoring of critical
infrastructures. As a consequence, it has become mandatory
to identify a more accurate stochastic delay analysis method-
ology based on the knowledge of the cumulative probability
distribution of the parameters of interest instead of their
average value. However, the difficulty in developing this type
of analysis is well known from the literature, in particular for
the case of complex systems such as those of interest here.
As a consequence, the ambition of this paper is to propose
an affordable analytical approach that provides knowledge of
the cumulative probability distribution of the parameters of
interest and significantly reduces the analytical complexity
of the problem without losing accuracy. Hence, to match
this goal and even make it more strict, we have considered
as application reliability the probability that the related e2e
flow computation delay overcomes a stringent threshold δ.
In performing such applications reliability analysis, we have
resorted here to the use of the stochastic network calculus
(SNC) approach, due to its ability to analyze non-trivial traffic
models [9], [10], [11], and to fully catch computer networks
behavior in terms of delay 1 [12].

C. Contributions

The main contributions of the paper can be described
through the following points

• A performance analysis method for a UAV-Aided MEC
system to provide a statistical characterization of the
resulting e2e delay for the supported applications, for
which we have to consider non-Markov arrivals and
service processes. Differently from classical approaches,
the provided analytical method can provide stochastic

1Note that the proposed framework considers as reliability metric the
probability that the e2e delay is not greater than a given latency constraint δ,
the higher it is, the better the performance might be.

performance bounds with accurate predictions on the
actual system behavior;

• The exploitation of the SNC analysis, empowered by
the involvement of the martingale envelops [13], [14], to
formulate accurate per-flow performance bounds devoted
to performing effective offloading decisions. Based on the
stochastic worst-case bounds, obtained through the SNC
tool integrated with martingale envelops, a matching the-
ory tasks flow offloading algorithm has been developed,
providing choices about the flow computation site, i.e.,
on the T-EN or UAV-EN. To perform such allocation,
the per-flow analysis has been conducted by deriving an
e2e stochastic bound taking into account the presence of
flows already offloaded on the selected computation node
and specific computation constraints;

• Numerical simulations to test the performance of the
combined SNC-matching theory framework proposed,
in terms of adherence to the behavior network bounds
formulated with the actual system performance, as well
as in terms of validity of the offloading decision-making
policy concerning alternative allocation schemes. Finally,
to further validate the accuracy of the proposed stochas-
tic bounds, the classical ad wide used Boole bound is
considered, for comparison purposes.

The rest of the paper is organized as follows. In Section
II an accurate review of the related literature is presented,
whereas Section III details the system model and the problem
formulation. Section V presents the proposed framework,
recalling some key concepts of the SNC for the sake of
readability. Performance evaluations are presented in Section
VI, while conclusions are drawn in Section VII.

II. RELATED WORKS

Recently, UAVs environments have gained significant atten-
tion, and many studies have been conducted about them and
their interaction with other network landscapes. For example,
in [15], authors propose a heuristic to maximize cellular user
coverage. In parallel, paper [15] aims at optimizing the drone
deployment and communication cost among UAVs. The novel
drone-as-a-service market model is advanced in [16] where
to satisfy the stringent QoS requirements imposed by users
in terms of cost and delay, a service algorithm has been
developed and implemented. Then, paper [17] discussed the
UAVs limited resources issue. In this picture, the combination
and control of multiple UAVs is suggested as a possible solu-
tion to overcome these physical limitations. More specifically,
programmable crowd-powered drones to create a federated
cloud are analyzed, and a scripting language is exploited to
properly orchestrate both the flight trajectories of multiple
drones and the multi-drone service management. Authors in
[18], formulate a mixed integer programming problem, by
resorting to a traveling salesman problem with an additional
drone station. Consequently, the route distortion problem has
been addressed by identifying a lower bound over the number
of drones needed to solve the problem object of the analysis.
An integrated UAV-assisted MEC network with air–ground
cooperation, has been proposed in [19], assuming that both
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Fig. 1. System Scenario

UAV and ground access points have a direct link towards
devices and cooperate to process tasks. The main goal is the
minimization of the worst delay using the resource allocation
procedure, aiming at jointly controlling UAV-device matching,
UAV horizontal and vertical position, bandwidth selection,
and task splitting. Differently, a two-layered decision-making
framework has been developed in [20], promoting the coop-
eration between one or multiple stations and one or multiple
drones, to optimize both profit and travel distance. Interesting
machine learning approaches are proposed in [21] and [22],
where the offloading problem is addressed by resorting to a
deep reinforcement learning approach. In particular, in [21],
the authors propose an offloading scheme within a MEC
environment to minimize task execution delay and energy
consumption, where the UAV is exploited to serve network
zones where failures occur. Similarly, in paper [22], both the
resource allocation and the offloading problem are addressed,
having as objective the long-term minimization of energy
and delay in UAV-aided IoT networks. The paper involves
clustered multi-UAV and a stochastic game is formulated.
Deep reinforcement learning (DRL) is also applied in [23]
to solve the surveillance task offloading problem considering
a scenario where a UAV swarm is integrated within a mobile
edge computing landscape. The paper is devoted to minimizing
both the task execution delay and the energy consumption.
The DRL is also exploited in [24], where the trajectory of
the UAV is optimized along with the computational cost and
the network resources. In paper [25] the UAV base station
deployment is provided by resorting to artificial intelligence,
integrating a novel metric to measure the similarity among user
trajectories, to aggregate neural network models with similar
costs. Note that all the machine learning-based frameworks
are data-driven, having the unavoidable necessity to exploit
large amounts of data, often not easily accessible for several
reasons (lack/scarcity of datasets supporting experimentation,
training, and benchmarking, due to policies of confidentiality,
to intrinsic rarity). Differently, the proposed framework is
model-driven, proposing an affordable analytical approach
that significantly reduces the analytical complexity without
losing accuracy. Moreover, due to the ability of the pro-
posed framework to fit the actual behavior of simulations,

the proposed approach may be properly extended to generate
synthetic data to fed machine learning modules, giving rise to
an integrated framework where both model-driven and data-
driven approaches act synergistically.

III. PROBLEM STATEMENT

A. System Scenario

As illustrated in Figure 1, we considered a congested T-
EN, close to a SBS, hereafter named as tagged SBS, that
suffers from the interference of a random set I of neighboring
SBSs. Such as T-EN has to handle an unpredictable overload
of service flow computation requests in its service area. To
lower the drawbacks arising from this congestion occurrence in
a flexible mode ( i.e., without requiring a permanent updating
of the terrestrial network infrastructure), the functional integra-
tion with a UAV having on-board processing capabilities, i.e.,
acting as a flying EN (UAV-EN) even with some computation
and energy limitations, is considered. We have assumed that a
set U = {1, ..., U} of user devices in the congested area, each
one of them requesting a service generating a given flow of
tasks. For this reason, the terms device and flow (i.e., service)
will be used interchangeably. Each flow has associated a given
delay constraint td,u, u ∈ U . In the congested area, each flow
accesses the network through the tagged SBS by means of an
individual channel, properly allocated to this purpose. Then,
flow computation can be arranged according to the proposed
offloading scheme on the most suitable T-EN or UAV-EN sites.
We have assumed that the tagged SBS has always available
a dedicated reliable channel to communicate with the UAV-
EN to offload flow computations, whenever necessary. Once a
flow computation is offloaded on the UAV-EN, its computation
outcome is sent back to the SBS through a suitable dedicated
reliable downlink channel. Finally, regardless of their com-
putation site, i.e., T-EN or UAV-EN, the flow computation
outcomes are sent out by the SBS in a broadcast mode to all
the devices in the service area through an individual channel.
In this way, only those devices that recognize their own ID in
the received data packet are interested in it, others ignore it. In
particular, under the assumption of a proper channel allocation,
we neglect in the following analysis the influence of the co-
channel interference negative effects on the data transmission
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Notation Description Notation Description
U set of user devices Ruav UAV transmission rate
td,u deadline associated to user u Pc,u(W (u) ≥ td,u) CCPD of the e2e delay
RT SBS transmission rate Si service curve
W bandwidth Ai arrival curve
dM max distance between user and tagged SBS dUAV distance between UAV and tagged SBS
N0 noise MAi arrival martingale envelope
τT transmission time MSi service martingale envelope
L packet size M supermartingale process
k̂ shifted deadline αu,c offloading decision variable

Vu(c) flow preference list Ec(u) computation node preference list

Table I: List of our main notations

on dedicated channels from the tagged SBS to the UAV-EN
and vice versa. The ideal rate RT that assures a reliable data
transfer between user devices and the tagged SBS over 6G
(i.e., THz) channels, under the condition of an equal power
p in transmission, LoS propagation conditions almost surely
available, according to [26], results in

RT = W log2

(
1 +

pA0d
−2
M e−K(f)dM

N0 +
∑

i∈I pA0d
−2
i

)
, (1)

where
• W is the bandwidth of the communication channel;
• dM is the maximum distance value (worst case) between

any user device and the tagged SBS within its service
area;

• I is the random set of interfering signals generated at
distance di from the receiving end with i ∈ I;

• N0 = Wζ
4π gBT0+pA0d

−2
M (1−e−K(f)dM ) considers both

the molecular absorption noise and the Johnson-Nyquist
noise at the receiving device site;

• gB the Boltzmann constant;
• T0 the temperature in Kelvin;
• ζ the wavelength;
• K(f) the global absorption coefficient of the medium;
• A0 = c2

16π2f2 [27], [28].
The transmission time for a packet formed by L bits over
the ground channels (from user devices to the tagged SBS or
vice-versa) results as a random variable having a probability
density function defined in lemma 2 of [26] as

f(χ) =
ξ√
2πσI

e
− (I−µI )2

2σ2
I (2)

with

ξ =
ln(2)LpA0d

−2
M e−K(f)dM 2L/Wχ

Wχ2(2L/Wχ − 1)2
, (3)

I =
∑
i∈I

pA0d
−2
i , (4)

µI = piA0

(
ln(δ)− ln(dM )

δ2 − d2M

)(
πδ2ι

2

)
, (5)

σ2
I = (pA0)

2

(
πδ2ι

2

)(
1

2δ2d2M

)
, (6)

where ι models the intensity of the isotropic homogeneous
Matern hardcore point process expresses the SBSs spatial
distribution. Hence, under the assumption of task computation
request packets formed by a number L of bits we have that the
resulting data packet transmission time is a random variable
defined as

τT = L/RT (7)

Likewise, for the case of a task flow offloaded on the UAV-EN
in evaluating the e2e delay we have to take into account that
data packet transmissions from the tagged SBS to the UAV-
EN and vice-versa are taken place on dedicated channels, for
which we have assumed to neglect the negative impact of the
co-channel interference. Hence, the data packet transmission
rate in both cases results to be a constant, given by:

τuav = L/Ruav (8)

where we have

Ruav = W log2

(
1 +

pA0d
−2
UAV e

−K(f)dUAV

N0

)
(9)

where dUAV is the distance between the tagged SBS and the
linked UAV. The e2e delay for a task offloaded

1) on the T-EN : comprises the following contributions:
• the uplink computation request transmission time from

user devices to the tagged SBS given by (7);
• the computation system time, i.e., the time spent on

board of the T-EN located in the proximity of the SBS
(processing time plus waiting time);

• the downlink computation outcome transmission time
from the tagged SBS to the destination end user given
by (7).

2) on the UAV-EN: we have:
• the uplink offloaded computation request transmission

time from user devices to the UAV-EN through the tagged
SBS results as the sum of (7) and (8);

• the computation system time, i.e., the time required to
perform tasks flows computation on board of the UAV-
EN plus the time spent to wait at the UAV-EN site to
receive computation;

• the downlink computation outcome transmission time
from the UAV-EN to destination user given again by the
sum of (7) and (8) .
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B. Problem Formulation

The main objective of this paper is the maximization of
the service reliability provided by the integrated T-EN, UAV-
EN system as detailed in what follows. More in-depth, we
have to define, throughout the matching game formulated in
Section V, an allocation matrix A ∈ {0, 1}U×(S+V ), whose
generic element αu,c is equal to 1, if the flow u is offloaded
on the network node c, with c ∈ C = { T-EN, UAV-EN}, or,
zero, otherwise. In formal terms, we can define the following
optimization problem

min
A

1

|U|
∑
u∈U

∑
c∈C

[1− Pc,u(W (u) ≥ td,u)αu,c], (10)

where Pc,u(W (u) ≥ td,u) represents the probabilistic bound
formulated as in (23), and expressing the probability that
flow u, offloaded on node c, exceeds the corresponding
deadline td,u, i.e., violating the QoS constraint. Specifically,
Pc,u(W (u) ≥ td,u) expresses the Complementary Cumulative
Distribution of the e2e delay suffered by packets flow u, i.e.,
W (u), if it is offloaded on node c. It is important to stress here
that the analysis to derive Pc,u(W (u) ≥ td,u), is provided in a
general form and, hence, it can be applied to any (Markov or
non-Markov) service time distribution [29]. In this reference,
in Section VI, we have considered the computation node
service time as HyperExponentially distributed, according to
a widely adopted non-Markov computation time distribution
model as discussed in [30].

IV. STOCHASTIC NETWORK CALCULUS PRINCIPLES

In what follows, for the sake of readability, we summarize
the basic principles of the SNC while the main definitions con-
cerning the martingale envelope will be provided in Appendix
I. Note that these principles and the consequent analysis 2

are instrumental to build the preference lists utility functions
involved in the matching game outlined in Section V.

Let T = [a, b] be the observation time interval of the system
of interest. Intuitively, the cumulative amount of arrivals at the
server node during T can be expressed by [7]

Aa,b = A(a, b) =

b∑
t=a+1

Xt, (11)

where Xt is the number of packets arrived at time t.
From the other hand, Sa,b = S(a, b) =

∑b
t=a+1 St de-

scribes the corresponding services counted in T .
According to [29], we can introduce the (min,+) convo-

lution operator ⊗ and define the bivariate departure process
D(a, b) as

D(b) = D(0, b) ≥ A⊗ S(0, b) := inf
0≤g≤b

{A(g) + S(g, b)}.
(12)

Then, the delay process W (b) represents the overall time spent
in the system by a packet, and which intuitively it is the
horizontal distance between the curves A(n) and D(n) [7],

2An in-depth discussion on this issues is available in [29].

[9], [31]. From a theoretical perspective, W (b) is represented
by [7], [9], [31]

W (b) =W (0, b)

= inf{c ≥ 0|A(b− c) ≤ D(b)}
= inf{c ≥ 0|A(b− c) ≤ inf

0≤l≤n
{A(l) + S(l, n)}}

= inf{c ≥ 0| sup
0≤c≤n

{A(c, n)− S(n) ≤ 0}}.

(13)

The complementary cumulative distribution function of
W (b) results to be [7],

P(W (b) > c) = P(A(b− c) ≥ D(b)). (14)

A key point here is that the SNC is a powerful and flexible
tool to analyze the e2e delay in computer network sys-
tems. Nevertheless, applying the standard SNC envelopes,
the resulting bounds are exclusively given on the basis of
the arrival processes. Differently, by involving the martingale
envelopes, whose definitions are recalled in Appendix I for the
convenience of the reader, a proper exponential transformation
taking into account both the arrivals and service processes can
be formulated.

A. End-to-end Stochastic Bound

In this section, by focusing on the integrated T-EN, UAV-
EN system under consideration, we derive the bound on the
probability that tasks belonging to a given flow experience an
e2e delay greater than the corresponding deadline. Note that
this analysis is functional to define the matching offloading
scheme in the next Section. We stress here again that the
proposed analysis has been conducted assuming that a LoS
link is almost surely available to support all the needed
communication sessions. However, with the aim at validating
our assumption, the obtained analytical predictions will be
compared in Section VI with simulation results derived by
considering actual propagation conditions, i.e., non-zero prob-
ability of having a Non-LoS (NLoS) condition. In performing
our analyses, we focus on the tandem systems sketched in
Figure 2, which refer to the two possible decisions, i.e., T-
EN or UAV-EN, concerning the most suitable computation
site for the users’ service requests. In particular, the tandem
system, illustrated in Figure 2.a, is related to the case of
tasks computation on the T-EN and it results formed by
the following three subsystems: i) the uplink transmission
subsystem, involving a given user device and the tagged SBS,
i.e., the T-EN, ii) the computation subsystem at the T-EN
iii) the downlink transmission subsystem involving the T-EN
related to the tagged SBS and the interested user device.
Similarly, the tandem system related to the case of computation
on the UAV-EN is formed by the following subsystems i)
uplink transmission subsystem (user device and tagged SBS);
ii) air uplink transmission subsystem from the tagged SBS
to the UAV; iii) the computation subsystem at the UAV-EN
site; iv) downlink air transmission subsystem from the UAV
to the tagged SBS; iv) the downlink terrestrial transmission
subsystem from the tagged SBS to the requesting user device.
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Fig. 2. Flow path offloading models

To properly take into account the order with which the tasks
flow offloading is performed (see next Section) a static priority
(SP) scheduling policy is assumed in performing our analysis.
Therefore, computation request packets are served according
to the order in which a flow is allocated to the selected
computation nodes (T-EN or UAV-EN), i.e., the computation
request packets belonging to a flow are allocated first and
others are served first. Note that the proposed analysis provides
a per-flow, i.e., data tasks sequence sent out by a given device,
hereafter named as flow, probabilistic e2e delay bound. In
performing our analysis we assume that all the devices have
a task, in the form of a packet with the same number of
bits independently from the service type, to send out for
computation with rate, λH, (packets/s). Hence, by focusing
on a given flow, hereafter named as tagged flow, we define
as A1 the cumulative arrivals of the tagged flow and as A2

the cumulative aggregated arrivals of a generic number U of
cross-traffic flows, i.e., A2 =

∑U−1
g=1 Cg , in which Cg is the

g-th traffic flow crossing A1.
Therefore, as detailed in [32], the SP scheduling for the

tagged flow is defined as

S Type 1 = [S Tot (m,n)−A2(m,n)]+1n̂>x, (15)

in which S Tot is the service curve of the network, obtained
applying the min-plus convolution of the service curves of
each server, x is a fixed parameter freely chosen, and 1 is
the indicator function assuming value 1 if the condition n −
m > x is satisfied, zero otherwise, accordingly to [7], [9],
[12], [32]. Assuming that both the arrivals and services flows
admit the martingale envelopes, we will refer in what follows
to MAu , u ∈ U , for the arrivals processes. Furthermore, we
refer to MSi , i ∈ {2, 3}, for service processes, where MS2

expresses the martingale service envelope of the computation
subsystem, i.e., S2, and MS3 is referred to the martingale
service envelope of the downlink transmission subsystem, i.
e., S3. Consequently, we can conclude that [7], [9], [12]3

P(W (n) ≥ k) ≤
P( sup

0≤k≤n
{A1(k, n) +A2(n)− S1(n)⊗ S2(n)⊗ S3(n)} ≥ 0),

(16)

MA1 ≈ hA1(a1n)e
θ(A1(k,n)−(n−k)KA1

), (17)

MA2 ≈ hA2(a2n)e
θ(A2(k,n)−(n−k)KA2

), (18)

MSi ≈ hSi(sτi)e
θ(τiKs−Si(τi)). (19)

Therefore, the supermartingale process, follows from the prod-
uct of (17), (18), and (19) is given by

M =
∏

j∈{A1,A2,S1,S2,S3}

Mj . (20)

3The complete analysis in reported in [33]

Fig. 3. Flow allocation modeling

After some algebraic manipulations, and taking into account
that

E[M(k)] = E[MA1(0)MA2(0)
3∏

j=1

MSj ], (21)

we have

E[M(k)] ≤ E[MA1(0)]E[MA2(0)]

3∏
j=1

E[MSj (0)]. (22)

Then, the martingale bound considering the computation of
the tagged flow on the T-EN, results to be

P(W (n) ≥ k) ≤ e−θ∗kKA1
−kKA2

B, (23)

where k coincides with the deadline associated to the tagged
flow, and S2 represents the service envelope of the service
curve for the T-EN, and

B =
E[MA1(0)]E[MA2(0)]E[MS1(0)]E[MS2(0)]E[MS3(0)]

H
,

(24)
where H = min{hA1(a1n)hSi(sτi) : an − sτi > 0}, and θ∗ =
sup{θ > 0 : Ka ≤ Ks}, in accordance with [29].

Differently, the bound considering the processing on the
UAV-EN, and, hence, taking into account the deterministic
contributions due to the uplink and downlink transmission
time, τuav , results to be

P(W (n) ≥ k̂) ≤ e−θ∗kKA1
−kKA2

B, (25)

in which k̂ = tdu − 2τuav and S2 represents the service
envelope of the service curve of the UAV-EN, and

B =
E[MA1(0)]E[MA2(0)]E[MS1(0)]E[MS2(0)]E[MS3(0)]

H
.

(26)

V. FLOW OFFLOADING SCHEME

This Section illustrates the proposed flows offloading policy
based on the Matching Theory. The Matching theory is a
well-known mathematical framework able to establish mu-
tually beneficial relations among the elements belonging to
two distinct sets. Matching algorithms are particularly useful
since, as opposed to more conventional greedy algorithms, the
matching games can consider the utility of both the participant
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sets involved in the game. This characteristic allows us to reach
a valuable trade-off between the interests promoted by the
two sets. In addition, due to its distributed structure, matching
theory, in comparison to standard game theory and Auction
theory, based on the full-knowledge about player utilities
and actions, does not need full knowledge, since it involves
exclusively local utility metrics. Therefore, a matching theory-
based algorithm may provide a suitable strategy in offloading
environments. As previously anticipated, the matching theory
acts based on the preference lists, one for each element
belonging to the sets involved in the matching game, aiming
at denoting the level of satisfaction of the element in being
matched with each element of the opposite set, and vice-
versa. In what follows, starting from the preference lists
definitions, the matching game is formulated between the two
computational nodes alternatives in C and the set of flows U .

A. Flows preference list

For each flow u, having deadline td,u, and for each c ∈ C,
the preference list metric Vu(c) of the u-th flow considering
c as computation site is given by

Vu(c) = Pc,u(W (n) ≥ td,u), (27)

where Pc,u is the probabilistic bound formulated as in (23).
The number of allocated flows, i.e., the flows for which the

computation site has been selected, grows as the matching
game proceeds. In particular, after the allocation of each
flow, i.e., after each algorithm iteration, the preference lists
of the unallocated flows have to be updated in order to take
into account the impact of the previous allocation decisions.
Considering the SNC perspective, as represented also in Figure
3, the presence of previously allocated flows on a node c ∈ C
is modeled as high-priority traffic flows, in which the priority
results to be inversely proportional to the allocation order [34].
Therefore, the flows allocated for the early acquire higher
priority than those allocated later during subsequent algorithm
steps.

B. Computational nodes preference list

Each computational node c ∈ C, for each u ∈ U , creates its
preference list Ec(u) as

Ec(u) =
1

td,u
, (28)

expressing a higher preference for the flows having a lower
deadline.
A modified version of the Gale-Shapley algorithm (GSA) [34],
[35] is therefore defined as

1) each flow u ∈ U creates the associate preferences list
in reference to (27);

2) each computation node c ∈ C builds its preference list
in accordance with (28);

3) each c ∈ C receiving more than one proposal accepts
the most favorite one in accordance with its preference
list (28). The others are rejected;

4) repeat 1)− 3) until all the flow have been allocated on
one c ∈ C.

Since the preferences list of each flow depends on the
preferences of other flows, the matching game formulated can
be referred to as matching games with externalities. In fact,
a matching game with externalities is a matching in which
there exists interdependence and relations among the players’
preferences lists.

C. Stability Analysis

In contrast to standard matching games, the games with
externalities are very challenging to handle, since there does
not exist any matching algorithm that surely converges into a
stable matching.
With the aim of proving the stability of the matching game
formulated, the following strictly-two-sided exchange-stability
(S2ES) definition is introduced, on the basis of the definition
previously detailed in [36].

Definition 1. Let Z be the outcome matching. Let Z(i) be
the c node matched with the u-th flow, in accordance with
matching Z . Matching Z satisfies the S2ES if there not exists
a pair of flows (u1, u2) s.t.:

1) Vu1
(Z(u1)) ≥ Vi1(Z(u2)) and

2) Vu2
(Z(u2)) ≥ Vu2

(Z(u1)) and
3) EZ(u1)(u2) ≥ EZ(u1)(u1) and
4) EZ(u2)(u1) ≥ EZ(u2)(u2) and
5) ∃ψ ∈ {u1, u2} s.t. at least one of the conditions 1)− 2)

is strictly verified and
6) ∃ϕ ∈ {Z(u1),Z(u2, } s.t. at least one of the conditions

3)− 4) is strictly verified.

The insight of Definition 1 is that a swap is allowed only if
an improvement to at least one between the players involved
in the game is achieved, and all the rest of the elements do
not get worse. To discuss the stability of the formulated game,
we admit the existence of a pair of flows (u1, u2), for which
the conditions 1)− 2) of Definition 1 are satisfied. Supposing
that Z(u1) = c1 and Z(u2) = c2, we obtain

Vu1
(c1) ≤ Vu1

(c2), (29)

Vu2(c2) ≤ Vu2(c1). (30)

In reference to the satisfaction of condition 5) of Definition 1
by (29) and (30),

Since the proposed offloading policy does not include any
discard strategy, the delay suffered by the flows allocated
cannot change after their assignment, i.e., the delay cannot
decrease. Therefore, we have Vu1(c1) = Vu1(c2), Vu2(c2) =
Vu2

(c1), and 5) is not satisfied. Vice-versa, considering td,u1

and td,u2
the time deadlines corresponding to flows u1 and u2,

respectively, if c1 prefers u2 to u1, this necessary means that
td,u2

≤ td,u1
. In the same way, if c2 prefers u1 instead of u2,

it means that td,u1 ≤ td,u2 . Therefore, we have td,u1 = td,u2 .
In conclusion, neither c1 nor c2 obtains benefit in switching,
and the condition 6) is not verified, implying that the proposed
matching game produces an outcome that satisfies the S2ES
property.
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Fig. 4. System Service Reliability as a function of the molecular absorption
coefficient.

D. Complexity Analysis

The complexity of the proposed task offloading strategy is
mainly due to the preference list creation by the set U and
the set C. Such a procedure requires invoking the envelope
approximation based on the combined SNC-martingale ap-
proach, whose complexity is notoriously in the order of O(|C|)
[37]. Consequently, to build its own preference list, each user
belonging to U suffers a complexity given by

O(|C| log |C|+O(|C|)). (31)

Extending the analysis to all users in U , the complexity is

O(|U||C| log |C|) +O(|U||C|)). (32)

Since the computational complexity required by the preference
list construction process of elements in C is exclusively based
on (28), the corresponding complexity grows in the order of

O(|C||U| log |U|). (33)

To provide a worst-case analysis, we can suppose that the
number of algorithm rounds needed to complete allocation is
|U| (i.e., during each round only one user is allocated), con-
cluding that the overall complexity of the proposed framework
is

O(|U|2). (34)

VI. PERFORMANCE ANALYSIS

This section deals with the performance evaluation of the
proposed task offloading approach used in the integrated
T-EN, UAV-EN system in terms of the achieved service
reliability defined in (10). In addition to this, performance
comparisons with a different offloading alternative scheme
are provided to validate the good behavior of the proposed
solution. In this reference, the network scenario has been set
consistent with the parameter values assumed in [26]. As

Fig. 5. System Service Reliability as a function of the radius of the interfering
region.

Fig. 6. System Service Reliability as a function of the bandwidth.

a consequence, simulation results have been derived under
actual propagation conditions leading to a NLoS probability
of 10−3. Furthermore, we have assumed T-EN and UAV-EN
as two heterogeneous computation nodes with an independent
identically distributed (i.i.d.) computation time assumed hy-
perexponentially distributed. The mean computation time for
UAV-EN is 5.25 ms, whereas that of the T-EN is 3.5 ms.
Deadlines have been assumed uniformly distributed in the
interval [20, 40] ms. Finally, we have considered a number
U of user devices equal to 10, with each of them requesting a
specific service. Each user service is related to a flow of task
computation requests formed by a data packet with a fixed size
equal to 10 Mbits for all the services. For each service flow, a
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Fig. 7. System Service Reliability as a function of the bandwidth.

Fig. 8. System Service Reliability as a function of the input data rate.

task computation request (i.e., a data packet) is generated with
rate λH (packets/s). In what follows, unless otherwise stated,
λH has been assumed the same for all the devices and equal
to 13 packets/s.
To validate the proposed analysis and effectiveness of the
integrated T-EN, UAV-EN solution, we have compared the
analytical predictions (MGM) with results obtained through
simulations (SRM). Furthermore, to illustrate the good be-
havior of the proposed matching game approach, we have
implemented an alternative allocation method which operates
as follows

• flows are shuffled;
• each flow is assigned to the computation node having the

minimum number of flows already allocated;

Fig. 9. Worst Service Reliability as a function of the deadline value.

• the algorithm terminates when all flows are allocated.

The obtained analytical predictions are denoted as MGF while
the related simulation results as SGF in the following figures.

Being the investigation of the impact of the use of a 6G
network one of the goals of this paper, in Figure 4 we
show the influence of the considered THz channel propagation
conditions on the system performance in terms of system
reliability, i.e., the probability that a given flow experiences
an e2e delay lower than its deadline, as a function of the
molecular absorption coefficient. Analytical predictions are
compared in the figure with simulation results, showing a
very good agreement for both the methods considered. More-
over, even if a severe impact of the molecular absorption
over system performance is evident for both the methods,
Figure 4 highlights that the proposed approach exhibits a
better behavior. Similarly, Figure 5 depicts the reliability as
a function of the radius of the interfering region, i.e, the
distance within which SBSs are considered as interfering. Also
in this case, even if the achieved performance dramatically
degrades as the radius of interference increases for both
the considered approaches, a higher resilience to the worst
network planning is highlighted for the proposed integrated
solution. Furthermore, Figure 6 expresses the behavior of the
reliability as a function of the bandwidth of the considered
communication channels. Due to the high transmission rates,
i.e., low transmission times, supported by the 6G links, the
reliability is not significantly impacted by the channel band-
width, hence, making the computation time at the T-EN or
UAV-EN the main critical parameter. Similarly, Figure 7 still
exhibits reliability as a function of the bandwidth, considering
a mean deadline equal to 15. In comparison to Figure 6, Figure
7 shows a lower level of reliability due to the presence of a
more strict deadline. Figure 8 depicts the reliability behavior
as a function of λH given in Mbits/s. From all the previous
figures, we have that a good agreement between analytical
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predictions and simulation results is evident. In particular,
this behavior validates the accuracy of the proposed analytical
framework and, hence, its suitability to perform an efficient
system design and parameters setting without resorting to
time-expensive computer simulations. Figure 9 depicts the
worst reliability trend (i.e., the reliability of the last flow
allocated on the slowest node), as a function of the deadline
value. To improve the depth of the analysis provided, we
consider the Boole bound [38]. As it is evident to note,
results confirm the tightness of the MGM with the SRM
curve, compared with the Boole SRM. In the same way, the
Boole SRF bound is worse in fitting the actual simulation
behavior of the SRF curve. Furthermore, results validate the
insight according to which a greater deadline value allows to
reach higher reliability. For all the values considered, it is also
evident that the proposed allocation provides better results, in
comparison to the alternative analyzed here. In particular, the
achieved performance highlights the ability of the formulated
Matching algorithm to properly catch the problem dynamics,
exploiting the deadline information. Finally, we conclude this
section by highlighting that the clear performance improve-
ments allowed by the considered approach are achieved by
resorting to a flexible solution being the UAV dynamically
allocated on demand. In particular, the considered integrated
solution avoids the need for permanent extensions of the fixed
infrastructure, usually no longer necessary in the absence of
congestion conditions, and therefore allows a considerable
economic advantage (i.e., a reduced network infrastructure
deployment cost) without losing the QoS offered to users.

VII. CONCLUSION

This paper has dealt with the functional integration of a
UAV-EN with a T-EN according to the emerging paradigm of
a UAV-Aided MEC system to efficiently handle computation
load congestion occurrences or to meet strict QoS require-
ments of the novel applications supported by 6G networks.
Towards this goal, a stable matching algorithm has been
considered based on the per-flow e2e stochastic bounds anal-
ysis formulated by resorting to the SNC and the martingale
envelopes [13], [14] to increment the accuracy of the SNC
approach. Then, the stability of the proposed matching algo-
rithm has been theoretically proved. Furthermore, performance
comparisons with alternative tasks offloading schemes have
been also provided to point out the better behavior of the
proposed solution. Finally, the good fitting between our analyt-
ical predictions with simulation results, derived by considering
an actual environment with a non-zero NLoS probability, has
validated both the accuracy of the proposed approach and its
effectiveness in carrying out the system design and parameters
setting without resorting to extensive simulation campaigns.

Due to the ability of the proposed framework to fit the
actual behavior of simulations, future works may include
the proper extension of the proposed approach to generate
synthetic datasets to fed machine learning modules, giving rise
to an integrated framework where both model-driven and data-
driven approaches act synergistically.
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APPENDIX

In this Appendix the main definitions concerning the mar-
tingale envelopes are reported as support to the analytical
evaluations provided in the text.

Definition 2. Submartingale Process: Let {Fn}n be a
filtration such that the stochastic process {Yn}n is Fn-
measurable. {Yn}n is a submartingale process if, for any
time n ≥ 1, Y1, Y2, . . . satisfy

E[|Yn|] <∞, (35)

E[Yn+1|Fn] ≥ Yn.

Definition 3. Martingale Process: The stochastic process
Y1, Y2, . . . is a martingale process if, for any time n ≥ 1, it
satisfies

E[|Yn|] <∞, (36)

E[Yn+1|Fn] = Yn.

Definition 4. Supermartingale Process: The stochastic
process Y1, Y2, . . . is a supermartingale process if, for any
time n ≥ 1, it satisfies

E[|Yn|] <∞, (37)

E[Yn+1|Fn] ≤ Yn.

Definition 5. Arrival Martingale: The arrival process A
exhibits martingale arrivals if, for any θ > 0,∃Ka ≥ 0, and
ha : C(X) → R+ it satisfies

ha(Xb)e
θ(A(b)−bKa), b ≥ 1. (38)

and the process is supermartingale.

Definition 6. Service Martingales: The service process S
exhibits martingale arrivals if, for any θ > 0,∃Ks ≥ 0, and
hs : C(X) → R+ that satisfies

hs(Sb)e
θ(bK2−S(b)), b ≥ 1, (39)

and the process is supermartingale.

Definition 7. Arrivals/Service Martingales: Let R1, R2, . . . ,
be i.i.d random variables, in which the corresponding distribu-
tions are nonegative. By assuming generically A(b) = S(b) =∑b

g=1Rg , follows that both A and S admit arrival and service
martingales, respectively.
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