
1

TENET: Adaptive Service Chain Orchestrator for
MEC-enabled Low-latency 6DoF Virtual Reality

Alisson Medeiros1, Antonio Di Maio1, Torsten Braun1, Augusto Neto2,3
1 Institute of Computer Science, University of Bern, Bern, Switzerland

2 Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, Brazil
{alisson.medeiros, antonio.dimaio, torsten.braun}@unibe.ch, augusto@dimap.ufrn.br

Abstract—The next generation of Virtual Reality (VR) appli-
cations is expected to provide advanced experiences through Six
Degrees of Freedom (6DoF) content, which requires higher data
rates and ultra-low latency. In this article, we refactor 6DoF
VR applications into atomic services to increase the computing
capacity of VR systems aiming to reduce the end-to-end (E2E) of
6DoF VR applications. Those services are chained and deployed
across Head-Mounted Displays (HMDs) and Multi-access Edge
Computing (MEC) servers in high mobility scenarios over real-
edge network topologies. We investigate the Distributed Service
Chain Problem (DSCP) to find the optimal service placement
of services from a service chain such that its E2E latency
does not exceed 5 ms. The DSCP problem is NP-hard. We
provide an integer linear program to model the system, along
with a heuristic, namely disTributed sErvice chaiN orchEstraTor
(TENET), which is one order of magnitude faster than optimally
solving the DSCP problem. We compare TENET to DSCP
implementation and well-known service migration algorithms
in terms of E2E latency, power consumption, video resolution
selection based on E2E latency, context migrations, and execution
time. We observe a significant reduction of E2E latency and gains
in more advanced video resolution selection and accepted context
service migrations when using TENET’s deployment strategy on
VR services.

Index Terms—Mobile Virtual Reality, End-to-end Latency,
Six Degrees of Freedom Videos, Multi-access Edge Computing,
Service Function Chaining, Service Offloading, Service Migration
and Quality of Service.

I. INTRODUCTION

Virtual Reality (VR) systems artificially render a virtual
environment with cognitive and sensorimotor characteristics,
providing an advanced immersive reality through Six Degrees
of Freedom (6DoF) videos to support both body and head mo-
tion, where the viewing direction and position can change [1].
Although VR systems have attracted considerable attention
in recent years, it is infeasible to meet the requirements to
support 6DoF videos by processing 6DoF content on Head-
Mounted Displays (HMDs) [2], [3]. Implementing 6DoF VR
streaming is challenging because it requires multiple decoders
operating under low latency and high bandwidth, leading to
extreme computing power and high energy consumption on
VR HMDs. Beyond those requirements, providing 6DoF VR
becomes more challenging due to the VR interaction latency
under the limited computation capability of HMDs. Thus, the
massive adoption of 6DoF VR depends on the processing
capability of HMDs to support unprecedented low latency and
ultra-high throughput requirements.

A primary computing latency bottleneck arises because
VR systems comprise multiple compute-intensive components
(services), e.g., motion prediction, Field of View (FoV) pre-
diction, hand tracking, encoding, and decoding, where some
service inputs depend on the output of other services. In
general, the required end-to-end (E2E) latency is in the order
of milliseconds. It has been pointed out that an E2E latency of
more than 5 ms for advanced VR applications would lead to
cybersickness [4], [5]. To put this challenge in perspective,
a display running at 60 Hz, 90 Hz, and 120 Hz is updated
every 16.67 ms, 11.11 ms, and 8.33 ms, respectively [6]. Even
considering that extreme communication requirements, e.g.,
latency and throughput, will be achieved by 6G networks,
the constrained computation and energy impose restrictions
on processing 6DoF content on VR HMDs [7].

To overcome the technical limitations of VR systems,
e.g., computing processing, specialized hardware platforms
have been widely adopted in the field of VR to support
the offloading of VR-intensive computing services from VR
HMDs aiming to achieve low latency and to reduce energy
consumption. However, this strategy significantly restricts
VR technology’s application domain by limiting the user’s
mobility range, particularly for tethered HMDs. Introducing
wireless communications in VR systems dramatically extends
the applications of VR for mobile users, e.g., VR Automotive
Video Streaming (AVS), as it unleashes VR’s true potential
by enabling Mobile VR (MVR) to provide user experience
from anywhere at any time [8], [9]. However, wireless VR
also raises several technical challenges to supporting Mobile
Virtual Reality (MVR) applications [10]. For example, wire-
less (standalone) HMDs must rely on a constrained onboard
computing capability and limited energy supply for their
operation merely by HMD processing [11]. Consequently,
6DoF VR content is most likely restricted to edge streaming
scenarios due to its high computing power demands [12].

Since it is impractical to use specialized hardware platforms
to support VR use cases with high mobility features, e.g.,
VR-AVS, due to the limited processing capacity and battery
constraints of HMDs, Multi-access Edge Computing (MEC)
arises to support VR technical limitations by deploying com-
puting and service delivery at the network edge to process VR-
intensive computing services [13], [14]. However, coordinating
such a plethora of VR services, especially during user mobility,
yields several challenges. How to distribute VR services, e.g.,
decoders and mobility tracking, across the MEC infrastructure

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

to reduce E2E latency of VR applications? What is the trade-
off between the VR application’s E2E latency and the mobile
HMD’s energy consumption by adopting different strategies
for offloading VR-intensive computing services from mobile
HMDs to MEC infrastructure? How does E2E latency reduc-
tion affect the selection of video resolutions for VR systems?

To address the challenges mentioned above, we propose a
disTributed sErvice chaiN orchEstraTor (TENET), which sup-
ports offloading, migration, and orchestration of VR services
deployed across HMDs and MECs to ensure acceptable E2E
latency for MVR applications. Besides, TENET is developed
according to an optimization problem that jointly minimizes
latency and energy consumption. TENET also optimizes the
selection of better video resolutions for VR systems. TENET
is an extension of our previous work, which addresses the
trade-off between E2E latency and power consumption [15].
However, TENET extends our previous work [15] by con-
sidering new algorithms, architecture, and Key Performance
Indicators (KPIs). Our contributions are as follows.
• We define the Distributed Service Chain Problem (DSCP)

to find the optimal placement of services from a service
chain such that its E2E latency does not exceed 5 ms. We
use integer linear programming to model DSCP objective
and constraints (Section III).

• DSCP is NP-hard, i.e., computationally expensive. There-
fore, we propose a heuristic (TENET) that is one order of
magnitude faster than DSCP. We also provide algorithms
for latency and energy trade-off, path calculation based on
E2E latency, and management of VR applications to ensure
acceptable E2E latency along with TENET architecture
(Section IV).

• We use a physical 5G network infrastructure map of the
cities of Bern, Geneva, and Zurich. Based on those topolo-
gies, we model both network and computing latencies used
in TENET simulation environment (Section V-A).

• We evaluate the performance of Meta HMD1 applications
in terms of frame rate, computing latency, and power usage
to model service workloads (Section V-B).

• We use those application metrics to model 6DoF VR service
workloads in a simulated environment to evaluate system
scalability, E2E latency, energy consumption, video resolu-
tion selection, context migrations, and execution time.

• We compare the TENET orchestration algorithm with tra-
ditional approaches that provide service migration over
high-mobility environments by analyzing the VR-AVS as
a reference use case and show that TENET can guarantee
acceptable E2E latency to a set of independent VR services
over MEC infrastructures.

II. RELATED WORKS

Previous studies [16], [17], [18], [19] have shown that edge
computing enables advanced VR Six Degrees of Freedom
(6DoF) experiences by supporting the deployment of compute-
intensive services. Chakareski et al. [16] investigate edge-
based 6DoF VR streaming over millimeter-Wave to offer high
available spectrum and data rates for VR HMDs. Hou et

1https://www.meta.com/ch/en/quest/products/quest-2/

al. [17] consider motion prediction and pre-rendering services
at the edge network to enable low latency 6DoF VR. Pan
et al. [18] propose an edge-assisted metaverse algorithm to
reduce the computational latency of 6DoF videos. Jeong et
al. [19] propose a viewport-dependent high-efficiency video
coding-compliant tiled streaming for immersive 6DoF videos.
Although those research efforts have been devoted to designing
solutions for enhancing 6DoF VR experiences at network
edges, the impact of 6DoF videos on mobile HMD has so
far drawn little attention. In contrast, our work considers the
characteristics of 6DoF VR videos and the restrictions of
mobile HMD.

Recent works [20], [21], [22], [23] study the behavior of
the E2E latency and other Quality of Service (QoS) metrics
of VR applications when their services are deployed on the
MEC infrastructure. Wang et al. [20] investigate offloading of
Mobile Augmented Reality (MAR) services to edge networks,
where each service comprises a chain of dependent services,
i.e., services that require inputs from other services. Our
previous work [21] proposes a solidarity resource allocation
approach to ensure the deployment of high-priority services
in MEC servers. Alencar et al. [22] investigate dynamic
microservice allocation in 5G networks to optimize QoS based
on latency. Santos et al. [23] propose a constrained-based
heuristic to minimize the delay of VR services deployed over
edge networks while meeting resource requirements. These
studies show the potential of offloading VR services to MEC
servers to reduce latency. However, they do not consider
scenarios where deploying a subset of services directly on
HMDs would lead to a better system-wide average latency.

Likewise, some other works [24], [25], [26], [27] study
how different policies for distributing services between mobile
devices and MEC infrastructure impact the VR applications’
QoS metrics, such as latency. Authors in [24] have shown that
VR-intensive computing services, such as scene depth estima-
tion, image semantic understanding, 3D scene reconstruction,
and high realism rendering, must be processed in real-time to
ensure natural and smooth experiences. Lai et al. [25] inves-
tigate the feasibility of enabling high-quality VR smartphone
applications by employing a framework running on both the
smartphone and the edge server. Younis et al. [26] propose
a framework to minimize network latency by optimizing
service placement through computation-offloading decisions
on MEC infrastructure. Akhtar et al. [27] investigate the chain
management of application functions over multi-technology
edge infrastructure to provide higher data rates and ultra-low
latency for VR applications. These studies show that in some
cases, distributing services among MEC infrastructure reduces
latency and improves other QoS metrics. However, none of
these works considers power consumption on HMDs in their
service offloading strategies, which may lead to unpredictable
HMD battery lifetime.

Other related works [28], [29], [30], [31], [32], [33] study
either latency reduction or energy consumption optimization
in edge networks. Liu et al. [28] propose deploying VR
services on MECs. They provide the trade-off among link
adaptation, transcoding-based chunk quality adaptation, and
viewport rendering offloading. Zheng et al. [29] investigate the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

TABLE I. Comparison of TENET algorithm to related works.
1 = Offloading, 2 = Migration, 3 = E2E latency, 4 = Power consumption,
5 = MEC-supported, 6 = HMD-supported, SFC = 7.

Solutions Characteristic
(References) 1 2 3 4 5 6 7

Chakareski et al. [16] ✓ ✓
Pan et al. [18] ✓
Jeong et al. [19] ✓ ✓
Wang et al. [20] ✓ ✓ ✓
Medeiros et al. [21] ✓
Alencar et al. [22] ✓ ✓
Santos et al. [23] ✓ ✓ ✓
Ruan et al. [24] ✓ ✓
Lai et al. [25] ✓ ✓
Younis et al. [26] ✓ ✓ ✓
Akhtar et al. [27] ✓ ✓
Liu et al. [28] ✓ ✓ ✓
Zheng et al. [29] ✓ ✓ ✓
Santos et al. [30] ✓ ✓ ✓ ✓ ✓
Doan et al. [31] ✓
Mandal et al. [32] ✓ ✓
Zheng et al. [33] ✓
TENET (present work) ✓ ✓ ✓ ✓ ✓ ✓ ✓

scenario of multi-tiles-based wireless VR video service with
the aid of MEC, where the primary objective is to analyze
the trade-off between energy consumption and latency. Santos
et al. [30] propose the orchestration of VR services in fog-
cloud infrastructures. The evaluation of realistic VR container-
based service chains shows that deploying VR components
hosted in a fog-cloud infrastructure can satisfy the 20 ms
latency boundary. Doan et al. [31] formulate a novel subchain-
aware service placement optimization model that accounts
for the configuration cost for stitching together reused net-
work functions to a Service Function Chaining (SFC) and
strives to reuse existing subchains of consecutive network
functions while accounting for the recovery cost of network
functions with limited reliability. Mandal et al. [32] analyze
the network service availability considering deploying network
services using multiple host nodes, single host nodes, and
mixed-mode. Besides, authors compare the availability and
reliability of network services considering those placement
strategies. Zheng et al. [33] introduce a novel augmented graph
to address the parallel relationship constraint among SFCs.
Besides, authors propose a novel problem called parallelism-
aware SFC and embedding. Furthermore, these works do not
consider strict latency guarantees in their service deployment
solutions, which are required to ensure that no VR application
experiences latency that may impair QoS. Unlike all works
presented in this section, our work considers both latency
and power consumption on the HMDs to compute an optimal
service offloading policy between MEC infrastructure and
HMDs while considering QoS constraints.

Table I compares the main characteristics of the re-
lated works concerning service offloading, service migration,
E2E latency, power consumption, MEC-supported, HMD-
supported, and SFC. Table I shows that none of the considered
solutions can support all our claimed requirements towards
E2E latency reduction. Motivated by the limitations of the
approaches presented in this section, we propose TENET, as
described in Sections III and IV.

f2 f3

v2

v3 v4

v5

s2

Internet

f1

s3

f4

v1 v6

f7 f6 f5

f ff8 9 10

a1

s1

a2

HMD HMD

Fig. 1. Example of service chain graph deployment on the network. The
solid lines indicate wired connectivity, the dotted lines indicate wireless
connectivity, and the dashed lines represent the connectivity between HMDs
and MEC servers hosting the offloaded VR services.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Our considered scenario contains a set of users, each pro-
vided with an HMD that executes a 6DoF VR application, e.g.,
VR games, educational tools and navigation aids. We assume
that each HMD can move around in the scenario at speeds
ranging from pedestrians to vehicles and is always connected
to the Internet via a 5G base station. The most challenging
use case for this scenario is the VR-AVS, in which HMDs
move at high speed and require low-latency video streaming.
Table II presents the symbols used in the system model and
problem formulation sections.

The network infrastructure is defined as a graph G = (V,E),
where V = {v1, . . . , v|V|} is a set of computing devices (i.e.,
MEC servers and HMDs), and E = {e1, . . . , e|E|} is the set of
paths between any two elements of set V. The set of HMDs is
denoted by H ⊆ V. The maximum achievable data throughput
between two elements belonging to set V along path ej is
indicated by Bj . The total computing resources offered by
device vi ∈ V are the maximum Central Processing Unit
(CPU) cycles per second Ci ∈ R and the maximum Graphics
Processing Unit (GPU) cycles per second Gi ∈ R.

In our considered scenario, each computing device vi ∈ V
(i.e., MEC server or HMD) can execute several elementary
functions, each implemented by an indivisible software mod-
ule called service. All services operate according to the same
general workflow: they take some data for input, process it,
and finally output it. Examples of services that can be executed
on a computing device are video encoding and decoding,
FoV extraction, face tracking, body tracking, and mobility
prediction. Let F = {f1, f2, . . . , f|F|} be the set of all services.
The set Fi ⊆ F denotes the set of services deployed on the
computing device vi ∈ V. The resources of the computing
device vi are shared among all services fm ∈ Fi that are
deployed on it, where the computing device grants and releases
resources over time. We assume that each service fm ∈ Fi

requires exclusive use of a share of CPU and GPU resources
provided by computing device vi to operate correctly, meaning

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

TABLE II. Table of symbols

.

Symbol Description

G Graph representing the network infrastructure
V Set of computing devices (MEC servers and HMDs)
E Set of paths between computing devices
H Set of HMDs
Bj Maximum achievable data throughput on path ej
Ci Maximum CPU cycles per second of device vi
Gi Maximum GPU cycles per second of device vi
F Set of all services
Fi Set of services deployed on device vi
Rm CPU and GPU cycles required for service fm
Am CPU and GPU cycles allocated to service fm
ωn Maximum data throughput between services in chain sn
S Set of all service chains
bn Allocation resource vector of service chain sn
W Set of all maximum data throughputs
W ∗ Set of all possible data throughput sets
Θn VR application QoS for application an
ϵm Power required to run service fm
Ψ Average system-wide power consumption per HMD
pm Computational latency of service fm
Pi Computational latency of service chain si
P ∗
n Maximum computational latency of application an

km Latency to transmit data from service fm to the next service
Ki Network latency of service chain si
K∗

n Maximum network latency of application an
Ln Total end-to-end latency of application an
L Average system-wide end-to-end latency
α Power sensitivity coefficient
U Cost function to be minimized
φn Upper bound on end-to-end latency for application an
∆n QoS accuracy constraint for application an

that the sum of all resources assigned by device vi to its
services cannot be higher than the total installed resources.
The CPU and GPU cycles per second required to run a generic
service fm are denoted by

Rm = (Rc
m, Rg

m) ∈ R2 (1)

The amount of CPU and GPU cycles per second allocated to
a generic service fm is denoted by

Am = (Ac
m, Ag

m) ∈ R2 (2)

To deal with service workload fluctuations, for each service
fm, it is required that

Am ≥ Rm (3)

The output of a service can be redirected as the input of
another service to perform a more complex task. Therefore,
we define a service chain sn as an ordered sequence of
services, where the data produced by a service is the input
of the following service, where some services from a specific
service chain may be shared among different applications, e.g.,
transcoding. However, we replicate the shared services if they
need to be migrated. The first and last services of a chain have
the task of producing and consuming the content, respectively.
We define Service Chaining Graph (SCG) as the set of service
chains in the whole system as S = {s1, . . . , s|S|}. Each service
fm is associated with a service chain sn and can be shared
by multiple service chains. However, if the migration of that
shared service fm increases the E2E latency for other SFCs,
we replicate that service fm. As a result, any two service
chains si and sj are disjoint ∀i, j ∈ {1, . . . , |S|}. We define

allocation resource vector bn ∈ V|sn| of service chain sn
as a vector that indicates which computing device vi ∈ V
the corresponding service in the service chain sn runs. We
call B = {b1, b2, . . . , b|S|} the set of all allocation resource
vectors (one for each service chain in the system) and B∗ the
set of all possible allocation resource vector sets. We define
ωn ∈ R as the maximum data throughput needed between
any two consecutive services of the chain sn to communicate.
We call W = {ω1, ω2, . . . , ω|S|} the set of all maximum data
throughput and W ∗ the set of all possible data throughput
sets. Applications running in our considered scenario need
to perform highly complex tasks. Therefore, we define each
application an in the scenario as a set of one or more service
chains whose services run in parallel on several computing
devices. We denote A = {a1, a2, . . . , a|A|} as the set of
VR applications running in the system, one for each HMD.
We define the set of service chains that belong to a certain
application an as Sn ⊂ S, and we assume that service chains
belong exclusively to one application and cannot be shared
with others.

Figure 1 shows an example containing two VR applications
a1 and a2, each decomposed into service chains, and highlights
the allocation of each service on different computing devices
in the system. A 6DoF VR application a1 is implemented
through two service chains s1 = (f1, f2, f3, f2, f4) and s2 =
(f5, f6, f7), while application a2 is implemented by a single
service chain s3 = (f8, f9, f10). In the first service chain s1 of
application a1, service f1 represents a content aggregator that
receives decoded video parts from services f2, f3 and f4 and
sends the VR video to HMD v1. In the second service chain
s2 of application a1, services f5, f6 and f7 represent mobility
tracking, mobility prediction, and points of interest discovery,
respectively. In the service chain s3 of application a2, services
f10, f9, and f8 represent the VR services decoding, and FoV
extraction, FoV prediction, respectively.

The frame rate of the video shown to the user is one of
the most crucial QoS parameters of a VR application. Let us
define σn as the number of frames per second generated by
the application an and ϱn as the number of frames per second
dropped by application an. We define the VR application
QoS as the absolute number of frames per second correctly
delivered to the HMD, which is represented by

Θn = σn − ϱn ∈ R,∀a ∈ {1, . . . , |A|} (4)

We assume that each HMD has limited energy resources and
that their power consumption is proportional to the resources
used by the services running on them. Let us define ϵm as
the power required to run service fm. We can then define the
average system-wide power consumption Ψ per HMD as the
sum of all power consumptions of services running on HMDs,
divided by the total number of HMDs in the system, i.e.,

Ψ =
1

|A|
∑

{i:vi∈H}

∑
{m:fm∈Fi}

ϵm (5)

It is worth noting that Ψ is a function of the allocation
resource vector set B, as deploying services on either the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

HMD or the MEC server will change the energy expenditure
of the system’s mobile computing devices.

We denote the computational latency of service fm as
pm, which is the computational execution time taken to run
service fm regardless of where it is deployed. We define the
computational latency Pi of service chain si as the sum of the
computational latencies of all services along the chain, i.e.,

Pi =
∑

{m:fm∈si}

pm (6)

Assuming that all service chains of application an run in
parallel, we can now define the computational latency Pn of
the application an as the maximum computational latency of
all its service chains, i.e.,

P ∗
n = max

{i:si∈Sn}
Pi (7)

Every service in a chain receives the information from the
previous service, processes it, and forwards it to the following
service in the chain. We denote the latency to transmit the
data from a service fm in the chain to the following service in
the chain as km. In practice, the latency between consecutive
services in a chain is equal to the network latency between the
two computing devices that host the services or close to zero
if the services are deployed on the same computing device.
Therefore, we define the network latency Ki for service chain
si as the sum of the network latencies between every two
consecutive services along the chain, i.e.,

Ki =
∑

{m:fm∈si}

km (8)

For the last service of service chain si, we assume k|si| = 0.
Application an is implemented by a set of service chains

Sn ⊆ S that run in parallel. Therefore, we can now define
the network latency K∗

n of application an as the maximum
network latency of all its service chains, i.e.,

K∗
n = max

{i:si∈Sn}
Ki (9)

It is worth noting that K∗
n is a function of the allocation

resource vector set B.
We define the total E2E latency Ln of application an

conservatively as the sum of its network and computing
latencies, i.e.,

Ln = K∗
n + P ∗

n ,∀a ∈ {1, . . . , |A|} (10)

Finally, we define the average system-wide E2E latency L
as the average of the total E2E latency of all applications in
the system.

L =
1

|A|

|A|∑
n=1

Ln (11)

B. Problem Formulation

Every service chain sn ∈ S might be composed of several
services fm, where these services are distributed over different
computing devices vi. We introduce the Distributed Service
Chain Problem (DSCP), a combinational optimization problem
consisting of finding the optimal service placement of a service
chain sn composed of n services fm such that the E2E latency
of sn does not exceed φn = 5ms.

To achieve such latency, we propose a service allocation
algorithm to solve DSCP efficiently. Our proposed algorithm
relies on the backtracking method, as the search space of
service placement to meet the acceptable E2E latency is large
and high-dimensional. With backtracking, the optimization
procedure discards solutions whenever the latency exceeds
the acceptable E2E latency. The defined DSCP can be solved
by computing the values of the specified utility function for
all possible service allocations in the network and select
the allocation that yields the highest utility as the solution.
However, this approach is impractical due to the large search
domain. In particular, each service fm ∈ sn is independently
deployable over a system that contains |V| devices. This
means that, to find the globally optimal service allocation
resource vector B for a single service chain sn, the utility
of all |V| possible service resource allocation combinations
must be evaluated, which corresponds to a time complexity of
O(n)2 function evaluations to optimize a single service chain
deployment. This computation scales linearly with the set of
all service chains S in the system to make up an even larger
computational load, which results in a time complexity of
O(n)3. However, there are more combinations to be evaluated
in the service placement process, for instance, the set of paths
available E, their throughput W and the network latency K∗

n,
the computing latency P ∗

n and resource availability of each
computing device vi ∈ V. Thus, the algorithm complexity
depends on the number of combinations specified in the
optimization problem. Therefore, an algorithm to solve DSCP
has a time complexity of O(2n).

Our objective is to compute an optimal allocation resource
vector set B for all service chains in the system, which
minimizes the total E2E latency and power consumption for all
applications in the system while guaranteeing the acceptable
QoS. Separately optimizing latency and energy may lead to
different solutions to the optimization problem. Therefore, we
introduce a power sensitivity coefficient α ∈ [0, 1] that the
policy maker can set to a number closer to 1 to prefer lower
latency over low power consumption and closer to 0 to prefer
the opposite outcome. The coefficient α can be based on the
user’s and application’s preference. To define the DSCP we
use a cost function

U = αL+ (1− α)Ψ (12)

to be minimized by exploring the set of all possible alloca-
tion resource vectors, subject to a set of network operation
constraints listed in Optimization Problem 13.

The cost function should be minimized while guaranteeing
that the total E2E latency for each application an in the
system is not higher than an upper bound φn defined for

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

Management Plane

Service

migration

Service

offloading

ETE latecy

mitigation

Edge

orchestration

TENET Controller

MEC Server MEC Server MEC Server

Vr user mobility

Encoding Decoding
Mobility

prediction

Body

tracking

Encoding
Frame

selection

Face

tracking
s1

s2

HMD HMD HMD HMDgNB gNB gNB

Fig. 2. TENET architecture.

minimize
B ∈ B∗

U = αL+ (1− α)Ψ (13a)

subject to

Ln ≤ φn ∀n ∈ {1, . . . , |A|}, (13b)
Θn ≥ ∆n · σn ∀n ∈ {1, . . . , |A|}, (13c)
|S|∑
n=1

ωn · cn(ej) ≤ Bj ∀j ∈ {1, . . . , |E|}, (13d)∑
{m:fm∈Fi}

Ac
m ≤ Ci ∀i ∈ {1, . . . , |V|}, (13e)

∑
{m:fm∈Fi}

Ag
m ≤ Gi ∀i ∈ {1, . . . , |V|} (13f)

each application (constraint 13b). To impose a sufficient QoS
for immersive VR applications, every application an in the
system must have a rate of video frames correctly delivered
to the HMD of not less than a fraction ∆n of the video
frame rate σn generated by the application an (constraint 13c).
Each path ej between two computing devices has a maximum
achievable data throughput of Bj , meaning that the total data
throughput of all services communicating between the two
computing devices connected by path ej should be less than
Bj . Let cn(ej) be a function that counts how often the service
chain sn traverses path ej . We now introduce a constraint for
each path ej in the system, formulated as follows: the sum
of the throughput ωn of all service chains sn in the system,
each multiplied by cn(ej), should be less than the maximum
achievable throughput Bj on path ej (constraint 13d). For each
MEC server vi, the sum of the CPU resources Ac

m and GPU
resources Ag

m allocated to all services running on it should not
be larger than the total CPU resources Ci and GPU resources
Gi installed on MEC server Vi (constraints 13e and 13f).

IV. MANAGING MOBILE VR SERVICES WITH TENET

This section introduces TENET, a novel orchestrator to
solve the DSCP. Furthermore, this section describes in detail
the process of offloading VR services into service chains, the
management of chain dependencies, the latency and energy
trade-off, the path calculation to formulate the E2E latency, the
orchestration of VR services, and the architecture of TENET.

A. Architecture

To achieve the visions of TENET, we developed an archi-
tecture to be deployed in the MEC servers and VR HMDs.
Figure 2 describes the TENET framework architecture. The
main features of the TENET architecture are QoS analysis,
migration of E2E latency, offloading, migration, and orches-
tration of edge resources. The architecture is composed of the
TENET controller, the TENET VR agent, and the TENET
MEC agent. Additionally, we consider a Software-Defined
Networking (SDN) controller to manage the network resources
to ensure the acceptable latency for MVR applications. In the
following, we describe the TENET architecture in more detail.
1) TENET Controller prepares the deployment by discov-

ering the nearby MEC servers to offload VR services.
Before the VR service offloading, the TENET controller
requests the computing resources and bandwidth allocation
to the TENET MEC agent and SDN controller, respectively.
Furthermore, the TENET controller identifies whether a
service migration must be performed whenever the user
is in mobility. The TENET controller also provides the
trade-off analysis between the offloading and the migration,
which considers the latency aspects of both procedures.

2) TENET VR Agent is implemented onto VR HMDs, which
interacts with the TENET controller by sending a set of
services offloaded to the MEC infrastructure. The TENET
VR agent chooses which services will be offloaded and
prioritizes each service during this offloading process. To
provide the refactoring process for VR services deployed

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

on VR HMDs, the TENET VR agent prioritizes the ser-
vices that should be offloaded according to its latency
requirements. The more computationally intensive a service
is, the higher is its prioritization.

3) TENET MEC Agent checks the resource availability at
the MEC servers and allocates computing and network
resources for VR services. The TENET MEC agent pro-
vides the resource allocation for VR services in MEC
infrastructures via REACT [21]. REACT is a solidarity-
based elastic service resource allocation strategy for service
deployment over MEC servers with service prioritization.

B. Offloading VR Services
Typically, VR applications have inputs, processing services,

and outputs. The processing services manage the inputs, e.g.,
cameras, gyroscopes, microphones, GPS, and compute specific
services to produce the outputs. Among those services, aux-
iliary services, e.g., FoV prediction, motion prediction, scene
depth estimation, image semantic understanding, and 3D scene
reconstruction, enhance VR user experience. TENET identifies
and offloads auxiliary services to alleviate the computation
burden on VR HMDs. Nevertheless, services that may de-
mand enormous processing power or high energy consumption
can also be offloaded to the network edge, e.g., decoder or
transcoding. By offloading VR-intensive computing services,
VR HMDs only execute mandatory services and display the
virtualized environment received from MEC servers. This de-
ployment strategy enhances the QoS of VR users by increasing
the battery life of HMDs and reducing the HMDs’ heat while
ensuring acceptable E2E latency for mobile VR users and
preventing HMDs from running out of computing resources.

C. Managing Dependencies among SFCs
Section III points out that an application may have different

service chains. Each service chain follows specific criteria
to maintain the acceptable E2E latency for each application.
However, these VR services are not fully chained. Each service
chain is isolated from other chains that belong to the same VR
application to prevent latency bottlenecks in most priority ser-
vices. This strategy allows TENET to deploy the most priority
services with fewer dependencies, preventing failure in one
service and decreasing the latency. One possible issue when
offloading VR services is the dependency on the offloadable
services of the VR application. Each VR application might be
decomposed into independent VR services, i.e., without input
from other offloaded services, such as decoding and encoding
services. However, VR services with mutual dependency or
even service chains with mutual dependency may coexist in
the same VR application. A service with mutual dependency
indicates that it needs input from other services. For instance,
a content aggregator service depends on decoded video parts
from other decoder services before sending the VR video to
HMD. This type of dependency can be a bottleneck for the
entire VR application, as any failure can cause a higher delay
in a given service chain. To mitigate the service dependency
problem, we only consider VR services classified as a low
priority to have a mutual dependency. Otherwise, the offloaded
VR services should be independent.

Algorithm 1 Latency and Energy Tradeoff
Input: sn, hi

Output: E2E latency minimized
1: for fm in sn do
2: vi ← DISCOVERMECS(hi)
3: Ln ← GETE2ELATENCY(vi)
4: Initialize α ▷ 0 ≤ α ≤ 1
5: if not α then return MIGRATION(vi, fm)
6: if fm ∈ hi then
7: if vi ̸= ∅ and Ln < hp then
8: return OFFLOADSERVICE(hi, vi, fm)
9: Ln ← GETE2ELATENCY(fm) ▷ fm ∈ vi

10: if vi < Ln then return MIGRATION(vi, fm)
11: return REVERSEOFFLOADING(hi, vi, fm)

Algorithm 2 Extended Dijkstra’s Algorithm
Input: G: graph, s: vertex, Ln

Output: dist, prev
1: for vertex v ∈ G do
2: dist[v]←∞, prev[v]← ∅

▷ init dist[s] with s’ computing latency
3: dist [s]← sp

▷ split G into zones Z
4: Z ← G

▷ search in Z where an is connected
5: while Z ̸= ∅ do
6: u← EXTRACT-MIN(Z)
7: for each edge e = (u, v) do
8: if dist[v] > (dist[u]− w[up]) + w[ek]+ w[ep] then
9: dist[v]← (dist[u]− w[up]) + w[ek]+ w[ep]

10: prev[v]← u, break if dist[v] ≤ Ln

11: return dist, prev

Algorithm 3 SCG management for VR applications
Input: hi, α, F

1: for fm in F do
2: if fm ∈ hi then
3: sn ← F ∪ {fm}
4: ρn ← construct path(sn)
5: Bj ← allocate bandwidth(ρn)
6: SERVICEDEPLOYMENT(hi, sn)
7: while True do
8: for fm ∈ sn do
9: Ln ← GETE2ELATENCY(fm)

10: if hi location changed and Ln > α then
11: dist, prev ← GETSHORTESTPATH(sn, fm)
12: while dist ̸= ∅ and dist > α do
13: vi ← DISCOVERMEC(hi)
14: EXTRACTSERVICE(fm)
15: EXTRACTNODE(dist, prev)
16: if Ln > α then
17: return REVERSEOFFLOADING(hi, fm)
18: return SERVICEMIGRATION(vi, hi, sn, fm)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

Zones

Z3

Initial position

HMD

Final position

HMD

Z2

Zn

migration

Z1

Z4

Fig. 3. TENET’s zones scheme.

D. Latency and Energy Trade-off Procedure

Algorithm 1 shows TENET’s latency and energy trade-off
procedure. First, TENET discovers the MEC server vi ∈ V to
host a service fm based on HMD location hi ∈ H (line 2).
vi is discovered considering the E2E latency Ln (line 3).
Algorithm 1 uses α to define the priority of latency over energy
(line 4). The value of α can be derived according to each
application’s QoS requirement. The lower the latency is, the
higher is the value of α. When α is configured, the service is
deployed on HMD hi to ensure acceptable latency at the cost
of the battery. If α = 0, the service is migrated to vi. For each
service fm deployed on hi, if vi provides lower latency than
hi, then fm is offloaded from hi to vi (lines 5-8). Otherwise,
fm is already deployed in the MEC infrastructure. If vi has
lower latency than the current MEC server hosting fm, then
fm is migrated to vi (line 10). Lastly, if there is no MEC
server vi to host fm with the desired E2E latency, reverse
offloading is performed to bring the fm back to hi (line 11).

E. Path Calculation based on E2E Latency

Algorithm 2 returns a path from the source node s to
a destination node d based on the network and computing
latency of each node available in graph G. Algorithm 2
extends the original Dijkstra’s algorithm by considering not
only the weight of each path ej ∈ E but also the cost to run
service fm on MEC server vi. In each search, Algorithm 2
only considers the network cost of path ej to reach d and
the computing latency pm of d. We also optimize Dijkstra’s
searching by splitting the graph G into zones to search for a
set of edge servers vi to host a particular service fm (line 4).
Therefore, the two differences between this modified version
of the Dijkstra Algorithm and its original version are the
inclusion of computational latency pm at each transversal node
d and the partitioning of the graph into zones. We consider
that the zones are uniformly created with the same size based
on the geographical location of each city, which can consider

neighborhoods or points of interest. The search starts in zone
Z (line 5), which contains the base station where the HMD hi

is connected. If Algorithm 2 finds a server, the search stops.
Otherwise, the next searching zone Z is provided considering
hi proximity, the direction of hi’s mobility, and the resource
availability of MEC servers. Figure 3 shows the zone scheme.
u contains the vertex with a minimum distance value from Z
(line 6). For each distance dist[v] (line 7), the weight w[e] of
its adjacent nodes considers the network latency [ek] to reach
node e and the computing latency [ep] to process service fm in
node e (line 8). Moreover, dist contains the current distances
from s to other vertices (line 9), and prev contains pointers to
previous-hop nodes on the shortest path from s (line 10).

F. Ensuring Acceptable E2E Latency for Mobile VR Services

Algorithm 3 describes the practical implementation of
TENET. We shuffle the order in which services are processed
in each iteration of Algorithm 3 to ensure fairness for all
services during their processing. First, TENET discovers the
information of each service chain sn (lines 1-3). The next
step is to iterate over all services and get the E2E latency
of each service to evaluate if a particular service needs to
be migrated or be redeployed on the HMD (lines 7-9). Then,
TENET constructs the path ρn, allocates the bandwidth Bj ,
and deploys the services (lines 4-6). Whenever the hi location
changes, the algorithm checks whether the E2E latency Ln

has increased (line 10). If so, the shortest path is calculated
using Algorithm 2 and a new MEC server vi is discovered to
host service fm ∈ sn (lines 11-15). If the current E2E latency
Ln > α (line 16), reverse offloading brings the service fm
back to hi (line 17). Otherwise, the service fm is migrated to
a nearby MEC server vi (line 18). Compared to DSCP problem
that has an exponential worst-case complexity of O(2n), the
cyclomatic complexity of Algorithm 3 is equivalent to that
of the Dijkstra’s Algorithm, namely O((V + E)log(V)) =
O(Elog(V)).

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

V. PERFORMANCE EVALUATION

A. Experiment Setup

We compare the latency and energy performance of our
proposed method, TENET, in a simulated environment against
a set of state-of-the-art methods that tackle the same problem.

1) Testbed Configuration: First, to set the simulation pa-
rameters to realistic quantities, we perform an energy and
latency benchmark on commercial devices in a real VR
testbed composed of a Meta Quest 2 VR HMD (Qualcomm
Snapdragon XR2 Platform CPU, Qualcomm Adreno 650 GPU,
and 6 GB RAM) connected to a MEC server (Intel Core i9-
10885H, 32 GB RAM, NVIDIA RTX 3000). The VR HMD
and the MEC server are bridged by an access point, which
simulates the role of the 5G Radio Access Network (RAN)
access point. The access point is a TP-Link Archer AX6000,
which supports Wi-Fi 6 (802.11ax) with a transmission rate
of 4.80 Gbit/s at 5 GHz.

To get Meta HMD monitoring metrics, we use the OVR
Metrics Tool, which provides performance information about
a running application. OVR provides access to the information
from an on-device application rather than the command line.
After each session, the data will be stored in a CSV file on
Meta HMD. To install the OVR metric tool on Meta HMD, we
use Android debug bridge, which is included in the Android
software development kit. Based on the data extracted from
Meta HMD applications, we model the workloads for each
VR application.

2) VR Application and Service Workloads: Since we cannot
refactor Meta HMD applications into services, we estimate
the realistic wireless link latency and the realistic average
power needed for running a service on our HMD through the
following benchmarking process. We deploy a video decoding
service on our HMD and stream 360o videos from a MEC
server to the HMD for 600 s. During the video streaming, the
HMD measures its total power consumption through on-board
sensors and measures the latency to receive and decode videos.
We repeat the benchmark five times and average their results
for each of four video resolutions, namely 1080p, 1440p, 4 K,
and 8 K running at 60 Frames per Second (FPS). When no
service is running on the HMD (standby mode), the consumed
energy is 720 J over 600 s, which means an average power of
1.20 W.

We can now define the power needed to run a decoding
service on the HMD as the difference between the measured
power and the standby power. The outcome of the energy
benchmark process is that the average energy consumption
required by a video decoding service for 1080p, 1440p, 4K,
and 8K resolutions are 978 J, 1.01 kJ, 1.27 kJ, and 2.57 kJ over
600 s, respectively, which correspond to an average power
consumption of 1.63 W, 1.69 W, 2.12 W, and 4.28 W. The
realistic latency and power consumption measured in the
benchmarking process are used as parameters of the simulation
described hereafter.

3) VR Users Mobility: We use Mininet-WiFi to simulate a
realistic network scenario and user mobility. We use ONOS2

SDN controller to provide flow control, bandwidth allocation,

2https://opennetworking.org/onos/

and mobility management for the simulated VR services.
The simulated scenario covers the area of the cities of Bern,
Geneva, and Zurich. Besides, each network topology contains
a variable number of mobile VR users that can connect to the
RAN via their 5G interface. We assume that each VR user
runs exactly one VR application. The base stations transmit
signals with a 50 dBm power, decaying according to the Free
Space Path Loss model.

The VR users’ mobility follows the Random Direction
Model, in which users move along a straight line with a
constant speed selected from a uniform distribution with a
100 mm/s average. We assume that mobile VR users connect
to the base station whose signal is received with the highest
Signal-to-Noise Ratio (SNR). We assume that each VR user
executes a single 6DoF VR application made of decoding
services with a power requirement as assessed in the real-
testbed benchmark. For each 6DoF VR application we uni-
formly distribute between 3 and 10 decoders to observe how
different sizes of service chains affect system performance.
Furthermore, each 6DoF VR application contains a service to
aggregate the chunks of VR video decoded by each decoder
service. For each service fm in the system, its equivalent
requirements in terms of CPU (i.e., Rc

m) and GPU (i.e., Rg
m)

are randomly extracted from two uniform distributions with
averages of 1.77 GHz for the CPU and 440 MHz for the GPU,
based on the typical requirements of Meta HMD applications.

4) Edge Network Graphs: We use real 5G edge network
topologies for three cities, Bern (BE), Geneva (GE), and
Zurich (ZH) [34] in our simulation environment. The original
5G network infrastructures are shown in Figure 4. Geneva
has an area of 15.93 km2 with 269 nodes and a node density
of 16.88 nodes/km2. Bern has an area of 51.60 km2 with
147 nodes and a node density of 2.84 nodes/km2. Zurich
has an area of 87.88 km2 with 586 and a node density of
6.66 nodes/km2.

Each generated topology is based on a cartesian plane,
where the nodes are distributed between the coordinates (0, 0)
and (1, 1). We define the area of coverage of each base station
as radius r. Therefore, if the coverage area between two base
stations overlaps, we generate a link between them. The links
between base stations are established whenever the Euclidean
distance between any two base stations in the scenario is not
greater than a radius r. The latency of each established link
between two base stations is uniformly distributed between
500 µs and 1 ms. In each city, the base stations are located at
positions illustrated in Figure 4. We define the aforementioned
latency distribution according to latency measurements carried
out in the University of Bern’s local network infrastructure. In
our scenario, 70% of the base stations of each topology are
directly attached to MEC servers, which offer different GPU,
CPU, memory, storage, and bandwidth resources. Around 80%
of the MEC servers have a GPU. Figure 6 shows the generated
topologies with network and computing latencies from Bern
5G network topology. We show only a random selection of
8% of total edges to improve visualization quality.

5) Performance Metrics: The performance of Meta HMD
is evaluated by executing it in the simulated scenario for
10 hours and measuring the average E2E latency and power

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

(a) Bern 5G base station locations (b) Geneva 5G base station locations (c) Zurich 5G base station locations

Fig. 4. Physical 5G network infrastructure map of the cities of Geneva, Bern and Zurich.

2

4

6

8

10
N

od
e

C
on

ne
ct

io
ns

(a) Node connections established through radius 0.18.

2

4

6

8

10

N
od

e
C

on
ne

ct
io

ns

(b) Node connections established through radius 0.23.

2

4

6

8

10

12

N
od

e
C

on
ne

ct
io

ns

(c) Node connections established through radius 0.29.

2

4

6

8

10

N
od

e
C

on
ne

ct
io

ns

(d) Node connections established through radius 0.15.

2

4

6

8

10

N
od

e
C

on
ne

ct
io

ns

(e) Node connections established through radius 0.17.

2

4

6

8

10

12

N
od

e
C

on
ne

ct
io

ns

(f) Node connections established through radius 0.19.

2
4
6
8
10
12
14

N
od

e
C

on
ne

ct
io

ns

(g) Node connections established through radius 0.16.

2
4
6
8
10
12
14
16
18

N
od

e
C

on
ne

ct
io

ns

(h) Node connections established through radius 0.19.

5

10

15

20

N
od

e
C

on
ne

ct
io

ns

(i) Node connections established through radius 0.22.

Fig. 5. Generated 5G network infrastructure connectivity of the cities of Bern, Geneva, and Zurich over different radii.

0.82

0.54
0.66

0.72

0.85

0.8
0.96

0.69

0.
94

0.53

0.78

0.
67

0.51

0.72

0.5

0.
84

0.59
0.58

0.51

0.91

0.5
5 0.52 0.7

8

0.82

0.7

0.81

0.8
8

0.85

0.9
2

0.78

0.6
4

0.680.79

0.76

0.92

0.
61

0.95

0.580.98

0.82 0.8
1

0.51

0.66

0.71

0.71

0.
91

0.58

0.6
4

0.68

0.94

0.66
0.86

0.92

0.83 0.830.93

0.9
7

0.74

0.94

0.96

0.59
0.95

0.59
0.52

0.68

0.5
5

0
(4.35)

1
(2.77)

2
(4.41)

3
(4.65)

4
(3.9)

5
(4.68)

6
(4.0)

7
(3.06)

8
(4.38)

9
(2.47)

10
(2.72)

11
(3.0)

12
(3.25)

13
(4.86)

14
(2.86)

15
(4.53)

16
(4.61)

17
(4.15)

18
(3.27)

19
(4.19)

20
(4.65)

21
(4.17)

22
(2.73)

23
(3.07)

24
(4.73)

25
(2.58)

26
(3.33)

27
(2.23)

28
(3.99)

29
(2.46)

30
(3.86)

31
(2.4)

Fig. 6. Generated topology from part of the topology of the city of Bern with network and computing latencies. Green, blue, and red lines represent low,
average, and high link latency.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

consumption for the user applications. We assume that time is
partitioned in a series of consecutive time windows of duration
T = 12 s, and we will measure a value of latency and energy
per window. This choice for T gives sufficient time for our
optimization algorithm to converge so that the experiment
yields 3.00× 103 measurements for latency and energy over
the 10 simulated hours.

The average E2E latency L is computed as follows. During
a time window, each user executes an ICMP ping command
along the core-network part of the service chain and uses the
collected data to compute the average core network latency.
During the same time window, for each user, we measure
the average computing latency as the sum of the computing
latency of each of its services deployed on MEC servers or
HMD. Each user has an average E2E latency for that time
window, which is the sum of the average core network latency,
the average computing latency, and the benchmarked wireless
latency. The average E2E latency is the average over the time
window across all users. The average E2E latency L value
is the average across all time windows of the window-based
average E2E latency.

The average power consumption per user Ψ of VR HMDs
is computed as follows. The window-based average power
consumption is the product between the average number of
services running on an HMD in the system during the time
window and the benchmarked power consumption of a service
corresponding to each user’s selected video resolution. The
value of the average power consumption Ψ is the average
across all time windows of the window-based average power
consumption.

The video resolution selection is performed as follows.
We assume that each application in the system selects a
video resolution based on the E2E latency among those we
benchmarked, according to the average latency at each time
window. The application maintains the resolution constant for
the whole window duration. In the next time window, the
resolution is selected according to the available E2E latency
provided by the system. Therefore, the higher the resolution,
the more power and lower latency are required to process the
video stream set to this resolution.

The average accepted and rejection ratio of service context
migrations measure the performance of each algorithm to
find suitable MEC servers to either offload from HMD to a
particular MEC server or to support the application context
migration between MEC servers. We do not consider the mi-
gration of the entire software stack that supports a VR service,
e.g., Virtual Machine (VM) or container. Instead, we consider
that the VR application context migration, e.g., VR video
streaming, is migrated between MEC servers. Then services
depending on that context, e.g., decoder, depth estimation,
image semantic understanding, 3D scene reconstruction, are
enabled in advance at the target MEC server.

The execution time measures the time each algorithm takes
to compute the decision on where the service has to be placed,
which does not include any additional step, e.g., context
migration time, time to enable services on the target MEC
server, time to get E2E latency. This metric is highly impacted
by the average rejection ratio of service context migrations

Computing latency for HMDs
Minimum (pm) Average (pm) Maximum (pm)
5 × 10−3 [s] 7.50 × 10−3 [s] 10 × 10−3 [s]

Computing latency for MECs
Minimum (pm) Average (pm) Maximum (pm)
3 × 10−3 [s] 4 × 10−3 [s] 5 × 10−3 [s]

Link latency for all topologies
Minimum (km) Average (km) Maximum (km)
5 × 10−3 [s] 7.50 × 10−3 [s] 10 × 10−3 [s]

Bern topology
Radius (r) Users (u) Average links per vertex (µ)
0.18 1000 2.19
0.23 2000 3.36
0.29 3000 4.79

Geneva topology
Radius (r) Users (u) Average links per vertex (µ)
0.15 2500 2.49
0.17 3500 3.02
0.19 4500 3.64

Zurich topology
Radius (r) Users (u) Average links per vertex (µ)
0.16 5000 3.25
0.19 5500 4.28
0.22 6000 5.5

TABLE III. Simulation parameters.

since the more migration requests are rejected, the more time
is needed to exploit an alternative solution.

6) Service Migration Algorithms: We compare the average
latency, latency over time, energy, video resolution selection,
accepted and rejected migrations, and execution time perfor-
mance of TENET with DSCP implementation and those of
three widely used solutions, which provide service migration
among MEC servers under rapidly changing user mobility
conditions, detailed hereafter [35], [36]. It is worth noting that
the video resolution selection is derived from the E2E latency
provided by each algorithm during the VR user mobility.
1) DSCP-Optimal (DO) provides a service migration strategy

based on DSCP implementation, always aiming to find the
optimal service placement of VR services, analyzing all
deployment possibilities to achieve the lowest E2E.

2) Network Latency Awareness (LA) provides a service
migration strategy based on network latency awareness. LA
considers the base station to which the user is connected
and the nearby MEC server with lowest latency. LA im-
plements a method to discover candidate MEC servers to
host the migrated service.

3) Network Latency and Resource Awareness (LRA) sup-
ports all features provided by LA. However, LRA can iden-
tify the optimal MEC server with lower network latency to
host a VR service considering the resource availability of
the selected MEC server.

4) Always Migrate (AM) considers the VR user’s location to
enable migration. The user’s handover triggers this strategy.
The service is always migrated to the MEC server attached
to the base station where the user is connected. Unlike LA,
AM is consistently restricted to the MEC server attached
to the base station where the VR user is connected.

7) Simulation Parameters: For each topology described in
Section V-A4, we choose a different radius r to increase
the network topology connectivity, impacting the number of

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

congested links and, consequently, the network latency. The
radius selected for the experiments is chosen as follows. The
minimum radius r for each topology is defined according to
the smallest radius r possible to generate a connected graph.
The maximum radius r for each topology is determined by
the analysis that a higher value than the maximum radius
r does not provide a lower E2E latency performance in the
experiments. Therefore, a topology running with maximum
radius r has lower latency than the same topology running
with minimum radius r. The higher the radius r is, the more
VR users are considered for that scenario because more paths
are available with less congested links, which improves the
network latency. However, the increased number of users
impacts the available resources in both network and MEC
infrastructures, directly impacting the latency. All simulation
parameters are described in Table III.

B. Results

To validate the approach presented in this paper, we im-
plemented a prototype of TENET, available at [37]. Our
evaluation focuses on two major sets of results. We first
assess the QoS for both Echo VR and Elixir3 games and
take their workloads as a baseline to model service workloads
used in TENET evaluation. Second, we provide a simulated
environment to assess the capability of TENET to manage
several VR services in a distributed edge environment, where
each service has different requirements and workloads.

1) Meta HMD Evaluation: We measured the QoS of VR
applications based on frame analysis with different refresh
rates and the computational latency over Meta HMD. To
understand the impact of different refresh rates on VR systems,
we analyze two VR games, Echo VR and Elixir. Echo VR is
a multiplayer game, which supports refresh rates of 90 Hz and
120 Hz. Besides, Elixir game supports hand tracking to allow
VR users to use their hands in place of VR controllers. Elixir
supports a refresh rate of 72 Hz.

a) Frame analysis: Figures 7a, 7b, and 7c compare both
games in terms of overall frame rate, stale frames, and early
frames over different refresh rates. While the frame rate is the
number of images an HMD sends to its display every second,
the refresh rate refers to how fast the display shows those
frames.

Figure 7a shows frame rate results, where the frames
produced are measured in FPS. We discovered that the higher
the refresh rate is, the fewer frames are produced. While this
behavior is expected, Echo VR has far fewer frames because its
refresh rate has been set to provide a higher realism. Echo VR
provides a considerably lower frame rate than Elixir despite
the configuration of its refresh rate. This result suggests that
increasing the refresh rate and rendering resolution improves
the visual quality. However, these adjustments could harm the
performance of produced FPS for a VR application.

Figure 7b compares stale frames, the most important metric
for evaluating the QoS of a VR application. A frame is
considered stale if it is not ready to be displayed in time on
the HMD, which forces the VR application to reuse an old

3https://www.oculus.com/experiences/quest/

frame that is now outdated. In most cases, if the application
misses a frame, the stale frame rate increases, and the frame
rate decreases. This result indicates that peaks with higher stale
FPS can negatively impact the immersion provided by a VR
system, which creates a less smooth in-VR experience.

Figure 7c shows the early frames, which represents the
capability of delivering frames before they are needed. If the
application does render quickly, the frame will be considered
early, but the visual quality will look smooth. Elixir produced
98% of early frames. Despite the higher number of early
frames, this result indicates that Elixir can be optimized to
save computing resources and battery life.

Other findings from Figures 7a, 7b, and 7c are summarized
as follows. Traditional games designed for conventional dis-
plays, e.g., using 30 FPS or 60 FPS, allow a small number of
missed frames to go undetected by the user, mainly because
the camera is decoupled from the display. However, missing
frames in a VR environment trigger significant consequences
for user experiences whenever the virtualized world does
not match the real world in terms of image quality or even
latency. As a consequence, the immersion provided by VR
is compromised. A solution to increase the frame rate and
decrease the stale frames would be to use a more powerful
GPU on the HMD.

b) Computing latency analysis: VR systems have dif-
ferent sources of latency, e.g., the time between pressing a
button and when the VR system detects it or when a frame
is rendered until it appears on the VR HMD’s screen. We
focus on the time from when the VR system requests the user
head orientation until the frames are rendered on the HMD.
Figure 7d compares the computing latencies for each phase of
a loop on Meta HMD.

Figure 7d shows the latency required by both applications
to render the frames, e.g., refresh time. Refresh time is the
duration of time for which one frame or image occupies the
display. While Echo VR reached a mean of 3.60 ms (120 Hz)
and 4.02 ms (90 Hz), Elixir reached a mean of 4.04 ms to
render the frames. This result suggests that the higher the
frame rate is, the faster these frames should be processed.
However, higher frame rates introduce the need for more
computing resources. Therefore, this result provides insight
into how much headroom remains on the GPU, enabling
analysis of compute-intensive objects running on the GPU.

Figure 7d shows how much time the Asynchronous Time-
Warp (ATW) spends to apply distortions and displays the
scenes on Meta HMD for both games. ATW is a software
component that transforms stereoscopic images based on
the latest head-tracking information to reduce the motion-
to-photon latency, shifting the rendered image to adjust for
changes in head movement. Echo VR demanded 2.30 ms
(120 Hz) and 2.60 ms (90 Hz) during the ATW phase. On the
contrary, Elixir demanded 2.10 ms during the ATW phase.

Figure 7d shows the E2E latency of Meta HMD. This metric
represents the time when an application does query the pose
before rendering and the time the frames are displayed on
the VR HMD. Besides, the others represent the task latencies
not specified in Meta HMD API. The mean E2E latency for
Echo VR is about 30.50 ms (120 Hz) and 34.10 ms (90 Hz),

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

0 2 4 6 8 10 12
0

3

6

9

12

15
·101

Application execution time (minutes)

Fr
am

es
pe

r
se

co
nd

120 Hz 90 Hz 72 Hz

(a) Frame rate

0 2 4 6 8 10 12
0

2

4

6

8

10
·101

Application execution time (minutes)

Fr
am

es
pe

r
se

co
nd

120 Hz 90 Hz 72 Hz

(b) Stale frames

0 2 4 6 8 10 12
0

3

6

9

12

15
·101

Application execution time (minutes)

Fr
am

es
pe

r
se

co
nd

120 Hz 90 Hz 72 Hz

(c) Early frames

0

1

2

3

4

5

6
·10−2

120 Hz 90 Hz 72 Hz
VR applications

C
om

pu
tin

g
la

te
nc

y
[s

] ATW Rendering Others

(d) Computing latency of different tasks running of Meta.

0

2

4

6

8

10
·101

120 Hz 90 Hz 72 Hz
VR applications

U
sa

ge
pe

rc
en

ta
ge

GPU CPU

(e) CPU and GPU usage of Meta.

9

9.2

9.4

9.6

9.8

10

·101

0 3 6 9 12
Application execution time (minutes)

B
at

te
ry

L
ev

el

120 Hz 90 Hz 72 Hz

(f) Energy consumption of Meta.

Fig. 7. Frames, computational latency, GPU, CPU, and power consumption benchmarking of Echo VR and Elixir games running on Meta HMD.

respectively. Nevertheless, Elixir reached a mean E2E latency
of 46.90 ms, representing 53.77% more than Echo VR E2E
latency. Noticeably, Echo VR offers lower E2E latency than
Elixir.

Other findings from Figure 7d are summarized as follows.
Different refresh rates impact the computing latency, e.g.,
a display operating at 72 Hz, 90 Hz, or 120 Hz takes up
to 13.88 ms, 11.11 ms, and 8.33 ms to update the images,
respectively. The higher the refresh rate is, the faster the
display renders frames. However, more resources are needed
to handle higher refresh rates, e.g., battery and GPU. As a
result, increased power consumption in mobile HMDs leads
to a poor user experience, and increasing the consumption of
computational resources facilitates VR applications to run out
of resources. Hence, higher refresh rates provide more realism
for VR applications at the cost of higher refresh time, affecting
battery usage and increasing the number of stale frames, which
can break VR immersion.

c) CPU usage, GPU usage, and Energy Consumption:
Figure 7e compares both Echo VR and Elixir games’ GPU
usage, CPU usage, and energy consumption. GPU and CPU
utilization are important to understand if a VR application
is GPU or CPU bound. In particular, GPU utilization is more
valuable than CPU utilization as VR applications require more
graphical features. From the GPU and CPU usage analysis, it is
possible to evaluate the power consumption of an application.

Figure 7e indicates that both games are GPU bound as
they used more GPU resources than CPU. We observe that
Echo VR (120 Hz) has a peak of 88% of GPU utilization.
Performance issues may occur if the GPU utilization is over

90%. This benchmark indicates that GPU can run out of
resources for a more advanced game, potentially triggering a
bottleneck for the application, especially the QoS. Moreover,
the computing latency is highly influenced by the computing
power of the GPU.

Figure 7e also provides the CPU usage, which considers
8 CPU cores available in Meta HMD. In practice, it is
infeasible for an HMD only to have a powerful GPU, because
a powerful CPU is required to reach frame rate stability. Thus,
both GPU and GPU need to have a balance in terms of
computing power. In most cases, VR applications will have
a balance with favoring GPU over CPU due to graphical
requirements. Results from Figure 7e indicate that additional
services running on the HMD to improve user experience, e.g.,
3D scene reconstruction or scene depth estimation, would lead
to more CPU utilization, which could easily reach 100% of
CPU utilization on Meta HMD.

VR applications require complex processing, which quickly
drains the battery. Figure 7f represents the power consumption
for both Echo VR and Elixir. While Echo VR drained 9% and
6% of its battery, respectively, Elixir drained 7% of its battery.
This result reveals that VR-intensive computing applications
may drive higher energy consumption in HMDs due to their
need for computational resources. As a consequence, the
energy constraints impair the user experience. Moreover, we
observe that Elixir consumes more energy than Echo VR due
to hand-tracking features to enhance the game experience.

In a nutshell, Meta HMD QoS analysis can be described
according to the following observations. (i) Higher refresh
rates allow for more immersive experiences at the cost of

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

·10−3

DO TE LRA LA AM

0

2

4

6

8

10

r = 0.18 r = 0.23 r = 0.29

Bern

L
[s

]

Network latency

(a) Service average E2E latency L over different radii r
for the city of Bern. Each bar shows computation latency
on top of network latency.

·10−3

DO TE LRA LA AM

0

2

4

6

8

10

r = 0.15 r = 0.17 r = 0.19

Geneva

L
[s

]

Network latency

(b) Service average E2E latency L over different radii
r for the city of Geneva. Each bar shows computation
latency on top of network latency.

·10−3

DO TE LRA LA AM

0

2

4

6

8

10

r = 0.16 r = 0.19 r = 0.22

Zurich

L
[s

]

Network latency

(c) Service average E2E latency L over different radii r
for the city of Zurich. Each bar shows computation latency
on top of network latency.

·10−3

3

4

5

6

7

8

9

r = 0.18 r = 0.23 r = 0.29

Bern

L
[s

]

DO TE LRA LA AM

(d) Service E2E latency L over time over different radii
r for the city of Bern.

·10−3

3

4

5

6

7

8

9

r = 0.15 r = 0.17 r = 0.19

Geneva

L
[s

]
DO TE LRA LA AM

(e) Service E2E latency L over time over different radii
r for the city of Geneva.

·10−3

3

4

5

6

7

8

9

r = 0.16 r = 0.19 r = 0.22

Zurich

L
[s

]

DO TE LRA LA AM

(f) Service E2E latency L over time over different radii r
for the city of Zurich.

Fig. 8. Performance evaluation of end-to-end latency and its convergence for the topologies of Bern, Geneva, and Zurich. DO indicates the global optimum
latency in each iteration. Error bars indicate 95% confidence intervals.

·10−3

DO TE LRA LA AM

0

1

2

3

4

5

r = 0.18 r = 0.23 r = 0.29

Bern

Ψ
[W

]

HMD energy

(a) Service average power consumption Ψ over different
radii r for the city of Bern.

·10−3

DO TE LRA LA AM

0

1

2

3

4

5

r = 0.15 r = 0.17 r = 0.19

Geneva

Ψ
[W

]

HMD energy

(b) Service average power consumption Ψ over different
radii r for the city of Geneva.

·10−3

DO TE LRA LA AM

0

1

2

3

4

5

r = 0.16 r = 0.19 r = 0.22

Zurich

Ψ
[W

]

HMD energy

(c) Service average power consumption Ψ over different
radii r for the city of Zurich.

Fig. 9. Performance evaluation of HMDs power consumption for the topologies of Bern, Geneva, and Zurich . Error bars indicate 95% confidence intervals.

reduced QoS; (ii) The QoS performance of VR applications
can be significantly reduced if the HMD does not have enough
computing power to handle high refresh rates; (iii) Energy
consumption increases drastically whenever higher refresh
rates are enabled, and (iv) Latency benchmarks indicate that
we may be a long way from meeting the computing latency
requirements for VR systems.

2) TENET Simulation Evaluation:
a) E2E latency: Figures 8a, 8b, and 8c show the average

E2E latency as the sum of computation and network latency
for the five evaluated schemes over three topologies, each with
different radius and user densities when latency minimization
has the highest priority (α = 1). DO always performs the

optimal E2E latency for all topologies at the cost of execution
time. However, TENET provides the lowest E2E latency for
all topologies compared to LRA, LA, and AM because it
can deploy services in a way that minimizes network and
computing latency. We observe that TENET deploys (on
average 35%) more services on HMDs for all topologies
because, when α = 1, the TENET’s cost function tends to
minimize latency without considering power consumption on
HMDs. This explains why TENET’s network latency is lower
and indicates that deploying services can improve the system-
wide E2E latency onto HMDs. As the number of users in
the scenario increases, more and more services need to be

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

0

2

4

6

8

10
·102

H
M

D
s

us
in

g
8k

re
s.

DO TE LRA LA AM

0

3

6

9

12

15
·102

H
M

D
s

us
in

g
8k

re
s.

DO TE LRA LA AM

0

4

8

12

16

20
·102

H
M

D
s

us
in

g
8k

re
s.

DO TE LRA LA AM

0

2

4

6

8

10
·102

H
M

D
s

us
in

g
4k

re
s.

DO TE LRA LA AM

0

3

6

9

12

15
·102

H
M

D
s

us
in

g
4k

re
s.

DO TE LRA LA AM

0

4

8

12

16

20
·102

H
M

D
s

us
in

g
4k

re
s.

DO TE LRA LA AM

0

3

6

9

12

15
·102

H
M

D
s

us
in

g
14

40
p

re
s. DO TE LRA LA AM

0

3

6

9

12

15
·102

H
M

D
s

us
in

g
14

40
p

re
s. DO TE LRA LA AM

0

5

10

15

20

25
·102

H
M

D
s

us
in

g
14

40
p

re
s. DO TE LRA LA AM

0

5

10

15

20

25

30
·102

r = 0.18 r = 0.23 r = 0.29

Bern

H
M

D
s

us
in

g
10

80
p

re
s. DO TE LRA LA AM

0

1

2

3

4

5
·103

r = 0.15 r = 0.17 r = 0.19

Geneva

H
M

D
s

us
in

g
10

80
p

re
s. DO TE LRA LA AM

1

2

3

4

5

6

7
·103

r = 0.16 r = 0.19 r = 0.22

Zurich

H
M

D
s

us
in

g
10

80
p

re
s. DO TE LRA LA AM

Fig. 10. Average of total HMDs using resolutions 8k, 4k, 1440p, and 1080p over different radii r for the cities of Bern, Geneva, and Zurich.

deployed on the MEC servers, leading to their saturation.
For high user densities, services might be deployed on MEC
servers that are topologically far from the HMD, resulting in
increased network latency, as we observed.

Figures 8d, 8e, and 8f show all algorithms’ E2E latency over
time. The DO algorithm indicates the global optimum latency
in each iteration. We observe that the E2E latency increased for
algorithms DO and LRA in all scenarios whenever the number
of users has increased. Although LRA provides average E2E
latency under φn, Figure 8f shows that LRA reached more
than φn in all topologies. In contrast, TENET maintained its
stable E2E latency for the topologies of GA and ZH. This
indicates that the higher radius r is, the lower is the network
latency. DO and LRA highly depend on the number of users on
the system to provide better latency performance. Therefore,

using the zones scheme, TENET better distributes the services
along MEC infrastructure, improving the average E2E latency
even when more users are deployed in the same scenario. The
same behavior does not occur in the BE topology since it has
fewer nodes than GA and ZH, which limits the possibility of
exploiting a better service placement strategy. Algorithms LA
and AM decrease E2E latency whenever a higher radius r is
used.

b) Power consumption: Figure 9 shows the average
power consumed by each service as the sum of the average
power consumed by the HMDs and the MEC infrastructure
for the five evaluated schemes when energy minimization has
the lowest priority (α = 1). Although DO achieves a lower
E2E latency than TENET, on average, DO consumes more
power than TENET in all scenarios. The DO and TENET al-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

16

0

2

4

6

8
·102

r = 0.18 r = 0.23 r = 0.29

Bern

A
cc

ep
te

d
co

nt
ex

t
m

ig
ra

tio
ns

DO TE LRA LA AM

0

0.5

1

1.5

2

2.5
·103

r = 0.15 r = 0.17 r = 0.19

Geneva

A
cc

ep
te

d
co

nt
ex

t
m

ig
ra

tio
ns

DO TE LRA LA AM

0

0.8

1.6

2.4

3.2

4
·103

r = 0.16 r = 0.19 r = 0.22

Zurich

A
cc

ep
te

d
co

nt
ex

t
m

ig
ra

tio
ns

DO TE LRA LA AM

0

5

10

15

20
·102

r = 0.18 r = 0.23 r = 0.29

Bern

R
ej

ec
te

d
co

nt
ex

t
m

ig
ra

tio
ns

DO TE LRA LA AM

0

1

2

3

4

5
·103

r = 0.15 r = 0.17 r = 0.19

Geneva

R
ej

ec
te

d
co

nt
ex

t
m

ig
ra

tio
ns

DO TE LRA LA AM

0

2

4

6

8
·103

r = 0.16 r = 0.19 r = 0.22

Zurich

R
ej

ec
te

d
co

nt
ex

t
m

ig
ra

tio
ns

DO TE LRA LA AM

Fig. 11. Average application context acceptance and rejection migrations over different radii r for the cities of Bern, Geneva, and Zurich.

0

0.5

1

1.5

2

r = 0.18 r = 0.23 r = 0.29

Bern

E
xe

cu
tio

n
tim

e
[s

]

DO TE LRA LA AM

0

2

4

6

8

10

r = 0.15 r = 0.17 r = 0.19

Geneva

E
xe

cu
tio

n
tim

e
[s

]

DO TE LRA LA AM

0

7

14

21

28

35

r = 0.16 r = 0.19 r = 0.22

Zurich

E
xe

cu
tio

n
tim

e
[s

]

DO TE LRA LA AM

Fig. 12. Average of total execution time to provide placement for all services over different radii r for the cities of Bern, Geneva, and Zurich.

gorithms consume more HMD power than all other algorithms
because, in some situations, when services move from a MEC
server to an HMD, their E2E latency decreases (as shown in
Figure 8), consequently demanding higher video resolutions
that generate higher power consumption. Since TENET and
DO are the only algorithms that can deploy services on
HMDs, both are the only ones showing power consumption on
HMDs, except in Figures 9a (r = 0.29), 9b (r = 0.19), and 9c
(r = 0.19 and 0.22), where the entire MEC infrastructure was
overloaded due to the number of users and available MEC
servers. Whenever all MEC servers become unavailable for
service deployment, services remain on HMD. In contrast,
the other compared algorithms only show infrastructure power
consumption. This result motivates the need to deploy services
based on a trade-off between latency and power consumption,
which the TENET’s design addresses.

c) Video resolution selection: Figure 10 shows the aver-
age of total HMDs using resolutions 8k, 4k, 1440p, and 1080p
over different radii for all topologies. Each video resolution is
selected based on the E2E latency provided by each algorithm.

Although DO achieves 3% lower E2E latency performance
on average than TENET, this greatly impacts the number
of HMDs (on average 20% more) running at 8k and 4k
resolutions in scenarios with fewer users. However, this 20%
difference drops significantly to 5% as more complex scenarios
with more users are considered. These results indicate that
TENET can support videos at high resolutions at about the
same rate as DO. Furthermore, TENET supports more HMDs
running at 8k and 4k resolutions than LRA, LA, and AM.
Thus, we show that no matter how slight the average E2E
latency variation is, there is always a significant impact on the
number of HMDs running high-resolution videos. Therefore,
the TENET solution is promising for supporting VR appli-
cations running high-definition videos as it reduces the E2E
latency compared to the LRA, LA, and AM mechanisms.

d) Context service migrations: Figure 11 shows the
average accepted and rejection service context migrations over
different radii for Bern, Geneva, and Zurich. The migration
ratio is a crucial metric because frequent service migrations
may introduce service interruption, leading to the migration

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

17

process depending on network status, even if only the transfer
of the service context is performed. Thus, fewer service migra-
tions are expected to achieve better E2E latency performance.
We found that TENET provides a higher acceptance context
migration than all other algorithms, except for DO, in all
scenarios. We observe that TENET keeps its performance
constant, which does not occur for LRA in scenarios with
more users. LA and AM provide a lower context acceptance
ratio whenever more users are considered in each scenario.
This occurs because the context migration ratio can be affected
by the available MEC servers, i.e., whenever an algorithm
chooses a server to host the service, and this server does not
have available resources. Therefore, DO, TENET, and LRA
provide a higher acceptance context migration ratio and lower
rejected context migration ratio, while LA and AM have the
opposite behavior.

e) Execution time: Figure 12 shows the average total exe-
cution time to provide placement for all services over different
radii for the cities of Bern, Geneva, and Zurich. Although DO
performs the lowest E2E latency, it also performs a higher
execution time than TENET. We observe that DO execution
time grows fast whenever more users are included in the
system, while TENET remains stable. In the Zurich topology,
DO execution time is almost double the TENET execution
time. Besides, even LRA provides a higher execution time
than DO due to the number of rejected context migration
requests. Although AM performed a high rejected context
migration ratio, it achieved the lowest execution time due
to not discovering a target MEC server whenever a context
migration is needed. This occurs because AM always tries to
migrate the context to the MEC server attached to the base
station where the HMD is connected. This result suggests that
in a real scenario with many more users, 5G base stations, and
MEC servers, DO has an exponential execution time O(2n)
to find out the optimal placement of all services running
in the system. At the same time, the heuristic provided by
TENET can achieve acceptable E2E latency performance with
a logarithmic execution time O(Elog(V)).

VI. CONCLUSIONS

In this article, we have proposed a novel strategy to min-
imize the E2E latency for the next generation of 6DoF VR
applications. The optimal solution is formulated through an
integer linear programming problem (DSCP) whose objective
is to find the optimal service placement of services from
a service chain with varying capacity requirements of de-
coder services while satisfying 6DoF VR application ultra-
low latency requirements of 5 ms. We show that DSCP im-
plementation is unfeasible whenever there are too many VR
users and network nodes. We propose TENET, a fast heuristic
to solve the DSCP problem. TENET manages 6DoF VR
services by distributing them over edge networks and HMDs
to avoid increased latencies. Through network simulations, we
show that for varying user densities in an urban scenario,
TENET outperforms other widely adopted mechanisms in
terms of E2E latency in exchange for a moderate increment in
power consumption. Moreover, we observe significant gains

of TENET in selecting higher video resolutions for 6DoF VR
applications based on E2E latency. TENET also provides more
accepted context migrations than traditional service migration
algorithms. Finally, we show that TENET can reduce the
decision time on where to place the services while ensuring
the performance of 5 ms. Therefore, TENET can satisfy the
E2E latency requirements for 6DoF VR applications while
providing higher video resolutions to improve the VR user
experience.

REFERENCES

[1] G. S. for Mobile Communications (GSMA). (2019) Cloud AR/VR
whitepaper. [Online]. Available: https://www.gsma.com/futurenetworks/
wiki/cloud-ar-vr-whitepaper.

[2] AT&T. (2017) Enabling mobile augmented and
virtual reality with 5g networks. [Online].
Available: https://about.att.com/content/dam/innovationblogdocs/
EnablingMobileAugmentedandVirtualRealitywith5GNetworks.pdf.

[3] S. M. LaValle, Virtual reality. Cambridge university press, 2023.
[4] Nokia. (2016) 5G for Mission Critical Communication.

[Online]. Available: http://www.hit.bme.hu/∼jakab/edu/litr/5G/Nokia
5G for Mission Critical Communication White Paper.pdf.

[5] I. SG05, “Draft new report itu-r m.[imt-2020. tech perf req]-minimum
requirements related to technical performance for imt-2020 radio inter-
face (s),” ITU-R SG05 Contribution, vol. 40, 2017.

[6] Qualcomm. (2016) Making Immersive Virtual Reality Possible in Mo-
bile. [Online]. Available: https://www.qualcomm.com/media/documents/
files/whitepaper-making-immersive-virtual-reality-possible-in-mobile.
pdf.)

[7] G. Berardinelli, P. Baracca, R. O. Adeogun, S. R. Khosravirad,
F. Schaich, K. Upadhya, D. Li, T. Tao, H. Viswanathan, and P. Mo-
gensen, “Extreme communication in 6g: Vision and challenges for ‘in-
x’subnetworks,” IEEE Open Journal of the Communications Society,
vol. 2, pp. 2516–2535, 2021.

[8] W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
network, vol. 34, no. 3, pp. 134–142, 2019.

[9] C. Perfecto, M. S. Elbamby, J. Del Ser, and M. Bennis, “Taming the
latency in multi-user vr 360°: A qoe-aware deep learning-aided multicast
framework,” IEEE Transactions on Communications, vol. 68, no. 4, pp.
2491–2508, 2020.

[10] F. Hu, Y. Deng, W. Saad, M. Bennis, and A. H. Aghvami, “Cellular-
connected wireless virtual reality: Requirements, challenges, and solu-
tions,” IEEE Communications Magazine, vol. 58, no. 5, pp. 105–111,
2020.

[11] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylinattila, “A
survey on mobile augmented reality with 5g mobile edge computing:
Architectures, applications and technical aspects,” IEEE Communica-
tions Surveys & Tutorials, 2021.

[12] Qualcomm. (2017) Augmented and Virtual Real-
ity: the First Wave of 5G Killer Apps. [On-
line]. Available: https://www.qualcomm.com/media/documents/files/
augmented-and-virtual-reality-the-first-wave-of-5g-killer-apps.pdf.)

[13] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, 2019.

[14] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J.
Hwang, and Z. Ding, “A survey of multi-access edge computing in 5g
and beyond: Fundamentals, technology integration, and state-of-the-art,”
IEEE Access, vol. 8, pp. 116 974–117 017, 2020.

[15] A. Medeiros, A. Di Maio, T. Braun, and A. Neto, “Service chaining
graph: Latency-and energy-aware mobile vr deployment over mec infras-
tructures,” in GLOBECOM 2022-2022 IEEE Global Communications
Conference. IEEE, 2022, pp. 6133–6138.

[16] J. Chakareski, M. Khan, T. Ropitault, and S. Blandino, “6dof virtual
reality dataset and performance evaluation of millimeter wave vs. free-
space-optical indoor communications systems for lifelike mobile vr
streaming,” in 2020 54th Asilomar Conference on Signals, Systems, and
Computers. IEEE, 2020, pp. 1051–1058.

[17] X. Hou and S. Dey, “Motion prediction and pre-rendering at the edge to
enable ultra-low latency mobile 6dof experiences,” IEEE Open Journal
of the Communications Society, vol. 1, pp. 1674–1690, 2020.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

18

[18] Y. Pan, C. Wang, Y. Liu, C. Xu, Y. Liu, and L. Zhang, “5g mobile
edge assisted metaverse light field video system: Prototype design and
empirical evaluation,” Available at SSRN 4106315, 2022.

[19] J.-B. Jeong, S. Lee, I.-W. Ryu, T. T. Le, and E.-S. Ryu, “Towards
viewport-dependent 6dof 360 video tiled streaming for virtual reality
systems,” in Proceedings of the 28th ACM International Conference on
Multimedia, 2020, pp. 3687–3695.

[20] C. Wang, S. Zhang, Z. Qian, M. Xiao, J. Wu, B. Ye, and S. Lu,
“Joint server assignment and resource management for edge-based mar
system,” IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp.
2378–2391, 2020.

[21] A. Medeiros, T. Braun, A. Di Maio, and A. Neto, “REACT: A solidarity-
based elastic service resource reallocation strategy for multi-access edge
computing,” Physical Communication, p. 101380, 2021.

[22] D. Alencar, C. Both, R. Antunes, H. Oliveira, E. Cerqueira, and
D. Rosário, “Dynamic microservice allocation for virtual reality dis-
tribution with qoe support,” IEEE Transactions on Network and Service
Management, 2021.

[23] H. Santos, D. Rosario, E. Cerqueira, and T. Braun, “Multi-criteria service
function chaining orchestration for multi-user virtual reality services,”
in GLOBECOM 2022-2022 IEEE Global Communications Conference.
IEEE, 2022, pp. 6360–6365.

[24] J. Ruan and D. Xie, “Networked vr: State of the art, solutions, and
challenges,” Electronics, vol. 10, no. 2, p. 166, 2021.

[25] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, and H.-S. Lee, “Furion:
Engineering high-quality immersive virtual reality on today’s mobile
devices,” IEEE Transactions on Mobile Computing, vol. 19, no. 7, pp.
1586–1602, 2019.

[26] A. Younis, B. Qiu, and D. Pompili, “Latency-aware hybrid edge cloud
framework for mobile augmented reality applications,” in 2020 17th
Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON). IEEE, 2020, pp. 1–9.

[27] N. Akhtar, I. Matta, A. Raza, L. Goratti, T. Braun, and F. Esposito,
“Managing chains of application functions over multi-technology edge
networks,” IEEE Transactions on Network and Service Management,
vol. 18, no. 1, pp. 511–525, 2021.

[28] Y. Liu, J. Liu, A. Argyriou, and S. Ci, “Mec-assisted panoramic vr video
streaming over millimeter wave mobile networks,” IEEE Transactions
on Multimedia, vol. 21, no. 5, pp. 1302–1316, 2018.

[29] C. Zheng, S. Liu, Y. Huang, and L. Yang, “Mec-enabled wireless
vr video service: A learning-based mixed strategy for energy-latency
tradeoff,” in 2020 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2020, pp. 1–6.

[30] J. Santos, J. van der Hooft, M. T. Vega, T. Wauters, B. Volckaert, and
F. De Turck, “Efficient orchestration of service chains in fog computing
for immersive media,” in 2021 17th International Conference on network
and service management (CNSM). IEEE, 2021, pp. 139–145.

[31] T. V. Doan, G. T. Nguyen, M. Reisslein, and F. H. Fitzek, “Sap:
Subchain-aware nfv service placement in mobile edge cloud,” IEEE
Transactions on Network and Service Management, vol. 20, no. 1, pp.
319–341, 2022.

[32] P. Mandal, “Comparison of placement variants of virtual network func-
tions from availability and reliability perspective,” IEEE Transactions on
Network and Service Management, vol. 19, no. 2, pp. 860–874, 2022.

[33] D. Zheng, G. Shen, X. Cao, and B. Mukherjee, “Towards optimal
parallelism-aware service chaining and embedding,” IEEE Transactions
on Network and Service Management, vol. 19, no. 3, pp. 2063–2077,
2022.

[34] S. Confederation. (2022) Maps of switzerland. [Online]. Available:
https://map.geo.admin.ch/.

[35] Z. Rejiba, X. Masip-Bruin, and E. Marı́n-Tordera, “A survey on
mobility-induced service migration in the fog, edge, and related com-
puting paradigms,” ACM Computing Surveys (CSUR), vol. 52, no. 5, pp.
1–33, 2019.

[36] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 163–174, 2014.

[37] A. Medeiros, “Service Chaining Graph Release V1,” Aug. 2022.
[Online]. Available: https://doi.org/10.5281/zenodo.7004077

Alisson Medeiros is a Ph.D. candidate at the Com-
munication and Distributed Systems (CDS) group,
Institute of Computer Science, University of Bern,
Switzerland. He received his MSc from the Federal
University of Rio Grande do Norte (UFRN), Brazil,
and obtained his BSc in computer science at the
State University of Paraı́ba, Brazil. His research
interest includes Virtual Reality, Augmented Reality,
Mixed Reality and Edge Computing.

Antonio Di Maio is a postdoctoral researcher in
mobile networks with the Communication and Dis-
tributed Systems (CDS) group at the University of
Bern, Switzerland. He obtained his Ph.D. degree
in Computer Engineering from the University of
Luxembourg in 2020, with a thesis on routing and
content dissemination in software defined vehicular
networks. His current research interests fall within
the areas of network modeling, scheduling, routing,
and channel access.

Torsten Braun is currently director at the Institute
of Computer Science, University of Bern, where he
has been a full professor since 1998. He got the
Ph.D. degree from University of Karlsruhe (Ger-
many) in 1993. From 1994 to 1995, he was a
guest scientist at INRIA Sophia-Antipolis (France).
From 1995 to 1997, he worked at the IBM Euro-
pean Networking Centre Heidelberg (Germany) as
a project leader and senior consultant. He has been
a vice president of the SWITCH (Swiss Research
and Education Network Provider) Foundation from

2011 to 2019. He has been a Director of the Institute of Computer Science and
Applied Mathematics at University of Bern between 2007 and 2011, and from
2019 to 2021. He received best paper awards from LCN 2001, WWIC 2007,
EE-LSDS 2013, WMNC 2014, and the ARMS-CC-2014 Workshop as well
as the GI-KuVS Communications Software Award in 2009. He also received
several best poster awards at Bern Data Science day 2022 and 2021, and
the best poster award from Adhoc-Now 2019. In the scope of EU funded
projects, he was leading WPs of FP6-EUQOS and FP7-MCN. Moreover, he
coordinated national projects such as SNSF Swiss Sense Synergy and SNSF
CONTACT.

Augusto Neto is Associate Professor at the
Informatics and Applied Mathematics Depart-
ment(DIMAp) of the Federal University of Rio
Grande do Norte(UFRN), member of the Instituto
de Telecomunicações (Aveiro, Portugal), researcher
of the National Council for Technological and Sci-
entific Development (CNPq), and leader of the Re-
search Group on Future Internet Service & Appli-
cations(REGINA), working mainly in the fields of
Computer Networks and Distributed Systems. He
got his Ph.D. at the University of Coimbra (2008),

and coordinates/participates in research projects funded by national and
international development agencies. He is active member of the IEEE Com-
munication Society and participates as editor/reviewer of important journals
in the field of computer networks, and has authored and co-authored more
than 150 papers. His current main research interest are Future Internet, 5G,
SDN/NFV, Cloud/Edge/Fog Computing, IoT, and Smart Cities.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3331755

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

